Multiagent System-based Verification of Security and Privacy

Ioana Boureanu

Imperial College London Department of Computing

September 2015

2 [MAS for Security](#page-13-0)

- **o** [Introduction](#page-16-0)
- [\(Simple\) MAS Modelling for Security](#page-28-0)
- [\(Not So Simple\) MAS Models for Security A Glance](#page-37-0)
- [Future Avenues for Security Apps as MAS](#page-43-0)

Outline

1 [Model Checking Multiagent Systems](#page-2-0)

2 [MAS for Security](#page-13-0)

- **•** [Introduction](#page-16-0)
- [\(Simple\) MAS Modelling for Security](#page-28-0)
- [\(Not So Simple\) MAS Models for Security A Glance](#page-37-0)
- [Future Avenues for Security Apps as MAS](#page-43-0)

Model Checking MAS

- **1** Model Checking in Theory
- **2** Model Checking MAS in Practice
- **³** Logic-based Languages
- **⁴** MAS-based Models

Model Checking In Theory

- *Model checking* [\[Clarke et al., 1999\]](#page-45-0) is a verification technique
- $M \models \varphi$, given a model M for a system and a specification φ encoding one of the system's properties

Our Example of Models & Specifications

- *M* a **formal** semantics for multiagent systems
- ' **knowledge**, **joint abilities** beliefs, intentions, *...*, to express fault-tolerance, diagnosability, **security** ...

Model Checking in Practice

Real World Verification

An explicit modelling \rightarrow state-space exponential in the size of the input

イロト イ押 トイヨ トイヨ トーヨー

 2990

An optimised, much simplified model for onion routing has 3.03439e+58 reachable states!

We need efficient methods and tools!

Model Checking in Practice

Pbs & Solutions

- state explosion pb: explicit encodings of state/action in *M*
	- one solution: efficient/**symbolic** encodings, e.g., via binary decision diagrams (BDDs)

(More) Pbs & Solutions

MC algorithms over BDD-encoded specifications & tools

• solution: MAS symbolic model-checking techniques [\[Lomuscio and Raimondi, 2006\]](#page-45-1)

(More) Pbs & Solutions

- there's always a need for optimisations
	- solutions: cut-offs, abstractions [Lomuscio and Kouvaros, 2015], etc.

and/in a robust tool MCMAS [\[Lomuscio et](#page-45-1)[al.,](#page-45-1)[2015](#page-45-1)[\]](#page-1-0)

Model Checking MAS in Practice

MCMAS [\[Lomuscio et al., 2015\]](#page-45-1)

- Support for epistemic specifications, ATL (uniformity and fairness), CTL, deontic modalities
- Dedicated modelling language (ISPL)
- BDD-based (via CUDD). Sequential and parallel MC
- **•** Eclipse GUI
- Support for witnesses, counterexamples, etc.
- Open source
- Used for robotic swarms, web-services, **security**...

KORK ERKER ADAM ADA

Logic-based Languages

A Stop At Epistemic Specifications

*S*5*ⁿ*

$$
\bullet \varphi = p \, | \, \neg \varphi \, | \, \varphi \wedge \varphi \, | \, K_i \varphi
$$

• readings:

• $K_i\varphi$ – "agent *i* knows that φ "

MAS-based Models

Interpreted Systems

- Multiagent-based models [\[Lodaya et al., 1995, Fagin et al., 1995\]](#page-45-1)
	- $A = \{1, \ldots, n\}$ agents and *Environment* agent;
	- $\bullet \forall i \in A \cup E$: L_i possible *local states*, Act_i *local actions*, $P_i: L_i \rightarrow 2^{Act_i}$ – *protocol function* (actions enabled at *l_i*);
	- $t_i(l_i, a_1, \ldots, a_n, a_{\mathsf{E}}) = l'_i$ *local evolution function*;
	- *G global states*, *P joint protocol*, *Act* – *joint actions*, *T global evolution function* — by composition;

•
$$
IS = \langle G, \overline{P}, T, I, V \rangle
$$
 - interpreted system,
where $I \subset G$ – initial global states and
 $V: G \rightarrow 2^{AP}$ – valuation function;

KORKARA KERKER DE VOQO

MAS-based Models

MAS Induced-Models

The *induced model of IS* is a tuple $M_{IS} = (S, T, \{\sim_i\}_{i \in \{1...n\}}, V)$ where:

- $S \subseteq L_0 \times \cdots \times L_n$ is the set of *global states reachable from I via T*
- *T* encodes the temporal evolution;
- \bullet $\{\sim_i\}_{i \in A_0 \setminus E} \subseteq S \times S$ is a set of equivalence relations encoding epistemic accessibility

MAS-based Models

State Indistinguishability

- $l \in L_i$ and $l' \in L_i$ are *i*-*indistinguishable*, $l \approx_i l'$ if -in general- $\approx_i C$ *L_i* \times *L_i* is an equivalence relation over *L_i*
	- **•** standard: \approx *i* is the equality relation: $l_i(g) \approx$ *i* $l_i(g')$ iff $l_i(g) = l_i(g')\}$
	- non-standard:

 \approx *i* is a bespoke equiv. relation

 $e.g., I \equiv {m_1}_{k_1}$ and $I' \equiv {m_2}_{k_2}$

(assuming *l* containing just the encryption of a term with a key and *l* ⁰ containing yet just the encryption of another term with another key)

 \Rightarrow **l** \approx _i **l'**

$s, s' \in S$ are *i-indistinguishable, s* $\sim_i s'$, if $l_i(s) \approx_i l_i(s)$ $l_i(s) \approx_i l_i(s)$ $l_i(s) \approx_i l_i(s)$ $l_i(s) \approx_i l_i(s)$ $l_i(s) \approx_i l_i(s)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

MAS-based Models

Satisfaction of Formulae on MAS Models

- CTL and ATL fragments as usual
- $(\mathcal{M}, \mathbf{s}) \models \mathcal{K}_i \phi$ iff $\forall \mathbf{s'} \in \mathcal{S}$ if $\mathbf{s} \sim_i \mathbf{s'}$ then $(\mathcal{M}, \mathbf{s'}) \models \phi$

Outline

1 [Model Checking Multiagent Systems](#page-2-0)

2 [MAS for Security](#page-13-0)

- **o** [Introduction](#page-16-0)
- [\(Simple\) MAS Modelling for Security](#page-28-0)
- [\(Not So Simple\) MAS Models for Security A Glance](#page-37-0)
- [Future Avenues for Security Apps as MAS](#page-43-0)

KO K K Ø K K E K K E K Y S K Y K K K K K

Outline

Joint work

Based on:

- previous joint work at Imperial College London
	- I. B., M. Cohen, A. Lomuscio, "Automatic Verification of Temporal-Epistemic Properties of Cryptographic Protocols", Journal of Applied Non-Classical Logics, 2009
	- I. B., A. Lomuscio, M. Cohen, "Model Checking Detectability of Attacks in Multiagent Systems", AAMAS 2010
	- I. B,. A. Jones, A. Lomuscio, "Automatic Verification of Temporal-Epistemic Logic under Convergent Equational Theories", AAMAS 2012
- I. B., "Model checking security protocols: a multi-agent system approach", PhD Thesis, Imperial College London, 2011
- ongoing joint work with A. Lomuscio and the VAS group at Imperial College London
- H2020 "Logic-based Verification of Privacy-Preservation in Europe's 2020 ICT"**KORK ERKER ADAM ADA**

[Introduction](#page-16-0)

• "Protocols ... are prone to extremely subtle errors that are unlikely to be detected in normal operation."

(Needham and Schroeder, 1978)

KORK ERKER ADAM ADA

- VeriSign spent *>* \$108 in 2009–2010 to upgrade the *.com* DNS servers
- **•** more interconnected devices, more conversative apps, more security threats

[Introduction](#page-17-0)

Motivation...

- "Protocols ... are prone to extremely subtle errors that are unlikely to be detected in normal operation." (Needham and Schroeder, 1978)
- VeriSign spent *>* \$108 in 2009–2010 to upgrade the *.com* DNS servers
- more interconnected devices, more conversative apps, more security threats

[Introduction](#page-18-0)

Motivation...

- "Protocols ... are prone to extremely subtle errors that are unlikely to be detected in normal operation." (Needham and Schroeder, 1978)
- VeriSign spent *>* \$108 in 2009–2010 to upgrade the *.com* DNS servers
- more interconnected devices, more conversative apps, more security threats

K ロ ト K 何 ト K ヨ ト K ヨ ト

 \equiv

 2990

KORK ERKER ADAM ADA

[Introduction](#page-19-0)

Symbolic Security Attacks

• Example: the Woo-Lam authentication protocol:

1. $A \rightarrow B$ \cdot *A* 2. $B \rightarrow A$: N_b 3. $A \rightarrow B$: $\{A, B, N_b\}_{K_{AB}}$ 4. $B \to S$: $\{A, B, \{A, B, N_b\}_{K_{AS}}\}_{K_{BS}}$ 5. $S \to B$: $\{A, B, N_b\}_{K_{BC}}$

[Introduction](#page-20-0)

Symbolic Security Attacks

- Example: the Woo-Lam authentication protocol:
	- 1. $A \rightarrow B$: A 2. $B \rightarrow A$: N_b 3. $A \rightarrow B$: $\{A, B, N_b\}_{K_{AS}}$ 4. $B \to S$: $\{A, B, \{A, B, N_b\}_{K_{4S}}\}_{K_{BS}}$ 5. $S \to B$: $\{A, B, N_b\}_{K_{\text{BC}}}$

Example: an attack against the Woo-Lam protocol:

1'.
$$
I_A \rightarrow B
$$
 : A
\n2'. $B \rightarrow I_A$: N_b
\n3'. $I_A \rightarrow B$: N_b
\n4'. $B \rightarrow I_S$: $\{A, B, N_b\}_{K_{BS}}$
\n5'. $I_S \rightarrow B$: $\{A, B, N_b\}_{K_{BS}}$

[Introduction](#page-21-0)

Security Goals

'Well-established' Requirements

• flavours of: secrecy, authentication, key-agreement, etc.

Application-Level Privacy Requirements

privacy of application-data

vote-privacy, receipt-freeness, coercion-resistance

Data-transport privacy

• origin anonymity, destination anonymity, unlinkability within routing

Fault-Diagnosability Requirements

• attack (un)detectability

...

[Introduction](#page-22-0)

Symbolic **Verification of Cryptographic Protocols**

SYMBOLIC = cryptographic messages are algebraic terms; cryptography is perfect/un-tamperable NO ppt. capabilities on protocol parties

- logic-based formalisms (BAN logics, Horn clauses); inductive methods; rewriting-based formalisms process-algebra formalisms (CSP, spi-calculus, pi-calculus);
- agent-based formalism
	- sound knowledge of participants;
	- natural expression of state-based properties (anonymity, non-repudiation etc.)

 000

[Introduction](#page-23-0)

- even secrecy in the unbounded setting is undecidable; need to design good/sound bounded security formalisms [Tiplea et al., 2009]
- mechanise cryptographic operations in MAS formalisms,
- **•** encapsulate standard threat models (e.g., at least Dolev-Yao [\[D.Dolev and A.Yao, 1983\]](#page-45-1)) in MAS formalisms
-
-

KORK ERKER ADAM ADA

[Introduction](#page-24-0)

- even secrecy in the unbounded setting is undecidable; need to design good/sound bounded security formalisms [Tiplea et al., 2009]
- mechanise cryptographic operations in MAS formalisms, i.e., no inherent intermediate, algebra/arithmetics-based language
- encapsulate standard threat models (e.g., at least Dolev-Yao [\[D.Dolev and A.Yao, 1983\]](#page-45-1)) in MAS formalisms
- **•** get sound cryptography-driven indistinguishability relations
-

KORK ERKEY EL POLO

[Introduction](#page-25-0)

- even secrecy in the unbounded setting is undecidable; need to design good/sound bounded security formalisms [Tiplea et al., 2009]
- **•** mechanise cryptographic operations in MAS formalisms, i.e., no inherent intermediate, algebra/arithmetics-based language
- **e** encapsulate standard threat models (e.g., at least Dolev-Yao [\[D.Dolev and A.Yao, 1983\]](#page-45-1)) in MAS formalisms
- get sound cryptography-driven indistinguishability relations
-

KORKAR KERKER E VOOR

[Introduction](#page-26-0)

- even secrecy in the unbounded setting is undecidable; need to design good/sound bounded security formalisms [Tiplea et al., 2009]
- **•** mechanise cryptographic operations in MAS formalisms, i.e., no inherent intermediate, algebra/arithmetics-based language
- **e** encapsulate standard threat models (e.g., at least Dolev-Yao [\[D.Dolev and A.Yao, 1983\]](#page-45-1)) in MAS formalisms
- **e** get sound cryptography-driven indistinguishability relations & cryptography-aware epistemic modalities
-

[Introduction](#page-27-0)

- \bullet even secrecy in the unbounded setting is undecidable; need to design good/sound bounded security formalisms [Tiplea et al., 2009]
- **•** mechanise cryptographic operations in MAS formalisms, i.e., no inherent intermediate, algebra/arithmetics-based language
- **e** encapsulate standard threat models (e.g., at least Dolev-Yao [\[D.Dolev and A.Yao, 1983\]](#page-45-1)) in MAS formalisms
- **•** get sound cryptography-driven indistinguishability relations & cryptography-aware epistemic modalities
- do any/all of the above in a systematic/automatable way

Protocol Executions as MAS Models

Security Protocols

the Needham-Schroeder Public Key (NSPK) protocol

an actual *A* is *alice*: e.g., a customer

an actual *B* is *bob*, e.g., a bank-server

1*.* $A \rightarrow B : \{A, N_A\}_{\text{pub}(B)}$

2. $B \to A : \{N_A, N_B\}_{\text{pub}(A)}$

3. $A \rightarrow B : \{N_B\}_{pub(B)}$

alice could have, in the same time, a session from her mobile device and another session from her PC

there could be other servers, but *bob*, that *alice* could connect to

 \bullet if this was, e.g., a contract-signing protocol, *alice* could have two, simultaneous running sessions: in one she could be auctioning (*A*-role) and in the other she could be a buyer (*B*-role)

[\(Simple\) MAS Modelling for Security](#page-29-0)

Protocol Executions as (Simple) MAS Models (I)

MAS Mapping

- each role instance $((A, \textit{alice})^1, (A, \textit{alice})^2$ or $(A, \textit{bob})^3$ etc.) \rightarrow an agent (of the IS)
- a (Dolev-Yao) intruder \rightarrow the Environment agent, modelled purposedly

KORK ERKER ADAM ADA

[\(Simple\) MAS Modelling for Security](#page-30-0)

Protocol Executions as (Simple) MAS Models (II)

— some details :

- describe a (honest) instantiated role:
	- **views** ordered map \langle var, value $\rangle \Rightarrow$ agents' local states with typed, un-deciphered values, \perp , à la [Rogaway 2001] $(A: \textit{alice}, B: \textit{bob}, k_A: \textit{pvk}_{\textit{alice}}, k_B: \textit{pbk}_{\textit{bob}}, n_A: r_1, \mathbf{n_b}: \perp)$ or,
- describe a DY insider \Rightarrow local state of the Environment:
	- knowledge-set ordered multimap \langle term, value \rangle $X = \left[\{A, na\}_{k_B} : \{alice, r_1\}_{pbk_{\text{bob}}}$ ${A, na}_{k_B}: {a \text{lice}_2, r_2}_{\text{b}k_{\text{max}}}, \tilde{A}: a \text{lice}, A: a \text{lice}_2, B: bob$ • history of actions $H = [ag_A.send \{ {alice, r_1 }\}$ _{*pbk*bob}, ag_A' *.send* $\{ \textit{alice}_2, \textit{r}_2 \}_{\textit{pbk}_{\textsf{greg}}}, \ldots \}$

KORK ERKER ADAM ADA

[\(Simple\) MAS Modelling for Security](#page-31-0)

Protocol Executions as (Simple) MAS Models (III)

protocol role instantiated under $\rho \rightarrow$

evolution function

• simple agents' local state update

e.g, "matching receive" of message $M = \{x, f(x), y\}_{K_{\text{atios}}}$ for the symbolic $\{n_a, n, n_b\}_{K_a}$ & agent *i* has previously set n_a : $-$ *out* match(*view_i*, *M*) = *true iff* $x = aq \cdot n_a$

 $-$ *in_match*(*M, i*) =

true, iff consitstency checks inside *M* hold; e.g., $n == f(n_a)$

 $-$ *set*(*view*, n_b): $n_b := y$ *if in_match*(...) = *true and out match*(*...*) = *true*

Env.'s local state update (e.g., DY deductions of the insider): $\tilde{a}_F =$ *interceptM*, \tilde{a}_{a} = *sendM*, $t_F((X, H), \tilde{a}) = (X \cup M \cup \{t | \{X \cup M\} \vdash t\}, H \cup aq_A$.send M).

Protocol Executions as (Simple) MAS Models (III)

protocol role instantiated under $\rho \rightarrow$

evolution function

• simple agents' local state update

e.g, "matching receive" of message $M = \{x, f(x), y\}_{K_{\text{atios}}}$ for the symbolic $\{n_a, n, n_b\}_{K_a}$ & agent *i* has previously set n_a : $-$ *out* match(*view_i*, *M*) = *true iff* $x = aq \cdot n_a$

 $-$ *in_match*(*M, i*) =

true, iff consitstency checks inside *M* hold; e.g., $n == f(n_a)$

 $-$ *set*(*view*, n_b): $n_b := y$ *if in_match*(...) = *true and out match*(*...*) = *true*

Env.'s local state update (e.g., DY deductions of the insider): $\tilde{a}_E =$ *interceptM*, $\tilde{a}_{aa} =$ *sendM*, $t_F((X, H), \tilde{a}) = (X \cup M \cup \{t | \{X \cup M\} \vdash t\}, H \cup aq_A$ send M).

Security goals to CTLK specification (I)

 \bullet atomic goal agree A : B : \overline{VAR}

$$
\theta(\text{agree A : B : } \overline{VAR}) = \bigwedge_{i \in A} AG(end(i) \rightarrow \bigvee_{j \in B} agree(i, j, \overline{VAR}))
$$

i – agents *agA* mappings of *A*–*role* instance j – agents $\frac{ag_B}{g}$ mappings of *B–role* instance

$$
agree(i, j, \overline{\text{VAR}}) := \bigwedge_{\text{Var} \in \overline{\text{VAR}}} (i. \text{Var} = j. \text{Var})
$$

• epistemic goal Knows A : γ

$$
\theta(\text{Knows A : } \gamma) = \bigwedge_{i \in A} \text{AG}(end(i) \rightarrow K_i \theta^i(\gamma))
$$

 $\theta^{\bf i}(\gamma)$ –an appropriate translation of γ from the perspective of agent *i*:

$$
\theta^i(\text{holds A : } \overline{\text{VAR}}) = \bigvee_{j \in A} (i. \text{Partner } A = j. \text{Id} \wedge \text{agree}(i, j, \overline{\text{VAR}}))
$$

Security goals to Specifications — One Example

• Doxastic authentication goal:

Believes*B* : holds*A* : K

o translation 1:

$$
\bigwedge_{i\in B}AG(i\text{.step}=3\rightarrow K_i\theta^i(\text{holds A : K}))
$$

 $-\theta^i$ (holds A : K):=

 \bigvee (*i. PartnerA* = *j.Id* \wedge *i.*K = *j.*K) $j \in A$

$$
\begin{array}{c}\n\overset{\theta^i\left(\text{holds }A\right)\colon K\right)}{\to} \\
\bigwedge_{i\in B} \text{AG}(i.\text{step}=3\to K_i \bigvee_{j\in A} (i.\text{Parent }A=j.\text{Id} \wedge i.K=j.K)) \\
\qquad \qquad \downarrow \text{G} \wedge \
$$

KORK ERKER ADAM ADA

[\(Simple\) MAS Modelling for Security](#page-35-0)

Security Protocols to MAS and CTLK

- translate different types of authentication, secrecy, key-exchange and their goals into CTLK formulas
- undetectability of attacks \rightarrow new MAS formalism and hierarchy of CTLK formulas
- MAS formalisms proven correct w.r.t. trace properties, i.e., aligned with established security specification formalisms (MSR)
- done automatically from library of protocols in CAPSL to ISPL, into MCMAS

Security Protocols to MAS and CTLK – PD2IS

(Not So Simple) MAS Models for Security (I)

Intricate Cryptography, MAS and Epistemic

- **•** cryptographic primitives can be complicated (e.g., blind signatures, trapdoor commitments, etc.)
-
-
-
-

(Not So Simple) MAS Models for Security (I) Intricate Cryptography, MAS and Epistemic

- **•** cryptographic primitives can be complicated (e.g., blind signatures, trapdoor commitments, etc.)
-
-
-
-

 $open(tdcommit(x, y, z), y) \rightarrow x$ $open(tdcommit(x, y, z), f(x, y, z, x')) \rightarrow x'$ $t dcommit(x', f(x, y, z, x'), z) \rightarrow t dcommit(x, y, z)$ $f(x', f(x, y, z, x'), z, x'') \rightarrow f(x, y, z, x'')$ **KEIKEI E DAG**

(Not So Simple) MAS Models for Security (I) Intricate Cryptography, MAS and Epistemic

- **•** cryptographic primitives can be complicated (e.g., blind signatures, trapdoor commitments, etc.)
- un-decipharable yet typed data requires attentive modelling (e.g., values in local states)
- **o** local evolutions (e.g., checks to be made) become convoluted
-
-

 $open(tdcommit(x, y, z), y) \rightarrow x$ $open(tdcommit(x, y, z), f(x, y, z, x')) \rightarrow x'$ $t dcommit(x', f(x, y, z, x'), z) \rightarrow t dcommit(x, y, z)$ $f(x', f(x, y, z, x'), z, x'') \rightarrow f(x, y, z, x'')$ **KENKEN E DAG**

(Not So Simple) MAS Models for Security (I) Intricate Cryptography, MAS and Epistemic

- **•** cryptographic primitives can be complicated (e.g., blind signatures, trapdoor commitments, etc.)
- un-decipharable yet typed data requires attentive modelling (e.g., values in local states)
- **o** local evolutions (e.g., checks to be made) become convoluted
- systematisation/automation possible per classes of primitives only
-

 $open(tdcommit(x, y, z), y) \rightarrow x$ $open(tdcommit(x, y, z), f(x, y, z, x')) \rightarrow x'$ $t dcommit(x', f(x, y, z, x'), z) \rightarrow t dcommit(x, y, z)$ $f(x', f(x, y, z, x'), z, x'') \rightarrow f(x, y, z, x'')$ **KENKEN E DAG**

(Not So Simple) MAS Models for Security (I) Intricate Cryptography, MAS and Epistemic

- **•** cryptographic primitives can be complicated (e.g., blind signatures, trapdoor commitments, etc.)
- un-decipharable yet typed data requires attentive modelling (e.g., values in local states)
- local evolutions (e.g., checks to be made) become convoluted
- systematisation/automation possible per classes of primitives only
- **o** need for sound epistemic modalities to be interpreted over these

 $open(tdcommit(x, y, z), y) \rightarrow x$ $open(tdcommit(x, y, z), f(x, y, z, x')) \rightarrow x'$ $t dcommit(x', f(x, y, z, x'), z) \rightarrow t dcommit(x, y, z)$ $f(x', f(x, y, z, x'), z, x'') \rightarrow f(x, y, z, x'')$ **KENKEN E DAG**

(Not So Simple) MAS Models for Security (II)

Intricate Cryptography, MAS and Epistemics

- \bullet for cryptographic primitives expressed as subterm **convergent rewriting**, we give a MAS modelling
- we augment agents with logical predicates to encode the cryptographic data they hold
- we soundly approximate cryptographic indistinguishability/knowledge \sim ; via indistinguishability/knowledge modulo these predicates
- we implement this in MCMAS and extend PD2IS to **automatically verify e-voting modelled as MAS, against CTLK formulae for vote-privacy, receipt-freeness**, etc.

[Future Avenues for Security Apps as MAS](#page-43-0)

Future Avenues for Security Apps as MAS

- **o** soundness of such MAS methodologies w.r.t. state-based properties (e.g., privacy) remains to be proven
- many properties not captured by these models, e.g., data-origin, origin-privacy, etc.
- **o** new MAS optimisation techniques (abstraction [Lomuscio and Michaliszyn, 2014], cut-off techniques and parametrised MC [Lomuscio and Kouvaros, 2014, 2015] can help improve these MAS-based security specification/verification methodologies
- newer applied logics (ATL, strategy logics [Cermak et al., 2013]) can be used to verify tighter requirements and more properties (e.g., privacy in e-auctioning protocols, shared resources in IoT, multi-party computations)

 $\overline{}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

[Future Avenues for Security Apps as MAS](#page-44-0)

Thank you!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

[Future Avenues for Security Apps as MAS](#page-45-2)