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To develop techniques and 
methodologies that can be 

used to design autonomous 
intelligent systems that are 

verifiably trustworthy. 

Verification and Validation for 
Safety in Robots 
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Correctness from Specification to 
Implementation 

User Requirements 
High-level Specification 

Optimizer 
Design and Analysis 

(Simulink) 

Controller (SW/HW) 
e.g. C, C++,  

RTL (VHDL/Verilog) 

Translate 

Implement 

Verification 

(IL) 

Verification 

(OL) 
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What can be done at the design level? 

D. Araiza Illan, K. Eder, A. Richards.  
Formal Verification of Control Systems’ Properties with Theorem Proving. 
International Conference on Control (CONTROL), pp. 244 – 249. IEEE, Jul 2014. 
http://dx.doi.org/10.1109/CONTROL.2014.6915147 
 
D. Araiza Illan, K. Eder, A. Richards.  
Verification of Control Systems Implemented in Simulink with Assertion 
Checks and Theorem Proving: A Case Study.  
European Control Conference (ECC), pp. tbc. Jul 2015.  
http://arxiv.org/abs/1505.05699 4 



Simulink Diagrams in Control Systems 

!  Simulating the control systems 
!  Analysis techniques from control systems theory (e.g., stability) 
!  Serve as requirements/specification 
!  For (automatic) code generation 

Code 

Control systems design level Implementation level 
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Stability 

 Matrix P > 0 
(Lyapunov function) 

Equivalence 
V(k)-V(k-1) = x(k-1)T [(A−BK)T P(A−BK)-P]x(k-1)  

(Lyapunov's equation application) 

Add as assertions 

Capture control 
systems 

requirements 

Retain in code 
implementation 

Matrix 
P−(A−BK)T P(A−BK) > 0 

(Lyapunov function's difference) 

Verifying Stability 



Assertion-Based Verification 
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Stability 

 Matrix P > 0 
(Lyapunov function) 

Equivalence 
V(k)-V(k-1) = x(k-1)T [(A−BK)T P(A−BK)-P]x(k-1)  

(Lyapunov's equation application) 

Matrix 
P−(A−BK)T P(A−BK) > 0 

(Lyapunov function's difference) 

Test in simulation 

Combining Verification Techniques 
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Automatic  
theorem proving 

First order logic theory of the 
Simulink diagram  

Axiom: Bu = B * u 
... 
 
… 
 
Goal: vdiff == vdiff_an  



http://github.com/riveras/simulink 
D. Araiza Illan, K. Eder, A. Richards.  
Formal Verification of Control Systems’ Properties with Theorem Proving. International 
Conference on Control (CONTROL), pp. 244 – 249. IEEE, Jul 2014. 
http://dx.doi.org/10.1109/CONTROL.2014.6915147 
 
D. Araiza Illan, K. Eder, A. Richards.  
Verification of Control Systems Implemented in Simulink with Assertion Checks and 
Theorem Proving: A Case Study.  
European Control Conference (ECC), pp. tbc. Jul 2015.  
http://arxiv.org/abs/1505.05699 
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Simulation-based testing 
Why and how? 

D. Araiza Illan, D. Western, A. Pipe, K. Eder. 
Coverage-Driven Verification - An approach to verify code for robots  
that directly interact with humans. 
(accepted for publication at HVC 2015) 
 
D. Araiza Illan, D. Western, A. Pipe, K. Eder. 
Model-Based, Coverage-Driven Verification and Validation 
of Code for Robots in Human-Robot Interactions. 
(under review for publication at ICRA 2016) 10 



System Complexity 
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“Model checking works best 
for well defined models that 

are not too huge.  
Most of the world  

is thus not covered.”  
 

12 
Yaron Kashai, 
Fellow at the Systems and Verification R&D Division of Cadence 
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Coverage-Driven Verification 
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SUT 



Code Structure 

15 J. Boren and S. Cousins, “The SMACH High-Level Executive,”  
IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp. 18–20, 2010. 



Coverage-Driven Verification 
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SUT Test Response 



Coverage-Driven Verification 
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SUT Test Test 
Generator 

Response 



!  Effective tests:  
-  legal tests 
- meaningful events 
-  interesting events 
-  while exploring the system 

-  typical vs extreme values 

!  Efficient tests:  
- minimal set of tests (regression) 

!  Strategies: 
-  Pseudorandom (repeatability) 
-  Constrained pseudorandom 
-  Model-based to target specific scenarios 

Test Generator 
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Model-based Test Generation 
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Model-based Test Generation 
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Coverage-Driven Verification 
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SUT Test Test 
Generator 

Checker 

Response 



Checker 

!  Requirements as assertions monitors: 
-  if [precondition], check [postcondition]!
-  “If the robot decides the human is not ready,  

 then the robot never releases an object”. 

-  Implemented as automata 
!  Continuous monitoring at runtime, self-checking 

–  High-level requirements 
–  Lower-level requirements depending on the  

simulation's detail (e.g., path planning, collision 
avoidance). 
 assert {robot_3D_space != human_3D_space}!
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Coverage-Driven Verification 
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SUT Test Test 
Generator 

Checker 

Response 



Coverage-Driven Verification 

26 

SUT Test Test 
Generator 

Checker 

Coverage 
Collector 

Response 



!  Coverage models: 
-  Code coverage from statement to MC/DC 

-  e.g., using the 'coverage' modules in Python 

-  Structural coverage 
-  e.g., FSM coverage 

 
 
 
 

Coverage Collector 
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Coverage of 100 pseudornd Tests 
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Coverage of 100 pseudornd Tests 
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Coverage 
Hole 



Coverage of 160 MB Tests 
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Functional Coverage 

!  Requirements coverage 
!  “Cross-product” coverage 
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[O Lachish, E Marcus, S Ur and A Ziv. Hole Analysis for Functional Coverage Data. Design 
Automation Conference (DAC), June 10-14, 2002, New Orleans, Louisiana, USA.] 
 

A cross-product coverage model is composed of the following parts: 
1.  A semantic description of the model (story) 
2.  A list of the attributes mentioned in the story 
3.  A set of all the possible values for each attribute (the attribute value 

domains) 
4.  A list of restrictions on the legal combinations in the cross-product of 

attribute values 

A functional coverage space is defined as the Cartesian product  
over the attribute value domains. 



Cross-Product Models in e 

Verification 
Languages,  
such as e,  
support cross-product 
coverage models 
natively. 
 
(ADD, 00000000)!
(ADD, 00000001)!
(ADD, 00000010)!
(ADD, 00000011)!
…!
(XOR, 11111110)!
(XOR, 11111111)!

 

struct instruction {!
   opcode: [NOP, ADD, SUB, AND, XOR];!
   operand1 : byte;!
   event stimulus;!
   cover stimulus is {!
      item opcode;!
      item operand1;!
      cross opcode, operand1!
         using ignore = (opcode == NOP);!
   };!
};!



Situation Coverage 



Coverage-Driven Verification 
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SUT Test Test 
Generator 

Checker 

Coverage 
Collector 

Response 

Coverage analysis enables feedback to 
test generation 



Coverage-Driven Verification 
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SUT Test Test 
Generator 

Checker 

Coverage 
Collector 

Response 

Coverage analysis enables feedback to 
test generation 



Stimulating the SUT 
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SUT Test Test 
Generator 

Checker 

Coverage 
Collector 

Response 

Driver 



Stimulating the SUT 
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SUT Test Test 
Generator 

Checker 

Coverage 
Collector 

Response 

Driver 

Stimulus 



!  Environmental components (models) interacting 
with the system's control software 

!  Examples: humans, actuators (Gazebo), 
communication signals, sensors 

Driver 
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CDV for Human-Robot Interaction 

D. Araiza Illan, D. Western, A. Pipe, K. Eder. Model-Based, Coverage-Driven Verification and Validation of 
Code for Robots in Human-Robot Interactions. (under review for publication at ICRA 2016) 



!  systematic, goal directed simulation-based V&V 
!  capable of exploring systems of realistic detail 

under a broad range of environment conditions 
!  focus on test generation and coverage 
!  constraining test generation requires significant 

engineering skill and SUT knowledge 
!  model-based test generation allows targeting 

requirements and cross-product coverage more 
effectively than pseudorandom test generation 

Coverage-Directed Verification 



http://github.com/robosafe/testbench 
D. Araiza Illan, D. Western, A. Pipe, K. Eder. 
Coverage-Driven Verification - An approach to verify code for robots that 
directly interact with humans. 
(accepted for publication at HVC 2015) 
 
D. Araiza Illan, D. Western, A. Pipe, K. Eder. 
Model-Based, Coverage-Driven Verification and Validation 
of Code for Robots in Human-Robot Interactions. 
(under review for publication at ICRA 2016) 
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Summary 

!  No single technique is adequate for an entire 
design/system in practice. 

!  Verification techniques can be combined. 
!  Learn from areas where verification techniques 

are mature. 
!  We need to design for verification. 
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Any questions? 

     

Kerstin.Eder@bristol.ac.uk 
 
 
 

Thank you 

Special thanks to Dejanira Araiza Illan, David Western, Arthur Richards, 
Jonathan Lawry, Trevor Martin, Piotr Trojanek, Yoav Hollander, Yaron 

Kashai, Mike Bartley, Tony Pipe and Chris Melhuish for their hard work, 
collaboration, inspiration and the many productive discussions we have had.  




