Faster and Better: The Promise of Dynamic Spectrum Access

Seth Gilbert National University of Singapore

What's in a name?

Dynamic spectrum access

Dynamic spectrum sharing

Dynamic spectrum management

Cognitive radio

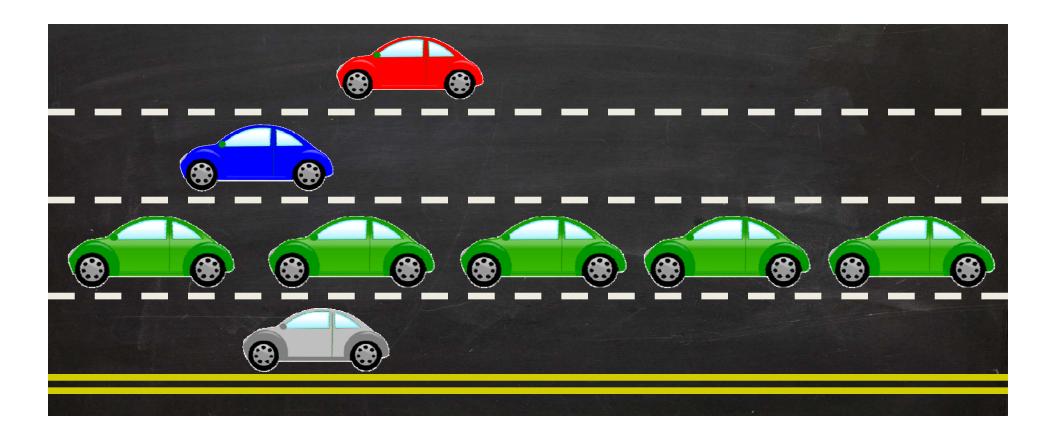
Frequency agile radios

Spectrum agile radios

Frequency hopping radios

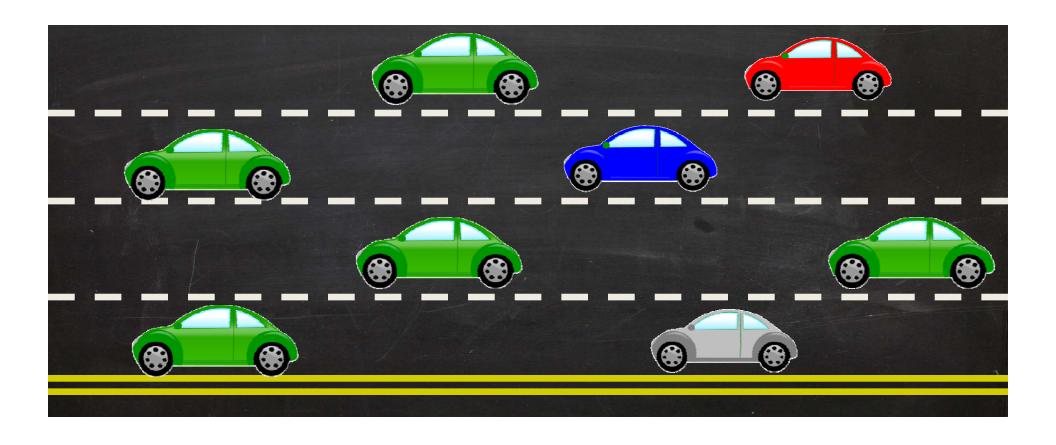
Multi-channel networks

Most wireless networks operate on a *single* pre-assigned radio channel.


- Examples in practice:
 - Base stations are assigned fixed channels.
 - Sensor networks are pre-tuned to a particular radio frequency.
- Examples in theory:
 - "Assume all nodes in the system are sharing a single multiple access channel..."

Key observations:

- Most radios can access several different channels:
 - 802.11b: 11 channels (3 orthogonal)
 - 802.11a: 13 (orthogonal) channels
 - Frequency hopping (e.g., Bluetooth)
- Dynamic spectrum usage can be more efficient:
 - Distributed communication over multiple channels
 - More efficient use of a limited resource


Analogy: Driving on the highway

 Every new car is assigned a fixed lane. To change lanes, take your car to a mechanic.

Analogy: Driving on the highway

More efficient if driver's can shift lanes at will.

Caveats

- Every driver must follow the rules to avoid collisions.
- Some central planning may still help!

Benefits:

More efficient use of spectrum

Challenges:

- Minimize cost of changing channels
- Coordination
 - who uses which channels when
 - synchronization
 - overhead for coordination

Dynamic Spectrum Access

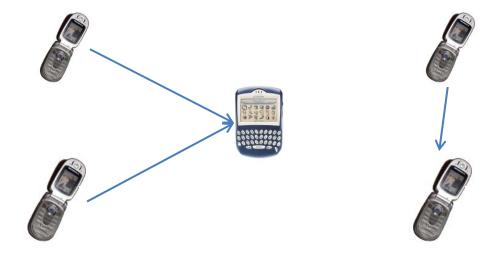
Outline

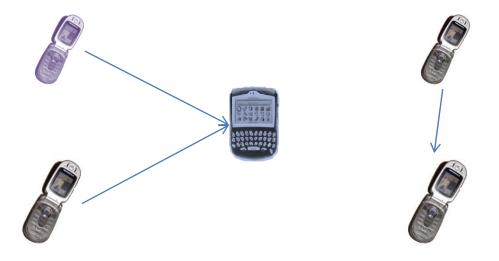
- What is dynamic spectrum access?
- Faster: Can we use DSA to solve problems faster?
 - Standard technologies: 802.11
 - New technologies: Software defined radios
- Better...
 - Can we use DSA to solve problems more reliably, more securely, more efficiently?

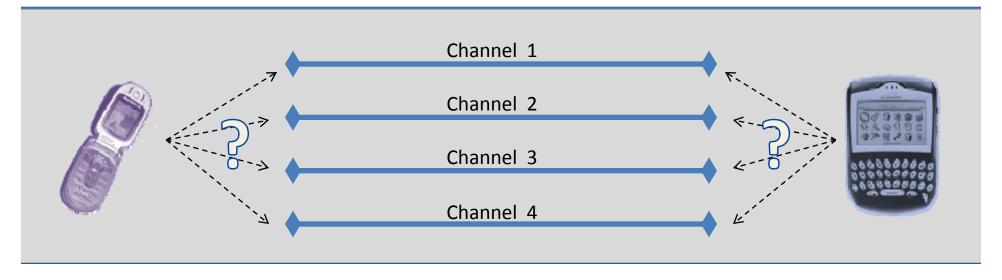
Faster...

- 802.11
 - Existing implementation
 - Model
 - Open questions
- · SDR / GNU Radio
 - Existing implementation
 - Model
 - Open questions

Can we use DSA techniques in existing networks?


- Basic 802.11(ab) wireless networks
 - 2.4GHz range: 3 orthogonal channels
 - 5GHz range: 13 orthogonal channels
- Goal:
 - Mobile network of devices supporting pair-wise flows
 - Multi-hop mesh networking applications


SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless Networks


by Bahl, Chandra, and Dunagan (MobiCom 2004)

A few interesting details...

- Timing:
 - 10ms communication slots (35 packets/slot @ 54Mbps)
 - Clock synchronization within 5ms
- Overhead achieved:
 - Changing channels: 80μs

- Idea 1: Random frequency hopping
 - Each pair synchronizes for one slot every 130ms.
 - For long flows, very bad performance!

- Idea 2: Adapt schedule to maximize synchronization
 - Align schedule of devices supporting a flow.
 - Un-align devices with no pair-wise flows.
 - Devices choose schedules independently.
- Basic idea: 4 interleaved schedules
 - If many packets were received during the last iteration, leave the schedule unchanged.
 - If too many other processes were scheduled for the same channel in the same slot, desynchronize.
 - Otherwise, choose a new schedule that synchronizes with the maximum number of nodes that have queued packets.

Results

- Analysis
 - Every 530ms, devices overlap their schedules
 - This leads to exchange of schedule information, etc.

Simulations

- Big improvement in throughput, compared to single channel 802.11.
- Not quite linear in # channels, due to randomization.

Open question

Can you get linear improvement in throughput?

Hardware implementation (Le, Rhee 2010)

Compared three different 802.11 DSA implementations

- AMCP
- MMAC
- SSCH

Conclusions:

- Sub-optimal performance at low load
- Good performance at medium/high load
- Less effective in multi-hop scenarios

Basic Model

- C independent channels
 - Access one channel per round
 - C is small
 - Standard multiple-access channel
 - Collisions, etc.
 - SINR
 - Dual-graph
 - Small overhead for changing channels
- Coarse-grained time synchronization

Cooperative Spectrum Access

- Devices share the spectrum
 - Everyone follows the rules.
 - No malicious users.
 - No interference.
- One application using the spectrum
 - No competing applications.
 - No competing users.

Problem: Partial Information Exchange

Holzer, Pignolet, Smula, Wattenhofer

- Setting:
 - Single-hop network
- Results:
 - Time: O(k) (for some values of k)
 - Number of channels: $O(n^{\epsilon})$
- Faster:
 - Beats the lower bound of $\Omega(k + \log n)$

Problem: Multi-hop Broadcast / Aggregation

Dolev, Gilbert, Khabbazian, Newport (unpublished)

- Setting:
 - Multi-hop network, diameter D
- Results:
 - Broadcast time: $O((D + \log n)(\log C + \log n / C)$
 - Aggregation?
 - Number of channels: C
- Faster:
 - Beats single-channel results: $O(D \log n)$

Problem: Synchronization

- Setting:
 - Multi-hop network
- Goal:
 - Synchronize all the devices in the network.
- Speed-up:
 - Increased parallelism?
 - Less contention?

Problem: Neighbor Discovery

- Setting:
 - Multi-hop network
- Goal:
 - Find nearby devices.
- Speed-up:
 - Increased parallelism?
 - Less contention?

Problem: Structuring Networks

- Setting:
 - Multi-hop network
- Questions:
 - Leader election
 - Wake-up
 - Independent Set
 - Connected Dominating Set
- Goal:
 - Beat single-channel results: $O(\log^2 n)$

Why can we go faster?

- Throughput:
 - Using C channels, we can send C messages per round.
 - Expected speed-up: C
- Contention resolution:
 - Using C channels, we can select 1 more rapidly.
 - Expected speed-up: log(n)

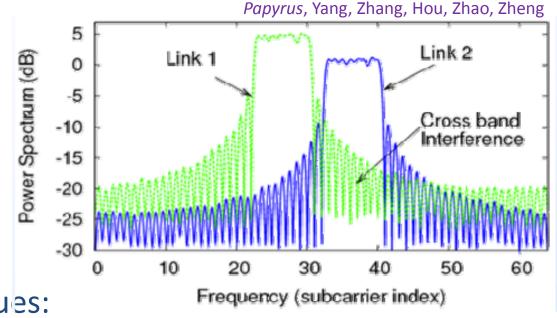
Software Defined Radios

- USRP Radios (Universal Software Radio Peripheral)
 - Software reconfigurable radio
 - Supports operation in many bands (e.g., 50MHz-2.9GHz)
- GNU Radio:
 - Implement most radio functionality in software
 - Enable easy experiments with DSA

Papyrus: A Software Platform for Distributed Dynamic Spectrum Sharing Using SDRs

by Yang, Zhang, Hou, Zhao, Zheng (Computer Communication Review 2011)

Supporting Demanding Wireless Applications with Frequency-agile Radios


by Yang, Hou, Cao, Zhao, Zheng (NSDI 2010)

Papyrus Platform

- Available spectrum:
 - Devices use 1MHz frequency band.
 - Divided into (up to) 512 sub-carriers.
 - OFDMA modulation
- Papyrus API:
 - SetFreq: set central carrier frequency
 - SetSpectrumUsage: choose any set of sub-carriers
 - SendPacket / ReceivePacket

Sensing Vacant / Occupied Frequencies

Power spectrum density map:

- Techniques:
 - Threshold energy
 - Feature detection
 - Edge detection (used in Papyrus)

Jello MAC Layer

- Designed for media/streaming applications
 - Pairwise communication
 - Maintain sessions
- Key challenges
 - Coordinate frequency selection
 - Efficiently allocate spectrum
 - Minimize disruption

Key Aspect: Bandwidth Allocation

- Requests for bandwidth
 - Arrive on-line
 - Costly to re-allocate---non-constant costs.
 - Can be sub-divided---at a loss (guard bands)

Solution

- Classic heuristic: best fit
- Sub-divide requests when necessary
- Defragment (concurrently)

DSA Implementation: Software Defined Radio

Results

- Experimental deployment
 - Supports high quality media streaming
 - Low disruption rates
 - Better performance than static spectrum allocation
- Issues
 - Overhead (re-SYNC) due to external disruption (2-3%)
 - Spectrum sensing errors (5-10%)
 - USRP radio large processing delay

Basic Model

- C channels
 - Access subset of channels in every round
 - Variant 1: any subset
 - Variant 2: any subset within a contiguous range
 - C is (relatively) large
 - Standard multiple-access channel
 - Collisions, etc.
 - SINR
 - Dual-graph
 - Some channel interference?

Semi-Cooperative Spectrum Access

- Devices share the spectrum
 - Everyone follows the rules.
 - No malicious users.
 - No interference.
- Devices sense and avoid interference
 - Different applications can share the spectrum.
 - Scanning reliably for free spectrum is important!

For more on avoiding primary users, see: White Space Networking with Wi-Fi like Connectivity by Bahl, Chandra, Moscibroda, Murty, and Welsh

Problem: Channel Coordination

– Setting:

- *Input*: requests (i.e., applications or streams) for some subset of devices to communicate.
- Output: set of channels for each request to use.

– Aspects:

- Agreement: sets of processes should all output the same channel subset.
- Non-interference
- Efficiency

Problem: Bandwidth Allocation / Re-allocation

- Setting:
 - Single-hop network
 - Centralized defragmentation
- Results:
 - Optimal on-line re-allocation where the cost of reallocation is unknown.
- Open:
 - Distributed, multi-channel re-allocation protocol

Problem: Leader Election, Synchronization

- Very fast algorithms: O(1)?
 - Distribute devices over channels
 - Choose winner on smallest channel (via scanning)
- Building blocks:
 - Structuring algorithms
 - Information exchange
 - Replicated state machine algorithms

Problem: Channel Coordination

- Group Renaming:
 - Assign each group a name (i.e., channel)
- Speed-up:
 - Fast contention resolution (via multi-channel)
 - Cheap signaling (via spectrum scanning)
 - E.g., spell the chosen channel in binary: broadcast on a channel if 1, silent on a channel if 0
 - Use error-correcting codes to tolerate overlap
 - Fast check for agreement...

Dynamic Spectrum Access: Faster

- Two basic variants
 - 802.11 networks
 - SDR networks
- Preliminary systems work experimenting with increasing speed / spectrum efficiency.
- Lots of algorithmic open questions

Better...

- · More robust?
 - Tolerate disruption
- · More secure?
 - Tolerate malicious users

y-

· More energy efficient?

Interference

- Some channels are disrupted by interference
 - Not too many...
 - Enough to cause problems.
- Causes of disruption
 - Bad channel conditions
 - Other applications
- For now: consider 802.11-style DSA
 - One channel per round

Wireless Channel Models (aside)

- Simple models
 - Deterministic
 - Discrete
- Physical (SINR) model
 - Deterministic
 - Continuous
- Dual-Graph model
 - Nondeterministic
 - Discrete

Example: Neighbor Discover

– How to find each other?

Speed Dating Despite Jammers

Meier, Pignolet, Schmid, and Wattenhofer

- Jammers disrupt t channels
 - Unknown number of disrupted channels
- Optimal strategy
 - If *t* is known: choose a random channel in [1..2*t*]
 - Otherwise:
 - Randomly choose a value of t' in [1, 2, 4, ..., C]
 - Choose a random channel in [1..2t]
 - Running time: $O(t \log^2 C)$

Example: Synchronization

- Devices arrive in an ad hoc manner
 - Unsynchronized clocks => different round numbering
- Goal: agree on a shared round numbering
 - All participants identify each round in the same way

Example: Leader Election / Synchronization

Devices arrive in an ad hoc manner

– Goal:

- Choose exactly one device to be the leader.
- Leader specifies shared round number

The Wireless Synchronization Problem

Dolev, Gilbert, Guerraoui, Kuhn, Newport

- Jammers disrupt t channels
 - Assume t < C/2

Basic idea:

- In every round, choose a channel at random.
- Broadcast/listen according to specified distribution.
- Timestamps: how many rounds have you been trying.
 - If you ever receive a message from a process with a bigger timestamp, abort. Otherwise, become leader.

The Wireless Synchronization Problem

Dolev, Gilbert, Guerraoui, Kuhn, Newport

- Jammers disrupt t channels
 - Assume t < C/2

- Basic idea:

- In every round, choose a channel at random.
- Broadcast/listen according to specified distribution.

Epoch #	1	2	•••	n-1	n
Length	$\Theta(\log n)$	$\Theta(\log n)$		$\Theta(\log n)$	$\Theta(t \log n)$
Prob.	1/n	2/n	•••	1/4	1/2

The Wireless Synchronization Problem

Dolev, Gilbert, Guerraoui, Kuhn, Newport

- Jammers disrupt t channels
 - Assume t < C/2
- Basic idea:

- In every round, choose a channel [1..2t] at random.
- Broadcast/listen according to specified distribution.
- If you never abort, become the leader.
- Running time: O($t \log n + \log^2 n$)
 - Within loglog(n) of optimal.

The Wireless Synchronization Problem

Dolev, Gilbert, Guerraoui, Kuhn, Newport

- Jammers disrupt t channels
 - Assume t < C/2
 - What if t is unknown (and t < C/2)?

- More complicated variant:
 - If all the processes arrive at the same time, then running time: $O(t \log^3 n)$
 - Otherwise, running time: $O(C \log^3 n)$

Example: Key Establishment

- Two devices
 - No previous interactions
 - No pre-shared secrets
- Problem: jamming and interference
- Goal: agree on a shared secret key
 - Anti-jamming techniques rely on shared keys!

Jamming-resistant Key Establishment using Uncoordinated Frequency Hopping

Strasser, Pöpper, Čapkun, Čagalj

- Random frequency hopping
 - Sender and receiver choose random channels.
- Message transmission:
 - Secret fragments sent repeatedly to ensure delivery.
 - Secret may consist of Diffie-Hellman key...
- Secret reassembly:
 - Hash-chain structure ensures that the secret is correctly reassembled.

Open Questions

- Broadcast / Multicast
 - Preliminary results (Dolev, Gilbert, Khabbazian, Newport)
 - Multiple messages / throughput / capacity?
 - Network coding?
- Communication complexity
 - Many gossip / information exchange protocols use large messages.
 - Minimum number of bits needed to overcome jamming?

SDR Model of Dynamic Spectrum Access

- More powerful robustness techniques
 - Send and receive data in parallel
 - Adapt channel usage to optimize throughput
 - Estimate load / demand
 - Estimate link quality
 - Reduce contention faster

– Caveat:

 More powerful adversary can listen to many channels at the same time too. Better...

- · More robust?
 - Tolerate disruption
- · More secure?
 - Tolerate malicious users
- · More energy efficient?

Security

Malicious Users

- Denial of service
 - Disruption
 - Fake requests
- Byzantine users
 - Bad messages
 - Protocol disruption
- Compromised privacy
 - Eavesdropping and snooping

Secure Communication Over Radio Channels

Dolev, Gilbert, Guerraoui, Newport

- Authenticated Message Exchange
 - Sign messages: ensure that sender is who you think it is
 - Significantly reduce Byzantine threats
- Shared keys
 - Send Diffie-Hellman messages using AME
- Long-lived communication
 - Construct virtual secure channels among nodes
 - Enable secure communication

Authenticated Message Exchange

- Challenge:
 - Cannot identify source of message.
 - Only way to authenticate:
 - "I promise to send a message at 1pm on channel 7."
 - Fixed schedule => authentication
 - Fixed schedules are easy to jam!

Authenticated Message Exchange

- Idea: two phases
 - Phase 1: Broadcast data
 - Links are scheduled deterministically based on history.
 - Adversary can jam some subset.
 - Authentication achieved.
 - Phase 2: Feedback
 - Randomized frequency hopping for feedback.
 - Ensures efficient scheduling of future phases.

Authenticated Message Exchange

- Results: for | E | simultaneous message, all but t complete:
 - $C > t + 1 : O(|E| t^2 \log n)$
 - C > 2t : $O(|E| \log n)$
- Long-lived communication:
 - Setup: O($n t^3 \log n$)
 - Round emulation: $O(t \log n)$

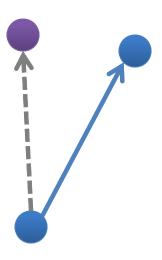
Security: 802.11 vs. SDR networks

What about...

- Secrecy via radio limitations?
 - Malicious users can only listen on some (but not all) channels?
- Authentication
 - Malicious users can only broadcast on a subset of channels?

Security: SDR networks

What about...


- Secrecy via radio limitations?
 - Malicious users can only listen on some (but not all) channels?
- Authentication
 - Malicious users can only broadcast on a subset of channels?
- Many open questions...

Better...

- · More robust?
 - Tolerate disruption
- · More secure?
 - Tolerate malicious users
- · More energy efficient?

How to save energy?

- Finish faster, send fewer messages
 - Broadcast / receiving costs energy
- Sleep more
 - Reduce active time
- Listen less
 - Overhearing is expensive
 - Avoid messages you don't want

Avoiding Unnecessary Messages

- Sleep more
 - No messages received when asleep.
 - Wastes (useful?) time
 - How to decide when to sleep without knowing which messages are being sent?

Avoiding Unnecessary Messages

- Extreme DSA:
 - Each process has its own dedicated channel.
 - Only listen on your own channel.
 - Never receive an unnecessary message
- Problems:
 - Too many channels.
 - More than one designated receiver?

Avoiding Unnecessary Messages

- Geographic Spectrum Partitioning:
 - Channels assigned based on geographic location.
 - Choose broadcast channel based on location of destination.
- Application:
 - Geo-routing
- Problems:
 - Requires location information (of self and neighbors)

How to save energy?

- Trade-off:
 - Number of channels used
 - Amount of energy
 - Robustness to interference
 - Power (and range)

Dynamic Spectrum Access

Two basic implementations:

- 802.11 networks
 - Existing hardware
 - Small number of channels
- Software Defined Radios
 - Experimental hardware
 - Still in development
 - Huge amounts of flexilibity

Dynamic Spectrum Access

Two basic flavors:

- Cooperative
 - All users tolerate non-exclusive access to the spectrum
- Non-cooperative
 - Some (primary) users require exclusive access.
 - Other (secondary) users must avoid primary users.
 - Tolerates legacy users.

Many open problems

Faster, more robust, more secure, more efficient:

- Broadcast, multicast, gossip
- Synchronization
- Overlay structures
 - Creation
 - Maintenance
- Shared memory (e.g., geographic data repository, GHT)
- Aggregation / data collection
- Contention resolution

Many open problems

Spectrum allocation problems

- Scheduling problems
 - Who should which channels when
 - Minimize overhead (guardbands)
 - Spectrum reallocation
- Energy optimization
 - Minimize number of channels used
 - Minimize overhearing

Challenges for next FOMC

*****-

- Models that capture DSA technology
- Techniques for addressing the problems of dynamic spectrum access.
- Algorithms that are faster and better...