
Introduction to COMP519 Labs (Lab Intro 1)
Using the Departmental Linux Systems

1 Introduction
The lab PCs using a Windows operating system are only part of the department’s computing
facilities. There are also a number of systems using a Linux operating system (currently Rocky
Linux 7.9), which are available to all members of the department. The assignments on COMP519
will ask you to produce web pages and web-based applications. The web server hosting those and
providing them to the public is itself a Linux system. You are not able to directly work on the
web server, but there are other Linux systems that provide an easy way to set up web pages and
web-based applications on the web server via their shared filestore. All these systems together can
be considered to be the production servers for your applications, that is, they host the applications
and make them accessible to the public. Typically, applications would only be placed on production
servers after development is fully completed and extensive testing has been done on a separate set
of systems, the development servers. To simplify matters, we will not make that distinction. We
assume that all development work is conducted on the production servers.

This practical is intended to familiarise you with the departmental Linux systems. The tasks
described below will guide you through the process of accessing and logging onto a Linux system,
using the command line interface and editing text files.

While you work through the tasks below compare your results with those of your fellow students
and ask a demonstrator for help and comments if required.

2 Logging in to the Linux systems
The Departmental Linux systems are not physically accessible, but can be accessed over the net-
work. You use the same University (MWS) username and password to log in to both the Windows
and Linux systems, but the personal filestore on the Linux systems, called your ‘home directory’,
is separate from the M: drive on the Windows systems.

Figure 1:
MobaXterm
Shortcut

Commence by logging in to the Windows PC in the same way as you did
previously. Now double-click on the “MobaXterm” shortcut (Figure 1) on the left-
hand side of the desktop to open the MobaXterm application (Figure 2a). Click
on “Session” in the toolbar, this will open a window for session settings. In the
toolbar of that window click on “SSH”, this will open a new window in which you
can enter the connection details for an SSH connection to one of our Linux servers.
In the text field to the right of the label “Remote Host” enter the name of a Linux
server, lxfarm01.csc.liv.ac.uk to lxfarm16.csc.liv.ac.uk, click on the button to the left of
“Specify username”, then enter your University username into the text field to the right of that
label. Click on the tab “Terminal Settings” below the text fields (Figure 2b). You will find an
option “Terminal colors scheme” with a drop-down menu to the right of it. In that menu chose
the option “White background / Black text” (unless you are really into retro colour schemes,
in which case you should start with “Black background / White text” and customise that to
use green text). Then click on the “OK” button at the bottom of the window. A new tab will
open in the main window pane of MobaXterm in which you will see a prompt asking for your
password (Figure 2c). Enter the password for your University (MWS) account. Note that there
will be no visiual indication that you are typing anything. Press RETURN once you have typed in

1

(a) MobaXterm (b) Open an SSH Session (c) Enter Password

(d) Save Password (e) SSH Session Opened (f) Logging Out

Figure 2: Using MobaXterm for SSH sessions

all characters of your password. You will then be asked whether you want MobaXterm to store
your password so that next time you connect to this particular Linux server you do not need to
enter your password again (Figure 2d). It is up to you whether you do so, it is the typical trade-off
between convenience and security. Independent of the choice you make you will then probably be
asked which Duo dual factor authentication option you want to use. Follow the instructions to get
past this authentication step. You should now finally see a command prompt in the main window
pane of MobaXterm (Figure 2e). Also, note that on the left to the main window pane you have a
pane with a file browser showing the files in your home directory on the Linux server.

3 Using the Command Line Interface
As mentioned, in the main window pane of MobaXterm you see a shell prompt, typically, bash-4.2$.
This prompt, which will be represented throughout this practical by ▶, is followed by a square or
underline—the cursor. Anything you type on the keyboard will appear here. You can use the left
and right arrow keys to move the cursor back and forth within the text you have entered, and this
can be used to correct typing errors.

The shell is a command language interpreter that executes commands read from the standard
input device, in this case your keyboard, or from a file. So, anything you type is intended as
command to the operating system. When you have finished typing a command, press the RETURN
key. This tells the shell to run the command you specified, relative to your current working
directory, and to show any output produced by the command. It will then display another prompt,
ready for your next command.

Here is an example that uses the hostname command to discover which Linux server you are
using:
▶ hostname
lxfarm06.csc.liv.ac.uk
▶

2

Throughout the rest of this practical, we will not always show the command prompt in the exam-
ples. However, if you type in a command, press RETURN, and no new command prompt appears,
then either you have not completed the command yet, say, there is an open string that you have
not closed yet, or the command is still running, say, you have opened an editor ‘in the foreground’
and have not closed it yet. There are then three possibilities:

• If the command is not being executed yet, then you can try to properly complete the command
and press RETURN again.

• If the command is being executed, but it does not terminate, then you can terminate the
execution of the command by using the key combination CTRL-C. Note that if the command
you are executing is an editor or software development environment, the text/program you were
working on might be lost.

• If the command is being executed, but it does not terminate, then you can suspend the execution
of the command by using the key combination CTRL-Z. You should then see a command prompt
again. With the command bg you can move the just-suspended command to the background
where it continues the execute, or, with the command fg bring it back to the foreground. The
combination CTRL-Z followed by the command bg is the most reasonable cause of action if the
command you are executing is a text editor, software development environment, or similar.

3.1 Basic Commands
The simplest commands are those concerned with viewing and manipulating files and folders. The
following series of commands illustrate this for both Linux and Windows. Try working through the
Linux examples and make sure you understand what each command does (note: ‘l’ is the letter ℓ,
not the number ‘1’).

Linux MS Windows
cd M: Change your working directory to

your home directory
pwd pwd Show the name of the working direc-

tory
ls -l dir Long listing of the files and folders

in this directory
mkdir COMP519 mkdir COMP519 Create a new folder (directory)
cd COMP519 cd COMP519 Change the working directory to the

named sub-folder
ls dir /w Short listing of files and folders in

this directory
cd .. cd .. Change the working directory up a

level (.. = “parent directory”)
cp /etc/php.ini t1 copy \etc\php.ini t1 Make a copy of a file
cat t1 type t1 View the contents of the file t1
more t1 more t1 View the contents one page at a time

(press the ‘q’ key to quit)
mv t1 php.ini rename t1 php.ini Rename a file

3

Linux MS Windows
cp php.ini COMP519 copy php.ini COMP519 Make a copy of a file in a different

folder
mv php.ini COMP519/t2 move php.ini COMP519\t2 Move a file into another folder (and

rename it)
ls COMP519 dir COMP519 List the contents of a folder
rmdir COMP519 rmdir COMP519 Try to delete a (non-empty) folder

(which fails)
mv COMP519/* . move COMP519* . Empty the folder (by moving the

contents to the current directory)
rmdir COMP519 rmdir COMP519 Delete the (empty) folder
rm php.ini t2 del php.ini t2 Delete the test files

Be careful when using rm. Linux assumes you know what you are doing. So, if you ask it to
delete a file, then it will be deleted. It will not simply be moved to the “Wastebasket” folder
(which is what the file manager does). So it’s typically not possible to “undelete” a file that has
been deleted by mistake—when it’s gone, it’s gone. The same holds for Windows and del.

Note that Linux uses a filesystem with case-sensitive identifiers—the folder COMP519 is different
to one called comp519. Be very careful to type the names of files or folders exactly as they appear
in the file manager, or in the output of ls or dir. Windows is more forgiving, and will ignore case
differences.

Also be aware that by default the Windows File Manager will often hide the filename extension,
that is, the last three or four characters after the final ‘.’. When using the command line, you
typically need to give the full filename, including the filename extension.

3.2 Wildcards
The third-from-last command above (emptying the test directory before deleting it) illustrates a
new idea—the use of wildcards.

Most of the commands above specify the name of a file or folder to work with. And as the last
command shows, it’s often possible to manipulate several files at the same time, by listing them
on the command line. But if there are large number of files to manipulate, typing all of them
out would be both time consuming and subject to errors. So both Linux and Windows provide a
wildcard mechanism, to match the names of multiple files (or folders) at once.

Using the command
▶ mkdir ~/COMP519; cd ~/COMP519
▶ touch test1 test2 test3.txt test10

create a directory and four files in it. Next, try the following sequence of commands. Think about
the results you see, and what these patterns might mean.
▶ ls test?
▶ ls *
▶ ls *.*
▶ ls *.txt
▶ ls test*
▶ ls *st?

4

3.3 File Downloads
We will later explore how to edit files. For that we will a sample Java file. You can download one
using the following command:
▶ wget https://student.csc.liv.ac.uk/~uhustadt/COMP519/examples/HelloWorld.java

This should create a file HelloWorld.java in your COMP519 directory.

3.4 Redirection
Another useful technique is redirection, where the output of a command can be saved to a file.
▶ ls test* > out1.txt
▶ cat out1.txt

This can be very useful when you come to test your programs. But note that any errors will still
be displayed
▶ ls yourFile* > out2.txt
ls: cannot access yourFile*: No such file or directory
▶ cat out2.txt

Redirection works on both Linux and Windows command line terminals.
The main problem with this approach is that it only saves the output of the program, and not

anything that is typed on the keyboard. Redirecting output to a file also means that you will not
see any prompts or instructions that might be displayed by the program. In one sense, this does
not really matter—as long as you know what information you need to supply, you can type this
“blindly” and the program should run correctly.

But it would be better if you could see the output (including any prompts) and still have
everything saved to a file. On Linux, this can be done using the script command:
▶ script -c "command " logFile

(where command is the command whose output you want to capture and logFile is the name of
a file in which you want to store that output). Try experimenting with this, using some of the
commands above, for example, try
▶ script -c "ls -l /etc/" out3.txt ▶ cp out3.txt /www.txt

(Although it will only really become useful when you start running programs that expect input
from the keyboard). Note that script is only available on the Linux systems—there is not an
equivalent mechanism under Windows.

3.5 Pipes
A variation of output redirection is the idea of a "pipe" - using the output of one command as the
input to another. Try the following in the Linux terminal window
▶ ls | sort -r
▶ cat out.txt | tail -5
▶ ls /lib | less (press the ‘q’ key to quit)

(The symbol ‘|’ is to the left of the character ‘z’ on UK keyboards.) Compare the results of these
pipeline commands, with the output generated by the first command in each pipeline on its own.
Also, find out what the difference between less and more is.

5

(a) Context Menu (b) Editor (c) Options for saving files

Figure 3: Using the MobaXterm text editor

Pipes are also available under Windows, though they are much less widely used. The last
command would work in much the same way (dir C:\Windows\System | more). Windows does
not typically include the same range of “filter” commands such as sort, head and tail.

Most (traditional) Linux commands are designed to process the contents of the specified files,
or (if no files are listed) to work on “standard input” as part of just such a pipeline of commands.

3.6 Command Line History
When developing a computer program, you will typically find yourself repeating the same sequence
of commands again and again—editing the file containig the source code, compiling this file,
running the resulting program, editing the file to fix any errors, compiling the corrected file, running
the program again, and so on. This means that you will end up typing the same commands over
and over again.

Both Linux and Windows command shells include a command history mechanism, which re-
members the previous commands that you have typed and allows you to recall them and run them
again. Try using the up and down arrow keys to step through this list.

3.7 Filename Completion
There is one final function of the shell to mention, namely, filename completion.

Quite often you will have several different files in the same folder, with significantly different
names. The Linux shell allows you to type the first few characters of a filename (sufficient to
uniquely identify that file), and then hit the TAB key. This will automatically complete the name
of the file, just as if you had typed it at the keyboard. This is extremely useful - particularly if you
are using meaningful filenames (which can be relatively long), or if your typing is not particularly
accurate!

If the prefix you have supplied is not unique, and there are two files that could possibly match,
the shell will complete as much as it can, and leave you to complete it.

4 Editing Text Files using MobaXterm’s Editor
There are various ways in which you can edit a file on the departmental Linux systems.

The preferred way is to use the built-in editor of MobaXterm. To use it, in the file browser
pane of MobaXterm right-click on a file, say, the file HelloWorld.java in your COMP519 directory.

6

This opens a context menu and you open the file in MobaXterm’s editor by selecting the option
“Open with default text editor” (Figure 3a). A copy of the file will then be retrieved and
stored on your own PC. If you make changes to the file and then try save it, a dialogue window
will pop up (Figure 3c) asking you whether the file should be transferred back to the Linux system
that you are connected to. In almost all cases, “Autosave (do not ask me again)” is the right
option to select.

MobaXterm’s editor uses tabs to manage the files you have open. Right now there is one tab
for the one file HelloWorld.java (Figure 3b). If you were to open another file, additional tabs
would appear and allow you to easily switch from one file to the next.

For program development it is often helpful to have the lines of the code numbered, as error
messages by a compiler or interpreter often indicate the line number at which an error has been
found. This feature is enabled by default and you can see the line numbers on the left-hand of the
editor window.

MobaXterm’s editor uses syntax highlighting to distinguish language constructs from user-
defined elements of a program.

Spend some time exploring all the features that MobaXterm’s editor offers.

5 Other Text Editors
If you can’t use MobaXterm and its editor, for instance, because you are using a Linux or MacOS
PC, then you basically have three options:

(a) use a text editor or integrated programming environment on your own PC and use the rsync
command to transfer files between your PC and the departmental Linux systems;

(b) use the remote editing facilities that some text editors, e.g., Notepad++, and integrated
programming enviroments, e.g., Visual Studio Code, have;

(c) use an editor that is executed on the departmental Linux system but displays its graphical
user interface on your PC (this requires a fast internet connection).

In the following we only cover the second possibility with the Visual Studio Code. On the de-
partmental Windows PCs, Visual Studio Code is already installed. For your own device you can
download Visual Studio Code from

https://code.visualstudio.com

To enable remote editing in Visual Studio Code some extra steps need to be taken.
1. Open Visual Studio Code.
2. In the so-called activity bar on the far-left of the editor, click on the “Extensions” button.
3. To the right of the activity bar you should now see a search bar and below that a list of already

installed extensions. Enter ‘remote ssh’ into the search bar (Figure 4a). In the list of search
results, select “Remote – SSH” and click on “Install”.

4. After successful installation there is a new green button in the bottom left corner of the editor.
If you hover with the cursor over this button it says “Open a Remote Window” (Figure 4b).
Click on that button.

5. Visual Studio Code will now go through a number of steps to establish a connection with a
remote computer. At the top of the editor a dialogue box will appear that asks you to enter
various bits of information and to select between various options.

7

https://code.visualstudio.com

(a) Package Installation (b) Remote Host Connection

(c) Open a Remote File (d) Editing

Figure 4: Visual Studio Code

6. In the dialogue box, start by selecting “Connect to Host...”.
7. Next select “Add New SSH Host...”.
8. Enter sgxyz@lxfarm09.csc.liv.ac.uk, where you replace sgxyz with your own MWS user-

name.
9. In response to the instruction to “Select SSH configuration file to update”, select the

file C:\Users\sgxyz\.ssh\config, where again sgxyz is your own MWS username. The
editor should then tell you that the configuration file has been successfully modified and it
offers you the option to ‘Connect”. Select that option.

10. A drop-down menu will appear that asks you to specific the operating system of that PC.
Select “Linux”.

11. A message will appear that tells you that lxfarm09.csc.liv.ac.uk has fingerprint “SHA256...”
and ask you whether you want to continue or now. Select “Continue”.

12. You will then be asked to enter your password. Enter your MWS password.
13. You should then be connected to the server and Visual Studio Code should look as shown in

Figure 4c. In the main pane of the editor you should see a list operations that you can now
perform, including “New File...”, “Open File...”, “Open Folder...” (Figure 4c).

14. Select “Open File...”. This opens a very simple file selection dialogue. Use it to open the file
HelloWorld.java in your COMP519 directory. The file should then appear in the main pane of
the editor as shown in Figure 4d.

Visual Studio Code uses tabs to manage several files at the same time. It uses syntax highlighting
to indicate the structure of your code. The editor should already show line numbers next to your
code. Likewise, it should highlight matching brackets: place the cursor on any curly bracket in
the code; the background of the bracket should turn grey and so should the background of the
corresponding opening or closing bracket matching.

If you make changes to a file, then you can save those changes using “File→Save” or via the
key combination CTRL-s. A tab containing a file with unsaved changes will have a dot on the

8

right-hand side of the title bar of the tab.
Add a comment to the file, then save it. Check on the Linux system that the file has indeed

changed.
Once you feel that you understand how Visual Studio Code works, close it by clicking on the

cross in the top right corner, via “File→Exit”, or via the key combination ALT-F4.

6 Logging Out
You end the SSH session with one of the commands exit or logout. You will then see a message
in the main window pane telling you that the session has been stopped (Figure 2f). If you do not
see this message, then there are still commands running in the background and the connection has
not properly been terminated. Make sure that any application with a graphical user interface, for
example, text editor, has been closed, then click on the cross symbol in the top right corner of the
tab above the main window pane. Typically, you will be shown a prompt informing you that one
or more processes are still running and asking you whether you are sure that you want to close the
tab, and thereby close the connection. If you confirm, the tab will be closed and the connection is
properly terminated.

Note that the pane to the left of the main window pane changes. It now shows a list of
previous sessions that you have established, in particular, you see the names the computers that
you connected to and the user name you have used. You can reconnect to a particular computer
by double-clicking on the corresponding entry in the list. If you have authorised MobaXterm to
save the password that you have used, then the connection is reestablished without prompting you
for a password. Give it a try, check that an SSH connection is indeed established, then log out
again.

9

	Introduction
	Logging in to the Linux systems
	Using the Command Line Interface
	Basic Commands
	Wildcards
	File Downloads
	Redirection
	Pipes
	Command Line History
	Filename Completion

	Editing Text Files using MobaXterm's Editor
	Other Text Editors
	Logging Out

