
Is There a Future for Deductive Temporal Verification?

Clare Dixon, Michael Fisher and Boris Konev

Department of Computer Science
The University of Liverpool,

Liverpool L69 3BX, United Kingdom

{C.Dixon,M.Fisher,B.Konev }@csc.liv.ac.uk

Keywords: fragments of PTL; deductive verification; complexity; clausal temporal resolution.

Abstract

In this paper, we consider a tractable sub-class of propositional linear time temporal logic, and provide a complete
clausal resolution calculus for it. The fragment is important as it captures simple Büchi automata. We also show
that, just as the emptiness check for a Büchi automaton is tractable, the complexity of deciding unsatisfiability,
via resolution, of our logic is polynomial (rather than exponential). Consequently, a Büchi automaton can be
represented within our logic, and its emptiness can be tractably decided via deductive methods. This may have
a significant impact upon approaches to verification, since techniques such asmodel checkinginherently depend
on the ability to check emptiness of an appropriate Büchi automaton. Thus, we also discuss how such a logic
might form the basis forpracticaldeductive temporal verification.

1 Introduction

It is widely recognised thatmodel checkingis the most appropriate verification method for (finite state) sys-
tems. Yet there are some surprising aspects to this. The model checking (i.e. satisfiability checking) problem for
propositional, linear temporal logic (PTL) is PSPACE-complete [20, 23] yet practical tools for model checking
formulae in this logic have been developed, most notably Spin [13]. This has led to deeper investigations into the
structure of temporal formulae and their relationship with model checking, most notably the paper by Demri and
Schnoebelen [5]. There, the authors consider sub-fragments of PTL, particularly those restricting the number of
propositions, the temporal operators allowed, and the depth of temporal nesting in formulae. Demri and Schnoe-
belen show that, since the formulae tackled in practical model checking often fall within such fragments, then this
provides a natural explanation for the viability of model checking in PTL.

Our research has followed a different, but related, direction. Over a number of years, we have been concerned
with developing a clausal resolution calculus for both propositional and first-order linear temporal logics [4, 11,
14, 15, 16]. Since deciding unsatisfiability of PTL is also PSPACE-complete, then deductive verification of PTL
formulae would seem to be an impractical way to proceed. However, just as Demri and Schnoebelen showed
how PTL model checking can be seen as being tractable when we consider fragments of PTL, so we have been
examining fragments of PTL that allow clausal resolution to be tractable. In previous work, we examined a
fragment where temporal formulae in the clausal form (SNF; see Section 2) were essentially restricted to Horn
Clauses [8]. In this paper, however, we investigate a different fragment, where clauses inherently involve XOR
operators.

As we will show, the use of XOR has several benefits. Since the complexity of unsatisfiability for XOR clauses
in classical propositional logic is low [19], there is the potential to carry much of this over to the temporal case.
More importantly, if we consider a B̈uchi automaton, then we can easily represent the states (using sayqi) and
labels (using saylj) of the automaton in PTL. Indeed, the clausal form we use makes this simpler still with clauses
such as1

(q1 ∧ l2) ⇒ gq2

corresponding directly to transitions (in this case, from states1 to states2 reading labelπ2). However, in such a
translation, an underlying problem is representing the fact that the automaton must be inexactly onestate at any

1Here, each proposition,qi, represents the fact that the automaton is in statesi andl2 represents the automaton reading labelπ2.

moment in time (and, similarly, that the automaton can only read exactly one label at any moment). This provides
an obvious motivation for allowing XOR clauses, since the formula2

(q1 ⊕ q2 ⊕ . . .⊕ qn)

captures the property on states that we require.
Thus, in this paper we provide several results. First, we introduce the PTL fragment to be considered and show

a completed clausal resolution system for this. Then we show that the complexity of deciding unsatisfiability via
resolution is polynomial and, since Büchi automata can be described simply by clauses in this logic, then an
emptiness check for a B̈uchi automaton can be tractably carried out using clausal temporal resolution.

The paper is organised as follows. Section 2 reviews the syntax and semantics of PTL, together with the
normal form, SNF, for this logic. In Section 3 we introduce the restriction based on XOR clauses and provide
a corresponding modification of SNF. Section 4 introduces the resolution calculus for this restricted logic, and
considers the completeness of this calculus, while Section 5 addresses its complexity. In Section 6 we show
how Büchi Automata can be translated into this fragment and, in Section 7 we provide concluding remarks,
incorporating both related and future work.

2 PTL and SNF

The particular variety of temporal logic we consider is called PTL [12], and is based on a linear, discrete model of
time with finite past and infinite future. Although many variations on this simple logic have been examined, we
will just use basic PTL with future-time temporal operators.

2.1 Syntax of PTL

The future-time temporal connectives that we use include♦ (sometime in the future), (always in the future),g(in the next moment in time), U (until), andW (unless, or weak until). Formally, PTL formulae are constructed
from the following elements:

• a set,P, of propositional symbols;

• propositional connectives,true , false , ¬, ∨, ∧, and⇒; and

• temporal connectives,g,♦, , U , andW.

The set of well-formed formulae of PTL, denoted byWFF, is inductively defined as the smallest set satisfying the
following.

• Any element ofP is in WFF.

• true andfalse are inWFF.

• If A andB are inWFF then so are

¬A A ∨B A ∧B A ⇒ B
♦A A AUB AWB gA .

A literal is defined as either a proposition symbol or the negation of a proposition symbol. Aneventualityis
defined as a well-formed formula of the form♦A.

2.2 Semantics of PTL

As discussed above, a sequence of distinct “moments” in time underlie PTL. Typically, the Natural Numbers,N,
is used to represent these moments in time. So, a model for PTL,σ, can be characterised as a sequence ofstates

σ = t0, t1, t2, t3, . . .

2Note we use this notation to mean exactly oneqi holds.

(σ, i) |= p iff p ∈ ti [wherep ∈ P]
(σ, i) |= true
(σ, i) 6|= false
(σ, i) |= A ∧B iff (σ, i) |= A and(σ, i) |= B
(σ, i) |= A ∨B iff (σ, i) |= A or (σ, i) |= B
(σ, i) |= A ⇒ B iff (σ, i) |= ¬A or (σ, i) |= B
(σ, i) |= ¬A iff (σ, i) 6|= A
(σ, i) |= gA iff (σ, i + 1) |= A
(σ, i) |=♦A iff there exists ak ∈ N such thatk > i and(σ, k) |= A
(σ, i) |= A iff for all j ∈ N, if j > i then(σ, j) |= A
(σ, i) |= AUB iff there exists ak ∈ N, such thatk > i and(σ, k) |= B

and for allj ∈ N, if i 6 j < k then(σ, j) |= A
(σ, i) |= AWB iff (σ, i) |= AUB or (σ, i) |= A

Figure 1: Semantics of PTL

where each state,ti, is a set of proposition symbols, representing those proposition symbols which are satisfied in
theith moment in time. As formulae in PTL are interpreted at a particular state in the sequence (i.e., at a particular
moment in time), the notation

(σ, i) |= A

denotes the truth (or otherwise) of formulaA in the modelσ at state indexi ∈ N. For any formulaA, modelσ,
and state indexi ∈ N, then either(σ, i) |= A holds or(σ, i) |= A does not hold, denoted by(σ, i) 6|= A. The pair
(σ, i) can be considered as an interpretation (or valuation) for each formula inWFF. (N.B., we will reason about
such interpretations in the completeness proof given later.) If there is someσ such that(σ, 0) |= A, thenA is said
to besatisfiable. If (σ, 0) |= A for all models,σ, thenA is said to bevalid and is written|= A. Note that formulae
here are interpreted att0; this is ananchoreddefinition of satisfiability and validity [9].

The semantics ofWFF can now be given, as in Figure 1.

2.3 SNF, a Normal Form for PTL

The resolution method that we will use later is clausal, and so works on formulae transformed into a normal
form. The normal form, called Separated Normal Form (SNF), comprises formulae that are implications with
present-time formulae on the left-hand side and (present or) future-time formulae on the right-hand side. The
transformation into the normal form reduces most of the temporal operators to a core set and rewrites formulae to
be in a particular form. The transformation into SNF depends on three main operations: the renaming of complex
subformulae; the removal of temporal operators; and classical style rewrite operations [10, 11].

To assist in the definition of the normal form we introduce a further (nullary) connective ‘start’ that holds
only at the beginning of time, i.e.,

(σ, i) |= start iff i = 0.

This allows the general form of the (clauses of the) normal form to be implications. Now, formulae in SNF are of
the general form ∧

i

Ai

where eachAi is known as atemporal clause(analogous to a “clause” in classical logic) and must be one of the
following forms with each particularka, kb, lc, ld, andl representing a literal.

start ⇒
∨
c

lc (initial clause)

true ⇒
∨
c

lc (universalclause)

∧
a

ka ⇒ g∨
d

ld (stepclause)

∧
b

kb ⇒ ♦l (sometimeclause)

For convenience, the outer and∧ connectives are usually omitted, and the set of clauses{Ai} is considered.
Note, SNF still contains eventualities (formulae of the form♦l) on the right hand side of the sometime clauses.

While the translation from arbitrary temporal formulae to SNF will not be described further here, we note
that such such a transformation not only preserves satisfiability, but also ensures any model generated from the
formula in SNF is a model for the original formula [10]. In addition, the complexity of the translation process is
low [11].

3 PTL-XA and SNFXA
We will now define additional syntax for PTL, namely the XOR operator, ‘⊕’, and characterise a modification of
SNF, calledSNFXA, especially modified to captureautomata-properties. The key aspect here is that the set of
propositions,P, is partitioned into two disjoint sets,S andL. Note that these will later representstatesandlabels
once we begin translating automata into SNFXA.

The XOR operator is defined simply as

(σ, i) |= ϕ1 ⊕ ϕ2 ⊕ . . .⊕ ϕm iff there is exactly one1 ≤ j ≤ m such that(σ, i) |= ϕj .

The new logic, PTL-XA, will comprise exactly those clauses that can be represented in SNFXA. Thus, we will
concentrate first on SNFXA. Like SNF, SNFXA is of the general form∧

i

Ai

where eachAi must be one of the following.

start ⇒
∨

k qk (initial clause)

(qi ∧ lj) ⇒ g∨
k

qk (stepclause)

true ⇒ Rc (universalclause)

true ⇒ ♦
∨
k

qk (sometimeclause)

true ⇒ q1 ⊕ q2 ⊕ . . .⊕ qn (XOR-S clause)
true ⇒ l1 ⊕ l2 ⊕ . . .⊕ lm (XOR-L clause)

whereqi, qk ∈ S andlj ∈ L, and whereRc must be one of¬qi, or (¬qi ∨ ¬lj).
In SNFXA, at most onesometimeclause and at most oneinitial clause is allowed.S must equal{q1, q2, . . . , qn}

andL must equal{l1, l2, . . . , lm}. Thus, all elements ofS andL occur within some XOR clause. In addition,
there is a further restriction on the form above, namely that, for everyqi, lj such thatqi ∈ S andlj ∈ L there is at
most one clause of the form

(qi ∧ lj) ⇒ g∨
k

qk

in the clause set.

4 Clausal Temporal Resolution for SNFXA
Next we consider resolution rules for sets of SNFXA clauses. The resolution rules are split into four groups: initial
resolution; step resolution; hyper XOR resolution and temporal resolution.

Initial Unit Resolution involves resolving an initial clause with a universal clause:

IURES
start ⇒ Q ∨ qi

true ⇒ ¬qi

start ⇒ Q

The conclusion of the rule,start ⇒ Q replaces the premisestart ⇒ Q ∨ qi.

Step Resolutionresolves step clauses with universal clauses (Step Unit Resolution,SURES) or derives addi-
tional universal clauses from contradictions obtained in the next moment (SRES):

SURES
qi ∧ lj ⇒ g(Q ∨ qk)

true ⇒ ¬qk

qi ∧ lj ⇒ gQ

The conclusion of the rule,qi ∧ lj ⇒ gQ replaces the premiseqi ∧ lj ⇒ g(Q ∨ qk).

SRES
qi ∧ lj ⇒ gfalse

true ⇒ ¬qi ∨ ¬lj

Hyper XOR Resolution takes several universal clauses relating to the negation of a proposition inS, together
with the XOR-L clause:

HRES

true ⇒ ¬qk ∨ ¬l1
. . . ⇒ . . .

true ⇒ ¬qk ∨ ¬lm
true ⇒ l1 ⊕ . . .⊕ lm
true ⇒ ¬qk

The conclusion of the rule,true ⇒ ¬qk replaces the firstm premises (of the formtrue ⇒ ¬qk ∨ ¬lj).

Temporal Resolution Since there is only one sometime clause which is of a simple form (i.e. it hastrue on the
left hand side) we can use a simplified version of the standard [11] step resolution rule, defined in [3]:

TRES

∨
j

qj ⇒
∧
k

¬qk

true ⇒ ♦
∨
k

qk

true ⇒
∧
j

¬qj

To applyTRES we must find a (non-temporal) formula
∨
j

qj such that
∨
j

qj implies
∧
k

¬qk. For standard

SNF clauses this problem has been addressed previously in [6]. Here we have a simpler set of clauses so the
search for aloop (i.e. a set of clauses that imply

∧
k

¬qk) is easier.

Loop Search Assume we are resolving withtrue ⇒♦
g∨

k=1

qk. Let E = {qk | k = 1, . . . g}.

• Construct a setSC which initially contains the set of step clauses.

• Create two sets of propositions:LG, representinggoodpropositions, andLB , representingbad proposi-
tions. Initially, letLG be the members ofS which occur on the left hand sides of clauses inSC which are
not inE and letLB = S \ LG.

• Iteratively search throughSC for clausesqk∧la ⇒ g(Q∨qb) whereqb ∈ LB or clausesqk∧la ⇒ gfalse .
Deleteqk ∧ la ⇒ g(Q ∨ qb) (respectivelyqk ∧ la ⇒ gfalse) from SC, deleteqk from LG and and let
LB = LB ∪ {qk}.

• Terminate when eitherSC = ∅ or SC doesn’t change as we search through the clauses.

• If SC = ∅ there is no loop, otherwise the loop is
∨

q∈LG

q ⇒
∧
k

¬qk.

Subsumption Finally, we assume that standard subsumption takes place.

Since the SNFXA temporal resolution rules can be seen as a particular strategy for unrestricted temporal resolu-
tion [11] (note that in both unit resolution rules, the conclusion of the rule subsumes the premise); we, obviously,
have the following soundness theorem.

Theorem 1 The rules of clausal temporal resolution preserve satisfiability.

The completeness theorem requires a proof.

Theorem 2 If a set of SNFXA clauses is unsatisfiable then the temporal resolution procedure will derive a con-
tradiction when applied to it.

Proof
We adapt the completeness proof of the original system [11, 3] as described below. First, we introduce additional
definitions.

We split the set of temporal clauses into four groups. Let

I denote theinitial clause,

U be the set of alluniversalclauses,

T be the set of allstepclauses,

E be thesometimeclause, and

X be the set ofXORclauses.

Definition 3 (behaviour graph) Given a set of SNFXA clauses over a set of propositional symbolsP, we con-
struct a finite directed graphG as follows. The nodes ofG are interpretations ofP, and an interpretation,I,
representing some pair(σ, i), is a node ofG if I |= U ∪ X .

For each node,I, we construct an edge in G to a nodeI ′ if, and only if, the following condition is satisfied:

• For every step clause(P ⇒ gQ) ∈ T , if I |= P thenI ′ |= Q.

A node,I, is designated an initial node ofG if I |= I ∪U ∪X . Thebehaviour graphH of the set of clauses is the
maximal subgraph ofG given by the set of all nodes reachable from initial nodes.

Notice that, because of the XOR-clauses, exactly one propositionq ∈ S and exactly one propositionl ∈ L are
true inI. Therefore, we can associate nodes of the behaviour graph,H, with pairs(q, l), whereq ∈ S andl ∈ L.

Let (q, l), (q′, l′) be nodes of graphH. We use:

• (q, l) → (q′, l′) to denote that(q′, l′) is an immediate successor of(q, l); and

• (q, l) →+ (q′, l′) to denote that(q′, l′) is a successor of(q, l).

The proof of completeness proceeds by induction on the number of nodes in the behaviour graphH, which is
finite. If H is empty then the setU ∪ I ∪ X is unsatisfiable. In this case there must exist a derivation byIURES
andHRES (and this is because the rulesIURES andHRES taken alone coincide with complete classical hyper
resolution).

Now supposeH is not empty. LetI be a node ofH which has no successors. We show that there exists an
inference by temporal resolution deleting the node from the graph. Then, there exists exactly one step rule

q ∧ l ⇒ g∨
k

qk,

whose left-hand side matches(q, l). Notice that, for everyk and everyj ∈ {1, . . . m}, we have(qk ∧ lj) ∧ U `⊥
(for otherwise, there would be an edge inH from (q, l) to (qk, lj)). Because of the restricted form ofU , it means
that for everyj ∈ {1, . . . m}, we have¬qk ∨ ¬lj ∈ U . Therefore, for everyk the clausetrue ⇒ ¬qk can be
deduced byHRES and, hence, the clausetrue ⇒ ¬q ∨ ¬l can be obtained bySURES, SRES. This eliminates
nodeI from the behaviour graph.

In the case when all nodes ofH have a successor, a contradiction can be derived with the help of the temporal
resolution ruleTRES. Note that we impose no restriction on this rule (it coincides with the temporal resolution
rule for the general calculi presented in [11, 3]) and the proof of completeness is no different from what is already
published [11, 3].�

5 Complexity of SNFXA Resolution

To analyse the complexity of SNFXA resolution, we first consider the complexity of the saturation procedure by
step resolution (by step resolution we mean rulesIURES, SURES, SRES, andHRES), then we consider the
complexity of loop search, and finally, we consider the overall complexity of the proof procedure.

• Complexity of step resolution

Let C be a set of SNFXA clauses. Recall that the set of propositions inC is partitioned into two disjoint sets,
S andL; let the cardinality ofS ben the cardinality ofL bem.

We show that there exists a polynomial-complexity (in terms ofn andm) procedure that saturatesC by step
resolution, that is, applies the rulesIURES, SURES, SRES, andHRES to C exhaustively until no new
clause can be derived.

Notice that any saturation procedure, which ensures that no inference rule is attempted on the same set
of premises more than once, will have a polynomial complexity. Notice further that the Given Clause
Algorithm [18] satisfies this requirement.

The complexity of the procedure is bounded then by the number of different sets of premises to which
inference rules can be applied. It suffices to notice that theHRES rule can be applied to at mostn different
sets of premises;SRES to at mostm × n sets of premises; theSURES rule can be applied to at most
n2 ×m sets of different premises (notice that, since no two step clauses have the same left-hand side, there
are at mostn×m different step rules in any clause set); and, similarly, theIURES rule can be applied to at
mostn sets of different premises. Altogether, the complexity of the saturation procedure isO(n2 ×m).

• Complexity of loop search

Notice that since at every iteration of loop search, at least one proposition is deleted fromLG, there are at
mostn iterations. Using efficient implementation techniques, the search in every iteration can be imple-
mented in time bounded byn×m. Therefore, the complexity of loop search isn2 ×m.

• Overall complexity

The overall procedure works as follows: the set of clauses is saturated by step resolution, then loop search
is attempted. If loop search succeeds, the set of clauses is extended by the conclusion of theTRES rule
and the entire process repeats (we call the process themain loop) until either a contradiction is obtained, or
nothing new can be derived.

The overall complexity of the proof procedure is bounded by the product of the number of iterations of the
main loop and the joint complexity of saturation and loop search. Note that there may not be more thann
iterations of the main loop. Therefore, the overall complexity of proof search isO(n3 ×m).

6 From Büchi Automata to SNFXA
We will now consider the representation of a Büchi automaton as a set of SNFXA clauses and, in particular,
emptiness checking of the automaton as deriving a refutation in SNFXA. We begin with a standard definition of a
Büchi automaton [21, 22].

6.1 Definition of a Büchi automaton

A Büchi automaton,A, is a tuple〈Σ, S, F0, δ, F 〉, where:

• Σ = {π0, . . . πm} is a finite non-empty alphabet;

• S = {s0 . . . sn} is a finite set of states;

• F0 ⊆ S, is a set of initial states;

• δ = S × Σ −→ 2S is a non-deterministic transition function; and

• F ⊆ S, is a set of accepting states.

A run τA = r0, r1, r2, . . . of a Büchi automaton,A, over the wordw = w0w1w2 . . ., wherewj ∈ Σ, is an
infinite sequence of states,ri ∈ S where the first state is an initial state, i.e.r0 ∈ F0, and for every other state
ri+1 for i = 0, 1, . . . we haveri+1 ∈ δ(ri, wi).

A run, τA, is accepting if there is a states ∈ F such thats appears inτA infinitely often.

6.2 From Büchi Automata to SNFXA
We aim to construct a set of SNFXA clausesT fromA such thatT is satisfiable if, and only if,A has an accepting
run.

To representA in SNFXA we use the following propositions:-

• qi for eachsi ∈ S;

• lj for eachπj ∈ Σ.

The setCA of SNFXA clauses representing the automataA is as follows.

start ⇒
∨
i

qi for si ∈ F0

(qi ∧ lk) ⇒ g∨
j

qj for sj ∈ δ(si, πk)

(qi ∧ lk) ⇒ gfalse for δ(si, πk) = ∅
true ⇒ q1 ⊕ . . .⊕ qn for S = {s1, . . . sn}
true ⇒ l1 ⊕ . . .⊕ lm for Σ = {π1, . . . πm}
true ⇒ ♦

∨
j

qj for sj ∈ F

Proposition 4 A Büchi automatonA = 〈Σ, S, F0, δ, F 〉 has an accepting runτA (over infinite wordw) if,
and only if, the set of SNFXA clauses,CA, defined above, is satisfiable.

Proof

⇒) We first show that, given a B̈uchi automaton,A, with an accepting run such thatCA is its translation into
SNFXA, as described above, there is a model which satisfiesCA.

Let A = 〈Σ, S, F0, δ, F 〉, be a given non-empty B̈uchi automaton and letA have an accepting run
τA = r0r1r2 . . . rtrt+1 . . ., (rt ∈ S for t = 0, 1, 2, . . .) over an infinite wordw = w0w1w2 . . . wtwt+1
For some accepting statesf ∈ F , sf must appear infinitely often inτA. In the runτA, at thetth moment of
time when the automaton is in the statert and readswt, it moves tort+1, i.e.δ(rt, wt) = rt+1.

We now construct a modelσ and show it satisfies the clause setCA. We note that as (A ∧ B) ≡
A ∧ B we can assume that the external “” operator in Section 3 is applied to each implication in

CA.

LetP be a set of propositional symbols whereP = {lj | πj ∈ Σ} ∪ {qi | si ∈ S}. We construct an infinite
sequence of states

σ = u0, u1, u2, . . . , ut, ut+1, . . .

as follows. Set the propositions that are true in each state to match those read byA on the accepting run
for the infinite wordw, i.e. lj ∈ ut if, and only if,wt = πj . For anyqj ∈ P thenqj ∈ ut if, and only if,
rt = sj (setqj to be true if and only if the state visited in thetth moment in time of the accepting run,τA,
is sj).

Next we showσ satisfies the clause setCA.

The runτA is an accepting run which starts fromr0 = sl. Thussl is one of the initial states, i.e.sl ∈ F0,
and from how we have constructedσ, ql is satisfied in the initial moment0, i.e. (σ, 0) |= ql. Also as
(σ, 0) |= start and(σ, t) 6|= start for t > 0, from the semantics ofstart, the initial clause of the clause set
CA

start ⇒
∨

sj∈F0

qj

is satisfied at every moment in time.

Next we must show that the step clauses ofCA hold. Consider the implication,

(qi ∧ lk) ⇒ g∨
j

qj .

For any momentt such that(σ, t) 6|= qi or (σ, t) 6|= lk the above holds trivially.

Next consider some timet such that(σ, t) |= qi and(σ, t) |= lk. We must show that(σ, t) |= g∨
j

qj .

From the construction ofσ there must be some statesi = rt which is visited in thetth moment of the
accepting run and a transitionsl ∈ δ(si, πk) such that in thet + 1st moment in time the accepting run is at
statesl = rt+1 having readπk = wt. Thus, from the construction ofσ, (σ, t + 1) |= ql and from how we
have constructedCA and the semantics of∨,

(σ, t + 1) |=
∨
j

qj .

Hence, from the semantics of “g”,
(σ, t) |= g∨

j

qj

and
(σ, t) |= qi ∧ lk ⇒ g∨

j

qj .

Thus, at all moments in time each step clause holds and(qi ∧ lk) ⇒ g∨
j

qj


is satisfied.

Recall that the runτA in the tth moment of time visits the statesi = rt. From the construction ofσ,
(σ, t) |= qi and(σ, t) 6|= qj for everyqj 6= qi. Hence the XOR-S clause is also satisfied inσ at every
moment. Similarly from the infinite wordw of the accepting run and how we have constructedσ at each
state we have(σ, t) |= li for someli such that1 ≤ i ≤ m and(σ, t) 6|= lj for all j 6= i such that1 ≤ j ≤ m.

Finally consider the sometime clause. From the construction of the model(σ, t) |= qf if, and only if,
rt = sf and since the automatonτA hits the statesf infinitely often, the sometime clause is satisfied.

Therefore, all clauses inCA are satisfiable inσ.

⇐) Assume now that for an automatonA, the corresponding set of SNFXA clauses,CA, is satisfiable. We
show thatA has an accepting run. Consider the sequence of statesσ = u0, u1, u2, . . . such that(σ, 0) |=
CA. Because of the XOR clauses, for everyt ≥ 0 there isexactly onesi ∈ S andexactly oneπk ∈ Σ
such thatqi ∈ ut and lk ∈ ut. We construct an accepting runτA = r0, r1, . . . rt . . . on the wordw =
w0, w1, . . . wt . . . as follows. Letrt = sj iff qj ∈ ut (the state in the tth moment of the accepting run issj

iff qj is true inut). Let wt = πj iff lj ∈ ut (the label read in the tth moment of the accepting run isπj iff lj
is true inut).

We show by induction ont thatτA is an accepting run.

First we showr0 is an initial state. From how we have constructed the accepting runr0 = sl such that
ql ∈ u0. As CA is satisfiable then

(σ, 0) |= (start ⇒
∨

sj∈F0

qj)

so the statesl must be initial (i.e.sl ∈ F0). Consider some statert in τA we show thatsj ∈ δ(si, πk) where
rt = si, rt+1 = sj andwt = πk. Consider the step clause

(qi ∧ lk) ⇒ g∨
j

qj .

such thatqi ∈ ut andlk ∈ ut (i.e.rt = si andwt = πk). There must be one such clause from how we have
constructedCA. Note that the right-hand side of the step clause cannot befalse for otherwisefalse ∈ ut+1.
Thenqj ∈ ut+1. Note thatsj ∈ δ(si, πk).

It remains to notice that, since
(σ, 0) |= (true ⇒♦

∨
i

qj)

for sj ∈ F , the statesj appears in the sequenceτA = r0, r1, . . . , rt, . . . infinitely often, that is, the runτA
is accepting.

�

Example 1 Consider a B̈uchi AutomatonA1 = 〈Σ, S, F0, δ, F 〉, where:

• Σ = {π0, π1}

• S = {s1, s2, s3, s4, s5}

• F0 = {s1}

• F = {s1, s5}

The transitions are given below.

S δ(s, π1) δ(s, π2)
s1 {s2, s5} {s5}
s2 {s4} {s3}
s3 {s2} {s4}
s4 {s3, s4} {s2}
s5 {s4} {s2}

Hence there is no accepting run.

0. start ⇒ q1

1. q1 ∧ l1 ⇒ g(q2 ∨ q5)
2. q1 ∧ l2 ⇒ gq5

3. q2 ∧ l1 ⇒ gq4

4. q2 ∧ l2 ⇒ gq3

5. q3 ∧ l1 ⇒ gq2

6. q3 ∧ l2 ⇒ gq4

7. q4 ∧ l1 ⇒ g(q3 ∨ q4)
8. q4 ∧ l2 ⇒ gq2

9. q5 ∧ l1 ⇒ gq4

10. q5 ∧ l2 ⇒ gq2

11. true ⇒ q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q5

12. true ⇒ l1 ⊕ l2
13. true ⇒ ♦(q1 ∨ q5)

Loop Search Initially, LG = {q2, q3, q4} andLB = {q1, q5}. There is no change to either set so the loop is

(q2 ∨ q3 ∨ q4) ⇒ (¬q1 ∧ ¬q5)

Applying temporal resolution we obtain.

14. true ⇒ ¬q2 [13,TRES]
15. true ⇒ ¬q3 [13,TRES]
16. true ⇒ ¬q4 [13,TRES]

Thus clauses 3–8 are subsumed by one of 14–16.

17. q5 ∧ l1 ⇒ gfalse [9, 16,SURES]
18. q5 ∧ l2 ⇒ gfalse [10, 14,SURES]
19. true ⇒ ¬q5 ∨ ¬l1 [17,SRES]
20. true ⇒ ¬q5 ∨ ¬l2 [18,SRES]
21. true ⇒ ¬q5 [12, 19, 20,HRES]
22. q1 ∧ l1 ⇒ gq5 [1, 14,SURES]
23. q1 ∧ l1 ⇒ gfalse [21, 22,SURES]
24. q1 ∧ l2 ⇒ gfalse [2, 21,SURES]
25. true ⇒ ¬q1 ∨ ¬l1 [23,SRES]
26. true ⇒ ¬q1 ∨ ¬l2 [24,SRES]
27. true ⇒ ¬q1 [12, 25, 26,HRES]
28. start ⇒ false [0, 27, IURES]

Hence we obtain a contradiction using resolution showing the set of clauses is unsatisfiable.

Example 2 Now, consider a B̈uchi AutomatonA2 = 〈Σ, S, F0, δ, F 〉, where:

• Σ = {π1}

• S = {s1, s2, s3}

• F0 = {s1}

• F = {s2}

The transitions are given below.

S δ(s, π1)
s1 {s1, s2}
s2 {s3}
s3 {s3}

Hence there is no accepting run.

0. start ⇒ q1

1. q1 ∧ l1 ⇒ g(q1 ∨ q2)
2. q2 ∧ l1 ⇒ gq3

3. q3 ∧ l1 ⇒ gq3

4. true ⇒ q1 ⊕ q2 ⊕ q3

5. true ⇒ l1
6. true ⇒ ♦q2

Note that, since the only symbol in the alphabet isπ1, the XOR-L clause is simplytrue ⇒ l1 (clause 5).

Loop Search Initially, LG = {q1, q3} andLB = {q2}. From clause1 we deleteq1 from LG and add toLB and
obtainLG = {q3} andLB = {q1, q2}. There is no change to either set so the loop formula is

q3 ⇒ ¬q2

By applying temporal resolution we obtain the following.

7. true ⇒ ¬q3 [6,TRES]

This subsumes clause 3.
8. q2 ∧ l1 ⇒ gfalse [2, 7,SURES]
9. true ⇒ ¬q2 ∨ ¬l1 [8,SRES]

10. true ⇒ ¬q2 [5, 9,HRES]
11. q1 ∧ l1 ⇒ gq1 [1, 10,SURES]

Clause 11 now subsumes clause 1. Now, attempting loop search again (note the current set of step clauses is just
clause 11) we haveLG = {q1} andLB = {q2, q3}. We obtain the loop

q1 ⇒ ¬q2

By applying temporal resolution we obtain the following.

12. true ⇒ ¬q1 [6,TRES]
13. start ⇒ false [0, 12, IURES]

Hence we obtain a contradiction using resolution showing the set of clauses is unsatisfiable.

7 Conclusions

In this paper we have introduced a novel fragment of PTL, and have provided a complete resolution calculus for
this fragment. The complexity analysis carried out has shown that the resolution approach provides a polyno-
mial decision procedure. While this is interesting in itself, a further important aspect is that we can represent a
Büchi Automaton (symbolically and directly) as formulae in this fragment, with the emptiness check for such an
automaton corresponding to the search for a resolution refutation.

In establishing that some system,Sys, satisfies a property,P , algorithmic, rather than deductive approaches
have been predominant. In particular, the model checking approach [22, 2], characterised by checking the empti-
ness of the automata product3

ASys ×A¬P

has been very successfully applied.
On the other hand, deductive temporal verification has been largely ignored (though see [17]), often due to

its much higher complexity. With our work in this paper, we believe that deductive temporal verification can
be successfully applied to such problems, for example by representing[[Sys]] ∧ ¬P in PTL-XA, where[[Sys]] is
the temporal/symbolic description/semantics of the behaviour of the system. That PTL-XA corresponds closely
to Büchi Automata which, in turn, are at the heart of algorithmic verification, gives reason for optimism. Thus,
our future work concerns developing such a view of deductive temporal verification further, as well as examining
more complex (but still tractable) XOR temporal logics [7]. Concerning practical implementation, we note that
the complexity given in Section 5 is aworst caseanalysis. With ‘clever’ implementations, we expect the practical
complexity to generally be much lower than this.

Work related to that developed in this paper concerns the excellent analysis by Demri and Schnoebelen [5],
work on complexity of fragments of classical logic [19] and our own previous work on the relationship between
SNF and B̈uchi Automata [1] and on other tractable fragments of SNF [8].

Finally, we would like to thank Radina Yorgova for her work on varieties of RSNF which helped us to formu-
late the fragment described in this paper.

References
[1] A. Bolotov, M. Fisher, and C. Dixon. On the Relationship betweenω-Automata and Temporal Logic Normal Forms.

Journal of Logic and Computation, 12(4):561–581, August 2002.

[2] E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, December 1999.

[3] A. Degtyarev, M. Fisher, and B. Konev. A Simplified Clausal Resolution Procedure for Propositional Linear-Time
Temporal Logic. In U. Egly and C. G. Ferm̈uller, editors,Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX-02), volume 2381 ofLNCS, pages 85–99. Springer-Verlag, 2002.

[4] A. Degtyarev, M. Fisher, and B. Konev. Monodic Temporal Resolution.ACM Transactions on Computational Logic,
7(1), January 2006.

[5] S. Demri and P. Schnoebelen. The Complexity of Propositional Linear Temporal Logic in Simple Cases.Information
and Computation, 174(1):84–103, 2002.

[6] C. Dixon. Temporal Resolution using a Breadth-First Search Algorithm.Annals of Mathematics and Artificial Intelli-
gence, 22:87–115, 1998.

[7] C. Dixon, M. Fisher, and B. Konev. XOR-Temporal Logics. (Submitted), 2006.

[8] C. Dixon, M. Fisher, and M. Reynolds. Execution and Proof in a Horn-clause Temporal Logic. InAdvances in Temporal
Logic. Kluwer Academic Publishers, 1999.

[9] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science,
pages 996–1072. Elsevier, 1990.

3Here,ASys captures all the paths/executions throughSys, whileA¬P describes all the paths that satisfy¬P , i.e., all those paths thatdo
not satisfyP .

[10] M. Fisher. A Normal Form for Temporal Logic and its Application in Theorem-Proving and Execution.Journal of Logic
and Computation, 7(4):429–456, August 1997.

[11] M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution.ACM Transactions on Computational Logic, 2(1):12–
56, January 2001.

[12] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis of Fairness. InProceedings of the Seventh ACM
Symposium on the Principles of Programming Languages (POPL), pages 163–173, January 1980.

[13] G. J. Holzmann.The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, November 2003.

[14] U. Hustadt and B. Konev. TRP++ 2.0: A Temporal Resolution Prover. InProceedings of Conference on Automated
Deduction (CADE-19), number 2741 in LNAI, pages 274–278. Springer, 2003.

[15] U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A Temporal Monodic Prover. In D. Basin and M. Rusinow-
itch, editors,Proceedings of the Second International Joint Conference on Automated Reasoning (IJCAR 2004), volume
3097 ofLNAI, pages 326–330. Springer, 2004.

[16] B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising First-Order Temporal Resolution.Informa-
tion and Computation, 199(1-2):55–86, 2005.

[17] Z. Manna and the STeP group. STeP: Deductive–Algorithmic Verification of Reactive and Real-Time Systems. In
International Conference on Computer Aided Verification (CAV), volume 1102 ofLNCS. Springer-Verlag, 1996.

[18] W. McCune. Otter 2.0. InProceedings of Conference on Automated Deduction (CADE-10), volume 449 ofLNCS, pages
663–664, 1990.

[19] T. J. Schaefer. The Complexity of Satisfiability Problems. InProceedings of the Tenth Annual ACM Symposium on
Theory of Computing, pages 216–226, 1978.

[20] A. P. Sistla and E. M. Clarke. Complexity of Propositional Linear Temporal Logics.Journal of the ACM, 32(3):733–749,
July 1985.

[21] A. P. Sistla, M. Vardi, and P. Wolper. The complementation problem for büchi automata with applications to temporal
logic. Theoretical Computer Science, 49:217–237, 1987.

[22] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. InLogics for Concurrency - Structure versus
Automata (Proceedings of 8th Banff Higher Order Workshop), volume 1043 ofLNCS, pages 238–266. Springer, 1996.

[23] P. Wolper. Temporal Logic Can Be More Expressive.Information and Control, 56, 1983.

