
MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 1	

	

	

	

Modelling Arguments in the Dictator Game

Ricardo L. Parreira Duarte

BSc Dissertation
Department of Computer Science,

University of Liverpool, UK.

May 2009

2	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Table	
 of	
 Contents	

ABSTRACT...4	

INTRODUCTION ..5	

AIM	
 AND	
 OBJECTIVES: ... 5	

CHALLENGES: .. 5	

SOLUTION	
 PRODUCED: .. 5	

SOFTWARE	
 EFFECTIVENESS:.. 5	

DESCRIPTION OF ANTICIPATED COMPONENTS: ..7	

BACKGROUND	
 RESEARCH:.. 7	

Action-­based	
 Alternating	
 Transition	
 System	
 (AATS):.. 7	

(VAFs);... 9	

VAF	
 cycles: ... 9	

Graph	
 Algorithms:... 10	

Adjacency	
 list	
 Graph	
 representation: ... 11	

Transpose	
 Graph: .. 11	

Depth	
 First	
 Search	
 (DFS)	
 in	
 Directed	
 Graphs	
 [10]: .. 12	

DICTATOR	
 GAME	
 BACKGROUND	
 INFORMATION:..12	

PROJECT	
 REQUIREMENTS: ..14	

EXISTING	
 SOLUTIONS/APPROACHES: ...14	

DESIGN .. 15	

DATA	
 STRUCTURES	
 TO	
 BE	
 USED:...15	

CLASSES’	
 DESCRIPTION: ..16	

CLASSES’ AND METHODS DIAGRAM: ... 18	

PSEUDO-CODE AND EVENT DIAGRAMS: ... 19	

DIRECTED	
 GRAPH: ...19	

Node: ... 19	

DiGraph: .. 19	

DFS:...20	

AATSTRANSGENERATOR: ..20	

ARGGENERATOR: ...20	

VAFGENERATOR:...22	

Polychromatic	
 cycles: .. 22	

Dichromatic	
 cycles:... 23	

VAF	
 chains: ... 24	

INTERFACE	
 DESIGN:...25	

REALISATION.. 26	

PROJECT	
 IMPLEMENTATION: ...26	

DiGraph	
 class: ... 26	

DFS	
 class:... 27	

Value	
 class: ... 29	

ValueSet	
 class:... 30	

Agent	
 class:... 31	

JointAction	
 class:.. 32	

State	
 class: .. 33	

AATSTransGenerator	
 class: .. 34	

CQx	
 class:... 36	

CQxSet	
 class: .. 38	

ArgGenerator	
 class: .. 38	

VAFGenerator	
 class: ... 42	

TESTING: ..47	

VAF	
 testing: .. 47	

Arguments	
 Testing: .. 53	

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 3	

EVALUATION... 59	

LEARNING	
 POINTS .. 61	

BIBLIOGRAPHY .. 63	

REFERENCES: ..63	

APPENDICES:... 64	

APPENDIX	
 A	
 –	
 USER	
 MANUAL: .. 64	

USER	
 MANUAL:...64	

QT	
 INSTALLATION:...65	

HOW	
 TO	
 CHANGE	
 THE	
 VALUE	
 ORDERING	
 FOR	
 THE	
 DICTATOR: ..66	

APPENDIX	
 B	
 –	
 FULL	
 CLASS	
 AND	
 METHODS	
 LIST:.. 68	

CLASS	
 NODE:...68	

CLASS	
 DIGRAPH: ..69	

CLASS	
 PROPOSITION:...74	

CLASS	
 STATE:..75	

CLASS	
 ARGUMENT:...75	

CLASS	
 VALUE: ...76	

CLASS	
 VALUESET: ..77	

CLASS	
 VAFGENERATOR: ..78	

APPENDIX	
 C	
 –	
 CRITICAL	
 QUESTIONS	
 DESCRIPTION:... 79	

4	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Abstract

In this project we use an approach to modelling reasoning in a simple scenario from experimental

economics, the Dictator game, using preferences over social values to provide transparent
justification of actions.

This approach does not require estimation of utilities and weights for different factors, instead it
will consider how argumentation based on preferences relating to personal values of the subjects can
affect the choices made by the dictator, these choices allow a different perspective and they can be
used to analyse the game.

Using this model we can explain the behaviour of subjects in such experiments, and in particular,

gain insight into the framing effect observed by some experimenters.

The Dictator game is a very simple game, or, more an economical experiment. There are two

players involved: First is the dictator, who chooses how small sum of money is divided, and the other
player just receives what the dictator has left. This player does not have choice but to accept
whatever it was given by the dictator.

If only the economic well being of the Dictator was considered, the Dictator would have kept all the
money, and there would be no reason for this experiment to exist in economics. But according to
some experiments the Dictator often gives money away; [2], [1] this suggests that around 70% of
dictators give a non-zero sum away.

This experiment can convince us that the majority of people do not act according to with their
economic self-interest, in this way it is possible to believe that other reasons might affect the dictator
choices, such as fairness, where the dictator does not appear selfish (i.e, they might care about what
the person conducting the experiment thinks of them), etc.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 5	

Introduction

This project represents an approach to modelling reasoning in a simple scenario from experimental

economics, the Dictator game. This approach pretends to justify choices using preferences over social
values to provide transparent justification of actions, and simulates that different factors have to be
taken into consideration, modelling its arguments and affecting its choices in what to do.

Aim and Objectives:

To create a simulator that using Action-based Alternating Transition System (AATS) [4] used as the

underlying model for representing a valued as an approach to modelling arguments about action, it
will generate all the arguments and the objections for each of one of the possible actions, these
actions will reflect the dictator choice on the amount of money that it will give away.

Once all the arguments and objections are generated they will be used in a Valued-based
Argumentation Framework (VAF), and the software should produce a preferred extension based on
the value preference ordering of the Dictator, this allow to know which is the states that refer better to
the dictator according with his preferences.

Challenges:

This project incurs into several challenges:
– The framework (AATS) in which the part of the software is based it hasn’t never been produced,

and there is no assurance that this framework is also mature enough to be implemented, consequently
there is no other way to compare the results produced besides the research papers in which the project
is based of.

– A part of this simulator also incurs on another framework (VAF) in which there is no knowledge
of previous successful implementations for general cases.

– It was chosen to implement the simulator using ANSI C++ and QT 4.4.3, which I do not possess
any previous knowledge about it.

– To implement this project it is necessary to acquire an excellent knowledge around Graph Theory
to allow the creation of algorithms capable of generating the frameworks present in this project.

Solution Produced:

The software produced is capable of generate all arguments and objections present in a AATS

diagram, and also capable of generate preferred extensions for VAF’s graph with no cycles, and also
VAF’s with polychromatic and dichromatic cycles.

The software displays the arguments and objections in a list format ordered by joint action and in a
table where it shows all the arguments and objections for each joint action.

It also produces statistics about the number of cycles, the total number of arguments and it displays
how it the cycle detection works showing the DFS of the arguments graph.

Software Effectiveness:

The software produced can, generate all the arguments and objections that are present in the original

research paper [1], and it managed to produce some other objections that were missed by the authors
such a CQ9 in the joint action at a4 [1] (fig. 1) since there is two values demoted, different CQ11
where the I (image) is precluded at every action besides a4 (fig. 1).

6	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

It does not produce different objections with the same meaning as in [1] (per example obj1.6 and
obj5.6 since these have the same meaning which would create unnecessary monochromatic loop that
are currently unsolved by the software).

The software was built made taking in consideration correctness trading space for speed. Besides
the fact that can solve more complex programs in seconds, it is necessary to consider that the
program might run out of memory for extreme big problems.

Consequently it would allow the study of the different values present in the dictator choices and
how influential they are in his actions through the experiment, allowing the prediction of different
behaviour’s.

The readability and the lack of the program at a first sight is also an issue since the program does
not show the VAF graph neither the progress in a visual way, leaving to the user a text version of the
progress and the solutions found. But it also informs the clearly the actions that the dictator would
consider.

The program is also capable of generating arguments in the AATS with a time complexity of O(n4)
for diagrams with just one active agent and for n active agents within other diagrams it would
generate with O(n5).

The table of arguments in [1] is generated with a time complexity of O(n).
Prefered extensions for VAF graphs with no cycles can be generated with O((n+m)2). Since it takes

O(n+m) to create a Depth first search tree which the algorithm runs through and it will take O(n+m)
to go through the tree where m is the number of times the algorithm went back in the tree to correct
the result.

The cycle deletion occurs with a time complexity of O(n) for each cycle detected, for both
polychromatic and dichromatic cycles.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 7	

Description of anticipated components:
Background Research:

In this section it will be given a description of all the frameworks used in the project necessary for the

creation of the simulator such as rules and definitions that will be applied and also some background
information about the graph theory behind the project described all the background information.

Those frameworks are the Action-based Alternating Transition System (AATS), Value-based
Argumentation Framework (VAF) and the graph theory algorithms. Not only these frameworks and
algorithms will be described but it will be also explained why they were used (in the case of the graph
algorithms), and how these definitions were applied.

Action-based Alternating Transition System (AATS):

According to [1] AATSs are used for modelling systems comprising multiple agents that can perform

actions in order to modify and attempt to control the system in some way. It can be seen as a formal way
to describe practical reasoning, about what is best for a particular agent in a given situation, based on
pre-emptive justifications of actions through the, instantiation of an argument scheme, as defined in [4]
represents a “stereotypical patterns of reasoning whereby the scheme contains premises that
presumptively justify a conclusion. Each scheme has associated with it a set of characteristic critical
questions that can be used to challenge the presumption justified by instantiated schemes and so identify
counter arguments. The claim presumptively justified by the instantiated scheme is acceptable only so
long as it can withstand the critical questioning.” This scheme, called AS1, can be described as:

AS1 In the current circumstances R
 We should perform action A
 Which will result in new circumstances S
 Which will realise goal G
 Which will promote value V

Justifications of actions are subject to examination through a serial of critical questions (CQ) [4].
Critical questions will identify the ways in which the presumption may be challenged, and arguments

grounding negative answers, used then as attacks to the original argument. For this particular experiment
sixteen critical questions will be identified (CQ1 to CQ16), since there are no attacks from different
agents (the Dictator chooses the amount to be shared and the other has not got any other option but to
accept the money, so only the dictator behaviour will be analyzed).

The critical questions are divided in three sections:
Problem formulation: deciding what the propositions and values are relevant to the particular situation,

and constructing the AATS. Critical questions from: CQ2, CQ3, CQ4, CQ12, CQ13,CQ14,CQ15 to
CQ16.

Epistemic reasoning: determining the initial state in the structure formed in the previous stages, which
is described at CQ1.

Choice of action: developing the appropriate arguments and counter arguments (objections), in terms
of applications of the argument scheme and critical questions, and determining the status of the
arguments with respect to other arguments and the value orderings, described using CQ5, CQ6, CQ7,
CQ8, CQ9, CQ10 and CQ11.

8	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

AATS can be formally described in a (n+7) tuple S={Q, q0, Ag, Ac1,…, Acn, ρ, τ, φ, π}, where:
• Q is a finite, non-empty set of states;
• q0 ∈ Q is the initial state;
• Ag = {1, . . . , n} is a finite, non-empty set of agents;
• Aci is a finite, non-empty set of actions, for each i ∈ Ag where Aci ∩ Acj = ∅ for all i≠ j ∈ Ag;
• ρ : AcAg → 2Q is an action pre-condition function, which for each action α ∈ AcAg defines the set of

states ρ (α) from which α may be executed;
• τ : Q × JAg → Q is a partial system transition function, which defines the state τ (q , j) that would

result by the performance of j from state q —note that, as this function is partial, not all joint
actions are possible in all states (cf. the pre-condition function above);

• Φ is a finite, non-empty set of atomic propositions; and
• π : Q → 2Φ is an interpretation function, which gives the set of primitive propositions satisfied in

each state: if p ∈ π (q), then this means that the propositional variable p is satisfied
(equivalently, true) in state q .

According to [1] we will assume, perfect information from the dictator to the model and current state,

this will allow the first two stages (problem formulation and epistemic reasoning) will be
straightforward and uncontroversial. The aspect of interest here will the last stage the Choice of action,
where the arguments and counter arguments will be put forward, based on the values that are promoted
or demoted by the particular transitions detailed in each proposed action [1].

Values according to [1] are differentiated from goals, and defined as “some actual descriptive social
attitude or interest, which an agent may or may not wish to uphold, promote or subscribe to.

Consequently the only set of critical questions that can provide interest to us are just the ones
belonging to the choice of the action stage, which are studied with more detail, since the user will give
apriori all the details necessary to build the first two stages, so the dictator will have a perfect view to
the model and states.

We can describe the relevant set of CQ’s [4] through the following table;

For a complete description of the CQs model and how they are used please refer to [4] or Appendix C.

 Description Looks for
CQ5 Are there alternatives ways of realizing the same

consequences?
Different Joint actions leading to
same value.

CQ6 Are there alternatives ways of realizing the same goal? Looks for different propositions
that would reach the same goal

CQ7 Are there alternatives ways of promoting the same value? Looks for different joint actions
that promotes the same value

CQ8 Does doing the action have a side effect, which demotes the
value?

Looks for a demoted value within
an action.

CQ9 Does doing the action have a side effect, which demotes
some other value?

Looks for other values demoted
within an action.

CQ10 Does doing the action promote some other value? Looks for different promoted
values within an action

CQ11 Does doing the action preclude some other action, which
would promote some other value?

Looks for promoted values within
different actions that would cause
the preclusion of others.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 9	

(VAFs);

An argumentation framework is a pair:
 AF= 〈 AR, attacks 〉

Where AR is a finite set of arguments and attacks is binary relation on AR.
AF can conveniently be modelled as directed graphs, with arguments as nodes and attacks as arcs

(directed edges) showing which arguments attack one another. The notion of an argument is purely
abstract, where no concern is given to the internal structure of arguments. Thus, the status of an
argument can be determined by considering whether or not there is a set of arguments, which can defend
itself from attacks by other arguments in the AF [3].

It is possible to observe that AFs do not offer any practical way to handle values, so its not possible to
reach conclusions on argumentations where they come into it. Besides that, determining whether a
dispute is resoluble is not in general a tractable problem, in fact when exists a plurality of preferred
extensions it derives from the presence of cycles in the graph. When that happens in finite argument
framework without self-attacks, there must be a simple cycle of even length.

This project requires the use of framework capable of deal with practical reasoning, capable of produce
arguments in the AS1 form as described before:

To accomplish that VAF’s will be used, why? In many cases of disagreement, particularly in situations
involving practical reasoning, it is impossible to demonstrate conclusively that either party is wrong. In
such cases the role of argument in such cases is to persuade rather than to prove demonstrate or refute.
Argumentation Frameworks (AFs), have been a successful way of looking at systems of conflicting
arguments, but fails to describe some practical reasoning, such debates where points of are defensible,
and do not provide at all times a rational basis for preferring one argument over another [3].

VAF extend AFs by associating arguments with values that are promoted through acceptance of the
argument, thus accommodating different audiences with different interests, VAFs define a notion of
defeat of arguments different to that of an AF. In a VAF, an attack is distinguished from defeat for an
audience whereby strengths of arguments for a particular audience are compared with reference to the
values to which the arguments relate. Allowing a particular audience to choose to reject an attack, even
if the attacking argument cannot itself be defeated, by preferring the value the argument promotes to that
of its attacker.

VAF is capable of dealing with the type of argument described, to be able for us to record such a and
offer a 5-tuple relation [3,11,12];

VAF= 〈 AR, attacks, V, val, P〉
Where:
- AR, is a finite set of arguments;
- Attacks, is an irreflexive binary relation on AR;
- V is a nonempty set of values;
- val is a function which maps from elements of AR to elements of V
- P is the set of possible audiences.

Within a VAF it is possible to distinguish different types: A VAF graph is said to be Dichromatic

when it value set contains exactly two values. Polychromatic when it contains more than two values,
and monochromatic when it only possesses one value.

VAF cycles:

Cycles in a VAF deserve a special attention since they have to be deleted before any preferred extension
is created. Within cycles we can distinguish three types:

10	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

– Monochromatic cycles: of odd length (odd-cycles) will have the empty set as their preferred
extension, cycles of even length will two preferred extensions as in AF. However we should feel
somehow uncomfortable with the existence of odd monochromatic cycles in the graph, since they will
have the nature of a paradox in which we cannot accept any argument. With the existence of even cycles
they represent a dilemma in which we have a choice between two actions with no rational grounds[12],
these even cycles can be broken and solved separately as if we had two different VAF graph, each one
with its unique preferred extension.

– Dichromatic cycles (fig. 2a): will have a unique preferred extension since the cycle will be broken at

each one of the attacking arguments with the most inferior value (fig. 2b).

– Polychromatic cycles (fig.2a): can be easily solved since they will have a unique preferred extension,
given some value ordering in a graph, it known that the cycle will be always broken in which the
attacking argument will have the most inferior value(fig. 2b) [11].

Further description can be found at [3,11,12].

Graph Algorithms:

To create this simulator it is necessary to fully understand the following Graph algorithms

representations:

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 11	

Adjacency list Graph representation:

The directed graph representation to be used to recreate the AATS framework and the VAF will be

represented through an adjacency list, this will contain a list of nodes, where each node will contain a
list with all the edges in which it directs to (fig.4).

Fig.4 – graphical representation of adjacency list.

This type of representation ensures a O(V+E) for the used space for the graph with insertion of edge as

O(1) [10].

Transpose Graph:

If graph G = (V, E) is a directed graph, its transpose, GT = (V, ET) is the same as graph G with all

arrows reversed. We define the transpose of a adjacency matrix A = (aij) to be the adjacency matrix AT =
(Taij) given by Taij = aji. In other words, rows of matrix A become columns of matrix AT and columns of
matrix A becomes rows of matrix AT [13].

Formally, the transpose of a directed graph G = (V, E) is the graph GT (V, ET), where ET = {(u, v) Î
V×V: (u, v) ÎE. Thus, GT is G with all its edges reversed [14].

We can compute GT from G in the adjacency matrix representations and adjacency list representations
of graph G.

For this project it was discovered that it is possible to find start of a chain in a VAF using the transpose

graph, when reversing the arrows of each edge on a directed graph the edge with no outgoing edges in
the reverse will be the edge in the original graph without a edge directing to itself, what in the VAF will
be the edge with that does not have any attacks:

Lets consider the graph chain in (fig. 5) and it’s adjacency list (fig. 6).

12	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Now consider its reverse graph (fig. 7) and its adjacency list representation (fig. 8), now it is possible
to observe that A does not have any node in it’s adjacency list representation (fig. 8), being the only
node with no edges directed to itself in the original graph (fig. 5).

Depth First Search (DFS) in Directed Graphs [10]:

DFS in directed graphs allows them to be represented in a tree, making possible to go through chains

faster and easier, DFS also allows detection of strong connected components within a graph.
To visit a node in a DFS we mark that component as visited, then we go from that component to the

one connected to itself, and so on. If we visit a component already marked as visited we found a back
edge, what will represent a cycles in the graph. A DFS will always visit each element using a preorder
selection and then go as deep as possible in that path, from left to right in the tree representing the graph.

DFS will have a very important role in the software since will allow to solve more efficiently VAF

chains since all the arguments will be reallocated in a tree using preorder, also will allow cycle detection
in the graph marking all the back edges in the DFS tree.

Dictator game Background Information:

This experiment use the frameworks described above (AATS’s and VAF’s respectively), in order to

explain the different subjects behaviours.
We will focus mainly in checking the value ordering for maximiser (which acts accordingly with his

self economical interest), or satisfier agents (tries to satisfy the other economical interest).

The experiment will consider five values:
– Money: The value of money is distinguished as the dictator’s money (MS), or the others money

(MO)
– Giving (G): According to [1] “It can be held that giving a gift is a source of pleasure, and this is what

motivates the dictator to share”
– Image (I): According to [1] “Some have argued that there is a desire not to appear mean before the

experimenter that motivates sharing. It could even be that one does not want to appear mean to oneself”.
– Equality (E): As defined by an equal distribution, characterizes a sense of fairness.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 13	

As it is possible to observe from the fig. 9 and [1] the amount of values being used will never be more
than 5 values in the dictator game.

The graph created through the VAF process, will be of a considerable size such as most of the
economical experiments and it will be have around 40 to 50 arguments (edge number in the graph) and
objections included, depending on approach used in the model.

According to [1] it is necessary to explore the different ways in which the problem is framed to the

subjects, Bradley writes:

“ Experimental dictator games have been used to explore unselfish behaviour. Evidence is presented

here, however, that allowing them to take a partner’s money can reverse subjects’ generosity. Dictator
game giving therefore does not reveal concern for consequences to others existing independently of the
environment, as posited in rational choice theory. It may instead be an artefact of experimentation.”

In [1] to framing effect to have an impact, the choice of action cannot be determined by the expected

utility of the target state, since the utilities of the states are unchanged and the effects of action certain.
This lead to the change of the initial state from (0,0) where the dictator and the other player start with
nothing, to states where one starts with money (100,0) fig. 10 or (0,100) fig. 11.

taking
game
(fig.
10) [1],
even

Fig.9 Dictator Game

Fig.10 Taking Game Fig. 11 Dictator Game with
start state at 100,0

14	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Project Requirements:

The requirements established are:

– The	
 software	
 will	
 have	
 to	
 able	
 to	
 read	
 the	
 AATS	
 diagrams	
 at	
 [1];	

– It	
 will	
 have	
 to	
 recreate	
 all	
 the	
 arguments	
 and	
 objections	
 in	
 [1]	
 according	
 with	
 the	

critical	
 questions	
 in	
 [4],	
 validating	
 this	
 way	
 the	
 content	
 in	
 [1]	
 or	
 not;	

– It	
 will	
 have	
 to	
 display	
 the	
 arguments	
 and	
 objections	
 found	
 in	
 a	
 clear	
 layout,	
 similar	
 to	

the	
 one	
 found	
 in	
 [1],	
 providing	
 a	
 complete	
 of	
 the	
 arguments	
 and	
 objections	
 found,	
 and	
 table	

layout	
 organized	
 by	
 action	
 per	
 argument/objection.	

– It	
 will	
 have	
 to	
 evaluate	
 all	
 the	
 arguments	
 and	
 objections	
 found,	
 creating	
 this	
 way	
 a	
 VAF,	

providing	
 a	
 preferred	
 extension	
 and	
 the	
 preferred	
 actions	
 found.	

– It	
 should	
 provide	
 a	
 way	
 to	
 solve	
 VAF	
 either	
 with	
 cycles	
 (dichromatic	
 or	
 polychromatic)	

or	
 without	
 any	
 (arguments	
 chains).	

– It	
 is	
 necessary	
 to	
 provide	
 a	
 graphical	
 view	
 of	
 the	
 VAF	
 graph	
 and	
 a	
 way	
 to	
 change	
 the	

value	
 ordering	
 for	
 each	
 agent.	

Existing solutions/approaches:

There are no known existing approaches to this framework, and consequently there is no possible way

to compare the solutions created. Besides this it will be essential that software will provide as much
information as possible at this stage offering as much as possible a way to

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 15	

Design

Data Structures to be used:

The program will be implemented using an OOP approach, dividing its

functionalities by class and methods, creating a modular approach at the same time,
reducing the error probability and allowing early checking. The simulator class list is
presented in the following diagram;

NOTE: This diagram has suffered a few changes, some because of limitations on
the C++ object oriented model, while most of the design would suit a OOP language
such as JAVA, others changes were done in order to correct design issues at the
design stage of the project.

16	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

The changes were:

– Node	
 class:	
 this	
 class	
 is	
 no	
 longer	
 described	
 as	
 vertex	
 class	
 but	
 as	

node,	
 all	
 the	
 functionality	
 and	
 implementation	
 are	
 the	
 same	
 as	
 the	
 ones	

meant	
 originally	
 for	
 the	
 class	
 vertex,	
 with	
 some	
 minor	
 changes	
 described	

below.	

	

– DiGraph	
 and	
 Node	
 classes:	
 are	
 no	
 longer	
 extended	
 by	
 other	
 classes,	

instead	
 these	
 classes	
 are	
 templates	
 that	
 can	
 adopt	
 any	
 type,	
 and	
 can	
 used	

to	
 describe	
 the	
 AATS	
 and	
 the	
 VAF	
 graphs.	

	

– ValueSet	
 class:	
 were	
 created	
 allowing	
 the	
 implementation	
 of	
 set	
 of	

values	
 to	
 be	
 used	
 with	
 agents	
 or	
 in	
 the	
 joint-­‐actions.	

	

– CQxSet	
 class:	
 as	
 a	
 similar	
 functionality	
 as	
 ValueSet	
 allowing	
 to	
 define	

sets	
 of	
 CQ’s	
 when	
 looking	
 for	
 arguments	
 and	
 objections.	

	

– GUI	
 classes:	
 most	
 of	
 the	
 gui	
 classes	
 were	
 chosen	
 to	
 not	
 be	

implemented	
 since	
 the	
 software	
 will	
 no	
 longer	
 have	
 a	
 way	
 to	
 display	

visually	
 the	
 graphs	
 and	
 the	
 AATS	
 as	
 defined	
 in	
 the	
 design	
 stage,	
 since	
 it	

would	
 be	
 unrealistic	
 to	
 have	
 everything	
 completed	
 by	
 the	
 deadline.	

Leaving	
 the	
 MainWindow	
 class	
 to	
 display	
 all	
 the	
 functionality.	

Further description will be displayed below:

Classes’ description:

– Node: Template subclass of DiGraph, this class will have all the nodes in which it
directs at, this class is capable of use any type for node.

– Digraph: Template class that uses a Adjacency List to represent all the nodes and
edges of a graph, this graph contains a list of nodes, and each node will contain a list
of edges that a directed from each one of those nodes. This class will be used to
represent the graphs for the AATS and for the VAF

– Dfs: Another template class, this class is a subclass (friend class) of DiGraph that
will create a depth first search of a directed graph, keeping it in a list, it also keeps the
index of each cycle found in the list containing the Dfs, and also the pre-order in
which all the nodes were found and the post-order of the edges found in the graph.

– DfsNode: Subclass of the class Dfs, this class contains, an instance of node
corresponding to the edge in the graph, the depth in the tree and the edge type.

– Agent: this object will have a value container with a preference order, which will
act as the dictator or the other (in games such the ultimatum game).

It will have to analyze its preferences as well, for example if it is a maximiser it will
have to check which state will be better to itself, or if it is a satisfier, etc.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 17	

– Value: Will contain the description of what is a value, as well if it is promoted (will
correspond to value=1 in valuation variable) demoted (value=-1) or stays equal
(value=0).
– ValueSet: This class will contain a map that will sort each value per its priority in
the set, from the smallest one to the highest one rated value. The set will accept values
between 0 and 100, for value sets that do not have a rank it will be given a priority -1
(per example the value set in each joint action)

– JointAction: Will contain all the values promoted, demoted or that will stay equal
through each action within the transiction diagram, besides a description.

– State: This class will be used as a type in DiGraph class, where each state will
correspond to a node in the graph.
Each state will a joint action or not, it can be defined as a normal state, or as a initial
state or goal state.

– Proposition: Class created for ilustrative purpose only, this class can receive any
container of ints type that will describe a proposition within a state.

– AATStransgenerator: will generate the transition diagram that describes the AATS
problem, such values, joint actions and states as in [4] and [1].

– CQx: this class will offer a way to describe any CQ (from CQ5 to CQ11 as in [4]) it
will be used when looking for the arguments and objections in AATS diagram.
Storing between one and two states, depending on the CQ in question [4] and storing
a description of the CQ found, and its name.

– CQxSet: Offers similar functionality as ValueSet, where it allows to store a set of
different CQ’s, this will insert the arguments and objections separating them by joint
action.

– Arggenerator: object that will generate arguments and objections from CQ5 until
CQ11, and will be able to output them in a CQxSet, or in string list with the
description, and also will generate the arguments directed graph to be used in the
VAF to generate a preferred extension.

– Argument: used as type in the DiGraph and will contain with similar functionality
as State class. This class will define each argument in the VAF directed graph.

– VAFgenerator: Responsible for solving VAF’s for a specified agent, based on its
value ordering, it will solve cycled VAF with polychromatic and dichromatic cycles,
and will create the preferred extension.

– MainWindow: will contain the program window where all information will be
displayed.

For a specific description of each class and each method can be found at appendix B.

18	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Classes’ and Methods Diagram:

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 19	

Fig. 12 represents a complete diagram with all methods and classes within the

program. Please note that there are significant changes at this level, most of the
classes have their functionality expanded offering a complete framework offering the
possibility to expand the software easily with further versions, that can offer more
functionalities and a better user interaction.

Pseudo-code and event diagrams:

Pseudo-code and transition diagrams

In this section it will be introduced the pseudocode for the most important methods

and structures in the simulator.

Directed Graph:
As it was explained before the graphs representation will be implemented using an

adjacency list representation [10].
To implement this approach it will be considered two classes, node and digraph as it

is possible to describe in the previous class diagrams.

Node:
This class will contain the details of a node, and will contain all the node references

that its edges will point at.
This class will contain a sequential container that will contain all the node

references.

NOTE: As referred before the name from this class has changed from Vertex, and it

is chosen to describe this time the methods add and remove.

DiGraph:
This class will contain a list with that will reference to the class node.
Each node in the graph will have two functions: if the node as edges directed from

itself the node will be a normal node, but if the node does not have any edges directed
from itself, and only has edges directed to itself, the node in the graph container will
defined as an image.

The pseudocode for the methods add and remove edge is:

Method add(Node from, node to) Method removeEdge(nfrom,nto)
tmpfrom=Search for from in graph;
tmpto=Search for to in graph;
if(tmpfrom!=null)
 tmpfrom.add(to);
else
 from.add(to)
 graph.add(from)
if(tmpto==null)
 graph.add(to)

tmpfrom=Search for from in graph;
tmpfrom.remove(nto);
It(tmpfrom.size==0)
 set tmpfrom to image

20	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Dfs:

This class will implement depth-first search for the directed graphs, while this is one

of the main changes from the original design since it allows cycle detection and in
which all the VAF chain will be solved.

While this algorithm is based in DFS for directed graphs in [10] it, this version will
have, in which will allow the start of the DFS from any node in the graph, and will
keep track of all edges where the cycle starts, besides storing the DFS in a list instead
of printing the algorithm.

The original algorithm keeps track of pre-order visit and the post-order of the nodes,
using the pre-order to detect cycles.

Method initDfs(Node n) Method DfsR(Node node)
if(pre.size()==0)
 dfsR(n(n.v,n.w));
for(i=graph start; to graph end)

if(pre.find(i)==null)
 dfsR(n(i.v,i.v));

w=node.w;
dfs.add(node,depth,”tree”);
pre[w]=cnt++;
depth++;
tmp nodea=search for node w;
for(i=nodes in a; to end)
 v=i;
 n=node(w,v);
 if(pre.find(v)==null) dfsR(n);
 else if(post.find(v)==null)
 dfs.add(n,depth,”back”);
 cyclelist.add(dfs.size-1)
 cycle=true;
 else
 dfs.add(node,depth,”cross”);
post[w]=cntP++;
depth--;

AATStransgenerator:

NOTE: This class originally should extent the class graph and use state class as a

class that would extend node. But since C++ object model implements classes and
inheritance in a different way to java the language in which we were used to work on,
it was decided to take another approach, this approach will use the class Node and
DiGraph as templates where they each node can be of any type and the class digraph
will allow a to describe directed graphs with any type as well.

Using this approach the class AATStransgenerator will have a digraph class instance
that will accept they type of the State class, allowing the representation of AATS
diagrams.

ArgGenerator:

This class was originally created to only generate all the arguments and objections

found within the AATS diagram from the AATStransgenerator class, but it was
decided that this class would also generate the arguments graph for the VAF.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 21	

The arguments generation method in the previous design suffered some slight
modifications in order to correct some errors found in the generation of some CQ’s
(CQ11, CQ10 and CQ7). Consequently a new pseudocode was created.

function getArgsandObj()
for(each agent a in A) do
 if(a is active) then
 for(each node n in DiGraph D) do
 prevn=n
 if(n≠from first in D && n.isgoalstate() && prevn.getProposition() ≠
n.getProposition()) then
 hval=find highest common value in n prevn
 cqxset.add(CQx(“CQ6”,n,hval))
 for(each node j in n) do
 if(n=j and n.valueset.valueset.size()>0) do
 highv=find highest value in n
 cqxset.add(CQx(“CQ5”,n,highv))
 dvalue=0
 vcommon;
 for(each value v in j) do
 if(j.isinitstate()) then
 if(v.getvaluation=”-” && dvalue>0) then
 cqxset.add(CQx(“CQ9”,j,v))
 if(v.getvaluation=”-” && dvalue=0) then
 cqxset.add(CQx(“CQ8”,j,v))
 dvalue++
 if(v.getvaluation=”+” && dvalue>0) then
 tmpcqxset.add(CQx(“”,n,j,v))
 for(each value v in agent value set) do
 vcommon=0
 for(each value vj in j) do
 if(vj==v)
 vcommon++
 if(vcommon==0)
 if(n.isinitstate() && n≠j)
 cqxset.add(CQx(“CQ11”,j,v))
prevs= stateto in first of tmpcqxset
prevvaal
for(each cq i in tmpcqxset-1) do
 if(i.statefrom.isinitstate() && prevs==i.getstateto() && i.getValue()≠prevval)
 cqxset.add(CQx(“CQ10”,i.getStateto(),i.getValue()))
 for(each cq j in tmpcqxset) do

 if(i.getstateto()≠j.getstateto() && i.getValue()=j.getValue())
 if(j.getValue().getDegree==-1 ||
i.getstateto.getvalue.degree>i.getstateto.getvalue.degree) do
 cqxset.add(CQx(“CQ7”,j.getStateto(),i.getstateto(),i.getValue()))
 if(i.getstateto.getvalue.degree<i.getstateto.getvalue.degree) do
 cqxset.add(CQx(“CQ7”,i.getStateto(),j.getstateto(),i.getValue()))
 prevval=i.getValue()
if(!i==tmpcqxset.end() && i.getstatefrom.isinitstate() && prevs=i.getStateto() &&
!(i.getValue()≠prevval)
 cqxset.add(CQx(“CQ10”,i.getStateto(),i.getValue()))

To understand how each cq are obtained we will explain them separately, since the

whole process is computationally expensive it will be chosen to obtain all the
arguments in one single method, in order to achieve better efficiency.

22	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

– First the algorithm looks for agents that are active (in which there action
has to be considered) [4].

– CQ6: simply checks if a state is a goalstate, since DiGraph will contain all
nodes in graph, it will always check all nodes.

– CQ5: checks for actions that direct to the same state [4].

– CQ8: checks for the first demoted value in a action [4].

– CQ9: checks for all the other demoted values in a action [4].

– CQ11: compares all values with each value of the agents on each action
looking for values that are precluded(or that do not appear in the action) [4].

To look for CQ10 and CQ7 all the promoted values are gathered and treated
individually, since it would be more costly to look at CQ7 inside the others
loops.

– CQ10: looks for values promoted in action without repeating them.
Please note that for performance reasons, when this exceptional cases occur

it is expected to the user to insert this values with same priorities and are
inserted sequentially.

– CQ7: looks for values that are promoted within other actions and
compares them, to check if they are more promoted less or equally [1].

VAFGenerator:

Note: This class as completely changed from the previous design, the only

functionality that this class will offer, will be to solve VAF and eliminate cycles.

To consider this new functionality lets define which cycle type the algorithm can

solve, dichromatic and polychromatic cycles[12] and [11].

Polychromatic cycles:

As described before these cycles, can simply be solved by removing the element in

the cycle with the least important value.
In order to remove these cycles from a VAF it was chosen a greedy method

approach algorithm, which uses a recursive call on a DFS to remove the cycles.
The pseudocode to remove this type of cycles is:

function solvePolychromaticCycles(dfs){
 if(cyclelist.size()>0){
 for(each cycle j in the cyclelist starting at the end){
 Value vcur=dfslist[j].w.getValue();
 if(j=cyclelist.begin()){
 argmin=argprev=dfslist[j];
 cycle=dfslist[j].v);
 if(vcycle.find(vcur.getName())=vcycle.end()){
 Value tmpv=dfslist[j].w.getValue();
 vcycle.insert(vcur.getName(),dictator value importance in
vcur);
 }

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 23	

 }
 else if(argprev.w=dfslist[j].v){
 cyclenode++;
 if(vcycle.find(vcur.getName())==vcycle.end()){
 Value tmpv=dfslist[j].getNode().getNode().getValue();
 vcycle.insert(vcur.getName(),dictator value importance in
vcur);
 }
 compvalue=dictator.getValueSet()-
>compareTo(dfslist[j].w.getValue(),argmin.v.getValue());
 if(compvalue<0){
 argmin=dfslist[j];
 }
 argprev=dfslist[j];
 }
 if(cycle==dfslist[j].w){
 endcycle=true;
 break;
 }
 }
 if(vcycle.size()>2 && endcycle){
 vaf->removeEdge(argmin.w ,argmin.v);
 result=(Dfs(vaf));
 result.initdfs();
 solvePolychromaticCycles(result);
 }
 else if(vcycle.size()=2 && endcycle){
 solveDichromaticCycles(dfs,argmin.w);
 }
 else{
 unsolvable=true;
 }
 }
 else{
 dfs=Dfs(vaf);
 }
 return dfs;
}

Dichromatic cycles:

This cycle type, will deleted using the method describe in the previous section. To

be able to remove this cycle type, it will know before hand that the current cycle is a
dichromatic, from the previous function. Then it will proceed removing the cycle
using the approach described in background.

function solveDichromaticCycles(dfs, argmin){
 if(cyclelist.size()>0){
 for(each cycle j in the cyclelist starting at the end){
 if(j=cyclelist.begin()){
 argprev=dfslist[j];
 cycle=dfslist[j].v;
 }
 else if(argprev.w==dfslist[j]v){
 if(dfslist[j].w.getValue()=vmin &&
dfslist[j].v.getValue()≠vmin){
 vaf->removeEdge(dfslist[j].w ,*(dfslist[j].v));
 }
 if(argprev.w.getValue()=vmin &&
!((argprev.v.getValue())=vmin)){
 vaf->removeEdge(argprev.w ,argprev.v);

24	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

 }
 argprev=dfslist[j];
 }
 if(cycle=dfslist[j].w){
 endcycle=true;
 break;
 }
 }
 if(endcycle){
 result=(Dfs(vaf));
 result.initdfs();
 solvePolychromaticCycles(result);
 }
 }
 else{
 solvePolychromaticCycles(dfs);
 }
}

VAF chains:

To solve a DFS chain it’s necessary to know, which node will be the one in which

the chain will start solving, to do this it’s necessary to find the non-attacked node in
the graph with the highest value. To accomplish we use the transverse graph, and we
check in the graph which node will be the one with highest value. Since this is a very
expensive computational procedure, it was chosen to keep the VAF in the DFS list
since it will offer a better performance under sparse graphs.

Since the DFS can start from any point in the graph (the node with the highest value
ordering) not just from the ideal node or from its actual root. This algorithm will solve
chains using another greedy approach with a recursive call. The algorithm will take
only in consideration the previous node and the current one, it save and previous
nodes that had been visited in the DFS.

When an element that it’s proven to not belong to the preferred extension anymore it
will make another check through the piece of the chain involved removing or adding
new arguments to the preferred extension as its possible to see from the pseudocode.

functio solve_ext(start,end,dfslist){
 if(dfslist[start].w≠dfslist[start].v)
 visitedto.insert(dfslist[start].w,start);
 for(start i to end in dfslist){
 DfsNode<Argument> cur=dfslist[i];
 compvalue=dictator.getValueSet().compareTo(cur.w.
getValue(),cur.v->getValue());
 if(i==start){
 prev=cur;
 }
 if((cur.w=cur.v && cur.getDepth()=0)){
 if(prefext.indexOf(cur.w,0)==-1){
 prefext.append(cur.w);
 }
 }
 else{
 if(visitedfrom.find(cur.w)=visitedfrom.end()){
 visitedfrom.insert(cur.w,i);
 }
 if(compvalue>=0){
 int argpos=prefext.indexOf(*cur.v,0);

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 25	

 if(prefext.indexOf(cur.w,0)=-1 && visitedto.find(
cur.w)!=visitedto.end()){
 if(argpos=-1 && visitedto.find(cur.v)=visitedto.end()){
 prefext.append(cur.v);
 }
 }
 if(argpos>=0 && visitedto.find(cur.w)!=visitedto.end()){
 prefext.removeAt(argpos);
 if(visitedfrom.find(cur.v)!=visitedfrom.end()){
 solve_ext(visitedfrom.value(cur.v,i,dfslist);
 }
 }
 }
 else{
 if(prefext.indexOf(cur.v,0)==-1 && visitedto.find(cur.v)=
visitedto.end()){
 prefext.append(cur.v);
 }
 }
 }
 if(visitedto.find(*cur.v)==visitedto.end()){
 visitedto.insert(*cur.v,i);
 }
 prev=cur;
 }
}

Interface Design:

The way that the user will interact with the program is described on the diagram

below, where we can see, that the only role that the user has is to start the simulation
and insert the AATS transition diagram.

The previous expected interface will be:

VAF resulting from the
Arguments that were put
forward

Arguments and objections
list produced by the
transition diagram

Transition diagram
inputted by the user, that
will generate all the
arguments, objections and
the resulting VAF.

Table resulting of the
arguments put forward
displaying which
arguments are against and
are put forward

26	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Realisation	

Project Implementation:

At this stage we will go through each stage of the project implementation, and we

will go through all the problems that occurred and solutions.

DiGraph class:

It was chosen to represent direct graphs using an adjacency list representation, it was

decided at the beginning of the implementation a similar implementation as in [10],
but that representation offered some issues, to our simulator:

– Issue: The implementation in the book uses a linkedlist approach,
– Solution: According with [5] the linkedlist implementation used in Qt

only offers better performance that QList if the containers will have more than
200 nodes, since in this project it never happens it was chosen to use QList
instead of the original LinkedList.

– Issue: According to OOP model in C++, when a class is extended from
another one, it can use the other class functionality and access to its methods,
but if it contains a container that stores elements from the first class, they will
only store it’s components not the components that are native from the
extended class. Per example if state extended node as in the original design, all
the information about state stored in the node container in the class node
would just be, the methods that are common to node, not the ones created in
state.

– Solution: Because of this it was chosen to create the class Node and
DiGraph as templates that can accept any type. This way a Node can contain
elements of the Class State or of Arguments Class.

– Issue: To use the implementation in [10] we would have to recreate our
own linkedlist implementation, what was decided to be avoided, since it would
be time consuming to create an implementation that would offer the same
stability and performance and efficiency.

– Solution: It was chosen to implement a different directed graph class.

While implementing a different approach to this class, it noted some problems such:

– Issue: It was observed that a node with no edges directing to or from
itself, would have the same role as a node that is just an image (a node that
does not contain edges directed from itself) because of this issue

– Solution: It was decided that each node should contain a Boolean
property to distinguish this, and the property would change automatically if
the role of the node changes (if a new edge is inserted into an image node, or
an edge is deleted).

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 27	

The only issues that currently exist in this class are related with the pointers relation
within the class Node and the class DiGraph, what affects an optimal memory
management but this issue does not affect its correctness. Because of the project had a
limited time it was chosen to leave this issue since it wouldn’t affect particularly the
performance.

Besides being capable of representing directed graphs with any time, this class
offers the possibility to generate reverse graphs. To generate a reverse graph the
method will take an empty graph and copy its content to this empty graph, where an
edge (w,v) will be inserted like in (v,w).

The source code for this method is:
template<typename N>
void DiGraph<N>::getReverseGraph(DiGraph<N> &reverse)
 for(typename QList<Node<N> >::iterator i=nodeto.begin();i!=end();i++){
 if(i->size()==0 && !i->isImage())
 reverse.add(i->getNode());
 for(typename QList<N>::iterator j=i->getIterator();j!=i->end();j++){
 reverse.add((*j),i->getNode());
 }
 }
}

The full source code for this class will be in appendix D.

DFS class:

This class was the biggest change from the design stage to the implementation, since

briefly after the design stage was concluded it was found severe flaws within the
design that would allow to solve the preferred extension for VAF, the original design
had immense flaws, the cycle detection was wrongly implemented, and the original
algorithm did not take into consideration the different types of cycles and how they
had to be deleted, to solve the VAF.

After some deep research through Graph theory books [10] and [15], after a few
failures with algorithms that could use cycle detection such Tarjan’s algorithm or
Gabow’s or Kosaraju’s algorithms it was decided that all this algorithms could not
offer enough information about cycles in directed graphs, to implement the VAF
class, since they could not inform in which nodes the cycles was occurring, to be
possible to remove them according with is necessary in the VAF theory.

The only way found to detect cycles and keep track was using the DFS algorithm
found in [10], this algorithm besides flattening the graph into a sequential container
(QList was the chosen one), it finds all the cycles allowing to keep track of back
edges, what allowed to go from node to node in that cycle.

This algorithm was changed to check faster for cycles in the DFS, storing all the
index of the back edges in the dfslist container. And was modified not just be able to
accept nodes of any type, but also to start the DFS from any node in the graph, and
going still through all the edges in the graph.

This algorithm considers 3 different edges types [10]:

– Those representing a recursive call (tree edges back edges represent with a
number 2 in the dfsnode class).

– Those from a vertex to an ancestor in its DFS tree (back edges represent
with a number -1).

28	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

– Those from a vertex to a descendant in its DFS tree (down edges
represented as 1).

– Those from a vertex to another vertex that is neither an ancestor nor a
descendant in its DFS tree (cross edges represented with 0).

To distinguish each node in the dfslist container was created a class that would
represent each one of these nodes, storing the edge type, the depth and the edge itself.

The source code used to initialize the DFS is:

void initdfs(){
 for(typename QList<Node<N> >::iterator
i=digraph.getIterator();i!=digraph.end();i++){
 if(pre.find(i->getNode())==pre.end()){
 dfsR(Node<N>(i->getNode(),i->getNode()));
 }
 }
}

This method basically initializes the DFS from the first node in the DiGraph class, it

is used when the node to start from isn’t important or unknown.
The method basically goes through the graph nodes and checks if they are visited

using a preorder way to go through the graph, every time that it didn’t found a node in
the preorder container it will run the method dfsR to start creating the DFS list.

Source code used to initialize the DFS from a specific node.

void initdfs(N n){
typename QList<Node<N> >::iterator nodestart=digraph.getNode(n);
 if(pre.size()==0){
 if(!(nodestart==digraph.end())){
 dfsR(Node<N>((*nodestart).getNode(),(*nodestart).getNode()));
 }
 for(typename QList<Node<N> >::iterator
i=digraph.getIterator();i!=digraph.end();i++){
 if(pre.find(i->getNode())==pre.end()){
 dfsR(Node<N>(i->getNode(),i->getNode()));
 }
 }
}

This method it’s very similar to the one before but before it starts search through the

graph for nodes that aren’t in the preorder container, it starts solving the DFS straight
from the node N.

The following source shows how the dfs gets solved.

void dfsR(Node<N> node){
 N w=(*node.getIterator());
 dfs.append(DfsNode<N>(*(new Node<N>((node.getNode()),w)),depth,2));
 pre[w]=cnt++;depth++;
 typename QList<Node<N> >::iterator a=digraph.getNode(w);
 for(typename QList<N>::iterator i=(*a).getIterator();!(i==(*a).end());i++){
 N v=(*i);
 Node<N> n=Node<N>(w,v);
 if(pre.find((*i))==pre.end()) dfsR(n);

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 29	

This method solves the DFS through recursive calls on the edges that aren’t visited

using the preorder of visiting. If a node is found in its preorder way of visiting but
using the postorder way, it will be marked as a back edge and it will be stored where
this back edge was found in the dfslist, otherwise will be a cross edge.

While implementing this the VAFgenerator class it was found a bug that affects this

algorithm from [10] but it does not affect the correctness of the cycle solving
algorithms in the Class.

The algorithm in 10 present in dfsR does not detect all cycles when a digraph
contains two cycles starting and finishing at the same node per example:

In fig. 13 it is possible to observe that there is two cycles from {A,E,B,A} and

{A,D,B,A} but the algorithm do not detect both cycles, both end at A. When this bug
was found in the algorithm it was no time left to find another solution for this problem
keeping the correctness of the algorithm, so it was chosen to create another DFS every
time, that a cycle is deleted to update the DFS looking for the missing loop.

The output of this issue will be displayed in the Testing section. It can also be found
the correct output for a VAF with type of cycles.

Value class:

This class suffered some slight changes from the design to the implementation
mainly at the methods instantiation level, where it was decided to create more
methods that will more adequate to represent a value in different circumstances or
evaluate its properties.

To understand how Values are represented it is necessary to describe it’s main

properties.

Each value will have a Name, which will identify each value, a valuation that will

describe if the value is being promoted (represented with +), demoted (represented
with -) and the degree in which a value gets promoted or demoted. The degree is
particular important in this experiment since for proposition the Dictator gives some

 else if(post.find((*i))==post.end()){
 dfs.append(DfsNode<N>(*(new Node<N>(*node.getIterator(),(*i))),depth,-
1));
 cyclelist.append(dfs.size()-1);
 cycle=true;
 }
 else dfs.append(DfsNode<N>(*(new
Node<N>(*node.getIterator(),(*i))),depth,0));
 }
 post[*node.getIterator()]=cntP++;depth--;
}

30	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

money away, using the degree attached to each others value it is possible to know
which value as being more promoted than others based on the degree. Per example in
fig.9 a1 proposition says that Dictator will have 30% of the money and the other 70%,
so the degree to value of MS (dictators money) will be 70 and MO 30.

Each constructor in the Value class allows the representation of Values in the VAF,

and in each joint action at the AATS.

Constructors’ source code:

Value::Value(){
 this->name="";
 this->valuation="";
 this->degree=-1;
}

The constructor above will initialize a Value with no name, no valuation and no
degree.

Value::Value(QString n){
 (*this).name=n;
 this->valuation="";
 this->degree=-1;
}

However this constructor will initialize a Value with a name to identify.

Value::Value(QString n,QString s){
 (*this).name=n;
 setValuation(s);
 this->degree=-1;
}

This constructor goes a step further and allows a Value to instantiated with a name
and a valuation.

Value::Value(QString n,QString s, int d){
 (*this).name=n;
 setValuation(s);
 this->degree=d;
}

This last constructor allows a Value to be instantiated with all the possible

properties, name, valuation and degree.

 ValueSet class:

This class offer the possibility to handle sets of Values ordering them by

importance, from the least important to the most important value. All the methods in
this class offer a way to compare values the values importance. This class specifies
that the minimum importance value is -1 and its maximum 100. This set accepts
values with same importance degree, or with difference importance degree.

The source code for its main methods is:

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 31	

bool ValueSet::addValue(const Value & value,int p){
 if(p>=-1){
 values.insertMulti(p,value);
 }
 else return false;
 return true;
}

void ValueSet::removeValue(const Value &value,int p){
 for(QMap<int, Value>::iterator i=values.find(p);i!=values.end();i++){
 if((*i)==value)
 values.erase(i);
 }
 }

int ValueSet::compareTo(const Value &v1,const Value &v2){
 int v1pos=getValue(v1).key();
 int v2pos=getValue(v2).key();
 if (v1pos<v2pos)
 return -1;
 else if(v1pos>v2pos)
 return 1;
 else
 return 0;
}

QMap<int,Value>::iterator ValueSet::highestValue(){
 return values.end()-1;
}

QMap<int,Value >::iterator ValueSet::lowestValue(){
 return values.lowerBound(0);
}

This class was first implement using a Vector where the index of the values in the
vector were its importance within the set, but since a set of values can include as well
different values with the same importance it was necessary to find another way that
would represent the importance of values within a set while keeping a order of
importance. Since QMap can insert a key and value, it was decided that the
importance will be the map key, and instances of values will be value in the map. This
way QMap will organize the values by importance from the lowest one to highest one.

NOTE: this class wasn’t included in the original design, and was created because the

original design could not handle sets of values.

Agent class:

In this experiment only one agent has the control over the actions, so for this

experiment itself this class does not offer much functionality from implementing an
agent as a subclass of AATSTransGenerator, but since one of the main goals of this
project wasn’t only to implement the Dictator experiment but also others experiments
such the one described in [4] where the environment has to take into consideration
different agents with an active role in the experiment and different value ordering.

Because this it was chosen to create a specific class that could represent active or
passive agents within different experiments.

32	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

The source code for this class is:
 Agent::Agent(){ }

 Agent::Agent(QString n,bool actv){
 name=n;
 active=actv;
 }

 Agent::Agent(QString n,bool actv, ValueSet & v){
 name=n;
 vset=&v;
 active=actv;
 }

 ValueSet *Agent::getValueSet(){
 return vset;
 }
 QString Agent::getName(){
 return name;
 }
 bool Agent::isActive(){
 return active;
 }
 void Agent::setActive(bool actv){
 active=actv;
 }
 const bool Agent::operator==(const Agent &ag) const {
 Agent prt=*&ag;
 if(name==prt.getName())
 return true;
 return false;
 }

No issues were found while implementing this class, its functionality has bee kept
from the previous design.

JointAction class:

This class will represent a joint-action within two states, it will have a set of Values

that will be promoted or demoted, as well as a name that will identify the joint action.
A state will have a jointaction if there is an edge that directs to itself.

The source code for this class:

JointAction::JointAction(QString n){
 name=n;
}

JointAction::JointAction(const ValueSet &v,QString n){
 name=n;
 vset=v;
}

ValueSet & JointAction::getValueSet(){
 return vset;
}
QString JointAction::getName(){
 return name;
}

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 33	

void JointAction::setName(QString n){
 name=n;
}

State class:

This class will represent states within an AATS diagram, this class will be able to

contain an instance joint-action that directs to other states, will contain an instance of
proposition to describe the proposition in the state, and will contain a name.

The source code for the constructors is:

State::State(){
 prop=(new Proposition());
 jaction=(new JointAction());
 }

The constructor above initializes a state with a proposition with no description and a
jointaction with no values or name.

State::State(Proposition& p,bool is,bool gs,JointAction &j,QString n){
 prop=&p;
 jaction=&j;
 name=n;
 initialstate=is;
 goalstate=gs;
}

The constructor above the instantiation of a State, with a proposition, a Jointaction, a

name (the name for the state should be always the same as the Jointaction), allows
setting the state as initial and goal state.

State::State(Proposition& p,bool is,bool gs,QString n) {
 prop=&p;
 jaction=(new JointAction());
 name=n;
 initialstate=is;
 goalstate=gs;
}

The constructor above will allow the instantiation of a state with a proposition, a
name and will allow the setting it as a goal state or initial state. This constructor will
be used mainly when the state hasn’t got any edge directing to itself.

State::State(Proposition& p,JointAction &j,QString n) {
 prop=&p;
 jaction=&j;
 name=n;
 goalstate=false;
 initialstate=false;
}

34	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

The constructor above allows the instantiation of a state with a proposition a
jointaction and a name, setting is goalstate and initialstate to false.

The methods source code is:

No issues were found while implementing this class, no issues are known after

completion.

AATSTransGenerator class:

This class will represent the AATS diagram. It will contain an instance of all agents

in the experiment, a valueset instance with all the values present in the AATS
diagram, and a DiGraph instance that will accept the states for nodes.

Proposition & State::getProposition(){
 return *prop;
}

bool State::operator==(const State& exp) const{
 State prt=*&exp;
 JointAction jnametmp=*jaction;
 JointAction j1nametmp=prt.getJointAction();
 if(name==prt.getName() &&
jnametmp.getName()==j1nametmp.getName())
 return true;
 else
 return false;
}

QString State::getName(){
return name;
}

void State::setName(QString n){
 name=n;
}
bool State::isGoalState(){
 return goalstate;
}
bool State::isInitState(){
 return initialstate;
}

void State::setGoalState(bool gs){
 goalstate=gs;
}

void State::setInitState(bool is){
 initialstate=is;
}

JointAction & State::getJointAction(){
 return *jaction;
}

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 35	

The only changes in the implementation for this class are that it doesn’t extend the
class DiGraph for reasons described above (see DiGraph class description). Instead of
extending DiGraph class this class will use it with State as type and this way will
allow the representation of the AATS diagram.

The source code for the constructors in this class is:

AatsTransGenerator::AatsTransGenerator(QVector<Agent>& ag,ValueSet
&vs){
 agentset=QVector<Agent>(ag);
 mainvalueset=&vs;
 dgraphtrans=new DiGraph<State> ();
}

The above constructor will create an instance of an AATS diagram with an empty

graph, a set of agents in a QVector container and a ValueSet that will contain all the
main set of values.

AatsTransGenerator::AatsTransGenerator(QVector<Agent> & ag ,ValueSet
&vs, DiGraph<State> &dg){
 agentset=QVector<Agent>(ag);
 mainvalueset=&vs;
 dgraphtrans=&dg;
}

The constructor above will do the same as the first constructor but will create an

instance with a Graph that might exist.
The source code for all the methods in the class is:

void AatsTransGenerator::addTrans(const State &transfrom, const State
&transto){
 (*dgraphtrans).add(transfrom,transto);
}

void AatsTransGenerator::addTrans(const State &transfrom){
 (*dgraphtrans).add(transfrom);
}

void AatsTransGenerator::addAgent(const Agent &ag){
 agentset.append(ag);
}

void AatsTransGenerator::removeTrans(const State& transfrom,const
State&transto){
 (*dgraphtrans).removeEdge(transfrom,transto);
}

void AatsTransGenerator::removeAgent(const Agent& ag

 for(QVector<Agent>::iterator i=agentset.begin();
i!=agentset.end();i++){
 if((*i)==*&ag)
 agentset.erase(i);
 }
}

QList<Node<State> >::iterator AatsTransGenerator::getTransGraph(){

36	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

 return (*dgraphtrans).getIterator();
}

QVector<Agent> & AatsTransGenerator::getAgents(){
 return agentset;
}

QList<Node <State> >::iterator AatsTransGenerator::end(){
 return (*dgraphtrans).end();
}

ValueSet & AatsTransGenerator::getValueSet(){
 return *mainvalueset;
}

No issues were found while implementing this class, since the design revisions
solved all the problems around it.

CQx class:

The cqx class was constructed to be able create an instance from any CQ from CQ5

to CQ11, allowing to keep the all the necessary information about the CQ found and
the state where it was found as the value that is in question as well, This class will be
mainly used in the ArgGenerator class and in the argument Class.

The class will provide several constructors and methods to allow changes and the
visualization of the information contained in itself.

NOTE: The current implementation of this class follows some changes on the

previous design, CQx class will be able to represent a CQ and CQxSet class will be
responsible to handle sets of CQx within the ArgGenerator class.

To understand how this class tries to represent a CQ we will describe this class
properties and their functionality in this class;

– name: This property will be used to describe the name of the CQ in use.
– value: This property will contain the value in which the CQ uses to itself.
– statefrom: This property has two different uses, when used with CQ10 or

CQ7, it does not get used with any other CQ. When used with CQ10 this
property will contain the state where the joint-action comes from, according
with [4] a CQ10 to exist it needs to come from the initial state.

In CQ7 this property will be used to distinguish the different states where the
value is promoted as well, this property in conjuction with stateto will define
the two states necessary to identify a CQ7.

– stateto: this property will contain the state with the jointaction where CQ
was found, this property is used in all CQ’s in this project.

– argname: This property contains the index of the argument in the set of
arguments generated, this index is similar to the one found in [1] in the list of
arguments generated.

The source code for the constructors in this class is:

CQx::CQx(QString n ,State & s,Value & v){
 stateto=s;
 statefrom=*(new State());
 value=v;
 name=n;
 argname="";
}

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 37	

The constructor above will create an instance of CQx with a state, a name and a
value. This constructor is one used in all the CQ’s besides CQ10 and CQ9.

CQx::CQx(QString n ,State & sfrom,State & sto,Value & v){
 statefrom=sfrom;
 stateto=sto;
 value=v;
 name=n;
 argname="";
}

The constructor above will create an instance of CQx with two states and a value.
Used to describe CQ10 and CQ7.

The source code for the methods in this class is:

QString CQx::getName(){
return name;
}
State & CQx::getStatefrom(){
 return statefrom;
}
State & CQx::getStateto(){
 return stateto;
}

void CQx::setName(QString n){
 name=n;
}

Value & CQx::getValue(){
 return value;
}

void CQx::setArgName(QString n){
 argname=n;
}

QString CQx::getArgName(){
 return argname;
}

const bool CQx::operator==(const CQx & cqx) const{
 CQx prt=*&cqx;
 if((value)==prt.getValue() && (statefrom)==prt.getStatefrom()
&& (stateto)==prt.getStateto())
 return true;
 return false;
}

38	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

CQxSet class:

This class handles sets of CQ’s, and its mainly used within the Class ArgGenerator,

IT offers the possibility of insert CQ’s sorted in a similar way to the one presented in
[1] or to insert them in an unsorted way.

This class wasn’t present in the old design document, it was decided that it would be
necessary that it was necessary that representation of a CQ’s set and CQ’s themselves
should be in different classes. This allows a straightforward way to describe CQ’s in a
set and giving a more correct and better OOP design.

The source code for the method add which will insert the CQs sorted is:

void CQxSet::add(CQx &cqx){
 if(cqxset.size()==0 || cqxset.size()==1){
 cqxset.append(cqx);
 return;
 }
 for(QList<CQx>::iterator i=cqxset.begin();i!=cqxset.end();i++){
 if(cqx.getName()=="CQ10" && i->getName()=="CQ10" &&
cqx.getStateto()==i->getStateto()) {
 cqxset.insert(i,cqx);
 return;
 }
 else if(cqx.getName()!="CQ7" && cqx.getStateto()==i->getStateto()){
 cqxset.insert(i+1,cqx);
 return;
 }
 else if(cqx.getName()=="CQ7"){
 if(cqx.getValue().getDegree()==-1 && cqx.getStateto()==i-
>getStateto()){
 cqxset.insert(i+1,cqx);
 return;
 }
 Value vfrom= (*cqx.getStatefrom().getJointAction()
.getValueSet().getValue(cqx.getValue().getName()));
 Value vto= (*cqx.getStateto().getJointAction()
.getValueSet().getValue(cqx.getValue().getName()));
 if(vfrom.getDegree()>vto.getDegree() && cqx.getStateto()==i-
>getStateto()){
 cqxset.insert(i+1,cqx);
 return;
 }
 if(vfrom.getDegree()<vto.getDegree() && cqx.getStatefrom()==i-
>getStateto()){
 cqxset.insert(i+1,cqx);
 return;
 }
 }

 }
 cqxset.append(cqx);
}

ArgGenerator class:

This is one of the main Classes in the simulator, it will be responsible for the

generation of all arguments and objections in [1], and it offers the possibility to
display all arguments and objections in separated containers, as well as a description

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 39	

similar to the one existing in [1], once all the arguments and objections are generated
this class can also generate the arguments graph, the VAF graph.

This class suffered some slight changes to the original design, since now it can
generate the VAF graph, and generate a complete description of all the arguments in
the AATS. The changes in the method buildArgandObjs (previously called buildArgs)
are mainly of correctness, the changes are already enumerated in the design
document, but while testing the AATS and after some reflection it was realized that
the AATS arguments and objections at this stage, do NOT depend on the agents,
why? According with [4] at this stage the agents should already established an
agreement with the set of values that will be part of the AATS, so once following the
rules for the CQ5 to CQ11 it’s possible to observe that they will not interfere with the
generation of these CQ’s, since they agree with the same set of values, promotion,
demotion and preclusion of values it’s dependent of the AATS that was created and
on the actions in it.

AS2 in [4] says:

The initial state

€

q0 = qx ∈ Q,
Agent

€

i ∈ Ag should participate in joint action

€

jn ∈ JAgwhere

€

jn
i =α i ,

Such that

€

τ qx, jn() is

€

qy ,
Such that

€

pa ∈ π qy() and

€

pa ∉ π qx(), or

€

pa ∉ π qy() and

€

pa ∈ π qx(),

Such that for some

€

vu ∈ Avi,δ qx,qy,vu() is +.

But in fact if AS2 is used this stage (choice of action) on an experiment with more
active agents (agents with an active role in the experiment) the fact that arguments
and objections should be generated based on some Agent i [4], it would generate
repeated arguments that would generate “clutter” in the VAF graph.

If we observe the pseudocode that would generate all the arguments and objections
it’s possible to observe that only with CQ11 it is used the agent set of values to find
precluded values, but since the agents already agreed apriori the set of Values that
will belong to the experiment their valueset is equal to the one existing in the AATS.

Consequences: This fact arises a few consequences:

1st: If the argument list will be generated per agent and each agent generate the
same arguments and objections then it will generate duplicate arguments.

2nd: This will waste space and time, since the algorithm has to go through the
AATS diagram for each agent.

3rd: Readability, it will be harder to read trough all the arguments and objections
and find specific information if the same information is generated n times (where n
is the number of active agents)

4th: This is one the most important reasons, if the list contains repeated arguments
they will not affect the result of the VAF, since we argue that if two repeated
arguments belong to the preferred extension because of some value ordering, they
will bring any new information if they constitute the same argument in fact. But
with another value ordering that would defeat one of the arguments we argue that
the other will be defeated as well. Repeated arguments do not bring any new
information to the VAF, since or they will be both defeated or will belong to the
preferred extension, what in the last case for one to belong to the VAF, having the
second one in the preferred extension will not constitute a better defence since they
mean the same.

40	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Besides the current conclusions our algorithm still will follow the steps evolving the
agents. However this issue will not be detected experiment for the project, since the
Dictator is the only agent with that can contribute to the experiment.
But on other experiments such the one in [4] this issue would in fact appear.
It was decided to the authors to look into this issue and look for new conclusions.

It was chosen to highlight the following methods in this class:

void ArgGenerator::buildArgsAndObj(){
 AatsTransGenerator aats=(*aatstrans);
 CQxSet tmpcqxset;
 State tmpstate;
 for(QVector<Agent>::iterator a=aats.getAgents().begin();a!=aats.getAgents().end();a++){
 if((*a).isActive()){
 for(QList<Node<State> >::iterator i=aats.getTransGraph(); !(i==aats.end());i++){
 State tmpstatei=(*i).getNode();
 JointAction tmpjacti=tmpstatei.getJointAction();
 if(i!=aats.getTransGraph() && tmpstatei.isGoalState() && !(tmpstatei.getProposition()
==tmpstate.getProposition())){
 Value tmpval1=tmpjacti.getValueSet().highestCommonValue(
tmpstate.getJointAction().getValueSet());
 cqxset.add(*(new CQx("CQ6",tmpstatei,tmpval1)));//done
 }
 for(QList<State>::iterator j=(*i).getIterator();!(j==(*i).end());j++){
 State tmpstatej=(*j);
 statelist.append(j->getJointAction().getName());
 JointAction tmpjactj=tmpstatej.getJointAction();
 if(tmpstatei==tmpstatej && tmpjacti.getValueSet().size()>0){
 Value tmpval=*tmpjacti.getValueSet().highestValue();
 cqxset.add(*(new CQx("CQ5",tmpstatej,tmpval)));//done
 }
 int dvalue=0;
 int vcommon;
 int exp;
 for(QMap<int,Value >::iterator z=tmpjactj.getValueSet().getIterator();
z!=tmpjactj.getValueSet().end();z++){
 if(tmpstatei.isInitState()){//check if the state is a initial state
 if((*z).getValuation()=="-" && dvalue>0){
 cqxset.addUnsorted(*(new CQx("CQ9",(*j),(*z))));//done
 }
 if((*z).getValuation()=="-" && dvalue==0){
 cqxset.add(*(new CQx("CQ8",(*j),(*z))));//done
 ++dvalue;
 }
 }
 if((*z).getValuation()=="+"){
 tmpcqxset.addUnsorted(*(new CQx("",(*i).getNode(),(*j),(*z))));
 }
 }
 for(QMap<int,Value >::iterator v=(*(*a).getValueSet()).getIterator();
v!=(*(*a).getValueSet()).end();v++){
 exp=vcommon=0;
 for(QMap<int,Value >::iterator y=tmpjactj.getValueSet().getIterator();
y!=tmpjactj.getValueSet().end();y++){
 if((*y)==(*v)){
 vcommon++;
 }
 }
 if(vcommon==0)
 if(tmpstatei.isInitState() && !(tmpstatej==tmpstatei)){
 cqxset.add(*(new CQx("CQ11",(*j),(*v))));

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 41	

 }
 }
 }
 }
 }
 }
 State prevSto=(*tmpcqxset.getIterator()).getStateto();
 Value prevval;
 QList<CQx>::iterator i=tmpcqxset.getIterator();
 for(;!(i==tmpcqxset.end()-1);i++){//need to put cq10 bullet proof
 if((*i).getStatefrom().isInitState() && ((prevSto==(*i).getStateto() &&
!((*i).getValue()==prevval)) || !(prevSto==(*i).getStateto()))){
 (cqxset).add(*(new CQx("CQ10",(*i).getStateto(),(*i).getValue())));
 }
 QList<CQx>::iterator j=i;//tmpcqxset.getIterator();
 for(;!(j==tmpcqxset.end());j++){
 if(!((*i).getStateto()==(*j).getStateto()) && (*i).getValue()==(*j).getValue()){
 QMap<int,Value>::iterator vfromj=j->getStateto().getJointAction().getValueSet()
.getValue(i->getValue().getName());
 QMap<int,Value>::iterator vtoj=i->getStateto().getJointAction().getValueSet()
.getValue(i->getValue().getName());
 if((j->getValue().getDegree()==-1 || vfromj->getDegree()>vtoj->getDegree())){
 cqxset.add(*(new CQx("CQ7",(*j).getStateto(),(*i).getStateto(),
(*i).getValue())));
 }
 else if(vfromj->getDegree()<vtoj->getDegree())
 cqxset.add(*(new CQx("CQ7",(*i).getStateto(),(*j).getStateto(),
(*i).getValue())));
 }
 }
 prevval=i->getValue();
 }
 if(!(i==tmpcqxset.end()) && (*i).getStatefrom().isInitState() &&
((prevSto==(*i).getStateto() && !((*i).getValue()==prevval)) ||
!(prevSto==(*i).getStateto())))
 (cqxset).add(*(new CQx("CQ10",(*i).getStateto(),(*i).getValue())));
 }

The method above generates all the arguments and objections in [1], with some

exceptions and will find a CQ9 in a4 (fig. 9) what wasn’t present in the original
document [1] the output of the tests proceed for this method will be presented in
testing.

The exceptions mentioned before are the ones mentioned in the design of this
algorithm, in [1] its possible to observe the existence of arguments with the same
meaning, these arguments besides offering different perspectives over the actions they
mean the same and they both create the dilemma present in the VAF in [1].

In [1] in the argument list include the following arguments:

– Obj1.6 a5 is as good as a1 with respect to G

But:
– Obj 5.6 a1 would promote G as well as a5

As its possible to observe these two arguments have the same meaning they both say
that a1 and a5 promote G equally.

This is possible to observe with Obj3.6 and Obj2.3, Obj1.7 and Obj 3.7, Obj3.5 and
Obj5.8 and with a few more Objections involving G.

The existence of Obj1.6 and Obj5.6 are the cause of the monochromatic cycle in [1],
but these cycles would not need to exist if it did not exist pairs of arguments posed

42	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

differently with the same meaning. Because of this it was chosen to implement the
generation of CQ7 in such a way that would not pose repeated arguments never.

The following method will implement the VAF graph:

void ArgGenerator::getArgGraph(DiGraph<Argument> &argGraph){
 CQxSet argsl=this->getArgs();
 CQxSet objl=this->getObj();
 for(QList<CQx>::iterator i=objl.getIterator();i!=objl.end();i++){
 if((i->getName()=="CQ8" || i->getName()=="CQ9"|| i-
>getName()=="CQ11"|| i->getName()=="CQ7")){
 Argument argfrom=(Argument(i->getArgName(),i->getValue(),(*i)));
 argGraph.add(argfrom);
 for(QList<CQx>::iterator j=cqxset.getIterator();j!=cqxset.end();
j++){
 if(j->getName()=="CQ7"){
 if(i->getStateto()==j->getStatefrom())
 argGraph.add(argfrom,Argument(j->getArgName(),j-
>getValue(),(*j)));
 }
 else if((j->getName()=="CQ5" || j->getName()=="CQ6"|| j-
>getName()=="CQ10") && i->getStateto()==j->getStateto())
 argGraph.add(argfrom,Argument(j->getArgName(),j-
>getValue(),(*j)));
 }
 }
 }
 }

This method will start from creating nodes from an objections container creating this
way the attacking nodes, then it looks to the main set of arguments and objections and
inserts the arguments that will be attacked from the objections inserted before.

Currently there is only one issue in this class that was chosen from the creators to be

left to the creators for further research, the agent set issue when generating the AATS
arguments and objections.

Currently there are no other issues and the performance of this class is considered
optimal. There is no known way of implementing the methods in this class in a more
efficient way.

VAFGenerator class:

This class follows the revised design specification created to be able to solve VAFs,

using the greedy algorithm approach described before, this class will provide a way to
solve cycles (polychromatic and dichromatic) and chains, being able to give a
preferred extension after solving the VAF.

To solve a VAF this class will go through at the most two steps, cycle deletion if
cycles exist in the VAF and solving chains in the VAF to obtain the preferred
extension.

– Cycle deletion:

To delete a cycle the according with [11], [3] and [12] first it’s necessary to run
a DFS then if cycles exist then the algorithm will use the DFS list and will run this
list backwards from the back edge to where it found it for the first time, while it

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 43	

goes through the arguments backwards the algorithm counts how many values are
present, and which node is has the least important value.

If only one value is encountered then the algorithm halts and declares the VAF
as unsolvable by the simulator, if it counts two values it calls a function that will
explicit solve this type of cycle, and finally if it counts three values will remove
the edge from the weakest one to the other in the cycle.

If the cycle contained two values it would go through the cycle again and would
remove all edges that would go from the least important to the most important as
explain before in the Background section.

– Solve Arguments chains:

To solve chains a different procedure to the one in [11] and [12] are used,
instead of looking through even or odd chains the algorithm simply, chooses the
most important un-attacked value in the VAF and starts solving the VAF from
there creating an updated DFS, then it recursively solves all the chains in the VAF
taking in consideration the elements visited, the elements already in the preferred
extension (in case it needs to delete them), and the previous and current node.

When an argument in the preferred extension is deleted: In this case the

algorithm will look to the index where it found the element deleted and where it is
now, solving the resulting chain again. This way it is possible to solve chains in
VAF.

This changes were fundamental to the original design without them it would not

be possible to solve VAF’s since the previous design could only find the
unnattacked node in the VAF.

This is the source code for the main methods in this class;

void VAFGenerator::solveUncycledVaf(){
 DiGraph<Argument> rev_garg;
 vaf->getReverseGraph(rev_garg);
 Argument argmax;
 bool init=false;
 for(QList<Node<Argument> >::iterator i=rev_garg.getIterator();
i!=rev_garg.end();i++){
 Argument curarg=i->getNode();
 if(i->size()==0 && !init){
 argmax=i->getNode();
 init=true;
 }
 else if(i->size()==0){
 int compvalue=dictator.getValueSet()->compareTo(curarg.getValue(),
argmax.getValue());
 if(compvalue>0){
 argmax=curarg;
 }
 }
 }
 Dfs<Argument> dfsexp(*vaf);
 dfsexp.initdfs(argmax);
 QList<DfsNode<Argument> > dfslist=dfsexp.getDfs();
 this->solve_ext(0,dfslist.size(),dfslist);
 }

44	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

The method above creates a reverse graph from the VAF graph, and looks for the

un-attacked argument with, the most important value, once the argument is found the
dfs is created starting from that argument. Leaving the DFS list ready to be used and
solve the VAF.

void VAFGenerator::solve_ext(int start,int end, QList<DfsNode< Argument> > &
dfslist){
 DfsNode<Argument> prev;
 QMap<Argument,int> visitedto;
 QMap<Argument,int> visitedfrom;
 if(!(dfslist[start].getNode().getNode()==*dfslist[start].getNode().getIterator()
))
 visitedto.insert(dfslist[start].getNode().getNode(),start);
 for(int i=start;i<end;i++){
 DfsNode<Argument> cur=dfslist[i];
 int compvalue=dictator.getValueSet()->compareTo(cur.getNode().getNode().
getValue(),cur.getNode().getIterator()->getValue());
 if(i==start){
 prev=cur;
 }
 if((cur.getNode().getNode()==*cur.getNode().getIterator() &&
cur.getDepth()==0)){
 if(prefext.indexOf(cur.getNode().getNode(),0)==-1){
 prefext.append(cur.getNode().getNode());
 }
 }
 else{
 if(visitedfrom.find(cur.getNode().getNode())==visitedfrom.end()){
 visitedfrom.insert(cur.getNode().getNode(),i);
 }
 if(compvalue>=0){
 int argpos=prefext.indexOf(*cur.getNode().getIterator(),0);
 if(prefext.indexOf(cur.getNode().getNode(),0)==-1 && visitedto.find(
cur.getNode().getNode())!=visitedto.end()){
 if(argpos==-1 && visitedto.find(*cur.getNode().getIterator()
)==visitedto.end()){
 prefext.append(*cur.getNode().getIterator());
 }
 }
 if(argpos>=0 && visitedto.find(*cur.getNode().getIterator()
)==visitedto.end()){
 prefext.removeAt(argpos);
 if(visitedfrom.find(*cur.getNode().getIterator())!=visitedfrom.end()){
 this->solve_ext(visitedfrom.value(*cur.getNode().getIterator())
,i,dfslist);
 }
 }
 }
 else{
 if(prefext.indexOf(*cur.getNode().getIterator(),0)==-1 &&
visitedto.find(*cur.getNode().getIterator())==visitedto.end()){
 prefext.append(*cur.getNode().getIterator());
 }
 }
 }
 if(visitedto.find(*cur.getNode().getIterator())==visitedto.end()){
 visitedto.insert(*cur.getNode().getIterator(),i);
 }
 prev=cur;
 }
}

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 45	

This is the method that will allow solving VAF chains, this algorithm follows the

revised project design, and offers a recursive way to solve chains in VAF.

Dfs<Argument> & VAFGenerator::solvePolychromaticCycles(Dfs<Argument>
& dfs){
 Dfs<Argument> result;
 QList<int> cyclelist=dfs.getCycleList();
 QList<DfsNode<Argument> > dfslist=dfs.getDfs();
 DfsNode<Argument> argmin;
 DfsNode<Argument> argprev;
 Argument cycle;
 QMap<QString,int> vcycle;
 bool endcycle=false;
 int cyclenode=0;
 if(cyclelist.size()>0){
 for(int j=*cyclelist.begin();0<=j;j--){
 Value vcur=dfslist[j].getNode().getNode().getValue();
 if(j==*cyclelist.begin()){
 argmin=argprev=dfslist[j];
 cycle=*(dfslist[j].getNode().getIterator());
 if(vcycle.find(vcur.getName())==vcycle.end()){
 Value tmpv=dfslist[j].getNode().getNode().getValue();
 vcycle.insert(vcur.getName(),(dictator.getValueSet()-
>getValue(vcur)).key());
 }
 }
 else if(argprev.getNode().getNode()==*(dfslist[j].getNode()
.getIterator())){
 cyclenode++;
 if(vcycle.find(vcur.getName())==vcycle.end()){
 Value tmpv=dfslist[j].getNode().getNode().getValue();
 vcycle.insert(vcur.getName(),(dictator.getValueSet()-
>getValue(vcur)).key());
 }
 int compvalue=dictator.getValueSet()-
>compareTo(dfslist[j].getNode().getNode().getValue(),argmin.getNode()
.getNode().getValue());
 if(compvalue<0){
 argmin=dfslist[j];
 }
 argprev=dfslist[j];
 }
 if(cycle==dfslist[j].getNode().getNode()){
 endcycle=true;
 break;
 }
 }
 if(vcycle.size()>2 && endcycle){
 vaf->removeEdge(argmin.getNode().getNode()
,*(argmin.getNode().getIterator()));
 result=(Dfs<Argument>(*vaf));
 result.initdfs();
 solvePolychromaticCycles(result);
 }
 else if(vcycle.size()==2 && endcycle){
 solveDichromaticCycles(dfs,argmin.getNode().getNode());
 }
 else{
 unsolvable=true;
 }
 }

46	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

 else{
 dfs=Dfs<Argument>(*vaf);
 }
 return dfs;
 }

This method will solve polychromatic cycles within VAF’s this method is very
important since it finds how many values each contains, and creates a call to solve
dichromatic cycle solver method, or declares the VAF unsolvable if an
monochromatic cycles [11].

void VAFGenerator::solveDichromaticCycles(Dfs<Argument> &
dfs,Argument &argmin){
 Dfs<Argument> result;
 QList<int> cyclelist=dfs.getCycleList();
 QList<DfsNode<Argument> > dfslist=dfs.getDfs();
 DfsNode<Argument> argprev;
 Argument cycle;
 Value vmin=argmin.getValue();
 bool endcycle=false;
 if(cyclelist.size()>0){
 for(int j=*cyclelist.begin();0<=j;j--){
 if(j==*cyclelist.begin()){
 argprev=dfslist[j];
 cycle=*(dfslist[j].getNode().getIterator());
 }
 else if(argprev.getNode().getNode()==*(dfslist[j].getNode().
getIterator())){
 if(dfslist[j].getNode().getNode().getValue()==vmin &&
!((dfslist[j].getNode().getIterator()->getValue())==vmin)){
 vaf->removeEdge(dfslist[j].getNode().getNode()
,*(dfslist[j].getNode().getIterator()));
 }
 if(argprev.getNode().getNode().getValue()==vmin &&
!((argprev.getNode().getIterator()->getValue())==vmin)){
 vaf->removeEdge(argprev.getNode().getNode()
,*(argprev.getNode().getIterator()));
 }
 argprev=dfslist[j];
 }
 if(cycle==dfslist[j].getNode().getNode()){
 endcycle=true;
 break;
 }
 }
 if(endcycle){
 result=(Dfs<Argument>(*vaf));
 result.initdfs();
 solvePolychromaticCycles(result);
 }
 }
 else{
 solvePolychromaticCycles(dfs);
 }
}

The method above removes dichromatic cycles in VAF, this method does not detect
this cycles since the polychromatic cycles method detects them. This method only
removes them.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 47	

Testing:

In this chapter we will introduce all the testing and results done for VAF and AATS

as well as the different outputs produced by the software on dictator game and the
taking game. It is chosen to show the outputs of the two mechanisms in order to prove
that everything works and produces the correct results, since it is almost impossible to
verify manually the result of the VAF in the dictator game and the taking game.

VAF testing:

To test the VAF it was chosen to test it against different VAF with cycles and

without, and it will be tested against the graph where the DFS outputs the wrong
result in algorithm, to prove that it was found a way around the issue. It was chosen to
show four tests for the VAF.

VAF cycle Source code that inputs the Graph.

DiGraph<Argument> d1;
Value v1("v1");
Value v2("v2");
ValueSet v_vafset;
v_vafset.addValue(v1,3);
v_vafset.addValue(v2,2);
Agent vaf1("vaf1",true,v_vafset);
Argument a("A",v1);
Argument b("B",v2);
Argument c("C",v1);
Argument d("E",v2);
d1.add(a,b);
d1.add(b,c);
d1.add(c,d);
d1.add(d,a);
VAFGenerator vafgen(d1, vaf1);
vafgen.initVAF();

DFS output before removing the cycle DFS output after removing the cycle
edge (A,A) type: 2 depth: 0
edge (A,B) type: 2 depth: 1
edge (B,C) type: 2 depth: 2
edge (C,D) type: 2 depth: 3
edge (D,A) type: -1 depth: 4

edge (A,A) type: 2 depth: 0
edge (A,B) type: 2 depth: 1
edge (C,C) type: 2 depth: 0
edge (C,D) type: 2 depth: 1

Preferred extension: {A,C}

As it’s possible to see on the DFS before the cycle the removal it was found a cycle
at edge (D,A) with a type -1 (back edge). The cycle is removed by taking the edges in
which they direct to an argument with a strong value, such (B,C) and (D,A), giving
the preferred extension {A,C}

48	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

VAF cycle Source code that inputs the

Graph.

DiGraph<Argument> d1;
Value v1("blue");
Value v2("red");
ValueSet v_vafset;
v_vafset.addValue(v1,2);
v_vafset.addValue(v2,3);
Agent
vaf1("vaf1",true,v_vafset);
Argument a("A",v1);
Argument b("B",v2);
Argument c("C",v2);
Argument d("D",v1);
Argument e("E",v2);
Argument f("F",v2);
Argument g("G",v1);
Argument h("H",v1);
d1.add(a,b);
d1.add(b,c);
d1.add(c,d);
d1.add(d,a);
d1.add(e,d);
d1.add(e,f);
d1.add(f,g);
d1.add(g,h);
d1.add(h,e);
VAFGenerator
vafgen(d1,vaf1);
vafgen.initVAF();

DFS output before removing the cycle DFS output after removing the cycle
edge (A,A) type: 2 depth: 0
edge (A,B) type: 2 depth: 1
edge (B,C) type: 2 depth: 2
edge (C,D) type: 2 depth: 3
edge (D,A) type: -1 depth: 4
edge (E,E) type: 2 depth: 0
edge (E,D) type: 0 depth: 1
edge (E,F) type: 2 depth: 1

edge (B,B) type: 2 depth: 0
edge (B,C) type: 2 depth: 1
edge (C,D) type: 2 depth: 2
edge (D,A) type: 2 depth: 3
edge (E,E) type: 2 depth: 0
edge (E,D) type: 0 depth: 1
edge (E,F) type: 2 depth: 1
edge (F,G) type: 2 depth: 2

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 49	

edge (F,G) type: 2 depth: 2
edge (G,H) type: 2 depth: 3
edge (H,E) type: -1 depth: 4

edge (G,H) type: 2 depth: 3

Preferred extension: {B,E,A,G}

It is possible to observe on the DFS before it was found a cycle at edges (D,A) and
(H,E) with a type -1 (back edge). After the VAF checks for the cycle it removes the
edges that direct from the nodes with least important values such (A,B) and (H,E),
giving the preferred extension {B,E,A,G}.

VAF cycle Source code that inputs the Graph.

DiGraph<Argument> d1;
Value v1("v1");
Value v2("v2");
ValueSet v_vafset;
v_vafset.addValue(v1,3);
v_vafset.addValue(v2,2);
Agent
vaf1("vaf1",true,v_vafset);
Argument a("A",v1);
Argument b("B",v2);
Argument c("C",v2);
Argument d("D",v1);
Argument e("E",v2);
Argument f("F",v2);
Argument g("G",v1);
d1.add(a,b);
d1.add(b,c);

50	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

d1.add(c,d);
d1.add(e,f);
d1.add(f,g);
d1.add(g,c);
VAFGenerator vafgen(d1, vaf1);
vafgen.initVAF();

DFS output after starting solving the VAF
edge (A,A) type: 2 depth: 0
edge (A,B) type: 2 depth: 1
edge (B,C) type: 2 depth: 2
edge (C,D) type: 2 depth: 3
edge (E,E) type: 2 depth: 0
edge (E,F) type: 2 depth: 1
edge (F,G) type: 2 depth: 2
edge (G,C) type: 0 depth: 3

Preferred extension: {A,D,E,G}

In this example it’s possible to observe that the VAF starts solving from A the
argument with the highest value order in the set. Giving the preferred extension
{A,D,E,G}

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 51	

VAF cycle Source code that inputs the Graph.

DiGraph<Argument> d1;
Value v1("blue");
Value v2("red");
ValueSet v_vafset;
v_vafset.addValue(v1,3);
v_vafset.addValue(v2,2);
Agent
vaf1("vaf1",true,v_vafset);
Argument a("A",v2);
Argument b("B",v1);
Argument c("C",v1);
Argument d("D",v1);
Argument e("E",v1);
Argument f("F",v2);
Argument g("g",v1);
Argument h("H",v2);
d1.add(a,b);
d1.add(b,c);
d1.add(c,d);
d1.add(d,e);
d1.add(f,c);
VAFGenerator vafgen(d1, vaf1);
vafgen.initVAF();

DFS output after starting solving the VAF
edge (A,A) type: 2 depth: 0
edge (A,B) type: 2 depth: 1
edge (B,C) type: 2 depth: 2
edge (C,D) type: 2 depth: 3
edge (D,E) type: 2 depth: 4
edge (F,F) type: 2 depth: 0
edge (F,C) type: 0 depth: 1

Preferred extension: {A,F,D}

In this example it starts solving the VAF from A the element with the highest value
ordering, solving all the elements in the chain, but it is possible to observe that the
chain is broken with the last node found (F,C), because F is stronger than C, the
algorithm removes C from the chain and creates a recursive call at C to the preferred
extension.

52	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

VAF cycle Source code that inputs the Graph.

DiGraph<Argument> d1;
Value v1("blue");
Value v2("red");
ValueSet v_vafset;
v_vafset.addValue(v1,3);
v_vafset.addValue(v2,2);
Agent vaf1("vaf1",true,v_vafset);
Argument a("A",v2);
Argument b("B",v1);
Argument c("C",v1);
Argument d("D",v1);
d1.add(a,b);
d1.add(b,c);
d1.add(c,a);
d1.add(a,d);
d1.add(d,c);
VAFGenerator vafgen(d1, vaf1);
vafgen.initVAF();

DFS output before removing the cycle DFS output after removing the cycle
edge (A,A) type: 2 depth: 0
edge (A,B) type: 2 depth: 1
edge (B,C) type: 2 depth: 2
edge (C,A) type: -1 depth: 3
edge (A,D) type: 2 depth: 1
edge (D,C) type: 0 depth: 2

edge (B,B) type: 2 depth: 0
edge (B,C) type: 2 depth: 1
edge (C,A) type: 2 depth: 2
edge (D,D) type: 2 depth: 0
edge (D,C) type: 0 depth: 1

Preferred extension: {B,A,D}

This example tests the existing bug in DFS algorithm and shows how besides this the
issue is fixed for the purposes of this project. It is possible to observe that the DFS
only detects one cycle instead of the two existing cycles on the VAF. On the DFS
after all the cycle removal it is possible to observe that the edges (A,D) and (A,C),
removing all the necessary edges, that create cycles. This way it is possible to prove
the correctness of the algorithm.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 53	

Arguments Testing:

To test the different arguments generation it will be used two different values

ordering each for the AATS in the dictator game and the taking game. According to
[1] it is possible to take into consideration two aspects of the taking game, where it
starts at a2 [0,100] and where it starts at a4 [100,0].

– Dictator Game:

The dictator agent in this test had a value ordering of: {{MO,G}>E>{MS,I}}.

Dictator source code:
vset_agdictator.addValue(v_ms,2);
vset_agdictator.addValue(v_i,2);
vset_agdictator.addValue(v_mo,5);
vset_agdictator.addValue(v_g,5);
vset_agdictator.addValue(v_e,4);
Agent agdictator("Dictator",true,vset_agdictator);

54	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

In this test it is possible to observe all the arguments and objections generated in the
argument list, as well as all the CQ11 that weren’t in the original paper (red arrow)
and the CQ9 that isn’t also in the original paper (blue arrow). The arguments
preferred in this example are {a1,a2} that are satisfiers actions for the dictator. This
way it is proven that the dictator is in fact a satisfier.

The dictator agent in this test had a value ordering of: {MS>I>{MO,G,E}}

Dictator source code:
vset_agdictator.addValue(v_ms,5);
vset_agdictator.addValue(v_i,4);
vset_agdictator.addValue(v_mo,3);
vset_agdictator.addValue(v_g,3);
vset_agdictator.addValue(v_e,3);
Agent agdictator("Dictator",true,vset_agdictator);

The argument preferred in this example is {a4} this argument is a maximiser action.
Looking at the agent value set it is possible to observe that the agent is in fact a
maximiser.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 55	

– Taking Game:

In this test it will be explored the framing effects of [1].

– With start at [0,100] a2:

The dictator agent in this test had a value ordering of: {MS>I>{MO,G,E}}.

Dictator source code:
ValueSet vset_agdictator;
vset_agdictator.addValue(v_ms,5);
vset_agdictator.addValue(v_i,4);
vset_agdictator.addValue(v_mo,3);
vset_agdictator.addValue(v_g,3);
vset_agdictator.addValue(v_e,3);
Agent agdictator("\"Bush Family\"",true,vset_agdictator);

56	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

In this example it possible to observe that with the value set chosen for the dictator,
the values preferred would be {a1,a3,a5}.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 57	

– Taking game starting at [100,0] a4;
The dictator agent in this test had a value ordering of: {MS>I>{MO,G,E}}

Dictator source code:
ValueSet vset_agdictator;
vset_agdictator.addValue(v_mo,5);
vset_agdictator.addValue(v_i,3);
vset_agdictator.addValue(v_ms,2);
vset_agdictator.addValue(v_g,4);
vset_agdictator.addValue(v_e,4);
Agent agdictator("\"Salvador Allende\"",true,vset_agdictator);

In this example it possible to observe that with the value set chosen for the dictator,

the values preferred would be {a2,a1}.

58	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 59	

Evaluation	

To evaluate the project it was decided to create a table to show how well defined
where the project is assessed through its different characteristics and how efficiently it
displays the results.

The table will pretend to assess the project displaying the results in a scale of 1 to 5
where 5 is excellent and 1 very poor or inexistent.

It will be measured also how well the information outputted is displayed and

readable to the user.
Finally a list will created that will show areas in the project of possible

improvement.

 1 2 3 4 5

Main Methods Correctness
AATsTransgenerator x

VAFGenerator x
ArgGenerator x

DiGraph x
CQxSet x

ValueSet x
DFS x

Other Methods x
Readability and Use of the simulator

Arguments and Objections readability x
AATS diagram from input readability x

VAF graph readability x
Options present in simulator x

Information displayed x
Quality of the information displayed x

Possible improvements on the project:

DFS: besides the efficiency in which a dfs is created this algorithm from [10]

modified to this project cannot detect certain cycles as explained before in design and
realization, this class wasn’t modified since it was no time left to find or create an
algorithm as efficient as this one and more correct at the same time. Because of this
issue it is necessary to rebuild the DFS every time a cycle is removed in the VAF
graph. This represents efficiency issues not visible with this experiment, but if the
program is used with bigger experiments this will represent an unnecessary delay.

VAFGenerator: If the DFS class is fixed, this class can create preferred extensions in

a more efficient way, since it would not have to create a DFS list every time a cycle is
removed.

If the project was longer it is possible to merge the polychromatic cycle and the
dichromatic cycle methods together, trading memory for run-time. Making this
algorithm more efficient.

DiGraph: this class has memory management issues between it self and its friend

class Node, this class besides not creating references in the nodes to create the edges

60	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

in the graph, it also does not allow the deletion of Nodes with edges at the same time,
resulting in a kernel exception error. But the lack of time and the difficulties
encountered to implement the class VAFGenerator didn’t allow to fix these two
issues.

MultiThreading: The program does not have any threads in it self, since it wasn’t

found time to implement them. The simulator could also see some performance
improvements if it provided with thread handling.

Error Handling: The program does not have any error handling in it self, this is one

of the reasons why there is no possibility to let the user to change some options or the
AATS itself.

The inexistence of error handling in the project was also caused by lack of time to
implement it.

Gui Layout: The layout of the GUI was seriously affected by the by all the previous

factors, and to create a GUI, it was necessary to chose between finish to implement a
general algorithm that would solve VAF or to create a more readable GUI that a user
could use. Since this simulator is mainly to be used for research it was decided that it
was more important to create a simple gui that would help the research as much as
possible, and finish the implementation of the VAF. If more time were given to create
this program, it would be possible to create a drag-n-drop interface that would allow
the creation of AATS diagram and could display the Graph for the VAF.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 61	

Learning	
 Points	

Carrying out a research project is challenging task in itself, since there is no
knowledge if the project will be successful or if instead of a piece of software it will
be delivered a document and a Powerpoint presentation.

Not having an idea of the dimension and responsibility that exists in research
projects I realize today that I took an immense risk, but a risk that gave me an
immense pleasure and gave me a an excellent background in all the theory involved
around this project.

To deliver a complete specification and design and implement it was a complete

challenge specially because the existing documentation around the subject isn’t big.

To have a supervisor and a set deadline at all times gave a good feedback of how it

would be to work for a company. It would not be possible to accomplish all the
deadlines without the supervisor helps and organization (Dr Katie Atkinson), the
existing relation with the supervisor allowed all success and the implementation of the
project.

Before this project I didn’t possess any knowledge about AATS or VAF, I would

even think that Argumentation was an area of research, after this 8 months I became
quite familiar with this two frameworks and the theory behind them, I realize now
their use, and important this are and the frameworks are to our society.

My knowledge about graph theory is allot more extended, then before, not just

because the code implemented here but for all the research done, while searching for a
way to implement VAF and AATS, it read about topological sort, DFS, strong
connectivity in graphs, different ways of representing a graph, differences in
representing directed graphs and normal graphs, and the problems that directed graphs
constitute.

Besides of all this challenges it was also decided that ANSI C++ would be the

language of choice, while Qt framework would allow having the program running on
different OS’s, This was one of the major challenges in the project since it is very
different to program in C++ or in Java, the language that I was used to work.

62	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Professional	
 Issues	

During the development of this project, several principles were taken into

consideration for implementing the project. According to the British Computer
Society (BCS), each software programmer-developer should try to apply those
principles in the work, which is produced. Some of that involves, data manipulation,
data misuse, data protection etc.

Furthermore, as the Data Protection and misuse act state, all data should be kept and

manipulated for the purposes of their nature.
This simulator were created taking in consideration the programming principle of

information hiding, were the all the source code is hidden from the implementation,
not allowing data misuse, or anything that might modify the results created.

No unauthorized persons should be allowed to view the source of the program and
therefore be able to change the program input. Since this is the only to change the
program input.

 Moreover, the law states that all data kept and provided should be valid and up-to-
date. Since there is no way changing the input in the program, all the testing done in
the software proves the correctness of the output. Leaving the information valid and
correct at anytime.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 63	

Bibliography

References:
[1] K. Atkinson and T. Bench-Capon (2008): Value-based arguments in the dictator game.
In: Proceedings of the Fourth Multidisciplinary Workshop on Advances in Preference
Handling (M-PREF 2008), Chicago, USA, pp. 1-6. AAAI Press, Technical Report WS-08-09
[2] Wikipedia link: http://en.wikipedia.org/wiki/Dictator_game#cite_note-Henrich-0, Last
time this link was visited: 19/11/2008
[3] T.J.M. Bench-Capon, (2003). Persuasion in Practical Argument Using Value Based
Argumentation Frameworks. Journal of Logic and Computation. Volume 13 No 3 pp429-448.
[4] K. Atkinson and T. Bench-Capon (2007): Practical reasoning as presumptive
argumentation using action based alternating transition systems. Artificial Intelligence.
Special Issue on Argumentation, edited by P. E. Dunne and T. Bench-Capon. Vol. 171 (10-
15), pp. 855-874.
[5] Trolltech creator of qt4 cross-platform application framework, that can be ported to
Apple Mac OS, Windows, Windows CE, Linux (KDE is built using this framework),
Embedded Linux, www.trolltech.com
[6]
[7] Wikipedia: Test plan, Link: http://en.wikipedia.org/wiki/Test_plan, Last time this link was
visited: 19/11/2008
[8] Wikipedia IEEE 829-1998, Link: http://en.wikipedia.org/wiki/IEEE_829, Last time this
link was visited: 19/11/2008
[9] Evaluation Process: link: http://issco-www.unige.ch/ewg95/node73.html, Last time this
link was visited:19/11/2008
[10] Sedgewick, Robert, 2006 Algorithms in C++ part 5 graph algorithms. – 3rd edition
[11]ULCS-02-001: Trevor J. M. Bench-Capon and Paul E. Dunne: Value Based
Argumentation Frameworks.
[12] Trevor J.M. Bench-Capon: Valued Based Argumentations Frameworks, 2002 link:
http://arxiv.org/pdf/cs/0207059v1 last visited 16/04/2009 or
http://people.cs.uu.nl/henry/add02/papers/tbc.ps last visited 16/04/2009
[13] Wikipedia Transpose Graph: http://en.wikipedia.org/wiki/Transpose_graph last visited
17/04/2009
[14] Transpose graph link:
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/graphIntr
o.htm, last visited 17/04/2009
[15] Introduction to algorithms / Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
1990 Cambridge, MA. : MIT Press, 2001. 2nd edition.

64	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Appendices:	

Appendix	
 A	
 –	
 User	
 Manual:	

In this appendix it will be described the different sections of the software, how to
install Qt and how to modify it’s source code to insert new AATS.

	

User Manual:

To understand the software it is necessary to explain the different sections that exist in
the GUI, and what information is displayed in it.

1- Argument list

2 – Argument Table

3 – Reverse Graph.

5– Preferred Extension

9 – Statistics

8 – DFS after VAF

6 – Agent ValueSet

7 – DFS before VAF

4 – Direct Graph.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 65	

1 – Argument list: This section of the software will display all the arguments and
objections enumerating them and separating them by arguments and objections. It will
show which CQ is found in the argument as well as the action and a brief description

2 – Argument Table: This section shows all the arguments and objections organizing
them in this order and by action as well.

3 – Reverse Graph: This section of the program will display all the arguments found
in the graph after the cycle removal, allowing to show which argument could be
chosen to start solving the VAF graph.

4 – Direct Graph: This section will display the graph generated from all the
arguments and objections from (1) and (2), creating the graph with the notion that
objections attack arguments. These way objections will direct to arguments in the
AATS argument list (1).

5 – Preferred Extension: This section shows the preferred extension created from
solving the VAF. It also shows which actions are preferred for a set of values, within
a preferred set of values.

6 – Agent ValueSet: This section shows the agent value in the order from the least
important to the most important ones.

7 – DFS before VAF: This section shows the DFS of the argument graph (4) before it
is solved by the VAF, this sections intents to display how the program sees a DFS and
show also all the different edge types, found in the DFS. It is also possible to see the
index in the VAF of all the back edges in the DFS.

8 – DFS after VAF: This section displays the DFS after the VAF is solved, and
displays the DFS without the cycles, this DFS is useful to show where the cycle
removal occurred.

Since the program does not offer any options, or any other way to interact with the
user, it makes the program usability is straightforward. Where the user only run the
program to obtain the results.

Qt Installation:

To change the value ordering of the agent, or to insert another AATS it is necessary to
change the source of /src/core/Main.cpp at the project folder source. To be able to
change the program source its necessary to install the Qt framework on your operating
system.
To install Qt on:

Mac – follow the instructions at: http://doc.trolltech.com/4.4/install-mac.html.
Windows – follow the instructions at: http://doc.trolltech.com/4.4/install-win.html.
X11 – follow the instructions at: http://doc.trolltech.com/4.4/install-x11.html.

66	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

For X11 and Windows it is possible to have eclipse integration for Qt, or its possible
to install QDevelop for a dedicated Qt editor at: http://qdevelop.org/ this application is
available for Windows Mac and X11, or it is possible to install Qt Creator at:
http://www.qtsoftware.com/downloads this application is also available for Windows
Mac and X11.

How to change the Value Ordering for the Dictator:

To change the value ordering for the Dictator it is necessary to change the values of
the Values for the dictator in this part of the code:

93 ValueSet vset_agdictator;
94 vset_agdictator.addValue(v_ms,5);
95 vset_agdictator.addValue(v_i,4);
96 vset_agdictator.addValue(v_mo,3);
97 vset_agdictator.addValue(v_g,3);
98 vset_agdictator.addValue(v_e,3);
99 Agent agdictator("Dictator",true,vset_agdictator);

If it is necessary to change the valueset of the dictator the user only has to change the
values in lines 94 to 98 and input a value from 0 to 99, this value will decide how
important it is, where as high the value is as more important it is.

To insert new states and or new actions within the AATS it is necessary to insert each
action on the following order:

36 ValueSet vset_a1;
37 vset_a1.addValue(*(new Value("MS","+",30)),0);
38 vset_a1.addValue(*(new Value("MO","+",70)),0);
39 vset_a1.addValue(*(new Value("G","+")),-1);
40 vset_a1.addValue(*(new Value("E","-")),-1);
…
64 JointAction a1(vset_a1,"a1");
…
69 QVector<int> v_s1;
70 v_s1 << 30<<70;
…
82 Proposition p_s1(v_s1);
…
88 State s1(p_s1,a1,"s1");

From lines 37 to 40 values are inserted to an action, where the values can be
promoted, demoted or stay equal. On line 64 the valueset create at 36 is used in the
jointaction at 64 to define a new action this action is inserted after into the state.

Please note that to insert states it is necessary to follow this order where jointaction
will be the edge in the AATS diagram that directs to state created.

For a complete description on how to insert new different state types please refer to
Realization where is described the different constructors of the classes used before.

 To insert the actions into the AATS it is necessary to do the following:

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 67	

122 AatsTransGenerator aats(agset,vset_main);
123 aats.addTrans(s0,s1);

The line 122 creates an AATS diagram representation without any edges. Line 123
creates a transiction between state s0 and s1.

111 QVector<Agent> agset;
112 agset.append(agother);
113 agset.append(agdictator);

To insert new agents please follow the steps from above in how to change the value
ordering of an Agent and simply insert the agent into the agent set lines 112 to 113.

Then it is necessary to compile and run the project.

68	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Appendix	
 B	
 –	
 Full	
 Class	
 and	
 Methods	
 List:	

In this appendix it will be described all the methods and classes for this project.

Class Node:
QList<N>::iterator getIterator();
returns the beginning of an STL iterator allowing to go through all the edges that go
from this node.

int size();
Return the node size

bool operator==(const Node<N>&) const;
Returns true if the node to compare as parameter is equal to itself.

N& getNode();
Returns the node that the class is representing.

QList<N>::iterator end();
Returns the end of STL iterator.

bool isImage();
returns if true if the node is an image of an node.

Node(const N &,const N &);
this constructor will create an instance of node with an edge between itself and
another node.

Node(const N &,bool);
this constructor will create an instance of node that will define if it is an image or not.

void setImage(bool i);
allows to set the image property to true or false.

void add(const N &);
this node appends a node to this node creating an edge.

bool remove(const N &);
this method removes a node in the nodes container, removing this way an edge.

typename QList<N>::iterator getEdge(const N &);
searchs and returns the iterator that points at the node

QList<N> & getEdgesContainer();
returns the node container.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 69	

Class DiGraph:

DiGraph();
Creates an empty instance of DiGraph.

DiGraph(const N &,const N &);
Creates an instance of Digraph with an edge.

void add(const N &);
inserts a node without edge into the graph.

void add(const N &,const N &);
This method inserts an edge into the graph, using two nodes.

removeEdge(const N &,const N &);
remove an edge from a node.

QList<Node<N> >::iterator getIterator();
Returns the beginning of the Graph STL iterator.

QList<Node<N> >::iterator getNode(const N &);
Returns the node in the array to look at the outgoing edges.

QList<Node<N> >::iterator end();
Returns the end of the iterator

getReverseGraph(DiGraph<N> &);
Creates a reverse graph from current class into the graph inserted as parameter

int size();
returns the size of the graph.

Class DfsNode:

DfsNode(Node<N> & n, int d, int t){//
Creates an instance of DfsNode (v,w) with a depth in the tree and the node type.

Node<N> & getNode(){
Returns the node in the DfsNode.

int getDepth()
Returns the depth of the DfsNode

int getType(){
Returns the type of the DfsNode, where type=2 tree type=1 down edge, type=0 cross
edge, type=-1 back edge.

70	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Class Dfs:

Dfs(DiGraph<N> &g)
Creates an instance of the Dfs with a graph.

void initdfs(N n)
This method will start a DFS from a node n.

void initdfs()
This will start a Dfs from the first node in the graph.

bool hascycle()
Returns true if the DFS is strong connected.

QList<int> & getCycleList()
Returns the cyclelist container, this container will contain all the positions of the back
edges in the DFS.

QList<DfsNode<N> > & getDfs()
Returns the Dfs container, will all the edges of the graph.

QMap<N,int> &getPreOrderSequence()
Returns the preorder in which the nodes in the Graph were visited.

QMap<N,int> &getPostOrderSequence()
Returns the postorder in which the nodes in the Graph were visited.

void dfsR(Node<N> node){
solves the DFS and creates the tree looking for cycles and different types of edges

Class Agent:

Agent(QString, bool);
Create an instance of agent with a name and defines it as active or passive.

Agent(QString, bool,ValueSet &);
Creates an instance of agent with a name and defines it as active or passive, with also
a Valueset.

ValueSet * getValueSet();
Returns the set of values for this agent.

QString getName();
Returns the agent Name.

bool isActive();
Returns true if the agent is active or false if is passive.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 71	

void setActive(bool);
Sets the agent to passive with false or active with true.

const bool operator==(const Agent &) const
Returns equal if the agent in the parameter is equal to itself.

Class JointAction:

void setName(QString);//sets a name for the jointaction.

JointAction();
Creates an instance with an empty jointaction with no valueset and no name

JointAction(const ValueSet& ,QString);
Creates an instance of jointaction with a ValueSet and a name

JointAction(QString);
Creates an instance of a jointaction with just a name and no ValueSet.

ValueSet & getValueSet();
Returns the valueset of the jointaction

QString getName();
Returns the name of the jointaction

void setName(QString);
Sets the name for the jointaction.

Class AatsTransGenerator:

AatsTransGenerator(QVector<Agent>&,ValueSet &);
Creates an instance of AatsTransGenerator with an Agent set and a value set.

AatsTransGenerator(QVector<Agent> &,ValueSet
&,DiGraph<State>&);
Creates an instance of AatsTransGenerator with an Agent set, a value set and
DiGraph.

void addTrans(const State &, const State &);
Adds a transition to the AATS container.

void addTrans(const State &);
Add a state to the AATS container.

72	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

void addAgent(const Agent &);
Adds an agent to the AATS representation.

void removeTrans(const State&,const State&);
Removes transition from a given state.

void removeAgent(const Agent&);
Removes an agent from the agent container.

int getSize()
Returns the size of the aats diagram.

QList<Node<State> >::iterator getTransGraph();
Returns the beginning of the STL iterator in the AATS graph.

QVector<Agent>& getAgents();
Return the beginning of the STL iterator with all the agents.

QList<Node<State> >::iterator end();
Returns the last item in the AATS graph STL iterator.

ValueSet &getValueSet();
Returns the main value set of the AATS, each agent has to compile with these values.

Class ArgGenerator:

ArgGenerator(AatsTransGenerator &);
Creates an instance of ArgGenerator with AATS instance as parameter.

CQxSet getArgs();
Returns the arguments found for CQ5,CQ6,CQ10 in a CQxSet.

CQxSet getObj();
Returns the objections found for CQ7,CQ8,CQ9,CQ11 in a CQxSet.

void buildArgsAndObj();
Generates all the arguments and objections in the AATS diagram.

QList<QString> & getStateList();
Returns all the states found in a QList

QVector<QString> getArgsDescription();
Returns a container with all the arguments description

QVector<QString> getObjDescription();
Returns a container with all the objections description

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 73	

void getArgGraph(DiGraph<Argument> &);
Copies the arguments and objections to a digraph inputted as parameter

AatsTransGenerator & getAatsTransGenerator();
Returns the AATs instance.

Class CQx:

CQx(QString,State&,State&,Value &);
Creates an instance of CQx with a name and two states and a value that is related
with.

CQx(QString,State&);
Creates an instance of CQx with a name and a state

CQx(QString,State&,Value &);
Creates an instance of CQx with a name and a state and value.

State & getStatefrom();
Returns the statefrom in the CQx this state is used in the CQ10 and CQ7

State & getStateto();
Returns the stateto in the CQx used in all the other CQ’s.

Value & getValue();
Returns the value in the CQx

void setArgName(QString);
Sets the CQ description used to identify the argument

QString getArgName();
Returns the description used to identify the CQ.

void setName(QString);
Sets the Name of the CQx.

const bool operator==(const CQx &) const
Compares two cqx for equality on the name and the states attached are taken into
consideration

Class CQxSet:

CQxSet();
Creates and empty set of CQ’s.

74	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

void add(CQx &);
Inserts a new CQ in a sorted way into the set.

void addUnsorted(CQx &);
Inserts a CQ into the set not taken into consideration any order.

void remove(const CQx &);
Removes a CQ of the set.

QList<CQx>::iterator getIterator();
Returns the beginning of the STL iterator for convenience,

QList<CQx>::iterator getIterator();
Returns the beginning of STL iterator for convenience.

QList<CQx>::iterator end();
Returns the end of the STL iterator in the set.

int size();
Returns the size of the CQ set.

Class Proposition:

Proposition(int size);
Creates an instance of proposition with a size.

Proposition(QVector<int> &);
Creates an instance of proposition with a vector that will be the proposition

void addList(const int&);
Adds an element to the proposition.

void removeList(int);
Removes an element from the proposition.

int getSize();
Returns the size of the list in the proposition.

string printprop();
Returns the content of the list representing the proposition

QVector<int>& getlist();
Returna a container that will represent the list in the proposition

bool operator==(const Proposition &) const;
Returns true if a proposition is equal to the one inserted as parameter

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 75	

Class State:

State(Proposition &,bool, bool,JointAction &, QString);
Creates an instance of State with a proposition, a jointaction and name. It defines if
the state is initial and if it is a goal state.

State(Proposition &,bool, bool, QString);
Creates an instance of State with a proposition and name. It defines if the state is
initial, if it is a goal state.

State(Proposition &,JointAction &, QString);
Creates an instance of State with a proposition, a jointaction and name.

Proposition & getProposition();
Returns the proposition in the state.

JointAction & getJointAction();
Returns the jointaction in the state.

QString getName();
Returns the name of the State.

void setName(QString);
Sets the name of the state.

bool isGoalState();
Returns true if the state is a goal state or false otherwise.

bool isInitState();
Returns false if the state is an initial state or false otherwise.

void setGoalState(bool);
Sets the state to goal or not.

void setInitState(bool);
Sets the state to initial or not.

bool operator==(const State&) const;
Returns true if the state inserted as parameter is true or not.

Class Argument:

Argument(QString,Value &);
Creates an instance of argument with a name and value.

Argument(QString,Value &,CQx &);
Creates an instance of argument with a name, a value, and CQx

76	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Value & getValue();
Returns the value in the argument.

CQx & getCQx();
Returns the cqx in the argument.

QString & getName();
Returns the name in the argument.

bool operator==(const Argument&) const;
Returns true if the inserted as parameter argument is equal to itself

bool operator<(const Argument&) const;
Returns true if the argument less that the one inserted as parameter.

Class Value:

Value(QString);
Creates an instance of Value with a name.

Value(QString,QString);
Creates an instance of value with a name and a valuation.

Value(QString,QString, int);
Creates an instance of value with a name, a valuation and a degree.

void setName(QString);
Sets the name to value.

QString getName();
Returns the value name.

void setValuation(QString);
Sets the valuation for the value (+,-,=).

QString getValuation();
Returns the valuation of the value.

void setDegree(int);
Sets the degree of the value.

int getDegree();
Returns the degree of the value.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 77	

bool operator==(const Value&) const;
Returns true if the value inserted as parameter is equal.

Class ValueSet:

ValueSet(const QMap< int,Value > &);
Creates an instance of a valueset from a Map.

ValueSet();
Creates an instance of an empty valueset.

bool addValue(const Value &,int);
Adds a Value with an order into the set.

void removeValue(const Value &, int);
Removes a value with an order.

int compareTo(const Value&,const Value&);
Compares two values to see which one has the biggest priority. The function returns -
1 if the first is smaller, 0 if equal or 1 otherwise.

Value highestCommonValue(const ValueSet &);
Compares the highest common value between the set and the inserted as parameter.

QMap<int,Value >::iterator getValue(const Value &);
Search for a Value and returns the iterator position.

QMap<int,Value >::iterator getIterator();
Returns the beginning of the STL iterator.

QMap<int,Value >::iterator end();
Returns the end of the STL iterator.

QMap<int,Value >::iterator highestValue();
Returns the highest value in the set.

QMap<int,Value >::iterator lowestValue();
Returns the lowest value in the set.

int size();
Returns the size of the ValueSet.

78	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

Class VAFGenerator:

VAFGenerator(DiGraph<Argument> &,Agent &);
Creates a vaf solution for an agent and a graph

void initVAF();
starts the solving the VAF

Dfs<Argument> & solvePolychromaticCycles(Dfs<Argument> &);
Returns an updated DFS. This function solves polychromatic cycles recursively.

void solveDichromaticCycles(Dfs<Argument> &,Argument &);
This function solves dichromatic cycles recursively as part of the
solvePolychromaticCycles method.

void solveUncycledVaf();
This method prepares the VAF to be solved and call a method to solve the DFS.

QList<Argument> & getSolution();
Returns a list of arguments in the solution.

QString vafResult();
Returns the result in a string.

bool isUnsolvable();
Returns true if it's unsolvable or false otherwise.

DiGraph<Argument> & getReverseUpdatedGraph();
Returns the reverse updated graph.

QString vafArgsResult();
Returns the arguments that are part of the vaf preferred extension.

Argument & getMaxArgument();
Return the maximum argument when looking at the reverse graph.

void solve_ext(int,int,QList<DfsNode<Argument> > &);
Solves recursive problems with the vaf.

MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	
 79	

Appendix	
 C	
 –	
 Critical	
 questions	
 description:	

Full description of the CQs to be taken into consideration in this experiment;
CQ5, CQ6 and CQ7, all consider possible alternatives to the original action proposed
with each of those critical questions considering the effects of any, such alternative
actions upon the consequences, goal and value.
Formal way (F) that describes CQ5- Agent i Ag can participate in joint action jm JAg ,
where
jn ≠ jm , such that τ (qx , jm) is qy .
Description (D): Are there alternatives ways of realizing the same consequences?

CQ6;
 F: Agent i Ag can participate in joint action jm JAg , where jn ≠ jm , such that τ (qx , jm)
is qy, such that pa π (qy) and pa ∉ π (qx) or pa ∉ π (qy) and pa π (qx).

D: Are there alternatives ways of realizing the same goal?

CQ7:
F: Agent i Ag can participate in joint action jm JAg , where jn jm , such that τ (qx ,
jm) is qz , such that
δ (qx, qz, vu) is +.
D: Are there alternatives ways of promoting the same value?

CQ8, CQ9 and CQ10 are all concerned with the side effects of the proposed action
where CQ8 and CQ9 draw attention to possible negative side effects, CQ10 can be
seen as more of a supporting argument that identifies positive side effects of the
action that endorse rather than the performance of the action itself.

CQ8;
F: In the initial state qx Q, if agent i Ag participates in joint action jn JAg , then τ
(qx , jn) is qy , such that pb π (qy), where pa ≠ pb , such that δ (qx , qy , vu) is −.
D: Does doing the action have a side effect, which demotes the value?

CQ9;
F: In the initial state qx Q, if agent i Ag participates in joint action jn JAg , then τ
(qx , jn) is qy , such that δ (qx , qy , vw) is –, where vu≠ vw .
D: Does doing the action have a side effect, which demotes some other value?

CQ10;
F: In the initial state qx Q, if agent i Ag participates in joint action jn JAg , then τ
(qx , jn) is qy , such that δ (qx , qy , vw) is +, where vu ≠ vw .
D: Does doing the action promote some other value?

CQ11 identifies a clash between the action proposed and other desirable action,
Arises when the goal stated achieved by proposed action is incompatible with the goal
state of some other action, that promotes a desirable value, so that only one of the
actions can be executed.

F: In the initial state qx Q, if agent i Ag participates in joint action jn JAg , then τ
(qx , jn) is qy and

80	
 MODELLING	
 ARGUMENTS	
 IN	
 THE	
 DICTATOR	
 GAME	
 –	
 DISSERTATION	

δ (qx , qy , vu) is +. But, there is some other joint action jm JAg , where jn ≠ jm ,
such that τ (qx , jm) is qz , such that δ (qx , qz , vw) is +, where vu ≠ vw .
D: Does doing the action preclude some other action, which would promote some
other value?

