Accessing Research systems remotely from Mac or Linux systems

Unlike the department’s teaching Linux farm, which can be accessed directly from home machines (desktop or laptop), connecting to research systems on the departmental internal network is a two-stage process, using a Secure Shell connection (SSH). Both Mac and Linux systems typically include an ssh client as part of the standard installation – Windows systems may require additional software to be installed to provide this functionality.

An alternative approach would be to set up a VPN connection to the departmental internal network, which avoids the need to go via the SSH gateway systems (see below). This approach is documented separately – see the section Guides on the departmental intranet server for more details.

For both Mac and Linux systems, the first step is to start a Terminal application. This will display a terminal window, where commands can be given to the local system. (The screenshots shown here are from a Linux system – the behaviour on a Mac will be very similar)

There are two SSH gateway systems providing access into the departmental internal network – these are named ssh1.csc.liv.ac.uk and ssh2.csc.liv.ac.uk. (They may also be accessed via the names Linux1 and Linux2, but we recommend use of the ssh{1,2} names as shown – the earlier forms may be withdrawn at some stage).

The available software and configuration of these two systems are slightly different – however their primary purpose is simply to provide a stepping stone to other systems within the department. They can handle simple processing tasks, but anything more demanding should be run on more powerful or specialist equipment. If either machine is not available, please use the other one (and report the problem to the technical staff).

To connect to one of these systems, type the command ssh into the Terminal window, together with your departmental username, and the name of the chosen gateway system (separated by the @ sign). Then press Return

(Note that if your username on the local machine happens to be the same as your departmental username, then you can omit the username@ element. But if in any doubt, keep it in)

The very first time that you connect to one of these machines, you will be asked to confirm that this is the system you expect – in most circumstances this digital fingerprint is pretty meaningless, so just type yes (followed by Return)
The next time you connect to the same machine, the fingerprint will be checked automatically, and you should not be prompted for this again (as long as the fingerprint matches).

If you connect to the other gateway system, then you’ll get a similar prompt for that machine (but with a different fingerprint).

You will then be prompted to enter your departmental password.

Note that this whole connection is encrypted, so the password (or anything else you type) cannot be intercepted or read while crossing the Internet. This is the same idea as secure web pages (https)

Once you have supplied the (correct) password, you will be logged into the chosen system, and can run simple Linux commands on that machine. For text-based commands, the output will be shown in the same Terminal window – graphical commands should open up a new window on your local display. If this does not happen (and you need to run such a graphical application), then disconnect from the Linux system (see below), and re-connect using the command

 ssh -X username@sshN.csc.liv.ac.uk

Note that immediately after logging in, you will be informed of the time and source (IP address or hostname) of the last successful login session. If you do not recognise this connection, please inform the CS technical team immediately by emailing CSC-HELPDESK@liverpool.ac.uk

You may also wish to change your password.

When reporting this, or any other issue with the system, it is extremely helpful to include details of which Linux machine you were using (which should typically appear as part of the command prompt), and the date & time any problem occurred. If you’re not sure which system you’re on, the command hostname will also show this information (see above).
Having connected to the SSH gateway machine, the next step is to make a second SSH connection to the target system. This will commonly be a personal desktop machine (typically running Linux or MacOS), or a dedicated research group server – see your research group lead or supervisor for more information about any such resources available to you. The department also has a number of general-purpose research systems available for staff/PhD use. These include:

<table>
<thead>
<tr>
<th>O/S</th>
<th>Host names</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Linux 6</td>
<td>core01..core08</td>
<td>Now withdrawn</td>
</tr>
<tr>
<td>Scientific Linux 7</td>
<td>atlas01..atlas08</td>
<td>Systems failing – will be withdrawn shortly</td>
</tr>
<tr>
<td>Ubuntu 18.04</td>
<td>ubuntu01..ubuntu05</td>
<td>Plan to upgrade to Ubuntu 20.04 (once released) & expand to 8 systems</td>
</tr>
<tr>
<td>Fedora 31</td>
<td>fedora01..fedora08</td>
<td>fedora04 and fedora05 should not be used</td>
</tr>
</tbody>
</table>

Connect to the selected machine in the same way as before - `ssh {host}` or `ssh -X {host}`

Note that there is no need to specify the username explicitly (unless this is different on the target system).

When you have finished with the session, use the command `exit` to disconnect from the internal system, and return you to the SSH gateway machine. Then type `exit` again to disconnect from that, and return you to the local machine. You can then close the Terminal window, as usual.

Note that closing the Terminal window without first exiting cleanly may leave processes running on the internal and/or gateway machines, and could cause problems in the future.