
Using Java Pathfinder to

Reason about Agent Systems

Franco Raimondi

f.raimondi@mdx.ac.uk

Department of Computer Science

Middlesex University

http://www.rmnd.net

Liverpool, 11th September 2015

f.raimondi@mdx.ac.uk
http://www.rmnd.net

Joint work with...

Joint work with a number of people. In particular:

• Neha Rungta at NASA Ames.

• G. Brat, C. Cardoza, W. Clancey, M. Goodrich, J. Holbrook,
J. Hunter, E. Mercer, G. Primiero, M. Shafto, R. Stocker.

Software, news, (some) tutorials and publications available at:

•
http://www.rmnd.net

•
http://mase.cs.mdx.ac.uk

F. Raimondi 1 of 23

http://www.rmnd.net
http://mase.cs.mdx.ac.uk

“Real” applications

• Various scenarios are available

• Developers and engineers would like to use MAS verification
(for autonomous systems etc.)

BUT “I cannot translate my code to ISPL!” is a very common
remark.

It’s not a problem with ISPL only. My other attempts:

• A. Lomuscio, C. Pecheur, F. Raimondi, Verification of

knowledge and time with NuSMV (based on C. Pecheur and
F. Raimondi, Symbolic model checking of logics with Actions)

• F. Raimondi, C. Pecheur, A. Lomuscio, Applications of model

checking for multi-agent systems: verification of diagnosability

and recoverability.

F. Raimondi 2 of 23

Current situation

This picture can be modified by using JPF...

F. Raimondi 3 of 23

Short Tutorial: Java Pathfinder

• JPF is a popular “model checker” for Java code. In its default
configuration JPF detects unhandled exceptions, deadlocks,
and races.

• JPF is essentially a customizable JVM.

http://jpf.byu.edu/

The notion of JPF state is important! I need some preliminaries...

F. Raimondi 4 of 23

http://jpf.byu.edu/

Java bytecode generation + execution overview

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

Execution of plus(3):

F. Raimondi 5 of 23

Java bytecode generation + execution overview

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

Execution of plus(3):

F. Raimondi 5 of 23

Java bytecode generation + execution overview

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

Execution of plus(3):

F. Raimondi 5 of 23

Java bytecode execution - 2

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

F. Raimondi 6 of 23

Java bytecode execution - 3

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

F. Raimondi 7 of 23

Java bytecode execution - 4

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

F. Raimondi 8 of 23

Java bytecode execution - 5

int plus(int a)

{

int b = 1;

return a+b;

}

0: iconst_1 // l oad con s t an t 1 i n t o s t a c k

1: istore_2 // s t o r e top s t a c k i n va r 2

2: iload_1 // l oad from va r 1 to s t a c k

3: iload_2 // l oad from va r 2 to s t a c k

4: iadd // add 2 v a l u e s on top o f s t a c k

5: ireturn

F. Raimondi 9 of 23

Additional bytecode considerations

• Each method has an array of local variables and a “local”
stack: this is called a frame.

• Each thread has a stack of frames.

• Each class contains a constant pool

Example:
$ javap -c -s -verbose Rand

F. Raimondi 10 of 23

From bytecode to program states

From Rand.java:

[...]

int a = random.nextInt (2);

i= 1;

int b = random.nextInt (3);

[...]

14: iconst_2

15: invokevirtual #6

// j a v a / u t i l /Random . n e x t I n t : (I) I

18: istore_3

19: iconst_1

20: istore_1

21: aload_2

22: iconst_3

23: invokevirtual #6

// j a v a / u t i l /Random . n e x t I n t : (I) I

26: istore 4

Line 15 and 23 return non-deterministic values.

F. Raimondi 11 of 23

Choice generators and JPF states

• JPF creates a choice whenever multiple execution paths can
arise (non-deterministic choices, user input, thread
scheduling).

• The byte-code comprised between two choices defines a
JPF state.

• JPF can store and explore states using various search
strategies.

F. Raimondi 12 of 23

Additional JPF features

• It is possible to write custom choice generators.

• It is possible to add listeners: for new states, but also for
specific bytecode instructions.

• It is possible to write custom state matching mechanisms.

• It is possible to write custom search strategies (e.g.: DDFS
for LTL verification).

(end of JPF tutorial)
NOTICE: I’m not suggesting that we should use JPF for MAS
verification! But it can help...

F. Raimondi 13 of 23

The role of JPF in MAS verification

Build a bridge between the “real” system and the model checkers
for MAS.

F. Raimondi 14 of 23

The basic idea

1 The MAS model is what a developer produces (e.g.: a Brahms
model), together with its simulation / execution environment.

2 The intermediate representation encodes the set of reachable
states and the transitions. It could be explicit state, or
symbolic.

3 The connector is used to “inspect” and “drive” the behaviour
of the MAS.

4 Translators can be developed from the intermediate
representation to the input language of existing tools.

F. Raimondi 15 of 23

A concrete instance

1 We used Brahms as the modelling language

2 We used JPF as a connector

3 We used an explicit-state representation (a simple Java Set!)

4 We built translators to SPIN, NuSMV, and PRISM.

F. Raimondi 16 of 23

Brahms

• Brahms is a development and simulation environment.

• Used to model humans, robots, automated systems, agents,
and interactions between humans and automated systems.

• Brahms has similarities to BDI architectures

• A Brahms model contains a set of Objects and Agents. Each
of these has attributes, activities, beliefs, facts, workframes,
thoughtframes etc. Syntax very similar to Java.

• Formal operational semantics have been defined. A scheduler
is used to simulate possible executions.

F. Raimondi 17 of 23

Non-determinism in the simulator

In the corresponding Java implementation there are
non-deterministic choices. For A8:

public boolean update (int certainty) {

[...]

int random = rgen.nextInt(99);

[...]

}

F. Raimondi 18 of 23

Application 1: temporal properties of AF 447

On June 1, 2009 the Air France Flight 447 between Rio de Janeiro
and Paris crashed in the equatorial Atlantic The inexperience of
the pilot was determined to be the cause of the crash. The pilot in
charge misjudged the airspeed of the plane (because of failure of
Pitot tubes) and increased the altitude of the plane without
realizing the plane was in a stall which eventually led to its crash.
According to the report the pilot was presented with several
chances to recover, but, was unable to do so.
Brahms model created in conjunction with aviation safety experts
to show that the pilot could always correct the stall in a timely
manner and that the plane does not crash due to hardware failures.
Here: 28,648 reachable states generated in 2.5 minutes by JPF
and verification with SPIN in less than 2 sec.

F. Raimondi 19 of 23

Application 2: Situational Awareness for AF 447

Same scenario, but situational awareness of pilot expressed as a
(temporal-) epistemic properties:

EF (actualStall ^ B

Pilot

<0.05actualStall)

In this case, state space generated by JPF and verification
performed on directly on the intermediate representation.

F. Raimondi 20 of 23

Application 3: Workload Assessment

Two Brahms scenarios:

1 Driver distracted while driving (phone call at road crossing).

2 From two pilots to single pilot operation for commercial
flights.

JPF used to intercept “events” that increase workload.

F. Raimondi 21 of 23

Application 3: Workload Assessment

F. Raimondi 22 of 23

Conclusion

• In my experience: existing tools are good if “starting from
scratch”.

• But it is di�cult to translate / encode existing scenarios.

• Moreover, this translation could be ine�cient.

• Final users have very specific needs, maybe just one formula.
They may use tools in ways we didn’t think of, making a small
extension to achieve their goals.

• JPF allows moving model checking “closer” to MAS.

• My suggestion: provide APIs, release open source, provide
examples and tutorials, so that verification becomes a chain of
techniques and tools (JPF is just one possible link).

Thank you!

F. Raimondi 23 of 23

