
When Are Two Arguments the Same?
Equivalence in Abstract Argumentation

Davide Grossi and Dov Gabbay

Abstract In abstract argumentation arguments are just points in a graph of attacks:
they do not hold premisses, conclusions or internal structure. So is there a mean-
ingful way in which two arguments, belonging possibly to different attack graphs,
can be said to be equivalent? The paper argues for a positive answer and, interfac-
ing methods from modal logic, the theory of argument games and the equational
approach to argumentation, puts forth and explores a formal theory of equivalence
for abstract argumentation.

1 Introduction

Abstract argumentation (Dung, 1995) is the theory of structures 〈A,�〉—called at-
tack graphs—as models of the sort of conflict that occurs in argumentation, where
arguments (set A) interact by attacking one another (through the binary ‘attack’ re-
lation �). On the one hand, this has proven to be a prolific abstraction from which
to study structural properties of sets of arguments that form ‘justified’ or ‘rational’
positions in an argumentation (cf. Baroni and Giacomin (2009); Baroni et al (2011)
for recent overviews). On the other hand, this perspective leaves the internal struc-
ture of arguments unspecified and arguments are nothing but points in a network
of attacks. When looking at similarities between arguments from this point of view,
issues such as having the same premisses and conclusions, or exhibiting the same
logical structure, become immaterial.
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However even at this level of abstraction there is a telling sense in which two
arguments a and a′ belonging to two (possibly different) graphs 〈A,�〉 and 〈A′,�′〉
can be said to be ‘the same’, or to be equivalent, namely if they ‘behave’ in the same
way in the two graphs. Put otherwise, a and a′ can be said to be equivalent if they
interact in similar ways with the other arguments in their respective graphs. This
point of view suggests a way of comparing arguments which is independent of their
content, and which instead stresses the role they play in an argumentation through
their interaction with other arguments.

Suggestively, this ‘behavioral’ view of the notion of equivalence of arguments
ties in well with Toulmin’s view of a theory of argumentation as something that is
“field-invariant”:

“What features of our arguments should we expect to be field-invariant: which features will
be field-dependent? We can get some hints, if we consider the parallel between the judicial
process, by which the questions raised in a law court are settled, and the rational process,
by which arguments are set out and produced in support of an initial assertion. [. . . ] One
broad distinction is fairly clear. The sorts of evidence relevant in cases of different kinds will
naturally be very variable. [. . . ] On the other hand there will be, within limits, certain broad
similarities between the orders of proceedings adopted in the actual trial of different cases,
even when these are concerned with issues of very different kinds. [. . . ] When we turn from
the judicial to the rational process, the same broad distinction can be drawn. Certain basic
similarities of pattern and procedure [our emphasis] can be recognized, not only among
legal arguments but among justificatory arguments in general, however widely different the
fields of the arguments, the sort of evidence relevant, and the weight of the evidence may
be.” (Toulmin, 1958, pp.15-17)

The paper aims at developing a theory of equivalence of arguments based on struc-
tural similarities of pattern and procedure. To this aim, the paper pushes further the
application of modal logic techniques to abstract argumentation already argued for
in a number of recent works (cf. Caminada and Gabbay (2009); Gabbay (2011b) and
Grossi (2009, 2010, 2011)). It builds on the view of attack graphs 〈A,�〉 as Kripke
frames and presents a systematic exploration of the idea that argument equivalence
can be expressed as equality of (fragments) of the modal theory of each argument.
This idea naturally relates to the modal invariance notion of bisimulation (van Ben-
them, 1983)1 and with the theory of argument games, that is, ‘argumentation pro-
cedures’ modeled as two-player zero-sum games played on attack graphs.2 Inspired
by insights from (van Benthem, 2002, 2013), we will look at a power-based no-
tion of argument equivalence: two arguments can be said to be equivalent when the
powers of the proponent and opponent in the argument games for the two arguments
are, in some precise sense, the ‘same’. Finally, we will see how this game-theoretic
view of argumentation and argument equivalence ties in with the equational view of
argumentation put forth in (Gabbay, 2011a, 2012, 2013).

Structure of the paper. In Section 2 we concisely introduce the key concepts
of abstract argumentation which will be used in the paper. Section 3 provides some

1 The relevance of bisimulation in abstract argumentation was first emphasized in (Grossi, 2009,
2010).
2 Cf. (Modgil and Caminada, 2009) for a recent overview of argument games.
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modal logic preliminaries and Section 4 applies modal equivalence to define a notion
of equivalence for arguments, with respect to Dung’s grounded extension. Section
5 elaborates on that definition proposing a strategic variant of it based on the pow-
ers that a proponent and an opponent have in an argument game for the grounded
extension. Section 6 relates the construction of winning strategies in such argument
games to the equational approach to argumentation, and brings the three strands
of the paper—the modal, the game-theoretic and the equational—together. Finally,
conclusions follow in Section 7.

2 Preliminaries on abstract argumentation

The present section introduces the necessary preliminaries on abstract argumenta-
tion which set the stage of our investigations.

2.1 Attack graphs

We start by the key notion of Dung (1995):

Definition 1 (Attack graph). An attack graph—or Dung framework—is a tuple
A = 〈A,�〉 where:

• A is a non-empty set—the set of arguments;
• �⊆ A2 is a binary relation—the attack relation.

The set of all attack graphs on a given set A is denoted A(A). The set of all attack
graphs is denoted A. With a � b we indicate that a attacks b, and with X � a we
indicate that ∃b ∈ X s.t. b � a. Similarly, a � X indicates that ∃b ∈ X s.t. b � a. An
attack graph such that, for each a ∈ A the cardinality |{b | a � b}| of the set of the
attackers of a is finite, is called finitary.3 Given an argument a, we denote by RA (a)
the set of arguments attacking a: {b ∈ A | b � a}.

These relational structures (see Figure 1 for an example) are the building blocks
of abstract argumentation theory. Once A is taken to represent a set of arguments
(or ’pieces of evidence’ or ‘information sources’), and � an ‘attack’ relation be-
tween arguments (so that a � b means “a attacks b”), the study of these structures
provides very general insights on how competing arguments interact and structural
properties of subsets of A can be taken to formalize how collections of arguments
form ‘justifiable’ positions in an argumentation.

3 This property is known in modal logic as image-finiteness of the accessibility relation of a Kripke
frame (Blackburn et al, 2001, Ch. 2).
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Fig. 1 Two attack graphs. The one on the left represents a full opposition between, for instance,
two contradictory arguments. The one on the right represents an argumentation where two opposite
arguments (a and b) both attack a same argument (c) which in turn defends a final argument (e) by
attacking its attacker (d).

2.2 Characteristic functions of attack graphs

The formulation of all main argumentation theoretic properties makes use of two
functions that can be naturally associated to each attack graph.

2.2.1 Characteristic functions

The first one is a function called in Dung (1995) characteristic function, which we
will call here defense function.

Definition 2 (Defense function). Let A = 〈A,�〉 be an attack graph. The defense
function dA :℘(A)−→℘(A) for A is so defined:

dA (X) = {x ∈ A | ∀y ∈ A : IF y � x THEN X � y} .

Given a set of arguments X , the n-fold iteration of dA is denoted dn
A for 0≤ n < ω

and its infinite iteration is denoted dω

A . For a given X , an infinite iteration generates
an infinite sequence, or stream, d0

A (X),d1
A (X),d2

A (X), . . .. A stream is said to sta-
bilize if and only if there exists 0 ≤ n < ω such that dn

A (X) = dn+1
A (X). Such set

dn
A (X) is then called the limit of the stream. When clear from the context we will

drop the reference to A in dA .

Intuitively, for a given A , function dA encodes for each set of arguments X , which
other arguments the set X is able to defend within A .

The second function was first introduced in Pollock (1987, 1991) and further
studied in Dung (1995). It is not known with a specific name in the literature. We
call it here neutrality function.

Definition 3 (Neutrality function). Let A = 〈A,�〉 be an attack graph. The neu-
trality function nA :℘(A)−→℘(A) for A is so defined:
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nA (X) = {x ∈ A | NOT X � x}

The definitions of n-fold iteration, stream, and stabilization are like in Definition 2.

Intuitively, given A , function nA encodes for each set X of arguments in A , the
arguments about which X is neutral in the sense of not attacking any of those argu-
ments.

Example 1 (Defense and neutrality in Figure 1). The functions applied to the sym-
metric graph on the left of Figure 1 yield the following equations:

d( /0) = /0 n( /0) = {a,b}
d({a}) = {a} n({a}) = {a}
d({b}) = {b} n({b}) = {b}
d({a,b}) = {a,b} n({a,b}) = /0

2.2.2 Properties of the defense function

We list here two properties of the defense function which will be used in the devel-
opment of the paper.

The first one, monotonicity, expresses the property that larger sets of arguments
are able to defend larger sets of arguments. This is enough to guarantee the exis-
tence of least and greatest fixpoints of the defense function, by the Knaster-Tarski
theorem.4

The second one, continuity, expresses the property that in finitary graphs (i.e.,
graphs where arguments have at most a finite number of attackers, recall Definition
1), what is defended by a series of larger and larger sets of arguments is equivalent to
the union of what each of those sets defends. As we will see later, continuity enables
the possibility of studying processes of computation of argumentation-theoretic no-
tions as iterated applications of the defense function.

Fact 1 (Monotonicity) Let A = 〈A,�〉 be an attack graph. Function nA is mono-
tone, i.e., for any X ,Y ⊆ A:

X ⊆ Y =⇒ dA (X)⊆ dA (Y ).

Fact 2 (Continuity Dung (1995)) Let A be a finitary attack graph. If A is finitary,
then dA ,X is continuous for any X ⊆ A, i.e., for any directed set D ∈℘(℘(A)):
dA (

⋃
X∈D X) =

⋃
X∈D dA (X).

Proof. [RIGHT TO LEFT] Trivial. [LEFT TO RIGHT] Assume a ∈ dA (
⋃

X∈D X). By
image-finiteness there exists X ∈D s.t. it contains all arguments that attack some of
a’s attackers. Hence a ∈

⋃
X∈D dA (X). ut

4 The reader is referred to Davey and Priestley (1990) for a detailed presentation of this result.
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X is conflict-free in A iff X ⊆ nA (X)
X is self-defended in A iff X ⊆ dA (X)
X is admissible in A iff X ⊆ nA (X) and X ⊆ dA (X)
X is a complete set in A iff X ⊆ nA (X) and X = dA (X)
X is the grounded set in A iff X = lfp.dA

Table 1 Some of the key notions of abstract argumentation theory from Dung (1995).

2.3 Solving attack graphs

By ‘solving’ an attack graph we mean selecting a subset of arguments that enjoy
some characteristic structural property. The idea behind Dung’s semantics for ar-
gumentation is precisely that some structural properties of attack graphs can cap-
ture intuitive notions of justifiability of arguments or, if you wish, of standard of
proof—what in argumentation are usually called extensions. Therefore, the study of
structural properties of attack graphs delivers very general insights on how compet-
ing arguments interact and how collections of them form ‘tenable’ or ‘justifiable’
argumentative positions.

Table 1 recapitulates the basic notions of abstract argumentation which will be
touching upon in the paper. They are all formulated either as fixpoints (X = f (X))
or post-fixpoints (X ⊆ f (X)) of the defense and neutrality functions, or as combina-
tions of the two.

Intuitively, conflict-freeness demands that the set of arguments at issue is not able
to attack itself—it is neutral with respect to itself. Self-defense requires that the set
of arguments is able to defend itself. An admissible set is then a set of arguments
which is condlict-free and is able to defend all its attackers. So, as the name suggests,
admissible sets can be thought of as ‘admissible’ positions within an attack graph.
By considering those admissible sets which also contain all the arguments they are
able to defend—viz., the admissible sets that are fixpoints of the defense function—
we obtain the notion of complete set. It formalizes the idea of a fully exploited
admissible position, that is, a position which has no conflicts, and which consists
exactly of all the arguments that can be successfully defended. The grounded set
represents what all complete extensions have in common. In a way, it formalizes
what at least must be accepted as ‘reasonable’ within the graph.

Example 2 (Extensions in Figure 1). Consider the graph on the right of Figure 1.
The grounded extension is /0. There are two complete extensions: {a,d} and {b,d}.
An example of a conflict-free set which is not admissible is {c,e}.
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2.4 Computing the grounded set

We now look at a process of computation of the grounded set. This will be related
later to the notion of argument equivalence to be developed, and the availability of
winning strategies for the proponent in argument games.

We will focus on finitary graphs (recall Definition 1). The case of non-finitary
graphs is briefly discussed in Remark 1.

Theorem 1 (Computation of grounded extensions (Dung, 1995)). Let A be a
finitary attack graph:

lfp.dA =
⋃

0≤n<ω

dn
A ( /0) (1)

Proof. First, we prove that
⋃

0≤n<ω dn
A ( /0) is a fixpoint by the following equations:

dA

( ⋃
0≤n<ω

dn
A ( /0)

)
=

⋃
0≤n<ω

dA (dn
A ( /0))

=
⋃

0≤n<ω

dn
A ( /0)

where the first equation holds by the continuity of dA , and the second since, by
monotonicity, d0

A ( /0),d1
A ( /0), . . . is non-descending. Second, we proceed to prove

that
⋃

0≤n<ω dn
A ( /0) is indeed the least fixpoint. Suppose, towards a contradiction

that there exists Y s.t.: /0 ⊂ Y = dA (Y ) ⊂
⋃

0≤n<ω dn
A ( /0). It follows that /0 ⊂ Y =

dA (Y )⊂ dn
A ( /0) for some 0≤ n < ω . But, by Fact 1, we have that dn

A ( /0)⊆ dn
A (Y ).

Contradiction. ut

Remark 1 (Non-finitary graphs). For infinite graphs which are not finitary, Theorem
1 could be generalized by ordinal induction:

d0
A ( /0) = /0

dα+1
A ( /0) = dA (dα

A ( /0))

dλ

A =
⋃

α<λ

dα

A ( /0) (for λ arbitrary limit ordinal).

By the monotonicity of dA it can then be shown that there exists an ordinal α of
cardinality at most the cardinal after |A| such that: lfp.dA = dα

A .5 So, in the case of
non finitary attack graphs on a countable set of arguments, to obtain lfp.dA we need⋃

0≤α<ω1
dα

A ( /0).
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a b c d e

Fig. 2 A linear well-founded attack graph. The greatest and smallest fixpoint of the defense func-
tion coincide here: {a,c,e}. The set of arguments not belonging to the greatest fixpoint is {d,b}.
Note, in particular, that while b is defended by set {a,b,c,d,e} (namely by d), it is not defended by
the set of arguments that is defended by {a,b,c,d,e}. So it does not belong to the greatest fixpoint
of the defense function.

a

b

c

Fig. 3 A 3-cycle attack graph. Here the smallest fixpoint of the defense function is /0 and the
greatest fixpoint is {a,b,c}.

2.4.1 Smallest and greatest fixpoints of the defense function

We have seen that the smallest fixpoint of the defense function dA defines the so-
called grounded extension of an attack graph. What about the largest: gfp.dA ? We
will confine our discussion to finitary graphs.

The arguments that belong to gfp.dA are those which can always be defended
by some other argument that can also in turn be defended. The dual of Theorem 1
offers a good perspective from which to appreciate the notion:

gfp.dA =
⋂

0≤n<ω

dn
A (A)

i.e., the set consisting of arguments that are defended by the set of all arguments,
and by the set that is defended by the set of all arguments and so on: dA (A)∩
dA (dA (A))∩ . . . (see Figures 2 and 3 for examples).

3 Attack graphs and modal logic

The section recapitulates and slightly extends (in particular w.r.t. frame languages)
the modal logic approach to abstract argumentation put forth in Grossi (2009, 2010).

5 A proof of this statement in the general setting of complete partial orders can be found in (Ven-
ema, 2008, Ch. 3).
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3.1 Attack graphs and Kripke models

Once an attack graph is viewed as a Kripke frame, the addition of a function assign-
ing names to sets of arguments—a labeling or valuation function—yields a Kripke
model (or a state transition system).

Definition 4 (Attack models). Let P be a set of atoms. An attack model is a tuple
M = 〈A ,V 〉 where A = 〈A,�〉 is an attack graph and V : P−→℘(A) is a valua-
tion function. A pointed attack model is a pair 〈M ,a〉 with a ∈ A. The set of attack
models is M.

Attack models are nothing but attack graphs together with a way of ‘naming’ sets
of arguments or, to put it otherwise, of ‘labeling’ arguments.6 So, the fact that an
argument a belongs to the set V (p) in a given model M reads in logical notation
as (A ,V ),a |= p. By using the language of propositional logic we can then form
‘complex’ labels ϕ for sets of arguments stating, for instance, that “a belongs to
both the sets called p and q”: (A ,V ),a |= p∧q.

In order to formalize argumentation-theoretic statements more than just proposi-
tional expressivity is needed. Let us mention a couple of examples: “there exists an
argument in a set named ϕ attacking argument a” or “for all attackers of argument
a there exist some attackers in a set named ϕ”. These are statements involving a
bounded quantification and they can be naturally formalized by a modal operator ♦
whose reading is: “there exists an attacking argument such that . . . ”. This takes us
to modal languages.

3.2 The ‘being attacked’ modality

Interpret now the basic modal language on argumentation models as follows:

M ,a |= ♦ϕ ⇐⇒ ∃b ∈ A : a � b AND M ,b |= ϕ

An argument a belongs to the set called ♦ϕ iff some argument b is accessible via
the inverse of the attack relation and b belongs to ϕ or, more simply, iff a is attacked
by some argument in ϕ .

This is enough expressivity to express the defense and neutrality functions in
modal logic K. The two functions dA and nA correspond to the functions denoted
in L by the modal expressions �♦ and, respectively, ¬♦ on a given graph A .

Lemma 1 (Defense and neutrality in modal logic). Let A be an attack graph and
V a valuation function.

〈A ,V 〉,a |=�♦ϕ ⇐⇒ a ∈ dA (JϕK〈A ,V 〉)

〈A ,V 〉,a |= ¬♦ϕ ⇐⇒ a ∈ nA (JϕK〈A ,V 〉)

6 It might be worth noticing that this is a generalization of the sort of labeling functions studied in
argumentation theory (cf. Caminada (2006); Baroni and Giacomin (2009)).



10 Davide Grossi and Dov Gabbay

Proof (Sketch of proof). For �♦ we have these equivalences:

J�♦ϕK〈A ,V 〉 = {a | ∀b : IF a � b THEN b � JϕK〈A ,V 〉}
= dA (JϕK〈A ,V 〉).

The first equation holds by construction, the second and third are application of the
the semantics of �♦ and Definition 2. The reasoning for ¬♦ϕ is analogous.7 ut

In general, emphasizing the modal nature of dA and nA has the advantage of
allowing us to use available modal principles in reasoning about argumentation-
theoretic notions. All the theorems of logic K concerning �♦- and ¬♦-formulae
can legitimately be seen as theorems of abstract argumentation. Here we list a few
very simple theorems of K which carry interesting readings in terms of abstract
argumentation theory.

Fact 3 The following are theorems of K:

�♦⊥↔�⊥ (2)
�♦ϕ ↔¬♦¬♦ϕ (3)
�♦�♦⊥↔�♦⊥∨�♦�♦⊥ (4)

Formula 2 uses the trivial modal fact that ♦⊥↔⊥ to express that the set of argu-
ments defended by the empty set corresponds to the set of arguments that have no
attackers (dead ends). This equivalence will be constantly used in the remainder of
the paper. Formula (3) is the modal counterpart of the equivalence of the defense
function and the 2-fold iteration of the neutrality function, i.e., for any X and graph
A : dA (X) = nA (nA (X)). Formula (4) states that, for any A , the finite union of
subsequent iterations of dA over /0 is equivalent to the longest iteration.

In the remainder of the paper, in order to concisely express the nth iteration of
�♦ (resp., ¬♦) we will write (�♦)n (resp., (¬♦)n).

Remark 2 (Frame language). When interested in the application of the characteristic
functions solely to the set of all arguments, or to the empty set of arguments, all is
needed to express d and n is a limited fragment of the language L introduced above.
The fragment is defined by the following BNF:

ϕ ::=⊥ | ¬ϕ | ϕ ∧ϕ | ♦ϕ

This is a so-called frame language8, which does not use propositional atoms. In
fact, this language does not need models to be interpreted, but simply attack graphs
(Definition 1). It therefore expresses properties of pointed attack graphs: 〈A ,a〉.

7 More generally, the claim is a direct consequence of the existence of a homomorphism
from the term algebra Term = 〈L ,∧,¬,⊥,♦〉 of language L (without universal modality)
to the complex algebra SetA = 〈2A,∩,−, /0, f 〉 where f : ℘(A) −→℘(A) such that f (A) =
{a ∈ A | ∃b ∈ A : a � b} (Blackburn et al, 2001, Ch. 5).
8 See (Blackburn et al, 2001, Ch. 3.1).
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This will be the language we will be working with when defining a notion of argu-
ment equivalence with respect to the grounded set.

3.2.1 The grounded set in modal logic

As a consequence of Theorem 1 and Lemma 1—showing that d can be represented
as �♦—the grounded extension can, in any finitary graph A , be expressed by the
following infinite but countable disjunction (cf. Equation (1)):∨

0≤n<ω

(�♦)n⊥ (5)

Clearly, in a finite A we will have a finite integer n where the stream dω

A ( /0) reaches
its limit, and we could then express the grounded extension by a finite disjunction∨

0≤i≤n(�♦)i⊥ or simply as (�♦)i⊥.

Similarly, it is worth observing that the greatest fixpoint of dA for a given A is
expressed by the following infinite conjunction:∧

0≤n<ω

¬(♦�)n⊥ (6)

i.e., it is neither the case that the current argument is attacked by a dead end, nor that
it is attacked by an argument whose attackers are attacked by a dead end, and so on.

Remark 3 (Being attacked by the grounded set). Notice that arguments not belong-
ing to the greatest fixpoint of d, i.e., satisfying ¬

∧
0≤n<ω ¬(♦�)n♦⊥, are arguments

attacked by the grounded set, i.e., arguments satisfying
∨

0≤n<ω ♦(�♦)n⊥.

Remark 4 (Infinite attack graphs and the mu-calculus). In the general case, in order
to express the grounded extension modally it is necessary to resort to the expressivity
of the mu-calculus, where the grounded extension can be expressed by the following
formula:

µ p.�♦p (7)

denoting precisely the smallest fixpoint of function �♦, i.e., in a given A , the modal
rendering of dA (Lemma 1). Similarly, ν p.�♦p denotes the largest fixpoint. We
refer the reader to (Grossi, 2010; Gratie et al, 2012) for more information on the
application of the modal mu-calculus to abstract argumentation.

3.2.2 Other argumentation-theoretic notions in modal logic

We have shown how to express the grounded extension by a formula of the basic
frame language. It must be clear that, from a modal point of view, the grounded
extension is therefore a property of a pointed frame 〈A ,a〉, that is, the property of
an argument in a graph.
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a b a′

b′

c′

Fig. 4 Arguments a and a′ have the same status: T(a) = /0 = T(a′).

How are the other notions of Table 1 to be formalized? In (Grossi, 2010) it has
been shown that logic K with the universal modality 〈U〉 suffices to express conflict-
freeness, self-defense, admissibility and complete extensions. But in this case, the
full modal language (with at least one atom p) is required:

V (p) is conflict-free ⇐⇒ 〈A ,V 〉,a |= [U](p→¬♦p)

V (p) is self-defended ⇐⇒ 〈A ,V 〉,a |= [U](p→�♦p)

V (p) is admissible ⇐⇒ 〈A ,V 〉,a |= [U](p→¬♦p)∧ [U](p→�♦p)

V (p) is a complete set ⇐⇒ 〈A ,V 〉,a |= [U](p→¬♦p)∧ [U](p↔�♦p)

These notions are therefore properties of pointed models 〈M ,a〉, that is, properties
of arguments in a graph where a set of arguments has been labeled. In the remainder
of the paper we will be concerned only with frame properties and will therefore be
working with the frame language.

4 A modal notion of argument equivalence

The section develops a modal notion of argument equivalence characterizing the
status of an argument in terms of a special family of modal formulae it satisfies.

4.1 When are two arguments equivalent w.r.t. the grounded set?

Let us start by recalling a few observations from Section 3. For any graph A , the
set of arguments is partitioned in the set of arguments belonging to lfp.dA (the
grounded set), those not belonging to gfp.dA (i.e., the arguments attacked by the
grounded set, recall Remark 3), and the arguments belonging to gfp.dA − lfp.dA

(i.e., the arguments neither belonging to the grounded set nor being attacked by it).
Figures 2 and 3 offer good examples for the identification of this tripartition.
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a b a′

b′

c′

d′ e′

Fig. 5 Arguments b and c′ have different statuses: T(b) = {(�♦)n⊥ | 1≤ n < ω} ∪
{(�♦)n> | 0≤ n < ω}, while T(c′) = {(�♦)n⊥ | 2≤ n < ω}∪{(�♦)n> | 0≤ n < ω}. Both be-
long to the grounded sets of the respective graphs.

So, from the point of view of the grounded set, what matters in a graph A is the
status of an argument with respect to the three above sets, and hence with respect
to membership to lfp.dA and gfp.dA . A natural refinement of this idea in finitary
graphs is to understand the status of an argument not only in terms of its membership
to lfp.dA and gfp.dA , but also in terms of ‘when’ it enters those sets, in the sense
of which are the stages in the fixpoint computation to which the argument belongs9,
i.e., at which n the argument comes to belong to dn

A ( /0) and at which it ceases to
belong to dn

A (A). This suggests the following definition of status of an argument:

Definition 5 (Status). Let A = 〈A,�〉 be an attach graph. The status of a ∈ A is
defined as, for 1≤ n < ω:

T(a) = {(�♦)n⊥ |A ,a |= (�♦)n⊥}∪{(�♦)n> |A ,a |= (�♦)n>} (8)

Recall the modal principle: (�♦)n>↔ ¬♦(�♦)n⊥. So, the status of an argument
is the subset of its modal theory in the frame language which consists of formulae
corresponding to iterations of the defense function over /0 (i.e., ⊥) and over the set
of all arguments (i.e., >).

To familiarize ourselves with the notion of argument status, let us mention this
simple fact following from Theorem 1:

Fact 4 Let A be a finitary graph:

a ∈ lfp.dA ⇐⇒ T(a) = {(�♦)m⊥ | ∃n : n≤ m < ω}∪{(�♦)n> | 1≤ n < ω}
a ∈ −gfp.dA ⇐⇒ T(a) = {(�♦)m> | ∃n : m≤ n < ω}

a ∈ gfp.dA − lfp.dA ⇐⇒ T(a) = {(�♦)n> | 1≤ n < ω}

We can then say that two arguments are equivalent w.r.t. the grounded set (nota-
tion, A ,a≡d A ′,a′) if and only if they have the same status:

9 It is worth stressing that this is a refinement of the common understanding of ‘status of an argu-
ment’ in the literature on argumentation theory.
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A ,a≡d A ′,a′ ⇐⇒ T(a) = T(a′) (9)

Intuitively, two arguments are equivalent if and only if they belong to exactly the
same stages of iteration of the defense function applied to the empty set, and to the
same stages of iteration of the defense function applied to the set of all arguments.
Figures 4 and 5 give an illustration of the definitions of status and status equivalence.

4.2 Status equivalence and frame bisimulation

We recall the standard definition of the notion of frame bisimulation:10

Definition 6 (Frame bisimulation (van Benthem, 1983)). Let A = 〈A,�〉 and
A ′ = 〈A′,�′〉 be two attack graphs. A (frame-)bisimulation between A and A ′

is a non-empty relation Z ⊆ A×A′ such that:

Zig: if aZa′ and a � b for some b ∈ A, then a′ � b′ for some b′ ∈ A′ and bZb′;
Zag: if aZa′ and a′ � b′ for some b′ ∈ A then a � b for some b ∈ A and bZb′.

When a frame bisimulation exists linking a ∈ A and a′ ∈ A′ we write A ,a-A ′,a′.

Intuitively, a bisimulation is a process-like view of equivalence between attack
graphs that links the walks along the attack relation—one might say the dialogues
(cf. Section 5)—that one can do on one graphs to corresponding walks that one can
do on the other.

By applying standard results from modal logic we can show that frame bisimu-
lation implies status equivalence: two bisimilar arguments are also equivalent with
respect to their status.

Fact 5 (- ⊆ ≡d ) Let 〈A ,a〉 and 〈A ′,a′〉 be two pointed attack graphs:

A ,a -A ′,a′ =⇒ A ,a≡d A ′,a′

Proof. The claim is a direct consequence of Formula (9) and the fact that the basic
modal language is bisimulation invariant (cf. Blackburn et al (2001)).

5 Status equivalence and argument games

The picture of argumentation we have given so far is of a static kind, but argumen-
tation calls intuitively for a process of interaction between arguers. In fact, although
notions like the grounded extension formalize different static views of what makes
a set of arguments a ‘justifiable’ or good position in an argumentation, these views
can be made dynamic through two-player zero-sum games. Many researchers in the

10 See (Blackburn et al, 2001, Ch. 2).
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Length of a : P wins if : O wins if :
`(a)< ω t(a) = O t(a) = P
`(a) = ω never always

Table 2 Winning conditions for the game for grounded given a terminal dialogue a.

last two decades have focused on ‘dialogue games’ for argumentation, i.e., games
able to adequately establish whether a given argument belongs or not to a given
extension.11

The sort of results that drive this literature are called adequacy theorems and
have, roughly, the following form: argument a has property S (e.g., belongs to the
grounded extension) if and only if the proponent has a winning strategy in the di-
alogue game for property S (e.g., the dialogue game for the grounded extension)
starting with argument a.

In this section we will see how the notion of bisimulation between arguments ties
in with the theory of argument games.

5.1 Argument games

The section recapitulates key definitions and results pertaining to an adequate game
for the grounded extension.

5.1.1 Game for the grounded extension

Let us fix some further auxiliary notation before starting. Let a ∈ A<ω ∪Aω be a
finite or infinite sequence of arguments in A, which we will call a dialogue. To
denote the nth element, for 1 ≤ n < ω , of a dialogue a we write an, and to denote
the dialogue consisting of the first n elements of a we write a|n. The last argument
of a finite dialogue a is denoted h(a). Finally, the length `(a) of a is n−1 if a|n = a,
and ω otherwise. We start with the formal definition:

Definition 7 (Argument game for grounded (Dung, 1994)). The game for the
grounded extension is a function D which for each attack graph A yields a structure
D(A ) = 〈N,A,t,m,p〉 where:

• N = {P,O}—the set of players consists of proponent P and opponent O .
• A is the set of arguments in A .

11 The contributions that started this line of research is Dung (1994). Cf. Modgil and Caminada
(2009) for a recent overview.
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• t : A<ω −→N is the turn function. It is a (partial12) function assigning one player
to each finite dialogue in such a way that, for any 0 ≤ m < ω and a ∈ A<ω ,
if `(a) = 2m then t(a) = O , and if `(a) = 2m+ 1 then t(a) = P . I.e., even
positions are assigned to O and odd positions to P .

• m : A<ω −→℘(A) is a (partial) function from dialogues to sets of arguments
defined as: m(a) = RA (h(a)). I.e., the available moves at a are the arguments
attacking the last argument of a. The set of all dialogues compatible with m—the
legal dialogues of the game—is denoted D. Dialogues a for which m(a) = /0 or
such that `(a) = ω are called terminal, and the set of all terminal dialogues of the
game is denoted T .

• p : T −→ N is the payoff function given in Table 2, which associates a player—
the winner—to each terminal dialogue.

The game is played starting from a given argument a. When a is explicitly given we
talk about an instantiated game (notation, D(A )@a).

The two players play the game by alternating each other (O starts) and navigating
the attack graph along the ‘being attacked’ relation. The winning conditions state
that P wins whenever she manages to state an argument to which O cannot reply,
i.e., an argument with no attackers. Notice the asymmetry in the winning conditions
of the payoff function for P and O .

5.1.2 Adequacy

The different ways in which proponent and opponent can play an argument game
are called strategies:

Definition 8 (Strategies). Let D(A ) = 〈N,A,t,m,p〉, a ∈ A and i ∈ N. A strategy
for i in the instantiated game D@a is a function: σi : {a∈D−T | a0 = a AND t(a)=
i} −→ A s.t. σi(a) ∈ m(a). The set of terminal dialogues compatible with σi is de-
fined as follows: Tσi = {a ∈ T | a0 = a AND ∀n ≤ `(a) IF t(a|n) = i THEN an+1 =
σi(a|n)}.

A strategy tells i which argument to choose, among the available ones, at each non-
terminal dialogue a in D@a. So, in the game for grounded, a strategy σP will
encode the proponent’s choices in dialogues of odd length, while σO will encode
the opponent’s choices in dialogues of even length. Observe that, in a game for
grounded, a strategy σP and a strategy σO—i.e., a strategy profile in the game-
theory terminology—together determine one terminal dialogue or, in other words,
TσP
∩TσO

is a singleton.
What matters of a strategy is whether it will guarantee the player that plays ac-

cording to it to win the game. This brings us to the notion of winning strategy:

12 The function is partial because only sequences compatible with the move function m need to be
considered.
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Definition 9 (Winning strategies and arguments). Let D(A ) = 〈N,S,t,m,p〉,
a ∈ A and i ∈ N. A strategy σ is winning for i in D(A )@a if and only if for all
a ∈ Tσ it is the case that p(a) = i. An argument a is winning for i iff there exists
a winning strategy for i in D(A )@a. The set of winning positions of D for i is
denoted Wini(D(A )). An argument a is winning for i in k rounds (k ≥ 0) iff there
exists a winning strategy σi in D@a such that for all a ∈ Tσi , `(a)+ 1 ≤ k, that is,
i can always win in at most k rounds using σi. The set of winning positions in k
rounds is denoted Wink

i (D).

Dialogue games are two-player zero-sum games with perfect information. It follows
that these games are determined (Zermelo’s theorem), in the sense that either P or
O possesses a winning strategy, and hence that each argument in an attack graph is
either a winning position for P or a winning position for O . See Figure 6 for an
illustration.

Now all ingredients are in place to study the property we are interested in, viz.
the adequacy of the game of Definition 7 with respect to the grounded extension.
We first prove a slightly stronger result: an argument a belongs to the kth iteration of
the defense function on the empty set of arguments, if and only if P has a winning
strategy in the game initiated at a, which she can carry out in at most 2(k−1) rounds.

Lemma 2 (Strong adequacy of the game for grounded (Dung, 1994)). Let D(A )
be the dialogue game for grounded on graph A and a ∈ A, for 1≤ k < ω:

a ∈ dk
A ( /0)⇐⇒ a ∈Win2(k−1)

P (D(A )).

Proof. We proceed by induction:
[B] The following equivalences prove the induction base:

a ∈ dA ( /0)⇐⇒ @b : b � a [Definition 2]
⇐⇒ a ∈Win0

P(D(A )) [Definition 9]

[S] If a ∈ dn
A ( /0)⇐⇒ a ∈Win2(n−1)

P (D(A )) (IH) then we claim: a ∈ dn+1
A ( /0)⇐⇒

a ∈ Win2n
P(D(A )). [LEFT TO RIGHT] Assume a ∈ dn+1

A ( /0). This means that ∀b :
b � a,∃c : c � b and such that c ∈ dn

A ( /0) which, by IH, is equivalent to c ∈
Win2(n−1)

P (D(A )). So, by Definition 7, for any O’s move b at position a, P has a
counter-argument c from which she has a winning strategy forcing a win in at most
2(n− 1) rounds. Hence, by Definition 9, P can win the game at a in 2(n− 1)+ 2
rounds, i.e., a∈Win2n

P(D(A )). [RIGHT TO LEFT] Assume a∈Win2n
P(D(A )). This

means that, for any O’s move b at a, P has a counter-argument c from which she has
a winning strategy forcing a win in at most 2n−2 rounds. By IH, this is equivalent
with c ∈ dn

A ( /0) and by Definition 2 we conclude that a ∈ dn+1
A ( /0). This completes

the proof.

As a consequence, an argument belongs to the grounded extension of an argumenta-
tion framework if and only if the proponent has a winning strategy for the dialogue
game for grounded (in that argumentation framework) instantiated at that argument.
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a

d

b

c

a O

d P b P

c O

Fig. 6 An attack graph (left) and its dialogue game for grounded (right). Positions are labeled by
the player whose turn it is to play. P wins the terminal dialogue abc but loses the terminal dialogue
ad. O has a winning strategy that makes him win in one move.

Theorem 2 (Adequacy of the game for grounded). Let D(A ) = 〈N,S,t,m,p〉 be
the dialogue game for grounded on a finitary graph A and a ∈ A:

a ∈ lfp.dA ⇐⇒ a ∈WinP(D(A )).

Proof. The claim is proven by the following series of equivalences:

a ∈WinP(D(A ))⇐⇒ a ∈
⋃

1≤k<ω

Win2(k−1)
P (D(A ))

⇐⇒ a ∈
⋃

1≤k<ω

dk
A ( /0)

⇐⇒ a ∈ lfp.dA

The first equivalence holds by the winning conditions of Definition 7 and Definition
9: P wins if and only if she can force the game to reach an unattacked argument in
an even number of steps. The second equivalence holds by Lemma 2 and the third
one by Theorem 1.

Theorems like Theorem 2 play a significant role in the development of a formal
theory of argumentation. Firstly, they guarantee that the argument game at issue is
a sound (if the proponent has a winning strategy then the the argument is grounded)
and complete (if the argument is grounded, then the proponent has a winning strat-
egy) proof procedure with respect to the corresponding semantics. Secondly, litera-
ture in argumentation (e.g., Atkinson and Bench-Capon (2007)) has pointed out—
convincingly in our view—that Dung’s extensions can be soundly viewed as abstract
models of standards of proof in debates, and that argument games are a viable ab-
straction of procedural rules, or protocols, for debates. (cf. Prakken (2009)). Viewed
in this light, adequacy is then the property of debate protocols successfully imple-
menting a given standard of proof, like the grounded extension.13

13 We use the word “implement” here in the technical sense in which it is typically used in game
theory (Osborne and Rubinstein, 1994, Ch. 10) or social software (Parikh, 2002).
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5.2 Strategic equivalence of arguments & status equivalence

When can two arguments in two attack graphs be considered equivalent from the
point of view of the above game? Intuitively, we might say that the two arguments
are equivalent if the proponent (respectively, the opponent) has a winning strategy
that allows her (respectively, him) to win the game in at most the same number of
rounds. More precisely:

Definition 10 (Strategic equivalence of arguments). Two pointed attack graphs
〈A ,a〉 and 〈A ′,a′〉 are strategically equivalent if and only if the two following
conditions are met:

(i) For 0≤ n < ω , if P can always win D(A )@a in at most 2n rounds, then she
can always win D(A ′)@a′ in at most the same number of rounds, and vice
versa;

(ii) For 0 ≤ n < ω , if O can always win D(A )@a in at most 2n+1 rounds, then
he can always win D(A ′)@a′ in at most the same number of rounds, and vice
versa.

In other words, two arguments are strategically equivalent whenever they support the
same ‘powers’ for the proponent and the opponent, that is, whenever they support
winning strategies (for the proponent or the opponent) that can force a win in the
game for grounded in at most the same number of rounds.

Example 3. Let us get back to Figure 5. Consider arguments a and a′. These are
strategically equivalent: O has a winning strategy for the arguments, on both graphs,
guaranteeing him a win in at most 1 round. Consider now arguments b and c′. P
has a winning strategy on both games. But while she always wins in 0 rounds from
b, she always wins in 2 rounds playing from c′. So, b and c′ are not strategically
equivalent.

Now, capitalizing on Lemmata 1 and 2, this notion of strategic equivalence can
be shown to be just a game-theoretic variant of the notion of status equivalence:

Theorem 3. Let 〈A ,a〉 and 〈A ′,a′〉 be two pointed attack graphs: A ,a ≡d A ′,a′

if and only if 〈A ,a〉 and 〈A ′,a′〉 are strategically equivalent.

Proof. Define the following set:

W (a) =


{
(�♦)n⊥ | a ∈Win2(n−1)

P (D(A )), FOR 1≤ n < ω

}
∪{

(�♦)n> | @b : a � b AND b ∈Win2(n−1)
P (D(A )), FOR 1≤ n < ω

}
First of all, observe that, for any n, if ∃b : a � b AND b ∈Win2(n−1)

P (D(A ) then O
has a winning strategy in a that forces a win in 2(n− 1)+ 1 rounds (in symbols,
a ∈ Win2n−1

O (D(A ))), and vice versa. So, by Lemmata 1 and 2, it is not difficult
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to see that 〈A ,a〉 and 〈A ′,a′〉 are strategically equivalent if and only if W (a) =
W (a′) (recall that (�♦)n>↔¬♦(�♦)n⊥). By the definition of W , Definition 5 and
Lemma 1 it then follows directly that T(a) = T(a′).

We have thus shown that the modally defined notion of status equivalence for the
grounded extension has a natural strategic variant based on the argument game for
that extension. As a direct consequence of Fact 5 we also obtain that if two argu-
ments are frame bisimilar, then they are strategically equivalent.

Getting back to the Toulmin’s quote by which we opened the paper, Theorem 3
establishes an equivalence of arguments in terms of a procedural equivalence relat-
ing the ways proponent and opponent are able to argue with respect to the argument
at issue. Two arguments in two different argumentations can be said to be equivalent
whenever the powers—intended as the availability of a strategy to force a win in a
fixed number of rounds—of the proponent and the opponent in the two graphs are
the same. This ties in well with power-based notions of game equivalence as put
forth, for instance, in (van Benthem, 2002, 2013).

6 Games and equations

In this final section we look at one more perspective on argument equivalence, based
on the equational semantics of abstract argumentation (Gabbay, 2011a).

6.1 The equational approach to abstract argumentation

Let us start with a few preliminaries. The equational approach to—or equational
semantics of—argumentation consists in extracting from a given finite attack graph
A = 〈A,�〉 a system of equations:

f (a1) = 1−max({ f (b) | a1 � b})
f (a2) = 1−max({ f (b) | a2 � b})

. . . . . .

f (an) = 1−max({ f (b) | an � b})

where a1, . . . ,an is an enumeration of the arguments in A, and f : A −→ [0,1] is
a function from the sets of arguments to the real values between 0 and 1.14 Intu-
itively, 0 represents a form of rejection of the argument, 1 a form of acceptance, and
intermediate values a form of undecidedness.

14 Other systems making use of different mathematical functions instead of 1−max(.) are dis-
cussed in Gabbay (2011a). See also Gabbay (2012) for an extensive exposition of the equational
approach to argumentation.
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As shown in Gabbay (2011a), each solution f to one such system of equa-
tions defines a set of arguments {a ∈ A | f (a) = 1} corresponding to a complete
extension (see Table 1) of the underlying attack graph. The solution fg such that{

a | fg(a) = 1
}

is minimal corresponds therefore to the grounded extension, i.e., to
lfp.dA . So, the equational perspective looks at how values of acceptance or rejection
propagate within the attack graph stabilizing into steady states—the solutions—that
have a nice correspondence with Dung’s theory.

Example 4. Consider the graph on the left of Figure 1. The corresponding system of
equations is:

f (a) = 1−max({ f (b)})
f (b) = 1−max({ f (a)})

This gives three solutions: f ′(a) = 1 and f ′(b) = 0, f ′′(a) = 0 and f ′′(b) = 1,
f ′′′(a) = 0.5 and f ′′′(b) = 0.5. The latter minimizes the set

{
a | fg(a) = 1

}
and

corresponds therefore to the grounded extension.

6.2 Playing argument games through equations

We now look at how to build winning strategies for the proponent in an argument
game using solutions to the system of equation of a given attack graph.

Let A be an attack graph. Consider its argument game D(A )@a for grounded
at argument a and the equational theory for A corresponding to its grounded exten-
sion. Consider a strategy for P with the following property:

σ
∗
P(a) ∈

{
a | fg(a) = max({b | b ∈ R(h(a))})

}
FOR t(a) = P (10)

Intuitively, the strategy consist in P maximizing at each of her choice nodes the
value fg among the arguments attacking the last argument in the dialogue. In other
words, P uses the information encoded by fg to pick her arguments.

We can show that if the set of dialogues generated by σ∗P are all of even length
smaller than 2n then P can force a win in at most 2n rounds and vice versa:

Theorem 4 (Equationally defined winning strategies). Let D(A )@a be the ar-
gument game for grounded on A instantiated at a, for 0≤ n < ω:

∀a ∈ Tσ∗P
: `(a) = 2m≤ 2n⇐⇒ a ∈Win2n

P

Proof (Sketch). [RIGHT TO LEFT] If a ∈Win2n
P then P can force a win in at most

2n rounds. By its definition (Formula (10)), σ∗P must be a winning strategy. So, for
any response σO , p(σ∗P ,σO) = P and hence the length `(σ∗P ,σO) must be even.
Suppose now towards a contradiction that `(σ∗P ,σO) > 2n. P would then need in
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one case more than 2n rounds to win the game, against the assumption. [LEFT TO
RIGHT] Similar.

In other words, σ∗P is some kind of ‘canonical’ strategy for P . As a direct corollary
we obtain: σ∗P is a winning strategy if and only if fg(a) = 1. That is, a strategy that
maximizes fg at each choice node is winning for P if and only if the fg value of
the first argument is 1, i.e., if and only if a belongs to the grounded set. Similarly,
it directly follows that if two arguments are strategically equivalent, then σ∗P is
winning (in a given number of rounds) for the first argument if and only if it is
winning (in the same number of rounds) for the second.

6.3 Bisimulation, status equivalence, strategic equivalence and
equational semantics

The equational semantics of abstract argumentation helps us in bringing together all
the results handled in the paper, highlighting a wealth of interconnections between
the modal, the strategic and the equational views of abstract argumentation theory.

Concretely, we have seen that frame bisimulation implies the status equivalence
of two arguments in two attack graphs, which is in turn equivalent to their strategic
equivalence in argument games seen as equivalence of ‘powers’ of strategies of the
proponent and the opponent. All these different types of equivalences force argu-
ments to obtain the same values in terms of Dung’s semantics (i.e., one belongs to
the grounded set if and only if the other also does) and Gabbay’s equational variants
(i.e., the value of fg is the same for both arguments), as well as guaranteeing that
equationally defined strategies for the proponent are winning on the first graph only
if they are winning on the second, and vice versa. Figure 7 depicts these relations
diagrammatically.

7 Conclusions

The paper has touched upon several strands of research at the interface of Dung-
style abstract argumentation, modal logic, games and equational systems. From this
interdisciplinary vantage point the paper has advocated a notion of equivalence of
arguments abstracting from their content and based on the way they ‘behave’ with
respect to the other arguments in the attack graph with respect to some external
criterion of ‘justifiability’, which in this paper has been assumed to be the grounded
extension.

First of all, the paper has shown how modal logic puts at disposal a number
of notions and tools that can be readily used to provide an analysis of this sort of
equivalence of arguments based on their abstract patterns of interaction. Argument
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A ,a -A ′,a′ σ
∗
P wins in A ,a⇐⇒ σ

∗
P wins in A ′,a′

A ,a≡d A ′,a′

Fact 5

? Fact 4 - a ∈ lfpdA ⇐⇒ a′ ∈ lfpdA ′

Theorem 4

?

6

A ,a str. equiv. to A ′,a′

Theorem 3

?

6

fg(a) = fg(a′) = 1

Gabbay (2012)

?

6

Fig. 7 A diagram relating the notions of frame bisimulation, status equivalence, strategic equiva-
lence, sameness of values according to Dung’s grounded semantics, sameness of value according
to Gabbay’s equational semantics for the grounded set, and equivalence of ‘powers’ of equationally
defined winning strategies

equivalence has been based on the notion of modal equivalence, and thereby related
to the notion of (frame) bisimulation. This strengthens the many links between ab-
stract argumentation and modal logic that have been object of several recent studies
(e.g., (Caminada and Gabbay, 2009; Gabbay, 2011b) and (Grossi, 2009, 2010, 2011;
Gratie et al, 2012)).

Second, the paper has shown how this static view of equivalence has a natural
dynamic and strategic counterpart in argument games. In this view equivalent argu-
ments are such that they support strategies for the proponent and opponent having
the ‘same powers’ where power is intended as the possibility to guarantee a win
in at most a given number of rounds of the game. This, together with the previous
modal perspective, brings argumentation close to the thriving body of research into
games and logical dynamics (van Benthem, 2011, 2013), and offers the picture of a
theory that goes well beyond its more ‘traditional’ boundaries of the static study of
justification criteria for arguments

Finally, Gabbay’s equational approach (Gabbay, 2011a, 2012) to abstract argu-
mentation has been used in relation to argument games as a method for construct-
ing winning strategies for the proponent, thereby providing a sort of ‘canonical’
characterization of strategies viewed as local maximizers of the values provided by
solutions to the equational systems of the graphs. This lays an interesting bridge
between the modal and game-theoretic view of abstract argumentation and the rich
body of techniques made available by the equational view.
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