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Abstract

Given a Boolean propositional formula(X,,) over the basi$§) = {A,V, -} we
consider the following decision problem: is there a sub$étavals, S, for which
©(Xn) = Nyes v or (X,) = V,es y? We prove that the “obviouss; up-
per bound is sub-optimal and that the problem is decidablq'}‘fﬁthe class of
languages decidable by polynomial time methods allowed akemon-adaptive
gueries to amp oracle. We further show that the associated function protsé

computing a witnessing such subset when one exists can \IzmdsiolFPﬁ‘P.
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1. Introduction

A long-standing problem in computational complexity theeoncerns how
difficult it is to determine whether a given propositionatrfaula, ¢(X,,), can be
rewritten as an equivalent formula( X, ), whose size is strictly smaller. Here the
sizeof a formula is interpreted as the number of occurenceserflis — and—z
—in the formula’s specification. This problem was studiedHgmaspaandra and
Wechsung [11, 12] who obtained the first non-trivial loweubds on its complex-
ity. These establish that, in its most general fokinimal Expression Equivalence
(MEE) is P|’\|‘P—hard. To date, however, no improvement to the obviBtisipper

bound has been obtained, i.e. the approach which given emoesp, k) of MEE,
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proceeds by guessing a formulaof size at most and accepts if and only if
¢ =1

In this note, although we do not obtain improved bounds ferganeraMEE
problem, we are able to show that a related problem, in whierstructure of
witnessing equivalent formulae is very tightly constrainean be decided in|’\|‘P.
Furthermore our proof of this upper bound immediately ygedoh algorithm for
constructingsuch a set: this algorithm places the related search prolletme
function cIaSSFP|’\|‘P. The exact variant oMEE we consider will be callederm
EquivalencqTE) and is defined as follows:
Term Equivalence(TE)
Instance ¢(X,,) propositional formula over variableey, ..., z,} and logical

operations{A, V, —}.

Question 35 C {xy,...,zpn, 21, ..., 2, } such that either
p(Xy) = /\ y| or p(X,) = \/ yl?
yes yeS

We denote by TE the associated function problem, i.e.

undefined if ¢ & TE
FTE(p(Xn)) = :
min S if  ©=Ayesy OFrp =Vyesy

Heremin is with respect taC and thus covers the cases wherés equivalent to
a Boolean constant function so théit= 0 is reported ifp = T = Ayes y Or
p=1=Vyesy.

The upper bound methods combine a translation from formidadirected
graph structures with recent complexity results on idgmitf subsets of vertices
satisfying specific criteria from Dunne [7, 8]. The study otk sets originates
from the concept of so-callecektension semantitén the argument systems pi-

oneered in work of Dung [3]. Readers interested in a genemiveew of these
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and related systems are referred to the survey of BenchrCapd Dunne [1];
a detailed introduction to complexity-theoretic work instimodel is provided in
Dunne and Wooldridge [10].

In the remainder of this note we present background defirstiacluding the
graph-theoretic terminology subsequently used in Se@ioBection 3 describes
the translation from formulae over the basis, v, -} to directed graphs that are
referred to agormula graphs Our main result is presented in Section 4 with con-

clusions given in Section 5.

2. Background Definitions

A propositional formula,p(X,) where X,, = {x1,...,z,} is a set ofn

Boolean variables is any structure built according to thieong rules.

a. Aliteral y € {z1,z2,...,2y,21,..., 2, } IS @an A-formula and also an
v-formula.

b. If {¢1,..., ¢} areallv-formulae ther{yx1)A(p2) - - - A(pr) is anA-formula.

c. If{¢1,..., ¢} areallA-formulae ther{y1)V(p2) - - -V (1) is anv-formula.

d. ¥ isa{A,V,-}-formula (or more simply just formula) i) is the result of a

finite number of applications of (a)—(c) above.

We say an\-formula is anelementary conjunctioif it has the fromA,cg v for
some subset of {z1,z9,...,z,, 721,..., 2, } Such that at most one af, —z;
belongs toS (1 < i < n). Similarly anv-formula is anelementary disjunction
if it is of the form v cs v (Where againS does not contain both a literal and its
negation).

We note a number of points concerning this definition. Birst do not restrict
the operationg\ and anv to be purelybinary. Secondly we do not explicitly allow

the constant symbols (false) orT (true) as formulae.
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Supposer = (p1,...,pn) € (L, T,*)™is apartial assignmenof Boolean val-
ues to the propositional variablés, . .. , x,,) defining some formula(z, ..., x,).

Thevalueyp(«) € {L, T,*} is recursively defined via:

1. If p(X,) is the literalz; theny(m) = p;.
2. If o(X,,) is the literal—z; theny(w) = —p; if p; # * andx* otherwise, i.e.T
ifp,=L; Lifp,=T.
3. If o(X,,) is anA-formula formed fromv-formulae{y;, ..., ¢} then:
a o) =Tif pj(r)=Tforall1 <j <k.
b. o(m) = Lif p;(m) = L for somel < j < k.
C. ¢(m) = = otherwise, i.e n;(r) = L and at least one;(7) = .
4. If o(X,,) is anVv-formula formed fromA-formulae{p, . .., ¢} then:
a. ¢(r)=1Lif pj(n)=Lforall1 <j <k.
b. o(m) =T if p;(m) =T for somel < j < k.
e

C. ¢(m) = x otherwise, i.e n@; () = T and at least one; () = .

Two formulaep(X,,) andy(X,,) arelogically equivalent- denotedp(X,,) =
Y(X,) — if for all assignmentsy € (L, T)™ it holds thaty(a) = ¥ (a). We
note that logical equivalence is well-defined in the casenathe propositional
variables,Y’, definingy are astrict subsetf those definingp: in this casep(X) =
»(Y") if for every assignmentv of X, o(«) = ¢(83) wheref is the projection of
the assignment onto the variabley” C X.

Through thenormal formsconjunctive normal formgNF) and disjunctive nor-
mal form ©NF) it well known that given any Booleafunction f : (L, T)" —

(L, T) there is ana-formula, ¥, and anv-formula i, for which ¢, (X,,) =
(X)) = f(Xp), le. Va e (L, T Ya(a) = Yy(a) = f(a), see, e.g. [5,
pp. 12-13].



Thesizeof a formulap(X,,) (denoted|p(X,,)|) is the number of occurences

of literals used in defining it, i.e

1 if  ©(X,) =y for some literaly
lo(Xn)l = § S |ei(Xn)| if @(X,) is anA-formula formed from{p1, . . ., @i}
Sk lei(Xn)| if o(X,) is anv-formula formed from{p1, . . ., @i}

We next introduce a number of graph-theoretic concepts twhidl be im-
portant in our translation of formulae to directed graphd amthe upper bound
arguments of Section 4. Throughout the seqé&V, F') is adirectedgraph with
verticesV = {v1,...,v,} and edged” C V x V. ForS C V the setsS~ andS™

are
ST = {w : 3Jve Sforwhich(w,v) € F}

St = {w: Fve Sforwhich (v,w) € F}

It should be noted that we permit occurences of “self-loapsF, i.e. we allow
(v,v) € F.1

A subsetS of V' is conflict-freeif £’ contains no edges il x .S. The subset
S is admissibleif it is both conflict-free and for every € S—, {v}= NS # 0.
An admissible set ipreferredif it is maximal w.r.t. C, i.e. if S is preferred then
forall T C Vif S ¢ T thenT is notadmissible. A subsef is ideal if S is both
admissibleand a subset oéverypreferred sef.

We note the following results concerning these:

Fact 1. GivenH (V, F)andS C V,

This is solely in order to simplify some of the subsequenhiézal lemmata. All of our results,

albeit with rather more involved constructions, can beweriwhen self-loops are forbidden.
20ur choice of terminology coincides with the treatment @fsa concepts in the context of argu-

ment systems: it is, of course, the case that a number of itleas are already well-established in

graph-theoretic treaments, e.g. “conflict-free” corregjgowith “independent set”.



a. Deciding ifS is admissible is irp.

b. Deciding ifS is preferred is caP—complete, [2].

c. Givenv € V deciding ifv is a member ofat least onegreferred set isNP—
complete, [2].

d. Givenw € V deciding ifv is a member oéverypreferred set igI;—complete. [9].

e. Deciding ifS is ideal is couP—complete. [7, 8].

f. EveryH (V, F') has a unique maximal (w.r.C) ideal set. [4].

g. Deciding ifS is the maximal ideal set ig'T‘P—compIete, where hardness is with
respect taoandomizedeductions that succeed with probability— 211, [7,
8].

h. Computing the maximal ideal setFieﬁ‘P—compIete, [7, 8]. We note that the

hardness proof uses a deterministic reduction.

The techniques used to establish Fact 1(d) and (h) play #isart role in our

subsequent technical development.

3. Formula Graphs and their Properties

We now present a translation from formulag X,,) as defined in Section 2 to
directed graphsH,(V,,, F,) and reprise some properties of admissible and pre-
ferred sets of vertices ifi,,. Our translation while similar to the standard repre-
sentation of formulae as directed graphs, e.g. as desaribéqg pp. 18-23], has
some important differences. The original definition of fafengraph as given in
Defn. 2 was presented in [9, Defn. 7, p. 193].

We start with the well-known translation from formulaé€X,) to trees.

Definition 1. Let ¢(X,,) be a propositional formula over the variables, =

(x1,m2,...,2,) using the operation$A, vV, =} with negation applied only to vari-



Figure 1: Ty, (z1, w2, x5, x4) for ((z1 V 22 V 23) A (24)) V (m22 A —T4)

ables ofp. Thetree representatioof » (denotedl,) is a rooted directed tree with

root vertex denoted(7,,) and inductively defined by the following rules.

a. If o(X,,) = y —asingle literalz or —x — thenT, consists of a single vertex
p(T,) labelledy.

b. If o(X,,) is an A-formula AF_ ;(X,,), with (11,19, ... ,4) V-formulae,
then T, is formed from thet tree representationgT,) by directing edges
from eachp(T),) into a new root vertex(7,,) labelledA.

c. Ifo(X,)isanv-formula= VE_ ;(X,,), with (s1, s, ..., ¢r) A-formulae,
then T, is formed from thet tree representationgT,) by directing edges

from eachp(T},) into a new root vertex(7,,) labelledV.

In what follows we use the ternodeof T, to refer to an arbitrary tree vertex, i.e.

a leaf or internal vertex.

In the tree representation ¢f, each leaf vertex is labelled with some litera)
(several leaves may be labelled with the same literal), awh énternal vertex
with an operation i A, V}. We shall subsequently refer to the internal vertices of

T, as thegatesof the tree. Notice that the definition of formula ensures the



successor of any-gate (tree vertex labelled) is an\V-gate (tree vertex labelled
V) andvice-versa Letm be the number ofatenodes inl;, and denote these gates
by (91, 92, - - -, gm) With g,,, taken as the rogi(T,,) of the tree. For any edgg, g)
in T,, we refer to the nodé as aninput of the gatey.

The directed graph structure used in our upper bound proalftsined from

theformula graphof ¢(X,,) as defined below.

Definition 2. Lety(X,,) be a formula with tree representatid, havingm gates.
TheFormula Graptof ¢, is the directed graplH ,(V,,, F,,) defined as follows.

V., contains the following vertices

X1 2n vertices representinfiterals {z;, —x; : 1 <i <n}.

X2 For each gatey;, of T,,, a vertex labelled-g;, (if g, is anV-gate) or a vertex
labelled gy, (if g5, is an A-gate). Ifg,,, i.e the root off,, happens to be an
V-gate, then an additional vertey, ;1 is included. We subsequently denote

the set of vertices contributed by gates/pfasg,,.
The directed edges £, — overV,, are

F1 {(z;, ~zi), (i, x;) + 1 <i<n}

F2 (=gm, gm+1) If g, IS @anv-gate inT,,

F3 If g, is an A-gate inT,, with inputs{hy, ho,..., k. }: {(—higr) + 1 <0 <
T}
It should be noted that when a literal vertey, is an input to anA-gate in
T, then this convention leads to the corresponding edge ataig from the
literal vertex—y of V...

F4 If g;, is anVv-gate inT,, with inputs{hy, ho, ...,k }: {(hs,ngr) + 1 <0 <

T}



Figure 2: The Formula GrapH,, from the tree representation of Fig. 1

Fig. 2 shows the result of this translation when it is appl@ethe tree representation
of the formula in Fig. 1.
Supposer : X, — (L, T,*)" is apartial assignment of Boolean values to

X,,. Any such assignment induces a partition/gfwhich we denote
T Vo x (L, T,%) — {In, Out, Open}

The mappingr(h, ) is given by,

In if h=uaz;andn(z;)=T or
h = —z; andn(z;) = L or
h is a gate with inputghy, ..., A, }
andV 1 <i <7 7(h;,m) = Out
T(h,m) = Out if h=ux;andm(z;) = L or
h = —x; andn(z;) = T or
h is a gate with input§hq, ..., .}

and3 1 <i<rr(hy,nm)=1In

Open otherwise



For example, with respect to the formula graph shown in Figehith resulted
from thev-formula((z1 VaaVas)A(z4))V (mxa A—zy), if 1= (T,%,%, T) then
{z1,24, 93,94} are all labelled n by 7; {—x1, x4, —g1, g2, g4 } are labelledut
and all other nodes are labelt@pen. Forg = (x, L, , L), {—x9, ~x4, g2, g4} are
all labelledIn and{z2, 24, g3, g4 } labelledOut.

LetIng(m) = {heV, : 7(h,7) = In}.

Theorem 1.

a. Forall H(V,, F,) and all partial assignments the set/n () is admissible.
b. ForS C V,, S'is preferred if and only iS5 = In,(«) for sometotal assign-

mente, i.e. a(z;) € {L, T} for everyz;.

Proof: For (a), if In,(7) = () then we are done since the empty set is always
admissible. Otherwisén,,(7) contains a non-empty subsetiof. This set must be
conflict-free since, by the definition ef h, ) if 7(h,7) = Inthent(p,7) # In
for any nodep which is adjacent té in H,: if (h,p) € F, thenp is either a literal
(—h) or a gate withh as an input; if(p, h) € F, eitherh is the literal-p or h is a
gate withp as an input. In all casgse In, () would preclude: € In (). Now
consider any: in {In,(m)}~. By definition,7(h,7) = Out. Butt(h,7) = Out
only if A is a literal withT(=h, ) = In orif h is a gate vertex one of whose inputs
is in Iny(m): in both casegn,,(r) N {h}~ # 0 so that/n,(r) is admissible.

For (b), first note that ifx is a total assignment thenh,«) € {In,Out}
for all h € V. From (a) we know thafn,(a) is admissible. To see that it is
a maximal such set it suffices to note thdh, «) = Out implies there is some
g € Ing(a) for which (g, h) € F,, i.e. {h} U In,(a) would not be conflict-free
and, hence, is not admissible. Converselyy'ifC V,, is preferred thert must

containexactlyone literal vertex from each of thepairs{z;, ~z;}. Defining the
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total assignmentvs by ag(z;) = T if z; € S; ag(x;) = Lif —x; € S, itis

immediate thats = In,(ag). o

The partition induced by a partial assignmetitas a close relationship to thalue
in {_L, T, «} taken by nodes, i.e. literals and gates, in the tree reptasam of a
formula. We recall that valué, =) for h a node in the tree representation of a

formula andr = (p1,...,ps) € (L, T, )™ a partial assignment of,,, is defined

via®
T if h=ux;andp, =T or
h = —z;andp; = L
L if h=ux;andp; = L or
h=-xz;andp;, =T
value(h,m) = P

if h=ux;andp; =x*or
h = —x; andp; = *

T

i—1 value(h;,m) if hisanA-gate with inputs{hy,..., h,}

Vi_, value(h;, ) if hisanv-gate with inputs{hy,..., .}

Theorem 2. Let ¢(X,,) be a formula with tree representatidfi, and formula
graph H,(V,, F,). For h a vertex of the formula graph — i.e. node of the tree

representation — and any partial assignment:

3The value ofA (resp. V) w.r.t partial assignments is given in the obvious waydy; v; is T
(if ys = Tforall 1 < i < k); L (if at least ongy; = _L); and in all other cases. Similarly?_; y;

is L (ify; = Lforalll <i<k), T (if at least onegy; = T); and=x in all other cases.
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7(h,m) = In (resp.7(h, ) = Out) if and only if

his aliteral vertex  and wvalue(h,7) =T
resp. wvalue(h,m) = L1
h is an A-gate and wvalue(h,7) =T
resp. walue(h,m) = L
h is anV-gate and wvalue(h,m) = L
(labelled—hin H,) resp. wvalue(h,7) =T

Similarly 7(h, ) = Open if and only ifvalue(h, w) = .

Proof: It is easily checked that(h,7) = Open if and only if value(h, ) = *.
For the remaining cases, we recall thatdiepthof a node (in either representation)

hasdepth(h) = 0 if h is a literal node and
1 + max {depth(h;) : his agate node with inputghy,...,h,}}

whenh is a gate node
We proceed by induction on the depth of nodes.
For the inductive baséepth(h) = 0, the only relevant nodes are literals and

the definitions ofr(y, ) andvalue(y, w) immediately give

T(y,m) = In < value(y,7) =T
7(y, ) = Out < value(y,n) = L

Assuming the theorem holds for all nodes at depth lessitharl we show it holds
for all nodes whose depth is equalitoLet h be any node witllepth(h) = k > 1.
Thenh must be a gate node with inpuis , . . . , h, }. Furthermoredepth(h;) < k
for each inputh; of h.

Suppose first thah is an A-gate andr(h,7) = In. Eachh; must have

7(hi, ™) = Out, and thus by the inductive hypothesisijfis anv-gatevalue(h;, ) =
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T and if h; is the literaly thenvalue(y, ) = L, i.e. value(—y,7) = T. From
the definition of formula graph ik is anA-gate one of whose inputs (if,) is the

literal y, then the edge directed into(in H,,) is (—y, k). In other words,

(y,h) € F, and 2 is anA-gate) andr(h, 7) = In
implies (1)
(—y,h) € T, and7(y, ) = Out

In summary fromh an A-gate with7(h, 7) = In we haver(h;, ) = Out for all
inputsh;, hencevalue(h;, 7) = T (from relation (1) and the inductive hypothesis)
so thatvalue(h, ) = Ai_; value(h;, 7) = T. On the other hand, if (h,7) =
Out then there must be some inpuytfor which 7(h;, 7) = In. If h; is the literal
-y we havevalue(y,n) = L giving value(h,7) = L as required. Ifz; is an
V-gate withr(h;, 7) = In then from the inductive hypothesisglue(h;, 7) = L
and agairvalue(h, ) = L.

Now supposeh is an VV-gate with inputs{hy,...,h,} and7(h,7) = In.
We again haver(h;,7) = Out so that from the inductive hypothesis (and the
fact that inputs are eithex-formulae or literals)value(h;, 7) = L leading to
value(h,m) = VE_| value(h;,7) = L as required. Similarly is(h,7) = Out
then some input must havéh;, 7) = In and again (via the inductive hypothesis)
value(h;, ) = T leading tovalue(h, ) = Vi_jvalue(h;, 7) = T.

For the converse direction, the inductive bage(h(h) = 0) has already been
established. Thus suppogeis a gate node withvalue(h,7) = T. If his an
A-gate we need to show(h, ) = In. Letting {hy,...,h,} be the inputs for
(which arev-gates or literals) fromalue(h,7) = T we havevalue(h;,m) = T
so thatr (h;, 7) = Out (if h; is anv-gate) andr(—y, ) = Out if h; is the literal
y providing the input td: in T, (so that—-y is the input toh in H,,). It follows that

since all input nodes are labell€dut, 7(h, ) = In. If h is anv-gate, then from
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value(h,m) = T at least one of its inputs must havelue(h;,7) = T giving
7(hi, ) = In (by induction). But now we obtain(h, 7) = Out as claimed.
Finally if value(h,7) = L andh is an A-gate, we havealue(h;, ™) = L
for at least one inpuk;: if this input is anv-gate we obtain-(h;,7) = In SO
that7(h,7) = Out. If this input is the literaly (in 7,,) then—y (the input toh
in H,) hasvalue(—y,7) = T so thatr(-y,n) = In and7(h,m) = Out. On
the other hand if: is anV-gate withvalue(h,7) = L then all inputsh; must
havevalue(h;, 7) = L: these are either literajs(so thatvalue(y, ) = L giving
7(y, ) = Out) or A-gates which (by the inductive hypothesis) havé,, 7) =
Out: in summary ifvalue(h,7) = L andh is an\V-gate then each input has

7(hi, ™) = Out so thatr(h, 7) = In as claimed. o

4. Upper bounds on Term Equivalence

The correspondence between admissible sets of verticeg ifotmula graph
H,(V,, F,) and partial assignments, established over Thms. 1, 2, is not quite
strong enough to allow the derivation of our upper boundran By making a
final modification to the structure of a formula graph we caswéwver, obtain the
claimed upper bound by exploiting a correspondence betwatsfyingassign-
ments,« (in the case of\-formulae) and thenaximal ideal sein the modified
graph. We note that, without loss of generality, it may besassd that thap(X,,)
is an A-formula: if ¢(X,,) is anVv-formula simply apply De Morgan’s Laws to
transform the-¢(X,,)-formula into anA-formula noting thatp(X,,) = VyesS if
and only if—p(X,,) = Ayes (—y).

The graph-theoretic structure considered in the upperd@unow introduced.

Definition 3. Lety(X,,) be anA-formula andH,(V,,, F,,) its associated formula

graph withg,, the A-gate vertex corresponding to the root of the tree represtent

14



of ¢. Theideal graphof ¢, denotedR,,, has vertex setV, = V,, U {y1, y2, C, b}
(where {y1,y2,C,b} are new vertices not occuring il,) and edgest;, U £,

whereE, contains

{1.y2), (W2, 91), (y1,C), (y2,C)}
U {(C, gm), (9m,C), (C,b), (b, b)}
U {(byz;) : 1<i<n} U {(b-ax;) : 1<i<n}
The following characterisation of ideal sets and condgidor a vertex to be a

member of the maximal ideal set are stated inf[7].

Fact 2.

a. LetH(V, F) be any directed graph anfl a subset of/. The sefS is an ideal
set if and only if both of the following hold:
P1. Sis an admissible set dff (V, F).
P2. Forallw € S, there is no admissible set &f(V, F') containingw.

b. LetM be the (unique) maximal ideal set Bf(V, F') and v a vertex fromV/.
Thenv € M if and only if both of the following hold:
M1. For allw € {v}~ there is no admissible set & (V, F) that containsw.
M2. Forallw € {v}~, M N{w}~ # 0, i.e. M contains at least one vertex

from {w}~.
The key property of ideal graphs we need is

Theorem 3. Let p(X,,) be anA-formula for whichp(X,,) # L andp(X,,) # T,
i.e. ¢(X,,) is satisfiable and not a tautologyLet R.,(W,,, F,, U E,,) be the ideal

“The full proofs of these may be found in [8].
®Note that if( X, ) = 11 (Xn) Ath2(X,) thenp(X.,,) will be a tautology if bothy, and- are

tautologies.
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graph constructed fromp(X,,) and M, C W, be the maximal ideal set dt,,.
M, # 0 ifandonly ifp(X,,) € TE

Proof: SupposeM,, # (. From Fact 2(a) we hava1, N {y1,y2,C} = 0:
the sets{y;} and{y-} are both admissible, howevey, € {y2}~, y2 € {y1}~
and both vertices are ifiC}~. The vertexb is not in any admissible set since
(b,b) € F, U E,. In total we deduce frora\, # 0 that M C V,, — the set of
vertices defining the formula grapH,,, of .

We now argue thaM, # () implies g, € M., (recall thatg,, is theA-gate in
V., corresponding to the root of the tree representafigy),

For suppose this were not so. Frgm ¢ M., and Fact 2(b)
M, A{zy, ... zp,nxr, ... oxp} =0

That is, no literal vertex could belong 1o1: the vertexb is in {x}~ hence were
any literal vertex to be ioM,, this would forceg,, € M., since{b}~ = {b, gm }.
It is now easy to see that, ¢ M, forcesM, = (: we have already argued
that M, must be a subset df,, thus, from the assumption thaf, ¢ M, and
the consequence d¥1,, containing no literal vertices, iM., # () then it can only
contain gate vertices. Consider any gate vefte h has a literaly, as an input
thenh ¢ M., from Fact 2(b): the only choices frofy } ~ being—y andb neither
of which belong toM.,. If h has only gate verticegh,, ..., h,} as inputs then
M,n{h;}~ has to be non-empty: now repeating the same argument (vsjlece
to vertices{h;}~) we eventually reach the position that some literal vertesim
belong toM.,. We deduce that iM,, # () theng,,, € M.,,.

Fromg,, € M, and our analysis above it follows that
My A{zy, ... zp,nxy, ... oxp} £ 0
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Let S be the set of literal vertices occurring i,,. First notice thatS cannot
contain both a literal and its negation sinéé, must be conflict-free. Without
loss of generality le = {z1,...,z;}. We now claim thatp(X,,) = AF_; z; so
establishing thap(X,,) is a positive instance afe.

Now S U {gm} € M, indicates (by the definition of ideal set) th&tJ {g,, }
is a subset oéverypreferred set of?,. Any such preferred set consists of some
subset,@, of vertices fromV,, and exactly one of the vertices frofw:,y2} so

that from Thm. 1(b)Q = In,(a) for some satisfying assignmenty of o(X,,).

It follows that everyassignment in whichy; = T (1 < ¢ < k) will satisfy
©(X,,) regardless of how the variablég, \ {z1, . .., zx } are assigned. In addition,
however, no assignment in whiehh := L (for 1 < i < k) can satisfyp(X,,).

For suppose there were a satisfying assignmemtjth x; = L, then in this case
both In,(5) U {y:} andIn,(5) U {y2} would be preferred sets ét,: neither of
these, however, containy, thereby contradicting; € M. In summaryz; := T
for eachl < i < k satisfiesp(X,,) butx; := L forany1 < i < k fails to satisfy
0(Xn), i.e.p(X,) = AF_| z; as required.

For the converse direction, suppose thafX,,) = A,cg y for some subset,
S, of literals overX,,. Without loss of generality, assume thtat= {z1,...,x}.
We show that{g,,} US = {gm,z1,...,21} C W, is a subset oM. From
the structure of,, it follows that neither{y; } nor {y.} are preferred sets at,
(since{y} U In,(«) is admissible whew satisfiesp for y € {y1,42}). Thus the
preferred sets ak,, are of the form{y; }UIn,(a) and{y. }Uln,(«) for satisfying
assignments: of . The only such assignments, however, sele¢t < i < k) as
literal vertices. It follows that every preferred set/of contains{g,,, z1,...,zx}

as a subset. Furthermore, using the partial assignmémtwhich p;, = T (for

bSatisfying sincey, € In, () so thatvalue(gm,a) = T from Thm. 2.
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1 < < k) andp; = * for all other variables we deduce frop(X,,) = /\i-“:1 T
thatIn, () is admissible via Thm. 1(4anda subset of every preferred setiof.

In other wordsln, () is an ideal set and1,, # () as claimed. o

An immediate corollary of Thm. 3 is that Algorithm 1, belowilconstructa

witnessing subsef, of literals such thap(X,,) = Ayes v if such a subset exists:

Algorithm 1 Finding S such thatp(X,,) = Ayes y
1: If p(X,,) is anVv-formula then converp(X,,) to the A-type formula—¢(X,,)

applying De Morgan’s Laws.
2: Construct the ideal grapR,(W,,, £, U F,) as described in Thm. 3.
3 if p(X,) =T then
4:  ReportS =0 andy = Ayesy
5: else ifp(X,,) = L then
6: ReportS =0 andy = Vyesy

7: else

©

ComputeM,, the maximal ideal set ok,

©

S = Mon{z1,..., 20,21, .., T}
10: if S # O then

11 ReportS andp(X,) = Ayes ¥
12:  else

13: Reportp(X,,) € TE.

14:  endif

15: end if

The correctness of Algorithm 1 is immediate from Thm. 3. Altis needed

for the claimed upper bound &TE is to show that the maximal ideal set can be

"Note thatC' € {In,(7)}~ is countered by, € {C} .
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computed irFP|'\|‘P. As we noted in Fact 1(h) such an upper bound has been given
in Dunne [7, 8]. For completeness we outline this algoritlam gpecialised to the

particular instance?,).

Theorem 4. Algorithm 1 can be implemented mﬁ'F’.

Proof: Giveny(X,,) which we assume to be anformula it is clear that the ideal
graphR,(W,, F, U E,) may be constructed in polynomial time (in the sizexpf
After checking ifo(X,,) = T or ¢(X,,) = L construct the following partition of
We:

Wrey = {veW, : visnotinany admissible set dt,}

Weos = {veW, : {v}” U{v}" C Wres} \ Wres

Now form thebipartite graphB(Wpos, WRrEeJ, D) in which
D = F,\{(v,w) : ve W\ Wposandw € W \ Wpos}

It is shown in Dunne [7] thaiM, is the maximal admissible subset Bfposin
this bipartite graph. The algorithm below, from Dunne [6Tmquutes this set in
polynomial time.

To complete the upper bound proof it suffices to observe tagtcucting this
bipartite graph requires only computing the Bétgjwhich (in conjunction with
testingp(X,,) = T or ¢(X,,) = L) can be done usingV,| + 2 parallel calls to
anNp oracle: 2 calls to determine(X,,) = T or ¢(X,,) = L; and a furthet\W,|

calls to detemrine which vertices &f, are members of some admissible set.o

Corollary 1. TE € P|’\|‘P

Proof: Immediate from the Thm. 4. o
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Algorithm 2 Maximal admissible subset in Bipartite Graphs
1. 3:=0; Wy := Wpos: Dy = D

2: repeat

3 1 =1+1

4 U; ={yeW,_1:3ze€WRgy: (2,y) € Di_yand {z} NW;_1 =0}
5 W, = W1 \ U;

6: D= Di1 \{(y,2) : yeU}

7. until W; = W;_4

8: return W;

5. Conclusion

In this note we have considered a variant of the Minimal Eggian Equiva-
lence problemMEE) studied by Hemaspaandra and Wechsung [11, 12] whereby
the form of witnessign smaller formulae is restricted tavedatary conjunctions
and disjunctions. Our main result shows this variant candwided inPh“3 (with
the search form belonging to the analogous function conitglelass). This class
has been shown to provide a lower bound for the genegalproblem. One feature
of interest in our proof is the range of technical materiagioating from recent
work on extension-based semantics in argument systemsriicydar the corre-
spondence between ideal sets and witnessing subsetsrafslite the so-called
ideal graph derived from a given formula. One of the origiagplications of ar-
gument system semantics was in modelling problems in nassidal logics (as
opposed to the propositional basis of the current artidieyvould, therefore, be
of some interest to see to what extent further interactiawéen argumentation
semantics and algorithms for deciding properties of pritiposl formulae is pos-

sible.
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