
Theorem Proving and
Testing for

Autonomous Systems

Kerstin Eder
University of Bristol and

Bristol Robotics Laboratory

To develop techniques and
methodologies that can be

used to design autonomous
intelligent systems that are

verifiably trustworthy.

Verification and Validation for
Safety in Robots

2

Correctness from Specification to
Implementation

User Requirements
High-level Specification

Optimizer
Design and Analysis

(Simulink)

Controller (SW/HW)
e.g. C, C++,

RTL (VHDL/Verilog)

Translate

Implement

Verification

(IL)

Verification

(OL)

3

What can be done at the design level?

D. Araiza Illan, K. Eder, A. Richards.
Formal Verification of Control Systems’ Properties with Theorem Proving.
International Conference on Control (CONTROL), pp. 244 – 249. IEEE, Jul 2014.
http://dx.doi.org/10.1109/CONTROL.2014.6915147

D. Araiza Illan, K. Eder, A. Richards.
Verification of Control Systems Implemented in Simulink with Assertion
Checks and Theorem Proving: A Case Study.
European Control Conference (ECC), pp. tbc. Jul 2015.
http://arxiv.org/abs/1505.05699 4

Simulink Diagrams in Control Systems

!  Simulating the control systems
!  Analysis techniques from control systems theory (e.g., stability)
!  Serve as requirements/specification
!  For (automatic) code generation

Code

Control systems design level Implementation level

5

Stability

 Matrix P > 0
(Lyapunov function)

Equivalence
V(k)-V(k-1) = x(k-1)T [(A−BK)T P(A−BK)-P]x(k-1)

(Lyapunov's equation application)

Add as assertions

Capture control
systems

requirements

Retain in code
implementation

Matrix
P−(A−BK)T P(A−BK) > 0

(Lyapunov function's difference)

Verifying Stability

Assertion-Based Verification

7

Stability

 Matrix P > 0
(Lyapunov function)

Equivalence
V(k)-V(k-1) = x(k-1)T [(A−BK)T P(A−BK)-P]x(k-1)

(Lyapunov's equation application)

Matrix
P−(A−BK)T P(A−BK) > 0

(Lyapunov function's difference)

Test in simulation

Combining Verification Techniques

8

Automatic
theorem proving

First order logic theory of the
Simulink diagram

Axiom: Bu = B * u
...

…

Goal: vdiff == vdiff_an

http://github.com/riveras/simulink
D. Araiza Illan, K. Eder, A. Richards.
Formal Verification of Control Systems’ Properties with Theorem Proving. International
Conference on Control (CONTROL), pp. 244 – 249. IEEE, Jul 2014.
http://dx.doi.org/10.1109/CONTROL.2014.6915147

D. Araiza Illan, K. Eder, A. Richards.
Verification of Control Systems Implemented in Simulink with Assertion Checks and
Theorem Proving: A Case Study.
European Control Conference (ECC), pp. tbc. Jul 2015.
http://arxiv.org/abs/1505.05699

9

Simulation-based testing
Why and how?

D. Araiza Illan, D. Western, A. Pipe, K. Eder.
Coverage-Driven Verification - An approach to verify code for robots
that directly interact with humans.
(accepted for publication at HVC 2015)

D. Araiza Illan, D. Western, A. Pipe, K. Eder.
Model-Based, Coverage-Driven Verification and Validation
of Code for Robots in Human-Robot Interactions.
(under review for publication at ICRA 2016) 10

System Complexity

11

“Model checking works best
for well defined models that

are not too huge.
Most of the world

is thus not covered.”

12
Yaron Kashai,
Fellow at the Systems and Verification R&D Division of Cadence

13

Coverage-Driven Verification

14

SUT

Code Structure

15 J. Boren and S. Cousins, “The SMACH High-Level Executive,”
IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp. 18–20, 2010.

Coverage-Driven Verification

16

SUT Test Response

Coverage-Driven Verification

17

SUT Test Test
Generator

Response

!  Effective tests:
-  legal tests
- meaningful events
-  interesting events
-  while exploring the system

-  typical vs extreme values

!  Efficient tests:
- minimal set of tests (regression)

!  Strategies:
-  Pseudorandom (repeatability)
-  Constrained pseudorandom
-  Model-based to target specific scenarios

Test Generator

18

!  Effective tests:
-  legal tests
- meaningful events
-  interesting events
-  while exploring the system

-  typical vs extreme values

!  Efficient tests:
- minimal set of tests (regression)

!  Strategies:
-  Pseudorandom (repeatability)
-  Constrained pseudorandom
-  Model-based to target specific scenarios

Test Generator

19

!  Effective tests:
-  legal tests
- meaningful events
-  interesting events
-  while exploring the system

-  typical vs extreme values

!  Efficient tests:
- minimal set of tests (regression)

!  Strategies:
-  Pseudorandom (repeatability)
-  Constrained pseudorandom
-  Model-based to target specific scenarios

Test Generator

20

Model-based Test Generation

21

Model-based Test Generation

22

Coverage-Driven Verification

23

SUT Test Test
Generator

Checker

Response

Checker

!  Requirements as assertions monitors:
-  if [precondition], check [postcondition]!
-  “If the robot decides the human is not ready,

 then the robot never releases an object”.

-  Implemented as automata
!  Continuous monitoring at runtime, self-checking

–  High-level requirements
–  Lower-level requirements depending on the

simulation's detail (e.g., path planning, collision
avoidance).
 assert {robot_3D_space != human_3D_space}!

24

Coverage-Driven Verification

25

SUT Test Test
Generator

Checker

Response

Coverage-Driven Verification

26

SUT Test Test
Generator

Checker

Coverage
Collector

Response

!  Coverage models:
-  Code coverage from statement to MC/DC

-  e.g., using the 'coverage' modules in Python

-  Structural coverage
-  e.g., FSM coverage

Coverage Collector

27

Coverage of 100 pseudornd Tests

28

Coverage of 100 pseudornd Tests

29

Coverage
Hole

Coverage of 160 MB Tests

30

Functional Coverage

!  Requirements coverage
!  “Cross-product” coverage

31

[O Lachish, E Marcus, S Ur and A Ziv. Hole Analysis for Functional Coverage Data. Design
Automation Conference (DAC), June 10-14, 2002, New Orleans, Louisiana, USA.]

A cross-product coverage model is composed of the following parts:
1.  A semantic description of the model (story)
2.  A list of the attributes mentioned in the story
3.  A set of all the possible values for each attribute (the attribute value

domains)
4.  A list of restrictions on the legal combinations in the cross-product of

attribute values

A functional coverage space is defined as the Cartesian product
over the attribute value domains.

Cross-Product Models in e

Verification
Languages,
such as e,
support cross-product
coverage models
natively.

(ADD, 00000000)!
(ADD, 00000001)!
(ADD, 00000010)!
(ADD, 00000011)!
…!
(XOR, 11111110)!
(XOR, 11111111)!

struct instruction {!
 opcode: [NOP, ADD, SUB, AND, XOR];!
 operand1 : byte;!
 event stimulus;!
 cover stimulus is {!
 item opcode;!
 item operand1;!
 cross opcode, operand1!
 using ignore = (opcode == NOP);!
 };!
};!

Situation Coverage

Coverage-Driven Verification

34

SUT Test Test
Generator

Checker

Coverage
Collector

Response

Coverage analysis enables feedback to
test generation

Coverage-Driven Verification

35

SUT Test Test
Generator

Checker

Coverage
Collector

Response

Coverage analysis enables feedback to
test generation

Stimulating the SUT

36

SUT Test Test
Generator

Checker

Coverage
Collector

Response

Driver

Stimulating the SUT

37

SUT Test Test
Generator

Checker

Coverage
Collector

Response

Driver

Stimulus

!  Environmental components (models) interacting
with the system's control software

!  Examples: humans, actuators (Gazebo),
communication signals, sensors

Driver

38

39

CDV for Human-Robot Interaction

D. Araiza Illan, D. Western, A. Pipe, K. Eder. Model-Based, Coverage-Driven Verification and Validation of
Code for Robots in Human-Robot Interactions. (under review for publication at ICRA 2016)

!  systematic, goal directed simulation-based V&V
!  capable of exploring systems of realistic detail

under a broad range of environment conditions
!  focus on test generation and coverage
!  constraining test generation requires significant

engineering skill and SUT knowledge
!  model-based test generation allows targeting

requirements and cross-product coverage more
effectively than pseudorandom test generation

Coverage-Directed Verification

http://github.com/robosafe/testbench
D. Araiza Illan, D. Western, A. Pipe, K. Eder.
Coverage-Driven Verification - An approach to verify code for robots that
directly interact with humans.
(accepted for publication at HVC 2015)

D. Araiza Illan, D. Western, A. Pipe, K. Eder.
Model-Based, Coverage-Driven Verification and Validation
of Code for Robots in Human-Robot Interactions.
(under review for publication at ICRA 2016)

42

Summary

!  No single technique is adequate for an entire
design/system in practice.

!  Verification techniques can be combined.
!  Learn from areas where verification techniques

are mature.
!  We need to design for verification.

43

Any questions?

Kerstin.Eder@bristol.ac.uk

Thank you

Special thanks to Dejanira Araiza Illan, David Western, Arthur Richards,
Jonathan Lawry, Trevor Martin, Piotr Trojanek, Yoav Hollander, Yaron

Kashai, Mike Bartley, Tony Pipe and Chris Melhuish for their hard work,
collaboration, inspiration and the many productive discussions we have had.

