
Implementation of a Dialogue Game for Persuasion
Over Action

Katie Atkinson, Trevor Bench-Capon and Peter McBurney
Department of Computer Science,

University of Liverpool,
Liverpool L69 3BX, UK

{k.m.atkisnon, tbc, p.j.mcburney}@csc.liv.ac.uk

Abstract

This report contains details of the implementation of a dialogue game protocol, named
the PARMA (Persuasive ARgument for Multiple Agents) protocol, realised in the
Java programming language. The protocol embodies an earlier theory by the authors
of persuasion over action. This theory enables participants to propose, defend, and
attack an action, or course of actions and the implementation allows two human
participants to engage in a computer mediated dialogue, in accordance with the
theory.

1. Introduction

In [5] we have previously presented a theory of rational persuasion over action where
the proponent of an action attempts to persuade another party to endorse this
particular action (or course of actions). We have gone on to implement this theory in
the form of a dialogue game written in the Java programming language, which we
will describe in detail in this report. In [1] we have previously specified the precise
locutions for stating, attacking and asking about a player’s position, according to our
protocol. This specification also gives details of the exact pre and post-conditions
associated with the players’ commitment stores, for each of the locutions set out in
this specification, the details of which can also be found in [1].

This report is structured as follows: Section 2 contains the analysis of the problem in
the form of a primitive class diagram. Section 3 gives details of the design for the
dialogue game, presented in the form of simplified UML style diagrams and tables
present ing summaries of fields, methods and constructors used in all classes. Section
4 presents a simple state transition diagram showing all the possible types of moves
that can be made at any given stage and this in turn leads to changes in the roles of the
participants, with respect to which player is assigned to the role of speaker and which
player is assigned to the role of hearer. Section 5 provides an evaluation of the
implemented game and a discussion of issues that have come to light through
implementing the game. Finally, Section 6 presents the conclusions and possibilities
for future work.

2. Analysis

Figure 1 below shows a primitive class diagram showing all the classes that are used
to implement the dialogue game, which embodies the PARMA protocol. The classes
are all represented in the form of simplified UML style diagrams.

Figure 1 - Primitive Class Diagram.

FileWriter

String

BufferedReader

Move

History

Game

CommitSt

Play

Given below are details of each of the individual classes shown in Figure 1. Each of
the UML style diagrams representing a class shows the fields, constructors and
methods that are used in each individual class.

2.1 History Class

2.2 Move Class

2.3 Game Class

History
private String[][] history

public History()

public void updateHistory(String, String)

public void legalUpdate(String)

public void illegalUpdate(String)

public void printHistory()

Move
private boolean movePossible

private String[] possibleMoves

private static final int LOWER_BOUND

private static final int ARRAY_LENGTH

public Move()

public void checkPossible(String, String, String, String, String, CommitSt, Game, History, Move)

public void successful(String, String, String, String, String, CommitSt, Game, History, Move)

Game
private String speaker

private String hearer

private String[] possibleMoves

public static BufferedReader keyboardInput

public Game()

public void firstMove(String, String, CommitSt, Game, History, Move)

public void turnFinished(String, String, String, String, String, CommitSt, Game, History, Move)

public void makeMove(String, String, String, String, String, CommitSt, Game, History, Move)

2.4 CommitSt Class

CommitSt
private String[][] play1ComSt

private String[][] play2ComSt

private String content

public static BufferedReader keyboardInput

public CommitSt()

public void answerAsk(String, String, String, String, String, CommitSt, Game, History, String, String,

 Move)

public void askAccept(String, String, String, String, String, CommitSt, Game, History, String, Move)

public void illegalMove(String, String, String, String, CommitSt, Game, History, String, History, String,

 Move)

public void legalAccept(String, String, String, String, String, CommitSt, Game, History, String, Move)

public void legalStateCirc(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalStateAction(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalStateConseq(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalStateLogCons(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalStatePurp(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyCirc(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyConseq(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyLogCons(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyPurp(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyInitCircExist(String, String, String, String, String, CommitSt, Game, History,

 Move)

public void legalDenyActExist(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyNewStateExist(String, String, String, String, String, CommitSt, Game, History,

 Move)

public void legalDenyGoalExist(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalDenyValueExist(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalAskCirc(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalAskAct(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalAskConseq(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalAskLogCons(String, String, String, String, String, CommitSt, Game, History, Move)

public void legalAskPur(String, String, String, String, String, CommitSt, Game, History, Move)

public String p1CheckDenial(String, String, String, String)

public String p2CheckDenial(String, String, String, String)

public void printComStores(String, String)

2.5 Play Class

2.6 String Class

2.7 BufferedReader Class

2.8 FileWriter Class

Play
public static BufferedReader keyboardInput

public Play()

public static void main(String[] args)

String

public boolean equals(String)

public int compareTo(String)

public String substring(int,int)

public int indexOf(int)

public String concat(String)

BufferedReader

public String readLine()

FileWriter

public void close()

public void write(String)

3. Design

Presented below are tables giving a summary of all fields, constructors and methods
used in each class of the implementation. Each table explains the purpose and
interaction of all the elements in the individual classes. The tables all follow the
format used by Sun to describe the Java API, which can be found at:
http://www.java.sun.com/reference/api/index.html

3.1 History Class

Field Summary

private String[][] History

 A private instance field which is a 2D array to store the history
of the game containing info about who made the move, the
locution name, the legal status of the commitment and its
content.

Constructor Summary

History()

 Constructs an instance of the class History.

Method Summary

public void updateHistory(String speaker, String move)

 Method to update the first three elements of the history array
and takes the speaker and the move as arguments.

public void legalUpdate(String contents)

 Method to update certain elements of the history once a move
has been proved to be legal and takes the content of the move as
an argument.

public void illegalUpdate(String contents)

 Method to update certain elements of the history once a move
has been proved to be illegal and takes the content of the move as
an argument.

public void printHistory()

 Method to print the history array on screen and to file once the
game has ended.

3.2 Play Class

Field Summary

public static BufferedReader keyboardInput

 An class instance to facilitate input from the input
stream

Constructor Summary

Play()

 Constructs an instance of the class Play.

Method Summary

public static void main(String[] args)

 Main method to get the names of the two players, assign these
to a speaker and hearer role, create new instances of Game,
CommitSt, History, Move and call the firstMove method to get
the speaker’s first move.

3.3 Move Class

Field Summary

private Boolean movePossible

 A private instance field to hold the boolean variable to say
whether a move is possible or not.

private String[] possibleMoves

 An array of Strings to ho ld all the locutions that it is
possible to utter in this game.

private static final int LOWER_BOUND

 A class constant to hold the lower bound of the array index
private static final int ARRAY_LENGTH

 A class constant to hold the length of the possibleMoves[]
array

Constructor Summary

Move()

 Constructs an instance of the class Move.

Method Summary

public void checkPossible(String move, String speaker, String hearer, String play1,

String play2, CommitSt newComSt, Game newGame, History newHist, Move

newMove)

 Method to check that the move tha t has been chosen is a possible
move in this game and thus is in the possibleMoves[] array.

public void successful(String move, String speaker, String hearer, String player1, String

player2, CommitSt comSt, Game game, History histo, Move moveInst)

 Method using selection statements to call the appropriate method to
check the legality of the move, depending upon which move has been
chosen.

3.4 Game Class

Field Summary

private String speaker

 A private instance field to hold the name of the
player assigned to the speaker role.

private String hearer

 A private instance field to hold the name of the
player assigned to the hearer role.

private String[] possibleMoves

 An array of Strings to ho ld all the locutions that it is
possible to utter in this game.

public static BufferedReader keyboardInput

 An class instance to facilitate input from the input
stream

Constructor Summary

Game()

 Constructs an instance of the class Game.

Method Summary

public void firstMove(String player1, String player2, CommitSt cs, Game dg, History his,

Move mov)

 Method, used only once in each game, to assign players to speaker
and hearer roles and read in the first move.

public void turnFinished(String hearer, String speaker, String play1, String play2,

CommitSt comS, Game gme, History hi, Move mo)

 Method to check if the current speaker has finished their turn or not
and if they have finished then swap the speaker and hearer over.

public void makeMove(String speaker, String hearer, String player1, String

player2, CommitSt comStore, Game theGame, History theHist, Move

theMove)

 Method to read in the speaker’s chosen move which in turn calls the
checkPossible method to check if the move read in is a possible move
in this game.

3.5 CommitSt Class

Field Summary

private String[][] play1ComSt

 A 2D array to hold player 1's commitment store and
it consists of a locution name, status of commitment
and content of commitment.

private String[][] play2ComSt

 A 2D array to hold player 2's commitment store and
it consists of a locution name, status of commitment
and content of commitment.

private String content

 A String to hold the content of the speaker’s move.
public static BufferedReader keyboardInput

 An class instance to facilitate input from the input
stream.

Constructor Summary

CommitSt()

 Constructs an instance of the class CommitSt.

Method Summary

public void legalStateCirc(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘state circumstances’
move. If they hold then update the history and the player’s
commitment store, print them on screen and call the turnFinished
method to see if they have finished their turn. If the pre-conditions do
not hold call the illegalMove method.

public void legalStateAction(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘state action’ move. If
they hold then update the history and the player’s commitment store,
print them on screen and call the turnFinished method to see if they
have finished their turn. If the pre-conditions do not hold call the
illegalMove method.

public void legalStateConseq(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘state consequences’
move. If they hold then update the history and the player’s
commitment store, print them on screen and call the turnFinished
method to see if they have finished their turn. If the pre-conditions do
not hold call the illegalMove method.

public void legalStateLogCons(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘state logical
consequences’ move. If they hold then update the history and the
player’s commitment store, print them on screen and call the
turnFinished method to see if they have finished their turn. If the pre-
conditions do not hold call the illegalMove method.

public void legalStatePurp(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘state purpose’ move. If
they hold then update the history and the player’s commitment store,
print them on screen and call the turnFinished method to see if they
have finished their turn. If the pre-conditions do not hold call the
illegalMove method.

public void legalDenyCirc(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘deny circumstances’
move by calling the p1CheckDenial/p2CheckDenial method. If they
hold then update the history, the player’s commitment store to contain
the denial made on one the opposing player’s commitments and call
the askAccept method to ask the opposing player if they accept the
denial made. If the pre-conditions do not hold call the illegalMove
method.

public void legalDenyConseq(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘deny consequences’
move by calling the p1CheckDenial/p2CheckDenial method. If they
hold then update the history, the player’s commitment store to contain
the denial made on one the opposing player’s commitments and call
the askAccept method to ask the opposing player if they accept the
denial made. If the pre-conditions do not hold call the illegalMove
method.

public void legalDenyLogCons(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘deny logical
consequences’ move by calling the p1CheckDenial/p2CheckDenial
method. If they hold then update the history, the player’s
commitment store to contain the denial made on one the opposing
player’s commitments and call the askAccept method to ask the
opposing player if they accept the denial made. If the pre-conditions
do not hold call the illegalMove method.

public void legalDenyPurp(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘deny purpose’ move by
calling the p1CheckDenial/p2CheckDenial method. If they hold then
update the history, the player’s commitment store to contain the
denial made on one the opposing player’s commitments and call the
askAccept method to ask the opposing player if they accept the denial
made. If the pre-conditions do not hold call the illegalMove method.

public void legalDenyInitCircExist(String move, String hearer, String speaker,

String play1, String play2, CommitSt cs, Game dGame, History hist,

Move mMove)

 Method to check the pre-conditions of the ‘deny initial
circumstances exist’ move by calling the
p1CheckDenial/p2CheckDenial method. If they hold then update the
history, the player’s commitment store to contain the denial made on
one the opposing player’s commitments and call the askAccept
method to ask the opposing player if they accept the denial made. If
the pre-conditions do not hold call the illegalMove method.

public void legalDenyActExist(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘deny action exists’
move by calling the p1CheckDenial/p2CheckDenial method. If they
hold then update the history, the player’s commitment store to contain
the denial made on one the opposing player’s commitments and call
the askAccept method to ask the opposing player if they accept the
denial made. If the pre-conditions do not hold call the illegalMove
method.

public void legalDenyNewStateExist(String move, String hearer, String speaker,

String play1, String play2, CommitSt cs, Game dGame, History hist,

Move mMove)

 Method to check the pre-conditions of the ‘deny resultant state
exists’ move by calling the p1CheckDenial/p2CheckDenial method.

If they hold then update the history, the player’s commitment store to
contain the denial made on one the opposing player’s commitments
and call the askAccept method to ask the opposing player if they
accept the denial made. If the pre-conditions do not hold call the
illegalMove method.

public void legalDenyGoalExist(String move, String hearer, String speaker,

String play1, String play2, CommitSt cs, Game dGame, History hist,

Move mMove)

 Method to check the pre-conditions of the ‘deny goal exists’ move
by calling the p1CheckDenial/p2CheckDenial method. If they hold
then update the history, the player’s commitment store to contain the
denial made on one the opposing player’s commitments and call the
askAccept method to ask the opposing player if they accept the denial
made. If the pre-conditions do not hold call the illegalMove method.

public void legalDenyValueExist(String move, String hearer, String speaker,

String play1, String play2, CommitSt cs, Game dGame, History hist,

Move mMove)

 Method to check the pre-conditions of the ‘deny value exists’ move
by calling the p1CheckDenial/p2CheckDenial method. If they hold
then update the history, the player’s commitment store to contain the
denial made on one the opposing player’s commitments and call the
askAccept method to ask the opposing player if they accept the denial
made. If the pre-conditions do not hold call the illegalMove method.

public void legalAskCirc(String move, String hearer, String speaker, String play1,

String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘ask circumstances’ move
by asking the player to enter the topic which they are inquiring about
and checking that they do not already have commitments on this
topic. If these pre-conditions hold then update the history and call the
answerAsk method to ask the opposing player to respond to the
request for information. If the pre-conditions do not hold call the
illegalMove method.

public void legalAskAct(String move, String hearer, String speaker, String play1,

String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘ask action’ move by
asking the player to enter the topic which they are inquiring about and
checking that they do not already have commitments on this topic. If
these pre-conditions hold then update the history and call the
answerAsk method to ask the opposing player to respond to the
request for information. If the pre-conditions do not hold call the
illegalMove method.

public void legalAskConseq(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘ask consequences’ move
by asking the player to enter the topic which they are inquiring about
and checking that they do not already have commitments on this
topic. If these pre-conditions hold then update the history and call the
answerAsk method to ask the opposing player to respond to the
request for information. If the pre-conditions do not hold call the
illegalMove method.

public void legalAskLogCons(String move, String hearer, String speaker, String

play1, String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘ask logical
consequences’ move by asking the player to enter the topic which
they are inquiring about and checking that they do not already have
commitments on this topic. If these pre-conditions hold then update
the history and call the answerAsk method to ask the opposing player
to respond to the request for information. If the pre-conditions do not
hold call the illegalMove method.

public void legalAskPur(String move, String hearer, String speaker, String play1,

String play2, CommitSt cs, Game dGame, History hist, Move

mMove)

 Method to check the pre-conditions of the ‘ask purpose’ move by
asking the player to enter the topic which they are inquiring about and
checking that they do not already have commitments on this topic. If
these pre-conditions hold then update the history and call the
answerAsk method to ask the opposing player to respond to the
request for information. If the pre-conditions do not hold call the
illegalMove method.

public void illegalMove(String speaker, String hearer, String play1, String play2,

CommitSt cs, Game dGame, History hist, String move, Move

mMove)

 Method to inform the players when they have tried to make an
illegal move. Updates the history to show an illegal move has been
made and by who, informs the player that they have made an illegal
move and calls the makeMove method to ask the user to choose a
legal move.

public void answerAsk(String moveMade, String hear, String speak, String p1,

String p2, CommitSt comSto, Game theGame, History his, String

contents, String rep, Move mMove)

 Method to let the speaker reply to the ‘ask’ move just previously

made by the other player. If they reply with a ‘state’ move call the
successful move to check the move is legal. If they reply with ‘don’t
know’ update their commitment store to state that there’s no
commitment made on this point then ask them if they’ve finished
their turn. If they choose ‘exit’ inform them that the game has ended
and call the methods to print the history and commitment stores to file
and to the screen then exit the game. If the player doesn’t choose a
valid response ask them to re-enter their choice and choose a valid
response.

public void askAccept(String moveMade, String hear, String speak, String p1,

String p2, CommitSt comSto, Game theGame, History his, String

contents, Move mMove)

 Method to ask the speaker whethe r or not they accept the denial
just made on an element of their position. If they accept the denial
then call the legalAccept method to check the legality of this move. If
they reject the denial then inform them that disagreement has been
reached and therefore the game cannot continue and call the methods
to print the history and commitment stores to file and to the screen
then exit the game. If the player doesn’t choose a valid response ask
them to re-enter their choice and choose a valid option.

public void legalAccept(String move, String hearer, String speaker, String play1,

String play2, CommitSt cs, Game dGame, History hist, String

content, Move mMove)

 Method to check the pre-conditions of the ‘accept denial’ move. If
the pre-conditions hold update the history and commitment stores
then ask the player if they have finished their turn. If the pre-
conditions do not hold call the illegalMove method.

public void printComStores(String player1, String player2)

 Method to print the player's commitment stores on screen and to
file once the game has ended.

public String p1CheckDenial(String move, String aga inst, String speaker, String

hearer)

 Method to let player 1 enter the content of an attack and check that
player 2’s commitment already contains this content, when player 1 is
making a ‘deny’ move. If the content’s do not match ask player 1 to
re-enter the content and ensure it is something player 2 is already
committed to. If the contents do match return this as a String.

public String p2CheckDenial(String move, String against, String speaker, String

hearer)

 Method to let player 2 enter the content of an attack and check that
player 1’s commitment already contains this content, when player 2 is
making a ‘deny’ move. If the content’s do not match ask player 2 to
re-enter the content and ensure it is something player 1 is already
committed to. If the contents do match return this as a String.

Summary tables for the pre-defined String, FileWriter and BufferedReader classes can
been found in the Java API documentation at:
http://www.java.sun.com/reference/api/index.html

5. State Transition Diagram

Figure 2 below shows a simple state transition diagram for the protocol. It shows the
types of moves that the players can make and the choice of move which is then
available in the new state. It also shows the moves that lead to the roles of speaker
and hearer being switched and how the game can terminate. The diagram does not
show the specific details of all moves that can be made, only the types of moves e.g.
‘state’, ‘deny’, ‘ask’, etc.

Figure 2 - State Transition Diagram for PARMA Dialogue Game Protocol

Enter
Game

Propose

Respond to
question

Attack

Respond to
attack

End

Game

‘state’
move

‘ask’
move

‘end
 turn’

‘ask’
move

‘refuse
to answer’

‘reject
 denial’

‘state’
move

‘deny’
 move

‘accept
 denial’

‘state’
move

‘leave
 game’

‘leave
 game’

change
speaker

change
speaker change

speaker

‘state’
move

6. Evaluation and Discussion

6.1 General Evaluation

The implementation of the dialogue game specified above has successfully been
completed. The completed code allows two human players to play the game, in
accordance with the given specification. However, there are a number of issues
which came to light through implementing the dialogue game. Many issues which
were encountered throughout the implementation forced us to re-evaluate the design
to incorporate changes which we thought were necessary. There were also many
issues which we encountered but chose not to incorporate into the design or to
implement. There are a number of reasons for this; first and foremost there are more
possible implementations of the game than we first anticipated and we felt that a well
defined application context was needed to motivate the choice of possibilities to
realise; secondly, we encountered a number of issues that require further theoretical
discussion, as there are a number of possible solutions to these issues and currently
we are unsure about which solutions are the most appropriate.

The rest of this evaluation section is divided up into points that we see as falling into
one of five categories, namely; General Insights, Specific Specification Errors, Under
Specification/Unanticipated Possibilities, Implementation Simplifications and an
Additional Point for Discussion, all of which are described in detail below.

General Insights

6.2 Pre-Conditions and Post-Conditions

One of the most fundamental differences which immediately came to light when
starting to implement the dialogue game was the difference between the original
specification of the pre and post-conditions in the design and how we actually
implemented them.

The major difference which occurred in all the ‘state’ locutions was the pre-condition
of set membership. In the design the pre-conditions contained the rule that when
committing to some element of a position, the speaker must be committed to the fact
that the element exists in the set of possible elements. However, when implementing
the game it became apparent that this should not be a pre-condition, but actually a
post condition of making one of the ‘state’ locutions. For example, when making the
‘state circumstances (R)’ act the specification stipulated that in order for this act to be
legally made the speaker must already be committed to the fact that R exists in the set
of possib le circumstances. However, when implementing this we realised that this
should be changed from a pre-condition to a post-condition in all the ‘state’ locutions.
This means that when the speaker makes the ‘states circumstances’ move, if it is legal,
then their commitment store is updated to contain the fact that they implicitly commit
to R existing in the set of possible circumstances, as well as being committed to the
propositional content of ‘state circumstances (R)’. Commitments to elements existing
in the set of possible elements are never explicitly made by the speaker in the course
of a game, as they are only ever added implicitly to the commitment stores when a

speaker makes a ‘state’ act. Such ‘set membership’ commitments can however be
explicitly attacked, as was set out in the original specification and design of the
dialogue game.

The reason that this issue arose was due to there being a difference in perspective.
Commitment to a proposition is a pre-condition for sincerely uttering it, so the player
will see this as a pre-condition, and this is what we specified in the original
specification. Uttering the proposition allows observers (assuming sincerity) to infer
commitment, so as far as the public commitment store is concerned this is a post-
condition. The dialogue game protocol is conducted from the point of view of the
referee so we altered the specification to reflect this.

6.3 Relationship Between Elements in a Player’s Position

The implementation of the game does not explicitly tie together the elements of the
players’ positions. By this we mean that there are no data structures to hold all the
individual elements (i.e. the R, A, S, G, V, D) of a player’s position. Instead, the
content of a move is associated with the type of move which commits the player to the
content. For example, when making the ‘state consequences (A,R,S)’ move there are
no data structures to hold data for the A, R, and S individually. Instead, the move has
a natural language content associated with it which reveals what the A, R and S
represent. The reason we chose to implement the content of moves in this way was to
make it easier to use and more understandable for human players, as this approach is
closer to natural language. However, if this game was to be automated we would
have to change this representation to some appropriate logic in order for it to be
useable by autonomous agents.

The above point also raises another matter relating to how the attacks are used by the
players. The code does not check associations between elements of a position and
instead it leaves this to the participants. For example, a player could legally have the
following moves in their commitment store:

Move Status Content

state circumstances 1 (It is raining outside)
circ exist 1 (It is raining outside exists in the set of

possible circumstances)
state action 1 (Take an umbrella if you go out)
act exist 1 (Take an umbrella exists in the set of

possible actions)
state consequences 1 (The price of bread will rise)
state exist 1 (The price of bread will rise exists in the

 set of possible resultant states)

The above commitments will all be legally accepted in the game. However, it is
obvious to see that the cost of bread has nothing to doing with it raining outside and
taking an umbrella out. Therefore, it is the duty of the opposing player to point out
this inconsistency in the form of an attack. We could have implemented the program

to disallow such unrelated topics to be discussed in this way but, that would be hard
coding the attacks and we want the players to recognise inconsistencies so they will
enforce the attacks themselves and not have the code imposing this.

The game is understood in syntactic terms and therefore the players must be
responsible for the semantic content being relevant (as in natural dialogues), unless
the referee were to be omniscient, which could be appropriate in some contexts. In
order to aid the communication process we expect players of the game to follow
sensible and helpful principles, such as the maxims set out by Grice in [6].

Specific Specification Errors

6.4 Denials on Set Membership

This point is related to the previous comments on attacking a player’s ‘set
membership’ commitments. When implementing the ‘deny’ locutions, we realised
that we had omitted a post-condition of making these moves. The specification did
not include anything to say that when a player successfully makes a denial on the
existence of an element and the opposing player accepts this, the original commitment
to that element should also be altered. For example, a player could have the following
in their commitment store:

Move Status Content

state action 1 Let’s catch the 2.30pm train
action exists 1 Catching the 2.30pm train exists in the
 set of possible actions

The opposing player can make the ‘deny action exists’ attack to state that they believe
that ‘Catching the 2.30pm train’ does not exist in the set of possible actions (because
the time is now 2.45pm, for example). If the first player accepts this then their
commitment store is updated as follows:

Move Status Content

accept non existence -1 Let’s catch the 2.30pm train
accept denial -1 Catching the 2.30pm train exists in the
 set of possible actions

When making such an attack, the original specification did not contain the post-
condition of changing the ‘state action’ move to an acceptance of a denial, as well as
changing the ‘action exists’ move to the acceptance of a denial. This is clearly needed
because if a player is committed to the non existence of an element then they cannot
be committed to a proposition about it. So, the denial of possibility entails the denial
of truth.

6.5 Omission of an Attack in the Underlying General Theory of
Persuasion

After implementing and testing the game it came to our attention that there seems to
be an attack missing from the original theory upon which the game is based. Namely,
we believe that attack 1: “R is not the case” has a variant which executes the attack
with a different degree of force, as is the case for the other three main forms of attack
in the theory. As well as having the attack “R is not the case”, which we shall call
attack 1a, we believe that the following attack should also be included in the theory:

attack 1b: “R is not the case and there is a circumstance Q ? States, where R ? Q,
such that Q is the case”.

The implementation brought this omission to light and the code now allows for this
attack to be made in the game. We have also now added this attack to our general
theory.

Under Specification/Unanticipated Possibilities

6.6 Next Available Moves

One considerable unforeseen problem that we encountered involved presenting the
players with a list of the next available moves that they could legally make, once a
new commitment has been accepted. In the specification for the game we identified a
list of next available moves to accompany each locution that has been legally made.
However, we now realise that we failed to take into consideration the fact that when
playing the game the list is not as linear as we first thought. For example, when the
speaker makes a ‘state action (A1)’ move then the only move that this speaker can go
on to make next is the ‘state consequences (A1,R1,S1)’ move, according to the original
specification of the game. However, this is not the case for a number of reasons.

Firstly, the speaker can go on to make a ‘state action (A2)’ move or a ‘state
circumstances (R2)’ move, as the speaker may make multiple statements about
individual elements within their position.

Secondly, if the speaker has already made the ‘state consequences (A,R,S)’, ‘state
logical consequences (S,G)’ or the ‘state purpose (G,V,D)’ move previously in the
game then they can legally repeat any of these moves (as long as the repeated moves
contain different propositional content from the original moves).

Thirdly, the specification also documented the list of moves which are available to the
attacker, should they wish to make an attack on the element of the position which has
just been stated. We also found these lists to be incorrect when implementing the
game. This is due to the fact that a speaker can make multiple statements about their
position in one turn. For example, a speaker can make the ‘state circumstances (R)’
move, the ‘state action (A)’ move and the ‘state consequences (A,R,S)’ move all in
one turn before the hearer has a chance to respond to the first element, i.e. the
speaker’s ‘state circumstances (R)’ move. This means that the list of moves which is

available to the hearer, once the speaker has finished their turn, must take into account
the fact that all elements stated by the speaker can now be attacked.

All these points obviously show that the ‘next available moves’, detailed in the
original specification, failed to take the above facts into account. We became aware
of the above issues, with regards to the next available moves, whilst implementing the
dialogue game. However, we decided against presenting the list to the users in the
implementation, as it would offer them little help due the fact that the list would be so
large. Natural dialogue contains a great degree of flexibility and if the same degree of
flexibility is allowed in a dialogue game, then the choice of moves is so extensive that
little support can be given. Particular games should therefore limit choice, so that the
user is forced to make a sensible move, even at the cost of disallowing some perfectly
natural moves. For now, we just note that the next available moves are entirely
defined by the pre-conditions of the individual locutions.

6.7 Repeated Statement of Attacked Commitments

The previous point of accepting denials on commitments raised another issue which
we had not previously accounted for in the design for the game, namely disallowing a
player to repeatedly commit to some specific proposition after having previously
accepted an attack on that commitment, which resulted in the player being committed
to the negation of the original commitment. The design did not specifically prohibit
this which means that cycles could occur in the dialogue, leading to infinite repetition
of locutions, which would result in the dialogue being interminable. This is obviously
a scenario which is undesirable. But, if a natural dialogue is allowed to take place then
the repetition of statements also needs to be permitted, as in natural dialogue people
do often make such unhelpful moves. However, we do believe that this should be
disallowed in a computer controlled game and therefore it would be desirable to
include termination rules in our protocol to ensure that repeated statements are not
infinitely made.

6.8 ‘Ask’ Locutions

Implementing the ‘ask’ locutions proved to be quite a difficult task due to the fact that
we now believe that the specification of the pre-conditions for all the ‘ask’ moves was
incorrect, with respect to the amount of freedom we wished to give the players with
these moves. The original specification stated that the pre-conditions of all the ‘ask’
moves were that the speaker making the ‘ask’ move was not already committed to
some circumstances. However, it was decided that even if a speaker is already
committed to a particular element of a position they should be allowed to go on and
ask about that element (for example, “what are the consequences of breaking the
law?”) in the future course of the game, as long as the propositional content they are
enquiring about does not already exist as a commitment in their commitment store
(for example, they don’t already have some commitment in their commitment store
which relates to their views on the consequences of breaking the law). This issue
came to light as we realised that it is possible to tell the truth, but not the whole truth,
even if this retention of information is not intended. Originally we saw people as

making complete statements. This, however, is not natural. Moreover, it is the
audience rather than the speaker who should judge relevance. Therefore, we have
changed both the design and the implementation to incorporate these altered pre-
conditions to allow for the possibility of asking for additional information. We also
implemented a change in control of the dialogue immediately after a legal ‘ask’ move
has been made in order to force the hearer to immediately respond to the ‘ask’, with
the possible responses being either; the statement of the particular element, a ‘don’t
know’ response, or the option to leave the game.

6.9 ‘Deny’ Moves in Commitment Stores

The specification of the dialogue game did not include the insertion of ‘deny’ moves
into the commitment stores of the players. However, we did include this feature in
the implementation. During the specification stage we thought it only necessary to
include the ‘deny’ moves in the history of the dialogue but, after reconsidering this
point we thought it would also be necessary to include them in the player’s
commitment stores. The reason for this is that in denying an element of a position, a
player is making a commitment to the negation of an element of their opponent’s
position. This is very different from committing outright to the negation of the
proposition, without making a ‘deny’ move, but making a ‘state’ move instead. For
example, player 1 could have the following in their commitment store:

Move Status Content

state circumstances 1 It is raining outside

which reads: “I am committed to the circumstance ‘It is raining outside’”.

Player 2 could then make a ‘deny circumstances’ attack on the above commitment
and if it is legal then player 2’s commitment store will be updated as follows:

Move Status Content

deny circumstances 1 It is raining outside

which reads: “I am committed to denying the circumstance ‘It is raining outside’”.

This is very different from stating the circumstance ‘It is not raining outside’, which
would make the player’s commitment store as follows:

Move Status Content

state circumstances 1 It is not raining outside

There is an obvious difference between the above two statements and we believe it to
be important to make this distinction obvious in the commitment stores. It becomes
an even more important point when classifying the game in terms of the attacks listed
in our general theory of persuasion. According to the game’s specification, the
attacks are made up of mixtures of ‘deny’ moves and ‘state’ moves so it is important
to see when inspecting the player’s commitment stores that it is obvious which moves
were actually denials on the opposing player’s position and not just the statement of
the opposite of the opponent’s commitment.

The above point also brings to light another difficulty regarding semantics in the
implementation. If a player makes a commitment to some proposition and the
opposing player disagrees with this commitment they should then make a ‘deny’
move. However, there is nothing in the implementation to stop the opposing player
just stating the opposite, rather than making a denial. This is recording the difference
between a volunteered denial and a denial in response to a challenge. To illustrate
this, again using the above example, player 1 might have the following commitment
in their commitment store:

Move Status Content

state circumstances 1 It is raining outside

Player 2 may disagree with this and therefore they should make the ‘deny
circumstances’ move with ‘It is raining’ as the content. However, there is nothing in
the code to stop player 2 just stating the opposite of player 1 i.e. making the ‘state
circumstances’ move with the content ‘It is not raining’. This obviously poses a
problem when analysing what is and what isn’t an attack. The problem has arisen due
to the fact that this game (as well as many other dialogue games) attaches labels to
statements made by the players, whereas in natural language we usually recognise
when someone is making an attack on our views without having to explicitly state
what they are doing. We are therefore relying on the goodwill of the players to
choose the appropriate moves in accordance with how the rules and incentives of the
protocol work.

6.10 Context Dependence

The points made in the above section also led us to believe that the game is more
context dependant than we first thought. The language that is used by two people
having a conversation varies greatly depending upon the situation, the topic of
discussion and the relationships between the players. For example, in a court of law
statements are usually explicitly and fully stated to try and eliminate the possibility of
ambiguity and attacks on positions are likely to be more explicit too. Conversely,
when two people are having an everyday conversation about a trivial topic, such as
the weather, then they tend to be more ambiguous and use less explicit language.
Again, this is concerned with the flexibility of natural dialogue being opposed to the
ability to infer things about the dialogue. As mentioned in the above subsection, the
game does rely on the goodwill of the players to stick to the rules of the protocol, as

not all rules are explicitly checked by the program. This would obviously make the
program unsuitable for use in a domain such as the legal one, where players cannot be
relied upon to adhere to the rules.

We have specified two different versions of the game; a loose game and a strict game.
We have implemented the strict version and this still relies upon the users’ goodwill,
to a small extent, to ensure that the game proceeds accordingly. This has led us to
realise that it may be necessary to have even more strict pre-conditions for certain
moves if the game was to be used in a necessarily strict domain, such as the legal one.
The best choice of restrictions on unfettered choice needs to be made against
consideration of the context. Different contexts will urge different choices.

Implementation Simplifications

6.11 Retraction of Commitments

Before the implementation of the game commenced, we were not entirely sure how
we were going to deal with the concept of retracting commitments. In the
specification we proposed to have a ‘retract’ locution to enable the participants to
retract commitments that had been defeated by an attack. However, when coding the
‘deny’ locutions we decided not to include the ‘retract’ locution. We dealt with this
issue in a different manner in order to allow the players’ commitment stores to display
more descriptive information about the acceptance of denials on a particular element
of a player’s position. To do this we had to hard code stricter control of the moves
that can be made when a player makes a ‘deny’ locution. To clarify, when a player
legally makes a ‘deny’ locution, control is immediately passed to the other player to
force them to respond to the attack. At this point they must either accept the denial or
reject it, and if they reject it then the game terminates with conflict on that point. If
the denial is accepted then the player’s commitment is not taken out of their
commitment store but it is overwritten. This involves changing the status of the
commitment from a 1 (which indicates that a player is committed to a proposition) to
a -1 (which indicates that a player is committed to the negation of a proposition), as
well as changing the name of the move that brought about the commitment to the
proposition in question. For example, player 1 could have the following commitment
in their commitment store:

Move Status Content

state circumstances 1 It is raining outside

which reads: “I am committed to the circumstance ‘It is raining outside’”.

Player 2 could then make a ‘deny circumstances’ attack on the above commitment
and if this is accepted by player 1, then player 1’s commitment store will be updated
as follows:

Move Status Content

accept denial -1 It is raining outside

which reads: “I accept the denial made upon this state circumstances move and I am
now committed to the negation of the circumstance ‘It is raining outside’”.

So, by altering a commitment’s status and name we can see which commitments have
been challenged and accepted. This eliminates the need for retraction and also gives
us more descriptive commitment stores, which may in turn be useful in future work
examining strategies that players could use to persuade the opposition into accepting
an attack.

If the status of a commitment is left hanging, then choice proliferates. Dialogue
games which require explicit change of focus do become rather complicated, as can
be seen in [3], compared to the useful simplification of games such as Two Party
Immediate Response disputes, as detailed in [4]. We chose to simplify matters in our
protocol by demanding an immediate resolution of the status of a proposition under
challenge and this eliminates the need for a focusing mechanism.

Additional Point of Discussion

6.12 An Alternative Implementation

After reflecting on some of the issues previously raised in this section, we have
concluded that the implementation considered here poses many problems for casual
users of the system. In order to correctly follow the protocol the users must have
prior knowledge of the underlying theory of persuasion. If they do not have prior
knowledge of the theory then they will be unable to recognise which locutions need to
be chosen in order to realise the correct attack, in a given situation. The users must
also be familiar with the names and meanings of the locutions used to represent the
statement and denial of a position. As well as these usability problems, we mentioned
in the previous section that the dialogue game does rely somewhat on the goodwill of
the players to follow the protocol, as it is not always strictly enforced by the actual
program.

Some of these problems have arisen due to the amount of freedom of expression
afforded by the program and this leaves the users with an overwhelming variety of
options to select between. All these points related to problems with the usability of
the program are obviously undesirable. Therefore, we have addressed these issues by
going on to implement our theory of persuasion in an entirely different format.

We have developed an online discussion forum, named PARMENIDES (Persuasive
ArguMENt In DEmocracieS) which allows a much simpler form of interaction to take
place. The user is guided through a series of web pages in order to elicit their views
on a particular topic, in accordance with our theory. The user interaction occurs
through a simple web based interface which guides them in a structured fashion
through a justification of an action, giving opportunities to disagree at selected points.

Each of these disagreements represents one of the attacks from our theory of
persuasion, so the exact nature of the disagreement can be unambiguously identified.
By constraining the choice of the user in such a way, the need for them to understand
the underlying argumentation scheme and thus select the correct moves is removed.
The users’ responses are written to a database so we are able to gather and analyse the
information in order to identify what points of the argument are more strongly
supported than others.

This system has been successfully implemented and we are satisfied that it overcomes
many of the usability problems presented by the Java program, which have been
highlighted in this section. Details of the PARMENIDES online discussion forum
can be found in [2].

7. Conclusions

This report has presented an implementation of the PARMA protocol, a dialogue
game protocol previously proposed by the authors. Implementing the dialogue game
has proved to be a very useful task as we have shown that our general theory of
persuasion can be conducted via computer mediated dialogues of this form. There are
still some alterations to be made to the code to improve it but, to date all the important
elements of the underlying theory are included in the implementation.

This implementation has also raised a number of interesting issues in relation to our
underlying argumentation scheme, as well as leading us to what we believe is an
improved alternative implementation, in the form of the PARMENIDES system
detailed above. We now intend to focus on this system to extend our theory and
implementation further. We hope to include other elements, such as counter attacks
(which have not yet been explored) and allow the construction of positive alternative
arguments, as the system currently focuses on the negative criticism of arguments.

To conclude we summarise the three main general insights which have arisen through
our evaluation of the implemented dialogue game protocol:

1) The referee cannot use pre-conditions based on mental states of the
participants: he infers these from the moves the players make.

2) Natural dialogue is very flexible. Giving support requires constraints and
what constraints are appropriate depends on context and purpose.

3) Goodwill and some co-operation is required to make sensible progress and this
is again due to the fact that natural dialogue is so flexible.

References

[1] K.M. Atkinson, T.J.M Bench-Capon and P.J. McBurney (2004). A Dialogue
 Game Protocol for Multi-Agent Argument over Proposals for Action. In
 submission.

[2] K.M. Atkinson, T.J.M Bench-Capon and P.J McBurney (2004). PARMENIDES:
 Facilitating Democratic Debate. In Proc. Third Intern. Conf. eGovernment
 (EGOV-2004), Zaragoza, Spain. Springer, LNCS, Berlin. To appear.

[3] T.J.M. Bench-Capon, T. Geldard, and P.H. Leng (2000), A method for the
 computational modelling of dialectical argument with dialogue games. Artificial
 Intelligence and Law, Vol 8, pp 233-254.

[4] P.E. Dunne and T.J.M. Bench-Capon (2003). Two party immediate response
 disputes: Properties and Efficiency. Artificial Intelligence, Vol 149 No 2 pp 221-
 50.

[5] K.M Greenwood and T.J.M. Bench-Capon and P.J. McBurney (2003). Towards
 a computationa l account of persuasion in law. In Proc. Ninth Intern. Conf. AI and
 Law (ICAIL-2003), 22-31, ACM Press: New York, NY, USA.

[6] H. Grice (1975). Logic and Conversation. In P.Cole and J.L. Morgan, editors,
 Syntax and Semantics III: Speech Acts, pp41-58. Academic Press, New York
 City, NY, USA. Originally presented as part of the William James Lectures at
 Harvard University in 1967.

