
Structuring Web pages based on Repetition of Elements

Tomoyuki NANNO
Interdisciplinary Graduate School

of Science and Engineering,

Tokyo Institute of Technology

4259 Nagatsuta-cho, Midori-ku,

Yokohama, JAPAN

nanno@lr.pi.titech.ac.jp

Suguru SAITO
Precision and Intelligence Laboratory,

Tokyo Institute of Technology

4259 Nagatsuta-cho, Midori-ku,

Yokohama, JAPAN

suguru@pi.titech.ac.jp

Manabu OKUMURA
Precision and Intelligence Laboratory,

Tokyo Institute of Technology

4259 Nagatsuta-cho, Midori-ku,

Yokohama, JAPAN

oku@pi.titech.ac.jp

Abstract
The World Wide Web is a vast source of information ac-

cessible to computers, but most of its information is not
able to be processed by computer applications because Web
pages are described in layout description languages, such
as HTML. In this paper, we propose a method of automati-
cally segmenting and structuring Web pages based on repe-
tition of elements.

1. Introduction

The World Wide Web is a vast source of information
accessible to computers, but most of its information is not
able to be processed by computer applications because Web
pages are described in layout description languages, such
as HTML. Thus, in recent years, there have been efforts
to provide computers with a means of processing (rather
than simply displaying) the information on the Web (e.g.
Semantic Web and Web API, such as Google APIs1). For
computers to be able to use the Web effectively, the intro-
duction of metadata (meta information) will be inevitable.
The structure of Web pages can be considered to be meta-
data. Therefore, automatic segmenting and structuring of
Web pages would be helpful when making annotations of
metadata.

When people see a Web page, they can easily understand
the segmentation and structure of the page. What is the key
to understanding the segment and structure? We consider
that it is the uniformity of certain information. For exam-
ple, if some fragments of the Web page are described in the
same font color and font size, they could belong to the same
group. We consider that such a “uniformity” can be useful
for detecting the repetition of elements in the Web page.

In this paper, we propose a method of automatically seg-
menting and structuring Web pages based on repetition of
elements.

Knowledge of the structure of Web pages is useful for
various applications. For example, a voice browser can read
information on a Web page in a manner that reflects the
structure of the page, and a system that presents a web page
on a hand-held device’s small display can use the structure
for segmentation [2].

1Google Web APIs:http://www.google.com/apis/

Figure 1. A part of a Yahoo! page

2. Related Work

Chen et. al. [2] proposed a technique to browse a Web
page on a device with a small display. To divide and recon-
struct a Web page, they structure it by using the technique
proposed by Yang et. al. [1].

[1] proposed a technique to structure a Web page by us-
ing the visual similarity of HTML content objects. How-
ever, they only deal with the “repetition structure without
separators,” mentioned in 3.1. Therefore, their heuristic-
based segmentation technique by detecting frequent pat-
terns cannot discover suitable segment boundaries in case
where a Web page has the “repetition structure with sepa-
rators.” On the other hand, we consider both types of rep-
etition structure and structure a Web page by detecting all
possible repetition structures.

Yu et. al. [3] proposed a technique for efficient infor-
mation retrieval using Web page segmentation. While
their technique structures a Web page roughly in a top-
down strategy, our method structures it in detail by using
a bottom-up strategy.

3. Outline of Proposed Method

3.1. Repetition Structure

The example in Fig. 1 is a part of a Web page2. By sim-
ply looking at this page, we can understand that “Shop” and
“Find” belong to the same level, and “Shop” has a substruc-
ture which consists of “Auctions”, “Autos”, and so on. How
do we understand this so quickly? We consider that the au-
thor writes the Web page so that it can be understood eas-
ily. For example, when the author writes a segment contain-
ing multiple elements of the same type, s/he expresses them
with the same font color and font size.

In Fig. 1, the clue to understanding the segment and
structure is that “Shop” and “Find” are expressed in the

2Yahoo!http://www.yahoo.com/

7

(B)repetition with separators

A
B

A
B

A
(A)repetition without separators

A

A

A

Figure 2. Two Types of Repetition Structure

Figure 3. Repetition Structures

same font, and “Shop” and “Auctions” are expressed in dif-
ferent fonts. We think that such uniformity can be useful
for detecting the repetition of elements in the Web page.
We call such a repetition of elements a “repetition struc-
ture.” For example, “Auctions” and “Autos” are in the same
repetition structure characterized by<a> tags.

Figure 2 shows the two types of repetition structure that
we consider. The repetition structure on the left is with-
out separators, and the one on the right includes separators.
Please note that the fragment “Auctions, Autos, ...” in Fig.
1 has a type with separators, and the structure can be con-
sidered to appear frequently in a Web page.

3.2. Structuring by Detecting Repetition Structures
Recursively

By detecting repetition structures, we can group the frag-
ments which belong to the same level and detect a segment.

Therefore, we first detect the most primitive repetition
structures (for example, the meshed parts shown in Fig. 3),
and we replace them with tokens. At this time, if elements
that are repeated are the same in the different repetition
structures, those structures are replaced with the same to-
ken, even if the number of the elements is different. In Fig.
3, the meshed fragments are considered to be part of the
same repetition structure and are replaced with identical to-
kens.

After replacing the detected repetition structures with to-
kens, by detecting repetition structures again, we can obtain
larger repetition structures like in Fig. 4.

In this way, the Web page is structured in the bottom-up
strategy by detecting repetition structures recursively.

4. System Configuration
Fig. 5 shows the flow chart of our system. Our sys-

tem consists of the following three steps: “Preprocessing,”
“Segmentation and Structuring” and “Postprocessing.”

4.1. Preprocessing

First, our system applies Tidy [4] to the HTML docu-
ment in order to translate it into a well-formed XML docu-
ment. This is done to confirm that begin tags and end tags
are well-balanced in the parts of the HTML document.

Next, unessential parts of the HTML document, such as
comments and scripts, are removed. The following tags are
also deleted, because our system does not use these tags to
detect repetition structures.

Figure 4. Structuring

Preprocessing

detecting repetition structures

determining the
repetiton structures to adopt

special process for tables

Integration into the group

Input: HTML document

Are new
repetition structures

detected?
YES NO

Postprocessing

Output: Structured Web page

Detecting repetition structures
using similarity

Figure 5. Flow Chart of Our System

•
,<nobr>
• ,,<i>,<s>,<tt>,<u>

Then, the tags used for modification of texts are
made attributes of the texts. This is done to
equate<small><a>text</small> with <a>
<small>text</small>.

Finally, all the texts except tags are replaced with tokens
“(text)”, because our system only uses the information that
“there are some texts”. Our current system does not use
linguistic information at all, because we wish to develop a
framework that is language-independent and universal. If
we did otherwise, the system would have to handle many
languages that are used in the WWW.

4.2. Segmentation and Structuring

This step consists of three substeps: “Detecting repeti-
tion structures,” “Determining which repetition structures
to adopt” and “Special process for tables.”

Detecting Repetition Structures
In this step, our system detects all the repetition structures
shown in Fig. 2 from the whole HTML document. Each
repetition structure must satisfy the following restrictions:

• For repetition structures without separators

– all the “A”s must be the same and must not con-
tain repetition structures inside them.

– all the tags contained in “A” must be well-
balanced.

• For repetition structures with separators

– all the “A”s must be the same and must not con-
tain repetition structures inside them.

– the elements contained in “B” must be the same
before replacing them with tokens.

– all the tags contained in “A” and “B” must be
well-balanced.

– the size of “B” must be smaller than “A.”
– “B” must not contain<a> tags.

8

Determining which Repetition Structures to adopt
After the above steps have been completed, there may be
multiple detected repetition structures whose spans in the
HTML document overlap with each other. Consider, for
example, the following fragment:

A–B–A–B–A
This fragment can be considered as a repetition structure
with separators if all “B”s satisfy the separator’s restric-
tions. Similarly, we can consider this fragment as a rep-
etition structure without separators (“AB”s are repetitions
and the last “A” is a remainder.). To decide which repetition
structure is more suitable it is inevitable to take into account
the repetition structures which are detected in the adjoining
fragments. Consider the following two case:

(1) A–B–A–B–A–C–D–C
(2) A–B–A–B–A–C–A–C

In case (1), it is reasonable to consider that there are two
repetition structures with separators if all “B”s and “D” sat-
isfy the separator’s restrictions (“ABABA” and “CDC”). In
case (2), on the other hand, it is reasonable to consider
that there are two repetition structures without separators
if all “A”s do not satisfy the separator’s restrictions (even
if all “B”s satisfy the separator’s restrictions) (“ABAB” and
“ACAC”). Thus, we have to select the best one from all pos-
sible repetition structures by taking into account the repeti-
tion structures detected in the adjoining fragments.

Since our system structures the Web page with a bottom-
up strategy from the most primitive elements, the set of rep-
etition structures whose total number of repetitions is the
biggest is considered to be the best combination.

To find this combination, our system first builds a graph
whose nodes correspond to the detected repetition struc-
tures. Then, two nodes that have no overlaps are connected
by an edge and this process is repeated until every such pair
has been connected. Our system can find the best combi-
nation by detecting all the maximal cliques [6] from this
graph, and selecting the one whose total repetitions is the
biggest.

After determining the repetition structures to adopt, the
system groups them by replacing them as tokens. The rep-
etition structures whose repeated elements are the same are
replaced with identical tokens.

Special Process for Tables
Since tables have rich expressiveness, special processes are
needed for certain kinds of tables. For example, consider

A B
C D
C D
C D

the table on the left. In this table, if “A” has
the same type as “B” and “C” has the same
type as “D”, our system considers that this
table should be read in the vertical direction.
In this case, “A” and “CCC” should belong

to the same group. However, since the order in the HTML
document is “A”→“B” →“C”→“D”, we cannot get such a
structure. Therefore, our system transposes such a table.

A A
A A
A A

Next, we illustrate another kind of table
that needs special processes. For example,
consider the table on the left. In this table, if
all the “A”s have the same type and they also

A B B A B B B

B+

AB+

B+

AB+

AB+

C

AB+

Figure 6. Integration into the group

have substructures or elements which have link attributes,
our system considers that this table is used for layout pur-
poses, such as for making two columns. Therefore, our sys-
tem removes tags that show rows from such a table.

Building up the Structure
The above steps are repeated until new repetition structures
are no longer detected. Since the spans where repetition
structures exist are replaced with tokens, bigger repetition
structures are detected as the procedure is executed.

4.3. Postprocessing

There are some cases where our system cannot structure
the entire document, because the definition of the repetition
structure is too strict (exact match). In this section, we ex-
plain the two postprocesses: “Integration into the group”
and “Detecting repetition structures using similarity”. Our
system structures Web pages with a two-step approach: first
by using “exact match” and then by using “similarity.” The
reasons why we do not introduce similarity in the first step
are as follows:

• many erroneous repetition structures may be detected.
• the amount of computation increases because the num-

ber of candidate repetition structures increases.

DP (Dynamic Programming) Matching [5] is used for
the similarity calculation, and when the score for matching
parts exceeds a threshold, our system judges that they are
similar.

Integration into the Group
Here, we explain the process for cases where the elements
that should be contained in a repetition structure are not
contained therein due to lack or addition of elements. For
example, consider the following fragment.

“Book”, “Movies”, “Music” and “TV” should be in a repeti-
tion structure. However, since a image “NEW!” is attached
to “TV”, only the first three can be part of a repetition struc-
ture.

Next, consider the example shown in Fig. 6. “C” is an
element which should be contained in a repetition structure.
The position where “C” should be connected is “AB+” or
“B+” in the figure; therefore, if “C” is similar to “AB+”, it
is connected with “AB+”, and if “C” is similar to “B+”, it is
connected with “B+”.

9

Detecting Repetition Structures using Similarity
In this process, we introduce similarity into the definition
of repetition structures and loosen the strict definition of the
previous step in order to deal with cases that could not be
dealt with in the previous step. The basic idea is the same
as in the previous step: if the tags which are contained in a
span and its successive span are well-balanced and they are
similar to each other, our system regards them as a repetition
structure and structures them.

This step is repeated until new repetition structures are
no longer detected.

5. Evaluation
5.1. Testing Robustness

For the robustness test, we collected 80 Web pages at
random. There were ten pages for each of the following
eight categories: portal sites, top pages of companies, site
maps, dynamic pages generated by cgi etc, pages using
CSS (Cascading Style Sheets), pages in languages except
Japanese, pages in our lab., and pages fetched by using ya-
hoo’s random link.

Results of the Robustness Test
Our system could not process 15 out of 80 pages. The
causes were based on the following two errors due to the
tools our system used.

• Tidy’s errors
• errors of the character set conversion utility

Our system could not finish processing 9 pages in 24
hours. This problem comes from the fact that our system
needs much computation to find the best combination of
the detected repetition structures. As for the processing
time, however, 45% of the pages can be processed within
10 seconds, and 71% of the pages can be processed within
1 minute (using Athlon XP1800+, 1.5GB Memory, Linux
2.4.18, Perl 5.6.1).

5.2. Accuracy of Segmentation and Structuring

We collected another test set of 70 pages that our sys-
tem could process at random for all categories except “lan-
guages other than Japanese” and conducted the subjective
evaluation. The experiment focused on whether the out-
putted structure would be accepted by human subjects or
not. Three subjects carefully examined the outputted struc-
ture of each page, looking at the rendered page as well, and
were asked to rate it on a scale of one to five for segmenta-
tion and structuring.

They were also asked to point out errors in it.

Results of the Accuracy Test
Table 1 shows the results, which are the averages of the
three subjects’ ratings. “Seg.” and “Str.” mean the scores
for segmentation and structuring, respectively. The scores
are close to 5; thus, the structures made by our system were
considered to be close to the structure understood by the
subjects.

Category Seg. Str.
portal 4.43 3.40
top 4.63 4.33
sitemap 4.87 3.97
dynamic 4.30 3.53
CSS 4.33 3.83
lab. 4.40 3.13
random 4.20 3.50
All 4.45 3.67

Table 1. Result (average for each category)
5.3. Discussion

In this section, we briefly discuss one of the problems
that were pointed out by the subjects.

The scores for “portal”, “top” and “sitemap” are better
than the others. This is considered to be related to the fol-
lowing question: “Which tags should we use for detecting
repetition structures?” Our current system uses<a> tags.
However, there are cases where<a> tags should not be
used. Consider the following examples (Assume that un-
derlined words have a link.):

(A) Yesterday, I went hereand here.
(B) Movie - Music - TV

If our system uses<a> tags, in case (A), the sentence is
divided into three segments. However, in this case, we feel
that there is no segment boundary, and the sentence should
belong to a segment. On the other hand, if our system does
not use<a> tags, case (B) cannot be structured at all.

Therefore, the tags used for detecting repetition struc-
tures should be determined dynamically depending on the
Web pages or the parts of the Web pages to be structured.

6. Conclusion & Future Work
In this paper, we proposed a technique to segment and

structure Web pages. The results show that most of the
structures that our system outputs correspond well to the
structures that human subjects understand, even though our
current system still has some problems.

As future work, we plan to refine our system so that
it will be able to structure the Web pages by combining
the current bottom-up strategy with a top-down strategy us-
ing the information of the DOM (Document Object Model)
structure [3]. We also plan to automatically annotate a seg-
ment with type by using the structural feature.

References
[1] Y. Yang, and H.-J. Zhang, “HTML page analysis based on visual cues”,

Proc. 6th International Conference on Document Analysis and Recognition,
pp.859–864, Sept., 2001.

[2] Y. Chen, W.-Y. Ma, and H.-J. Zhang, “Detecting web page structure for adap-
tive viewing on small form factor devices”, Proc. Twelfth International World
Wide Web Conference, pp.225–233, May, 2003.

[3] S. Yu, D. Cai, J.-R. Wen, and W-Y. Ma, “Improving pseudo-relevance feed-
back in web information retrieval using web page segmentation”, Proc.
Twelfth International World Wide Web Conference, pp.11–18, May, 2003.

[4] Dave Raggett, “Clean up your Web pages with HTML TIDY”, URL:http:
//www.w3.org/People/Raggett/tidy/.

[5] Gonzalo Navarro, Mathieu Raffinot, “Flexible Pattern Matching in Strings”,
Cambridge University Press, 2002.

[6] Jay Yellen, Jonathan L. Gross, “Graph Theory and Its Applications”, CRC
Press, 1998.

10

