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Abstract

In this paper, we consider a tractable sub-class of propositional linear time temporal logic, and provide a complete
clausal resolution calculus for it. The fragment is important as it captures sinipla Butomata. We also show

that, just as the emptiness check for iacBi automaton is tractable, the complexity of deciding unsatisfiability,

via resolution, of our logic is polynomial (rather than exponential). Consequentlyichi Butomaton can be
represented within our logic, and its emptiness can be tractably decided via deductive methods. This may have
a significant impact upon approaches to verification, since techniques soaidascheckingnherently depend

on the ability to check emptiness of an appropriateli automaton. Thus, we also discuss how such a logic
might form the basis fopractical deductive temporal verification.

1 Introduction

It is widely recognised thatodel checkings the most appropriate verification method for (finite state) sys-
tems. Yet there are some surprising aspects to this. The model checking (i.e. satisfiability checking) problem for
propositional, linear temporal logic (PTL) is PSPACE-complete [20, 23] yet practical tools for model checking
formulae in this logic have been developed, most notably Spin [13]. This has led to deeper investigations into the
structure of temporal formulae and their relationship with model checking, most notably the paper by Demri and
Schnoebelen [5]. There, the authors consider sub-fragments of PTL, particularly those restricting the number of
propositions, the temporal operators allowed, and the depth of temporal nesting in formulae. Demri and Schnoe-
belen show that, since the formulae tackled in practical model checking often fall within such fragments, then this
provides a natural explanation for the viability of model checking in PTL.

Our research has followed a different, but related, direction. Over a number of years, we have been concerned
with developing a clausal resolution calculus for both propositional and first-order linear temporal logics [4, 11,
14, 15, 16]. Since deciding unsatisfiability of PTL is also PSPACE-complete, then deductive verification of PTL
formulae would seem to be an impractical way to proceed. However, just as Demri and Schnoebelen showed
how PTL model checking can be seen as being tractable when we consider fragments of PTL, so we have been
examining fragments of PTL that allow clausal resolution to be tractable. In previous work, we examined a
fragment where temporal formulae in the clausal form (SNF; see Section 2) were essentially restricted to Horn
Clauses [8]. In this paper, however, we investigate a different fragment, where clauses inherently involve XOR
operators.

As we will show, the use of XOR has several benefits. Since the complexity of unsatisfiability for XOR clauses
in classical propositional logic is low [19], there is the potential to carry much of this over to the temporal case.
More importantly, if we consider ai&hi automaton, then we can easily represent the states (using) sayd
labels (using say;) of the automaton in PTL. Indeed, the clausal form we use makes this simpler still with clauses
such a$

(g1 Nl2) = Ogo

corresponding directly to transitions (in this case, from stat® states, reading labelrs). However, in such a
translation, an underlying problem is representing the fact that the automaton mustdaetly onestate at any

IHere, each proposition;, represents the fact that the automaton is in standl, represents the automaton reading labgl



moment in time (and, similarly, that the automaton can only read exactly one label at any moment). This provides
an obvious motivation for allowing XOR clauses, since the forrhula

(g1 ®g®...Bq)

captures the property on states that we require.

Thus, in this paper we provide several results. First, we introduce the PTL fragment to be considered and show
a completed clausal resolution system for this. Then we show that the complexity of deciding unsatisfiability via
resolution is polynomial and, sinceliBhi automata can be described simply by clauses in this logic, then an
emptiness check for ailBhi automaton can be tractably carried out using clausal temporal resolution.

The paper is organised as follows. Section 2 reviews the syntax and semantics of PTL, together with the
normal form, SNF, for this logic. In Section 3 we introduce the restriction based on XOR clauses and provide
a corresponding modification of SNF. Section 4 introduces the resolution calculus for this restricted logic, and
considers the completeness of this calculus, while Section 5 addresses its complexity. In Section 6 we show
how Biichi Automata can be translated into this fragment and, in Section 7 we provide concluding remarks,
incorporating both related and future work.

2 PTL and SNF

The particular variety of temporal logic we consider is called PTL [12], and is based on a linear, discrete model of
time with finite past and infinite future. Although many variations on this simple logic have been examined, we
will just use basic PTL with future-time temporal operators.

2.1 Syntax of PTL

The future-time temporal connectives that we use inck})dgsometime in the futuye [ ] (always in the futurg
O (in the next moment in timg/ (until), andV (unless orweak unti). Formally, PTL formulae are constructed
from the following elements:

e aset,P, of propositional symbols;
e propositional connectivesue, false, -, v, A, and=; and
e temporal connectives), <>, [ ], U, andW.

The set of well-formed formulae of PTL, denotedwyF, is inductively defined as the smallest set satisfying the
following.

e Any element ofP is in WFF.
e true andfalse are inWFF.

e If AandB are inwFFthen so are

~-A AVB AAB A=B
OA [JA AUB AWB  OA.

A literal is defined as either a proposition symbol or the negation of a proposition symbokvekrualityis
defined as a well-formed formula of the forfhA.

2.2 Semantics of PTL

As discussed above, a sequence of distinct “moments” in time underlie PTL. Typically, the Natural Nubers,
is used to represent these moments in time. So, a model for®Tan be characterised as a sequencgaiés

g = to,tl,t27t3,...

2Note we use this notation to mean exactly gaéolds.



P iff p E i [wherep € P]

=

E

&

= (0,i) E Aand(o,i) = B

E (0,i) = Aor(o,i) = B

E A= Biff (0,i) | —Aor(o,i) =B

E-A iff (0,9) £ A

EOA ff (o,i+1) = A

=OA ff there exists & € N such that: > i and(o,k) = A

= [JA iff forall jeN,if j >ithen(o,j) = A

= AUB iff there exists & € N, such that > i and(o, k) = B
andforallj e N,if i < j < kthen(o,j) = A

(0,i) E AWB iff (0,i) E AUBor (o,i) = [JA

Figure 1: Semantics of PTL

where each state;, is a set of proposition symbols, representing those proposition symbols which are satisfied in
thei’” moment in time. As formulae in PTL are interpreted at a particular state in the sequence (i.e., at a particular
moment in time), the notation

(0,0) = A

denotes the truth (or otherwise) of formullain the models at state index € N. For any formulad, modelo,
and state index € N, then eithef(c, i) = A holds or(s, i) = A does not hold, denoted Hy, i) |~ A. The pair
(0,4) can be considered as an interpretation (or valuation) for each formwarn(N.B., we will reason about
such interpretations in the completeness proof given later.) If there is s@meh thai o, 0) = A, thenA is said
to besatisfiable If (¢,0) = A for all modelss, thenA is said to bevalid and is written= A. Note that formulae
here are interpreted &f; this is ananchoreddefinition of satisfiability and validity [9].

The semantics ofvFF can now be given, as in Figure 1.

2.3 SNF, a Normal Form for PTL

The resolution method that we will use later is clausal, and so works on formulae transformed into a normal
form. The normal form, called Separated Normal Form (SNF), comprises formulae that are implications with
present-time formulae on the left-hand side and (present or) future-time formulae on the right-hand side. The
transformation into the normal form reduces most of the temporal operators to a core set and rewrites formulae to
be in a particular form. The transformation into SNF depends on three main operations: the renaming of complex
subformulae; the removal of temporal operators; and classical style rewrite operations [10, 11].

To assist in the definition of the normal form we introduce a further (nullary) connedtiget” that holds
only at the beginning of time, i.e.,

(0,1) E=start iff i=0.

This allows the general form of the (clauses of the) normal form to be implications. Now, formulae in SNF are of
the general form
L] /\ A;

where each; is known as aemporal clausg€analogous to a “clause” in classical logic) and must be one of the
following forms with each particulak,, ks, I, l4, andl representing a literal.
start = \/1L, (initial clause)
c
tue = \/L (universalclause)
(&

Nka = O\/la (stepclause)
a d

Nk = O (sometimelause)
b



For convenience, the outér] andA connectives are usually omitted, and the set of clafigg$ is considered.
Note, SNF still contains eventualities (formulae of the fafxf) on the right hand side of the sometime clauses.

While the translation from arbitrary temporal formulae to SNF will not be described further here, we note
that such such a transformation not only preserves satisfiability, but also ensures any model generated from the
formula in SNF is a model for the original formula [10]. In addition, the complexity of the translation process is
low [11].

3 PTL-X 4 and SNFX4

We will now define additional syntax for PTL, namely the XOR operatet, and characterise a modification of
SNF, calledSNFXy, especially modified to captutomata-propertiesThe key aspect here is that the set of
propositionsP, is partitioned into two disjoint sets, and L. Note that these will later represestatesandlabels
once we begin translating automata into SNEX

The XOR operator is defined simply as

(0,)) Ep1 @pa® ... @ ey, Iffthereis exactly onel < j < m suchthaio,i) = ¢;.

The new logic, PTL-X;, will comprise exactly those clauses that can be represented in gNFXus, we will
concentrate first on SNEX Like SNF, SNFX, is of the general form

D/\Ai

where each; must be one of the following.

start = Vi (initial clause)
(ginl) = O \/ qx (stepclause)

true = R, ’ (universalclause)
true = \/ qr (sometimelause)
true = q eg @D...5q, (XORS clause)
true = L®lhd...dl, (XORLclause)

whereg;, ¢; € S andi; € £, and whereR, must be one ofg;, or (—g; VvV ;).

In SNFX4, at most onsometimelause and at most oirgtial clause is allowedS mustequal gy, g2, . . ., qn }
and £ must equakiy, s, ..., L, }. Thus, all elements of and £ occur within some XOR clause. In addition,
there is a further restriction on the form above, namely that, for eyefy such that;; € S andl; € L there is at
most one clause of the form

(g N 1j) :‘O\/qk
!

in the clause set.

4 Clausal Temporal Resolution for SNFX4

Next we consider resolution rules for sets of SNF®auses. The resolution rules are split into four groups: initial
resolution; step resolution; hyper XOR resolution and temporal resolution.

Initial Unit Resolution involves resolving an initial clause with a universal clause:

start = QVg

IURES true = —g;

start = Q@

The conclusion of the rulestart = @ replaces the premisgart = Q V ¢;.



Step Resolutionresolves step clauses with universal clauses (Step Unit Resol®i¢RES) or derives addi-
tional universal clauses from contradictions obtained in the next morS&ES):

aNl; = O@QVa)

SURES true = —qgx

qi/\lj = 0OQ

The conclusion of the rulg; A l; = OQ replaces the premisg A l; = O(Q V gx).

SRES inlj = Ofalse
true =

=g; V

Hyper XOR Resolution takes several universal clauses relating to the negation of a proposityntagether

with the XORZL clause:
true = g V-l

true = —quV

true = LP...®ln,
true = g

The conclusion of the rulétue = —q;, replaces the first: premises (of the fornirue = —g;, Vv —i;).

Temporal Resolution Since there is only one sometime clause which is of a simple form (i.e. ttiraon the
left hand side) we can use a simplified version of the standard [11] step resolution rule, defined in [3]:

\/qj = D/\ﬁqk
true = <>qu

true = /\—\q]
j

To apply TRES we must find a (hon-temporal) formu\g’ q; such that\/ q; implies [] /\ —qi. For standard

SNF clauses this problem has been addressed preV|oust in [6]. Here we have a S|mpler set of clauses so the

search for doop (i.e. a set of clauses that imply] /\ —qy) is easier.
k

g
Loop Search Assume we are resolving withue = <> \/ qr-LetE={qr | k=1,...g9}.
k=1

e Construct a se$'C which initially contains the set of step clauses.
e Create two sets of propositiond., representinggood propositions, and. g, representindad proposi-

tions. Initially, let L be the members & which occur on the left hand sides of clauses$i@ which are
notin F andletLg = S\ L¢.

e lteratively search throughiC for clauseg; Al, = O (QVq,) whereg, € Lg or clausegiAl, = Ofalse.
Deletegr AN l, = O(Q V qp) (respectivelyg, A I, = Ofalse) from SC, deleteg, from Ls and and let
Lp = LpU{q}.

e Terminate when eithe$C = ) or SC doesn’t change as we search through the clauses.

o If SC = there is no loop, otherwise the loop i§/ ¢ = [] /\ .
q€Lg k



Subsumption Finally, we assume that standard subsumption takes place.

Since the SNF temporal resolution rules can be seen as a particular strategy for unrestricted temporal resolu-
tion [11] (note that in both unit resolution rules, the conclusion of the rule subsumes the premise); we, obviously,
have the following soundness theorem.

Theorem 1 The rules of clausal temporal resolution preserve satisfiability.
The completeness theorem requires a proof.

Theorem 2 If a set of SNFX clauses is unsatisfiable then the temporal resolution procedure will derive a con-
tradiction when applied to it.

Proof
We adapt the completeness proof of the original system [11, 3] as described below. First, we introduce additional
definitions.

We split the set of temporal clauses into four groups. Let

7 denote thenitial clause,

U be the set of alliniversalclauses,
T be the set of alstepclauses,

& be thesometimeslause, and

X be the set oKORclauses.

Definition 3 (behaviour graph) Given a set of SNFX clauses over a set of propositional symbBiswe con-
struct a finite directed grapldés as follows. The nodes @ are interpretations ofP, and an interpretation/,
representing some paip, i), isanode of7if I U/ U X.

For each node], we construct an edge in G to a nodeif, and only if, the following condition is satisfied:

e For every step clauseP = OQ) € 7,if I = Pthenl’ = Q.

A node,], is designated an initial node ¢f if I =7 Ul U X. Thebehaviour graptif of the set of clauses is the
maximal subgraph of given by the set of all nodes reachable from initial nodes.

Notice that, because of the XOR-clauses, exactly one propogitoS and exactly one propositiane £ are
true in I. Therefore, we can associate nodes of the behaviour gipkith pairs(q, 1), whereq € S andl € L.

Let(q,1), (¢',1") be nodes of graphl. We use:
e (¢,1) — (¢',1') to denote thatq’,!’) is an immediate successor (@f (); and
e (q,1) =7 (¢',1') to denote thatq’,I) is a successor dfy, ).

The proof of completeness proceeds by induction on the number of nodes in the behaviout gvapbh is
finite. If H is empty then the sét UZ U X is unsatisfiable. In this case there must exist a derivatiotURES
andHRES (and this is because the rulB$RES andHRES taken alone coincide with complete classical hyper
resolution).

Now supposéeH is not empty. Letl be a node off which has no successors. We show that there exists an
inference by temporal resolution deleting the node from the graph. Then, there exists exactly one step rule

gn = O\ a,
k

whose left-hand side matchég [). Notice that, for every: and everyj € {1,...m}, we have(qy A l;) AU FL
(for otherwise, there would be an edgefnfrom (g, ) to (qx, l;)). Because of the restricted form 6f, it means
that for everyj € {1,...m}, we have—q; vV —l; € U. Therefore, for every: the clausdrue = —g; can be
deduced bHRES and, hence, the clausele = —¢q Vv -l can be obtained bURES, SRES. This eliminates
node! from the behaviour graph.

In the case when all nodes &f have a successor, a contradiction can be derived with the help of the temporal
resolution ruleTRES. Note that we impose no restriction on this rule (it coincides with the temporal resolution
rule for the general calculi presented in [11, 3]) and the proof of completeness is no different from what is already
published [11, 3]



5

Complexity of SNFX, Resolution

To analyse the complexity of SNEXresolution, we first consider the complexity of the saturation procedure by
step resolution (by step resolution we mean rd¢RES, SURES, SRES, andHRES), then we consider the
complexity of loop search, and finally, we consider the overall complexity of the proof procedure.

6

e Complexity of step resolution

LetC be a set of SNF) clauses. Recall that the set of proposition§ is partitioned into two disjoint sets,
S and/z; let the cardinality ofS ben the cardinality ofC bem.

We show that there exists a polynomial-complexity (in terms ahdm) procedure that saturatédy step
resolution, that is, applies the rulddRES, SURES, SRES, andHRES to C exhaustively until no new
clause can be derived.

Notice that any saturation procedure, which ensures that no inference rule is attempted on the same set
of premises more than once, will have a polynomial complexity. Notice further that the Given Clause
Algorithm [18] satisfies this requirement.

The complexity of the procedure is bounded then by the number of different sets of premises to which
inference rules can be applied. It suffices to notice thaHiRES rule can be applied to at mostdifferent

sets of premisesSRES to at mostm x n sets of premises; thBURES rule can be applied to at most

n? x m sets of different premises (notice that, since no two step clauses have the same left-hand side, there
are at most x m different step rules in any clause set); and, similarly|/RES rule can be applied to at

mostn sets of different premises. Altogether, the complexity of the saturation procedfeisx m).

e Complexity of loop search

Notice that since at every iteration of loop search, at least one proposition is deletedl frdimere are at
mostn iterations. Using efficient implementation techniques, the search in every iteration can be imple-
mented in time bounded by x m. Therefore, the complexity of loop searchi’ x m.

e Overall complexity

The overall procedure works as follows: the set of clauses is saturated by step resolution, then loop search
is attempted. If loop search succeeds, the set of clauses is extended by the conclusiorRE $heile

and the entire process repeats (we call the processdireloop until either a contradiction is obtained, or
nothing new can be derived.

The overall complexity of the proof procedure is bounded by the product of the number of iterations of the
main loop and the joint complexity of saturation and loop search. Note that there may not be mote than
iterations of the main loop. Therefore, the overall complexity of proof searctnis x m).

From Blichi Automata to SNFX 4

We will now consider the representation of &idhi automaton as a set of SNEXclauses and, in particular,
emptiness checking of the automaton as deriving a refutation in SNM%€ begin with a standard definition of a
Buchi automaton [21, 22].

6.1 Definition of a Biichi automaton

A Biichi automatond, is a tuple(¥, S, Fy, 6, F'), where:

e ¥ = {m,...my} is afinite non-empty alphabet;

o S={sg...s,}isafinite set of states;

e Fy C S, is asetof initial states;

e § =S x ¥ — 2% is a non-deterministic transition function; and

e [ C S, is asetof accepting states.



A run T4 = 19,71,72, ... Of @ Buchi automatonA, over the wordw = wowiws ..., wherew; € 3, is an
infinite sequence of states, € S where the first state is an initial state, irg. € F{, and for every other state
rip1 fori=0,1,... we haver;y1 € §(r;, w;).

Arun, 7.4, IS accepting if there is a state € I such thats appears irr4 infinitely often.

6.2 From Blchi Automata to SNFX 4

We aim to construct a set of SNEgclaused” from A such thafl is satisfiable if, and only if4 has an accepting
run.
To representd in SNFX 4 we use the following propositions:-

e g; for eachs; € S,
e [; foreachr; € X.

The setC 4 of SNFX4 clauses representing the automatés as follows.

start = \/ g fors;, € Fy
[
(g Nl) = O \/qj for s; € 6(s;, ™)
J
(g: N1l) = Ofalse for 6(s;, mx) =0
true = @®...0q, forS={s1,...5,}
true = L®...0l, forX={m,...mn}
true =

OV fors; € F
j

Proposition 4 A Bichi automatond = (3, S, Fy, d, F) has an accepting rum,4 (over infinite wordw) if,
and only if, the set of SNEXclauses( 4, defined above, is satisfiable.

Proof

=) We first show that, given ail&hi automatonA, with an accepting run such th@y is its translation into
SNFX4, as described above, there is a model which sati€fies

Let A = (X, S, Fy, 0, F), be a given non-empty iBhi automaton and letl have an accepting run
TA=ToriT2...TtTeg1 ..., (re € Sfort =0,1,2,...) over an infinite wordv = wowws . .. WWt1 . . ..
For some accepting statg € F, sy must appear infinitely often in4. In the runr4, at thet' moment of
time when the automaton is in the stajeand readsu;, it moves tor; 1, i.€.6(ry, wi) = ri41.

We now construct a modet and show it satisfies the clause ggt. We note that ag |(A A B) =
[ JA A [1B we can assume that the external]” operator in Section 3 is applied to each implication in
Ca.
Let P be a set of propositional symbols whépe= {i,; | 7; € £} U {g; | s; € S}. We construct an infinite
sequence of states

0 = Ug, Ur, U2, ..., Uty Ut41s - -

as follows. Set the propositions that are true in each state to match those regladrbthe accepting run
for the infinite wordw, i.e.l; € v, if, and only if, w, = 7;. For anyq; € P theng; € v, if, and only if,
r, = s; (setg; to be true if and only if the state visited in th& moment in time of the accepting runy,
is Sj).

Next we shows satisfies the clause s@t;.

The runt 4 is an accepting run which starts fram = s;. Thuss; is one of the initial states, i.e; € Fy,
and from how we have constructed ¢; is satisfied in the initial momert, i.e. (0,0) = ¢. Also as
(0,0) |= start and(o, t) |~ start for ¢ > 0, from the semantics dftart, the initial clause of the clause set
Ca
start = \/ q;
sj€Fp

is satisfied at every moment in time.



Next we must show that the step clauseg gfhold. Consider the implication,

(@A l) = O Vg
J

For any moment such thafo, t) = ¢; or (o, t) |~ I, the above holds trivially.
Next consider some timesuch that(o,t) | ¢; and(o,t) | . We must show thato,t) = O \/qj.

From the construction of there must be some state = r; which is visited in thet;, moment f)f the
accepting run and a transitian € J(s;, 7 ) such that in the 4+ 1st moment in time the accepting run is at
states; = ;41 having readr, = w;. Thus, from the construction ef, (s,t + 1) = ¢; and from how we
have constructed 4 and the semantics of,

(t+ 1) V.

Hence, from the semantics of)"”,

(0, 1) FO\/%

and
(0,8) = ai Al = O\ g
j

Thus, at all moments in time each step clause holds and

O [(ant) =0 Vg
J

is satisfied.

Recall that the rurr4 in the t*» moment of time visits the state = r,. From the construction of,
(0,t) = ¢; and(o,t) = g; for everyg; # g;. Hence the XORS clause is also satisfied in at every
moment. Similarly from the infinite word of the accepting run and how we have construetet each
state we havéo, t) = [; for somel; such thatl < i < mand(o,t) & [; forall j # i suchthatl < j < m.

Finally consider the sometime clause. From the construction of the nfedgl |= ¢ if, and only if,
r; = sy and since the automatery hits the state infinitely often, the sometime clause is satisfied.

Therefore, all clauses 64 are satisfiable imr.

Assume now that for an automatofy the corresponding set of SNEXclauses( 4, is satisfiable. We
show thatA has an accepting run. Consider the sequence of states., u1, us, ... such that(c, 0) |
C4. Because of the XOR clauses, for every 0 there isexactly ones; € S andexactly oner;, € ¥
such thaty; € u, andl, € u,. We construct an accepting ruty = r9,71,...7¢... on the wordw =
Wo, W1, ... wy ... as follows. Letr, = s; iff ¢; € u, (the state in the't moment of the accepting run ig
iff g; is true inu,). Letw, = m; iff I; € u, (the label read in thé’t moment of the accepting runis iff I
is true inu,).

We show by induction onthatr 4 is an accepting run.

First we showr, is an initial state. From how we have constructed the acceptinggua s; such that
q € ug. AsC 4 is satisfiable then

(0,0) k= (start= \/ q;)

SJ'EFO

so the state; must be initial (i.es; € Fy). Consider some statg in 74 we show thas; € d(s;, m;) where
T = 84, re41 = 55 andw, = m,. Consider the step clause

(@A l) = O Vg
J



such thay; € u, andiy, € u; (i.e.r; = s; andw, = 7). There must be one such clause from how we have
constructed 4. Note that the right-hand side of the step clause cannfatibe for otherwisefalse € u .
Theng; € w;41. Note thats; € d(s;, ).

It remains to notice that, since

(0,0) = [(true = <>qu)

for s; € F, the states; appears in the sequentg = ro,71,...,7¢, ... infinitely often, that is, the rumy
is accepting.

O

Example 1 Consider a Bichi AutomatonA; = (X, S, Fy, 6, F)), where:
o ¥ = {m,m}
o S =1{s1,82,83,84,55}
o Fy={s1}
o F={s1,85}

The transitions are given below.

S | 6(s,m1) | 6(s,m2)
s1| {s2,s5} | {s5}
s2 | {sa} {s3}
s3 | {s2} {sa}
s4 | {83,584} | {s2}
s5 | {s4} {s2}

Hence there is no accepting run.

0 start = q1
L ANl = O(g2Vags)
2. g Nlz = Ogs
3. g2 N\ ll = OQ4
4. q2 A ZQ = OQ3
5. 3sNli = Ogqe
6. 3Nl = Ouq
7. Nl = O(gzVa)
8. qa N\ l2 = OQQ
9. ¢sANli = O
10. gs N\ l2 = OQQ
11. true = ORPEPUDg
12. true = 1@l
13.  true = $(Vags)

Loop Search Initially, L = {¢2, 93,94} andLg = {q¢1, g5 }. There is no change to either set so the loop is

(@2Vaq3Vaqs) = [1(=q1 A —gs)
Applying temporal resolution we obtain.

14. true = -—g2 [13, TRES]
15. true = -g¢3 [13, TRES]
16. true = -—q4 [13, TRES]

Thus clauses 3-8 are subsumed by one of 14-16.



17. ¢ Nlp = Ofalse [9,16,SURES]
18. ¢gsANly = Ofalse [10,14, SURES]
19. true = -—gs V-l [17,SRES]

20. true = -—g5V -ls [18, SRES]

21. true = -gs (12,19, 20, HRES]
22. g1~ Nl = Qgs [1, 14, SURES]
23. g ANl = Ofalse [21,22, SURES]
24. @1 ANl = Ofalse [2,21, SURES]
25. true = -qV =l [23, SRES]

26. true = -—-qV =iy [24, SRES]

27. true = ¢ [12, 25,26, HRES)]
28. start = false [0,27,IURES]

Hence we obtain a contradiction using resolution showing the set of clauses is unsatisfiable.

Example 2 Now, consider a Bchi Automatond, = (3, S, Fy, 4, F), where:

o X ={m}
o S ={s1,82,53}
o Fy={s1}
o = {s5}

The transitions are given below.

S | (s, 1)
S1 {817 82}
S9 {83}
S3 {83}
Hence there is no accepting run.
0. start = ¢
L. i Nl = O(a1 V)
2. ANl = Ogs
3. sANli = Ogs
4. true = g P Dgs
5. true = [y
6. true = o

Note that, since the only symbol in the alphabetiisthe XOR-L clause is simplyrue = [, (clause 5).

Loop Search Initially, L = {¢1,¢3} andLg = {¢2}. From clausd we delete;; from L and add tal s and
obtainLs = {¢3} andLg = {q1, ¢2}. There is no change to either set so the loop formula is

g3 = [1-q2
By applying temporal resolution we obtain the following.
7. true = -g3 [6, TRES]

This subsumes clause 3.

8. @Al = (Ofalse [2,7,SURES]
9. true = -¢g V-l [8 SRES]
10.  true = g0 [5,9, HRES]
1. ¢AlL = Oaq 1,10, SURES]

Clause 11 now subsumes clause 1. Now, attempting loop search again (note the current set of step clauses is just
clause 11) we havés = {q1 } andLp = {g2, ¢3}. We obtain the loop

@1 = g



By applying temporal resolution we obtain the following.

12. true = -—¢; [6, TRES]
13. start = false [0,12,IURES]

Hence we obtain a contradiction using resolution showing the set of clauses is unsatisfiable.

7 Conclusions

In this paper we have introduced a novel fragment of PTL, and have provided a complete resolution calculus for
this fragment. The complexity analysis carried out has shown that the resolution approach provides a polyno-
mial decision procedure. While this is interesting in itself, a further important aspect is that we can represent a
Biichi Automaton (symbolically and directly) as formulae in this fragment, with the emptiness check for such an
automaton corresponding to the search for a resolution refutation.

In establishing that some systeys, satisfies a property?, algorithmic, rather than deductive approaches
have been predominant. In particular, the model checking approach [22, 2], characterised by checking the empti-
ness of the automata prodgict

ASys X AﬂP

has been very successfully applied.

On the other hand, deductive temporal verification has been largely ignored (though see [17]), often due to
its much higher complexity. With our work in this paper, we believe that deductive temporal verification can
be successfully applied to such problems, for example by represdtinfy A =P in PTL-X 4, where[Sys] is
the temporal/symbolic description/semantics of the behaviour of the system. That P Eofkesponds closely
to Bichi Automata which, in turn, are at the heart of algorithmic verification, gives reason for optimism. Thus,
our future work concerns developing such a view of deductive temporal verification further, as well as examining
more complex (but still tractable) XOR temporal logics [7]. Concerning practical implementation, we note that
the complexity given in Section 5 isveorst caseanalysis. With ‘clever’ implementations, we expect the practical
complexity to generally be much lower than this.

Work related to that developed in this paper concerns the excellent analysis by Demri and Schnoebelen [5],
work on complexity of fragments of classical logic [19] and our own previous work on the relationship between
SNF and Bichi Automata [1] and on other tractable fragments of SNF [8].

Finally, we would like to thank Radina Yorgova for her work on varieties of RSNF which helped us to formu-
late the fragment described in this paper.
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