Algorithms, Complexity Theory and Optimisation Series

New Techniques for Proving Fine-Grained Average-Case Hardness

24th March 2021, 16:30 add to calender
Andrea Lincoln
UC Berkeley

Abstract

In this talk I will cover a new technique for worst-case to average-case reductions. There are two primary concepts introduced in this talk: "factored" problems and a framework for worst-case to average-case fine-grained (WCtoACFG) self reductions.
We will define new versions of OV, kSUM and zero-k-clique that are both worst-case and averagecase fine-grained hard assuming the core hypotheses of fine-grained complexity. We then use these as a basis for fine-grained hardness and average-case hardness of other problems. Our hard factored problems are also simple enough that we can reduce them to many other problems, e.g. to edit distance, k-LCS and versions of Max-Flow. We further consider counting variants of the factored problems and give WCtoACFG reductions for them for a natural distribution.
To show hardness for these factored problems we formalize the framework of [Boix-Adsera et al. 2019] that was used to give a WCtoACFG reduction for counting k-cliques. We define an explicit property of problems such that if a problem has that property one can use the framework on the problem to get a WCtoACFG self reduction.
In total these factored problems and the framework together give tight fine-grained average-case hardness for various problems including the counting variant of regular expression matching. Based on joint work with Mina Dalirrooyfard and Virginia Vassilevska Williams.
add to calender (including abstract)

Additional Materials