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Abstract—This study investigates the use of linear program-
ming based heuristics for solving particular energy allocation
problems. The main objective is to minimize the cost of using a
collection of air conditioning units in a residential or commercial
building also, keeping the inside temperature within preset
comfort levels. Optimal methods do not scale well when the
number of appliances or the system time granularity grows past a
certain threshold. We find that heuristics based on relaxation and
rounding offer a good trade-off between cost and computation
time is needed.

Index Terms—Demand-side management, heuristic optimiza-
tion algorithm, home automation and power management, mixed
integer linear programming, smart grid.

I. INTRODUCTION

Residential buildings consume around 54% of the electricity
energy in the USA [1], 68% in the European Union (EU)
[2], and about 50-70% in the Arab peninsula states [3].
Furthermore, most of this energy is used in air conditioning
systems, about 46% in USA[4], 68% in EU [2], and 70% in
Saudi Arabia[5].

Many studies investigate different methods for minimizing
the cost of electricity in residential buildings, based on electric-
ity price, availability of renewable power, or user preferences.
For example [6]–[8] use algorithms that find the optimal cost
of electricity, whereas[9]–[12] use heuristic methods that only
guarantee suboptimal value. However all of these deal with a
limited number of appliances. In [13], the authors introduce
an algorithm that investigates fair allocation of limited power
resources to set of Air conditioning (AC) units. Additionally,
framework [14] studies using an optimization algorithm to
minimize the cost and the number of switching the appliances
ON/OFF for a set of thermostatic appliances. It also compares
three scheduling algorithms. Heating, ventilation, and Air
Conditioning (HVAC) systems have been studied before. In
[6], [8] various MILP-based algorithms are used to allocate the
optimal energy to just one air conditioning unit. Although they
add useful knowledge to the field, they have not tackled the
computation time problem: the proposed algorithmic solutions
become very slow when the number of appliances in the
system grows past a certain limit or the scheduling window is
very large.

In this paper we focus on energy allocation problems in
which energy is needed to keep a given domestic environment
within a pre-specified level of comfort. We present a compre-
hensive and sound combinatorial model, and study four differ-
ent ways for reducing the electricity cost in such scenarios, all

Figure 1: Our model: a building split up in apartments with independent
appliances and thermostats

based on a mathematical programming formulation. We inves-
tigate the optimal solutions using an exact MILP formulation.
Also, to cope with the intractability of the MILP formulation
on large inputs, we use various heuristics which provide
feasible solutions much more effectively. LP relaxation is a
well-known approach to improving the computation time of
an MILP formulation. The study [15] uses LP relaxation to
decrease the complexity of a quadratic integer programming.
On the other hand, Lagrangian relaxation has been utilized in
[16], [17]. In this work we present two heuristics based on LP
relaxation. In the final part of the paper we provide evidence
of the relative quality of the proposed allocation strategies,
suggesting that the approaches based on relaxation represent
a viable compromise between the need to be efficient and that
of delivering a good quality solution.

The rest of this paper is organized as follows. The second
section states the problem; The third section presents MILP
formulation. Section IV describes the strategy we use to design
our heustics, and the final section illustrates some empirical
results followed by discussions and conclusions.

II. PROBLEM STATEMENT

In this section, we present the formalization of the compu-
tational problem discussed in this paper.



A. System definition

Our model is well-suited for large buildings (residential, or
commercial), see Fig. (1). We assume that the given building
consists of a set of apartments, R, each apartment (identified
by some label r) is fitted with a set of AC units, Ar,
perhaps spread around different rooms, which are capable of
cooling down or heating up the environment. Apartment r
has nr appliances, whereas the total number of AC units in
the building is N =

∑
r∈R nr. Each AC unit is designed

to be switched ON/OFF at any time without disrupting its
functionality. Each AC unit has three working modes: it can
be “Off”, “Cooling” or “Heating”. If the appliance is “Off”,
we may assume it uses no power. However it is “On”, without
loss of generality, we may assume that it has kc different
ways to cool the place and kh different ways to produce heat.
Let α1, . . . , αkc (resp. β1, . . . , βkh

) be the amount of power
required by each of the cooling (resp. heating) ways.

The apartment is equipped with a single thermostat that
is used to define its internal temperature T r

in(t) at any given
time t. We assume that the dwelling’s owner may want to be
able to specify constrains on the environment’s temperature at
different times of the day (e.g. “we would like the apartment
temperature to be between 20◦C and 22◦C between 6am and
9am and between 21◦C and 24◦C between 11am and 3pm”).
The building is also equipped with a micro-generation plant.
The electricity from such plant can either be used immediately
at the property (at a unit cost of ξ(t)), or exported to the
National Electricity Grid (NEG) and the building is awarded
a monetary premium of ζ(t) pounds (or dollars) per kW.
All AC units in the building are controlled by an energy
manager, whose primary task is to minimize the cost of the
electricity used by the AC units in the while keeping each
apartment’s temperature within pre-specified limits. Such goal
is achieved by using the thermostats, weather information
(providing readings for the external temperature Tout(t)) as
well as instantaneous information on the electricity unit cost
from the NEG λ(t) and the eventual export benefit for the
locally produced renewable power.

B. Optimization Problem

In this setting, we can associate a cost function Ψ to the
building, defined as follows:

Ψ =

∫
λ(t)Lg(t)dt+

∫
ξ(t)Lr(t)dt−

∫
ζ(t)E(t)dt, (1)

where Lg(t) describes the amount of NEG energy consumed
by the AC units, Lr(t) is the amount of renewable power
used in the building, and E(t) the amount of renewable
power exported to NEG. The problem of allocating energy
to set of AC units in a way that satisfies a set of given
temperature constraints and is cost-effective for the users
(or MINCOSTTEMPCONSTRAINEDALLOC), is equivalent to
minimizing Ψ.

III. MILP FORMULATION

The computational problem defined in the previous section
lends itself naturally to a simple mathematical programming

formulation, provided time is discretized and confined to a
window of finite width. From now on we assume that each
instance of the given problem is solved over a finite time
window, and that the time horizon is subdivided into a finite
number of time slots, T = {t1, t2, . . . , tT }, all of length τ .

A. Modeling of Allocated Power

If the ith appliance in apartment r can cool things down
(heat things up) in krc,i (resp. krh,i) different ways, then its
power consumption at time t can be defined as

P r
i (t) =

kr
c,i∑

j=1

αr
ix

r
i,j(t)−

kr
h,i∑

j=1

βr
i y

r
i,j(t) ∀t : t ∈ T (2)

where
xri,j(t), y

r
i,j(t) ∈ {0, 1} ∀t : t ∈ T (3)

and
kr
c,i∑

j=1

xri,j(t) +

kr
h,i∑

j=1

yri,j(t) ≤ 1 ∀t : t ∈ T (4)

The total power allocated in apartment r at time t is

Pr(t) =

nr∑
i=1

P r
i (t) ∀t : t ∈ T . (5)

B. Temperature Dynamics

The main task of the AC units in each apartment is to keep
the interior temperature within the comfort level specified in br
time intervals Ir1 , . . . , Ibr by a lower bound T r,j

min and an upper
bound T r,j

max. Following [6] we express relationship between
the apartment temperature, the external temperature and the
power allocated to the appliance as follows

T r
in(t) = ε · T r

in(t− 1) + (1− ε)
[
Tout(t)−

η

κ
Pr(t)

]
(6)

T r,j
min ≤ T r

in(t) ≤ T r,j
max ∀t : t ∈ Irj

where ε > 0 is the appliance inertia, η > 0 is the efficiency
of the system, κ > 0 is the thermal conductivity.

C. Objective Function and Additional Constraints

For the purpose of our experiments we simplify the general
model presented in Section II-B. The cost function Ψ in (1)
is replaced by the linear function∑

t∈T
{λ(t) · Lg(t) + ξ(t) · Lr(t)− ζ(t) · E(t)} , (7)

subject to all the constraints defined in this section as well as
few more involving functions Lg , Lr and E. Thus, the ex-
ported renewable power to NEG and the consumed renewable
power at any time must be equal to the predicted renewable
power,

E(t) + Lr(t) = Prew(t) ∀t : t ∈ T , (8)



1: procedure CRLP
2: for r ∈ R do
3: for t ∈ T do
4: if Pr(t) ∈ ΓNr then
5: P̃r(t)← Pr(t)
6: else
7: Sum ← Carry + Pr(t)
8: Round Sum to closest working level in ΓNr

9: P̃r(t)← Rounded Sum
10: Carry ← Sum− P̃r(t)
11: end if
12: CHECK FEASIBILITY of solution
13: end for
14: end for
15: end procedure

where Prew(t) is the renewable power available at time t.
The power allocated to the building at any time slot, t, must
be equal to building demand,

Lg(t) + Lr(t) =
∑
r∈R

Pr(t), ∀t : t ∈ T . (9)

D. Complexity Considerations

The framework presented so far leads to a straightforward
implementation of an MILP based algorithm for MINCOST-
TEMPCONSTRAINEDALLOC. However there is strong evi-
dence suggesting that the problem may be rather difficult
computationally.

In Section V (see results in Table IV) we describe some
experiments based on a Java implementation using the Gurobi
6.0 library [18]. The results clearly suggest that the underlying
LP solver speed is heavily affected by the number of time slots
or appliances in the building. Furthermore the problem is in
fact NP-hard [19] even if the building has a single apartment
and a single AC unit (with many power levels).

The outcomes of such analysis led us to the study of
effective heuristics that can be used to obtain good quality
feasible solutions relatively quickly.

IV. RELAXATION AND ROUNDING

Relaxation and rounding is a well-known approach to cope
with the computational intractability of an MILP formulation.
The relaxation is achieved by removing all constraints restrict-
ing the values of some variables to be integer numbers [20].
In the specific of MINCOSTTEMPCONSTRAINEDALLOC this
can be done by replacing all constraints described in (3) by

0 6 xri,j(t) 6 1, and 0 6 yri,j(t) 6 1. (10)

Solving the resulting problem can be done effectively and
will lead to a solution that will have cost no larger than that of
an optimal solution for the original problem. However, there
is no guarantee that all variables forced to take integral values
in the initial formulations will do so in the relaxed version.
Note that, for MINCOSTTEMPCONSTRAINEDALLOC, this
also implies that constraints (4) may not be satisfied. Thus the
resulting solution does not immediately translate into a sched-
ule for the building’s appliances (e.g. if xri,j(5) = 0.42596,

1: procedure CHECK FEASIBILITY
2: for each time slot, t ∈ Ir1∪, . . . , Irbri do
3: Calculate T̃ r

in(t) using P̃r(t).
4: if T̃ r

in(t)>Tmax then
5: Adjust P̃r(t), P̃r(t)← P̃r(t) + α.
6: end if
7: if T̃ r

in(t)<Tmin then
8: Adjust P̃r(t), P̃r(t)← P̃r(t)− α.
9: end if

10: end for
11: Update All dependent variables.
12: end procedure

do we cool appliance i “On” at level j or not?). We now
present a rounding strategy that can be used to get feasible
solutions for MINCOSTTEMPCONSTRAINEDALLOC. Two of
the algorithms compared in Section V are based on such
strategy.

Algorithm CRLP (pseudo-code above) works on the solu-
tion produced by the LP relaxation and generates (in poly-
nomial time) a feasible solution for the initial MILP problem.
Different apartments are treated independently. Let us assume
that Γr is the set of all permissible power values for apartment
r. The rationale behind algorithm CRLP is to loop through
all time steps t and check whether Pr(t) is permissible in
apartment r. If that is the case we set P̃r(t), the rounded power
as Pr(t) and the apartment controlling variables xri,j and yri,j
are set according to the assignment giving the value in Γr. In
the opposite case (Pr(t) is NOT permissible in apartment r)
we round Pr(t) to the closest value in Γr, and we use such
value to set the controlling variables. The rounding process
described so far does not guarantees that the rounded solution
satisfies the temperature constraints (6). Step 12 in CRLP
(described by the additional pseudo-code below) explains how
we fix this.

V. EMPIRICAL EVALUATION

All the experiments in this paper have been done on a PC
with an Intel(R) Core(TM) i7-2600 CPU @ 3.4 GHZ, RAM is
16 GB, 64-bit Operating System (Windows 7). Also, Gurobi
has been used to solve LP and MILP problems, whereas Java
was the main tools to build our model. In the rest of this
section we will compare four different ways of finding feasible
solutions for instances of MINCOSTTEMPCONSTRAINEDAL-
LOC: using the exact MILP formulation, using a truncated
version of the same process MILP H, using algorithm CRLP,
or a slightly faster version of the same process, named CRLP
V, which omits step 12 in procedure CRLP.

Table I: TWO COMFORTABLE PERIOD IN THE FLAT WHERE INSIDE TEM-
PERATURE SHOULD BE IN COMFORABLE RANGE

First period Second period
Room Start Finish Start Finish
r = 1 05:00:00 10:00:00 17:00:00 18:00:00
r = 2 05:00:00 13:00:00 14:00:00 23:00:00
r = 3 09:00:00 11:00:00 16:00:00 20:00:00



Figure 2: First chart shows electricity prices, second one shows the predicted
renewable power, Day 2 in Red and day 3 in Black, and the last one shows
the outside temperature, day 1 and day 2 in Red and Day 3 in Black

Two case studies will be demonstrated both based on the
following scenario. We assume to be working on a small
building including r = 3 studio flats and that we need to
keep the temperature in comfortable level in each of them.
The system includes N = 6 identical AC units: n1 = 3,
n2 = 2 and n3 = 1. Thus the possible allocated power
sets are Γ1 = {0, 2.3, 4.6, 6.9}, Γ2 = {0, 2.3, 4.6}, and
Γ3 = {0, 2.3}, respectively. Each flat has a thermostat,
measuring the inside temperature, and the thermal parameters
have the following values: ε1 = ε2 = ε3 = 0.96, η1 = 10,
η2 = 20 , η3 = 30, and κ1 = κ2 = κ3 = 0.98 KW/ ◦C,
respectively. Comfort intervals for the three apartments are
described in Table I. T r

min= 18.0 and T r
max= 22.0 ◦C in both

comfort intervals, in all apartments.
We assume that the building is equipped with a domestic

microgeneration plant, say a PV solar panel arrays. These PV
arrays generate a maximum amount of 4.1 KWH of solar
power, three shapes of renewable power are used, zero (cloudy
day), bell shape (sunny day), and intermittent form (partly
cloudy day), see the second chart in Fig. 2. Locally generated
renewable energy costs nothing (ξ = 0.0 p/KWH), and the
building benefits of an export tariff ζ = 5.0 p/KWH. Two
pricing schemes will be used in our empirical study for the
NEG electricity: a “Fixed” and a “Dynamic” pricing scheme,
as described in Fig. (2).

A. First case study

The main purpose of this study is to investigate the perfor-
mance of the four processes in terms of cost and the effect of
input data on solution cost. Input data is as described above.
The time horizon is split into T= 288 time slots, τ = 5
minutes.

Six scenarios will be illustrated to investigate the effect of
input data on maximum saving (11). We will use input data
for three different days, in each day we will use 2 pricing
scheme which give us six different scenarios.

1) Findings: Table II shows the maximum saving (11)
using MILP exact algorithm. To get an idea of the quality
of our algorithmic solutions, in our experiments we compare
the cost values of the various heuristics (column Min) with a

Table II: OPTIMAL COST AND MAXIMUM SAVING

Price Max Min Runtime Saving

Day 1 Fixed 3.88 3.88 76 Sec 00.0 %
Dynamic 5.24 4.23 147 Sec 19.1 %

Day 2 Fixed 3.16 1.50 4 h,34m 52.5 %
Dynamic 3.66 1.69 19 h,47m 53.8 %

Day 3 Fixed 3.16 1.10 13 h,22m 65.2 %
Dynamic 3.73 1.19 27 h,02m 68.1 %

quantity we call Max. This is defined as the cost obtained
by solving the maximization version of MINCOSTTEMP-
CONSTRAINEDALLOC with the extra constraint that the total
amount of energy used by the solution must match the one
corresponding to the optimal solution of MINCOSTTEMP-
CONSTRAINEDALLOC. The right-most column in the table
is computed as follows:

Saving =
|Max−Min|
|Max|

, (11)

Table II also shows that the run-time of the exact solver
becomes very large when τ is small.

Table III compares the three heuristic algorithms CRLP ,
CRLP V and MILP H. This should be read against Table II to
get a feeling for the differences in run-time and cost between
the exact and the heuristic algorithms. The table shows that
there is no saving when the electricity price is fixed and there is
no domestic renewable resources. By contrast, the best saving
is achieved when the electricity price is dynamic and there
is renewable power. The table also suggests that the heuristic
results are close to optimal, especially the results of MILP H
and the results of CRLP V.

Fig. 3a and 3b give an even more detailed picture. The show
allocated power and inside temperature in room one using
CRLP and CRLP V, respectively. Based on this picture we may
argue that although CRLP V is NOT guaranteed feasibility in
practice the algorithm never goes astray, and in fact returns
reasonably cheap solutions.

B. Second case study

The main purpose of this case study is to do scalability test.
In other words, the main goal is to investigate the performance
of the various heuristics in terms of computation time when
there is a large number of AC units and high time resolution
(τ is small). We will use almost the same input data in first
case study, we will just vary τ and N .

1) Findings: As expected we found that the optimal al-
gorithm can not find a feasible optimal solution in a large
problem where the number of appliances or time resolution
is large, see Table IV. By contrast, the heuristic algorithms
find feasible solution relatively quickly. The time provided in
Table V is achieved by CRLP V only. MILP H can not beat
CRLP V or CRLP in term of calculation time. Note also that
CRLP is slower than CRLP V by just a few milliseconds, as
it uses these milliseconds to check and guarantee that no other
constraints are violated by rounding the allocated power.



Table III: PERFORMANCE COMPARISON (MILP HEURISTIC IS STOPPED AFTER 600 SEC).

CRLP CRLP V MILP H
Max Min Runtime Saving Min Run time Saving Min Runtime Saving

Day 1 Fixed £3.88 £3.88 0.044 00.00 % £3.59 0.038 07.40 % £3.88 600 00.00 %
Dynamic £5.24 £4.27 0.051 18.51 % £3.96 0.050 24.42 % £4.25 600 18.89 %

Day 2 Fixed £3.16 £1.80 0.048 43.10 % £1.44 0.047 54.43 % £1.51 600 52.22 %
Dynamic £3.66 £2.02 0.064 44.80 % £1.68 0.045 54.10 % £1.70 600 53.60 %

Day 3 Fixed £3.16 £1.50 0.076 52.53 % £1.07 0.059 66.13 % £1.12 600 64.87 %
Dynamic £3.73 £1.79 0.079 52.01 % £1.34 0.049 64.07 % £1.32 600 67.56 %

(a) The red line presents solution of CRLP, black curve presents solution of impractical LP solution befor rounding.

(b) The red line presents solution of CRLP V, black curve presents solution of impractical solution before rounding.

Figure 3: The allocated power and room temprature of 3rd room

Table IV: THE AVERAGE COMPUTATION TIME, IN SECONDS, OF EXACT
ALGORITHM.

Time slots, τ , in minutes
N 30 20 15 10 5 1
1 0.698 0.705 0.735 0.945 2375.87 ∞
5 5.905 31.677 3451 ∞ ∞ ∞
10 2151.74 4586.41 ∞ ∞ ∞ ∞
50 ∞ ∞ ∞ ∞ ∞ ∞

Table V: THE AVERAGE COMPUTATION TIME, IN SECONDS, OF HEURISTIC
CRLP V.

Time slots, τ , in minutes
N 30 20 15 10 5 1
1 0.002 0.003 0.004 0.005 0.007 0.061
10 0.007 0.011 0.013 0.021 0.033 0.548
100 0.027 0.049 0.073 0.157 0.461 3.111
300 0.113 0.237 0.298 0.549 0.992 9.044

The runtime to find a solution using CRLP and CRLP V
is minuscule, but their solution is not always as good as the
solution provided by MILP heuristic in a small and medium

problem. In particular scenarios the user may like to use either
MILP exact, or MILP heuristic.

Table VI shows a comparison between MILP H (deadline
is 10 minutes), and CRLP V algorithms in terms of cost. The
results illustrate that when the problem is large CRLP V gives
a better solution in terms of cost and runtime and vice versa.
The results may change slightly if we changed the input, but,
in general, this is the general pattern of their results, whereas
Table VII compares between CRLP and MILP H.

Fig. 4 compares between CRLP, CRLP V and MILP-H
algorithms for building has 200 AC units and time resolution
τ = 1 minute. The results show when MILP H can find a
solution that is better than CRLP and CRLP V. According to
our finding, MILP H can not beat CRLP and CRLP V in a
large problem in reasonable time.

VI. DISCUSSIONS

Regarding first case study, the findings in Table II illustrate
that an exact algorithm can be used for small problems
(buildings with a handful of AC units). Moreover, the runtime
varied considerably (from 76 seconds to 27 hours) for the same
problem just by changing the electricity price and predicted
renewable power, this behavior is common in MILP. Also,



Table VI: COMPARISON BETWEEN MILP HEURISTIC VS CRLP V IN
TERMS OF COST

N /τ 30 20 10 5 1

1 MILP H MILP H MILP H MILP H CRLP V
10 MILP H MILP H CRLP V MILP H CRLP V
50 MILP H MILP H MILP H CRLP V CRLP V
100 MILP H CRLP V MILP H CRLP V CRLP V
200 MILP H MILP H CRLP V CRLP V CRLP V
300 CRLP V CRLP V CRLP V CRLP V CRLP V

Table VII: COMPARISON BETWEEN MILP HEURISTIC VS CRLP IN TERMS
OF COST

N /τ 30 20 10 5 1
1 MILP H MILP H MILP H MILP H CRLP
10 MILP H MILP H MILP H MILP H CRLP
50 MILP H MILP H MILP H MILP H CRLP

100 MILP H MILP H MILP H CRLP CRLP
200 MILP H MILP H MILP H CRLP CRLP
300 MILP H MILP H MILP H CRLP CRLP

Table III demonstrates that the maximum saving provided
by any of the three heuristics is close to the optimal. These
algorithms can be used in large and medium problems (of
course it is possible to combine various heuristics, even run
all of them and pick the best solution. Additionally, CRLP
V can find a cheaper solution than the optimal solution of
MILP that is because CRLP V violate temperature constraint
(6) which mean that it could allocate less power to building
than MILP.

Of course the effective use of our system hinges on reliable
weather forecasts, and the accuracy of this data depends on
the country or the area where this model will be used. For
instance, the weather in Mediterranean and Middle Eastern
countries is more stable than in North Europe, especially
in the summer which makes the system more reliable. The
error in weather forecasting and the uncertainty of electricity
pricing are outside of the scope of this framework, and more
investigations are needed to tackle these issues.

Minimizing the number of times that we switch the AC unit
On/Off could be possible subject of further investigation.

VII. CONCLUSION

In the conclusion, this paper has examined the performance
of various heuristic algorithms that is developed for solving
a particular type of energy management problem in terms
of computation time and cost in residential or commercial
building. Some of the algorithms we presented may be applied
to very large problem (building with many AC units) in a
matter of seconds, and return good quality feasible solutions,
others are appropriate for small problem instances such as
small flats and houses.
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