ﬂl-

Project N 002307
ASPIC

Argumentation Service Platform with Integrated
Components

Instrument: Specific Targeted Research Project
Thematic Priority: Information Society Technologies, objective 2.3.1.7.

Deliverable D2.6 - Final review and report on formal
argumentation system

Due date of deliverable: 31/12/2005
Actual submission date: 15/02/2006

Start date of project: 01/01/2004 Duration: 36 Months

Université Paul Sabatier (UPS)

Version 1.1 - 31/12/2006



Partners:

LogicDIS S.A. (Co-ordinator) LogicDIS Greece
Cancer Research UK CRUK UK

Zeus Consulting S.A. ZEUS Greece
NAVUS NAVUS Germany
University of Ljubljana ULFRI Slovenia
Technical University of Catalonia UPC Spain
Institut de Recherche en Informatique de Toulouse | IRIT France
University of Surrey UNiS UK
University of Liverpool UNiL UK
Utrecht University uu Netherlands
City University of New York CUNY University | USA

Distribution List

ASPIC Consortium | ASPIC Consortium, EC Project Officer

Written by: | Leila Amgoud (IRIT)
Lianne Bodenstaff (Utrecht)
Martin Caminada (Utrecht)
Peter McBurney (Liverpool)
Simon Parsons (CUNY)
Henry Prakken (Utrecht)
Jelle van Veenen (Utrecht)

Gerard Vreeswijk (Utrecht)




Document Change Log

Version #

Issue Date

Sections Affected

Relevant Information

1.1

31/12/2006

UPS, Utrecht, Liverpool

Final document after contribution of
partners




Contents

1 Introduction 1
2 A general argumentation system for inference 3
2.1 Argumentation process . . . . . . ... ... 3
2.2 Logical language . . . . . .. .. ... ... . 5
2.3 The notion of argument . . . . . . ... ... L. 6
2.4 Comparing arguments . . . . . . . . . ..o 7
2.4.1 Last link principle . . . .. ... ... 0oL 8
2.4.2  Weakest link principle . . . . ... ... ... 8

2.5 The conflicts between arguments . . . . . .. ... ... .. ... 9
2.6 The acceptability of arguments . . . . .. ... ... ... 10
2.7 The consequence relation . . . . . . ... ... L. 11
2.8 Procedural form . . . .. ... Lo o 12
2.8.1 A general framework for argument games . . . . ... .. 13
2.8.2 Credulous reasoning under the preferred semantics . . . . 15
2.8.2.1 Linear argument games . . . . . ... ... ... 16

2.8.2.2 Tree-like argument games . . . . . . . ... ... 17

2.8.3 Skeptical reasoning under the preferred semantics. . . . . 18
2.8.3.1 Skeptical reasoning as credulous meta-reasoning 18

2.8.3.2 Argument game . .. .. ... ... ....... 20

2.8.4 Skeptical reasoning under the grounded semantics . . . . 22
285 Algorithms . . .. ... ... ... ... ... ... 22
2.8.5.1 Credulous reasoning under the preferred semantics 23

2.8.5.2  Skeptical reasoning under the grounded semantics 25

3 A general argumentation system for decision making 28
3.1 Imtroduction. . . ... .. ... ... 28
3.2 Logical language and the different bases . . . . . . ... .. ... 28
3.3 Thearguments . . .. .. .. ... ... 30
3.3.1 Recommending arguments . . . . . ... ... ... ... 30
3.3.2 Decision arguments . . . . . .. ... 0oL 31

3.4 Comparing arguments . . . . . . . . ... 33
3.5 Acceptability of arguments . . . . .. ... Lo 34
3.6 Decision criteria . . . . .. ... Lo oL 35



4 A general system for dialogue
4.1 Imtroduction. . . . . . .. .. ...
4.2 A general model for dialogue . . . ... ... ... L.
4.3 A formal framework for persuasion dialogues . . . ... ... ..

4.4

4.5

4.6

4.3.1
4.3.2
4.3.3

4.34

4.3.5
4.3.6

The framework: general ideas . . . . . . . ... ... ...
The framework formally defined . . ... ... ... ...
Liberal dialogue systems . . . . . . . . ... ... .....
4.3.3.1 The communication language . . . . . . .. ...
4.3.3.2 The commitment rules . . .. ... .. ... ..
4.3.3.3 Turntaking . . . . ... ... oL
4.3.3.4 The protocol . . . . .. ... oL
4.3.3.5 Termination and outcome of dialogues . . . . . .
Protocols for relevant dialogues . . . . . ... .. ... ..
4.3.4.1 Motivation . . . ... ..o L oo
4.3.4.2 Relevance defined . . ... .. ... ... ....
Protocols for weakly relevant dialogues. . . . . . ... ..
Respecting commitments . . . . ... ... ... ...

Formalising dialogue games with the Event Calculus . . . . . . .

441
4.4.2

The Event Calculus . . . . ... ... ... ... .....
Formalisation of a persuasion game . . . . . . .. .. ...
4.4.2.1 Additional fluents . . . . ... ... ... ...
4.4.2.2 Theprotocol . . . . ... ... ... ... ...
4.42.3 Commitmentset . . . . . ... ... ... ...,
4424 Turntaking . . . ... ..o oo

Another illustration of our approach . . . . ... ... ... ...

4.5.1

4.5.2

The PWA system . . . . .. ... ... ... ... .....
4.5.1.1 Communication Language. . . . . . . ... ...
4.5.1.2 Protocol . .. ... ... ... .. ... ..., .
4.5.1.3 Effect Rules ... .. .. ... ... .......
4.5.1.4 Turntaking . . . ... ..o oL
4.5.1.5 Termination Rules . . . . . .. ... .......
Formalisation of PWA in Event calculus . . . .. .. ...
4.5.2.1 Additional fluents . . . .. .. .. ... ... ..
4.5.2.2 Begin situation . . . .. ... Lo
4523 Legalmoves . ... ... ... ... . ...,
4.5.2.4 Claiming a set of propositions . . . .. ... ..
4.5.2.5 Attitudes . . . . ...
4.5.2.6 Turntaking . . ... .. ... ..
4.5.2.7 Effect of a move on the commitment set . . . . .
4.5.2.8 Ending the dialogue . . . . .. ... ... ...

Argument-based negotiation . . . . .. ...

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5

A language and protocol for multi-attribute negotiation .
The combination . . . . ... .. ... ... ..
Properties of the combined protocol . . ... .. ... ..
Anexample . . . . . .. ...
Adding dialogue policies for the e-Consent Scenario

ii

37
37
39
40
41
41
45
45
46
46
46
47
49
49
51
93
o4
95
56
59
59
60
61
62
63
63
63
63
65
65
65
65
65
66
68
70
73
74
75
76
76
7
79
81
82
84



4.6.5.1 Notation . . . .. .. .. ... ... ... ..., 85

4.6.5.2 Negotiation policies . . . . . . ... . ... ... 85

4.6.5.3 Persuasion policies . . . . . ... ... ... ... 87

4.7 TImplementation . . . . . . . . ... 88
4.7.1 Persuasion protocol implementation . . .. .. ... ... 88

4.71.1 Thebasics .. ... .. ... ... ... ... 88

4.7.1.2 Implementation . .. ... ... ... ... ... 90

4.7.1.3 Running the program . . . ... ... ... ... 92

4.7.2 Information-seeking protocol implementation . . . . . . . 95

4.8 Combining Dialogues . . . . . . ... ... oo 97

5 Conclusion 99

iii



Chapter 1

Introduction

A rational agent can express claims and judgments, aiming at reaching a de-
cision, a conclusion, or informing, convincing, negotiating with other agents.
Pertinent information may be insufficient or contrastedly there may be too
much relevant but partially incoherent information. And, in case of multi-agent
interaction, conflicts of interest are inevitable. So, agents can be assisted by ar-
gumentation, a process based on the exchange and the valuation of interacting
arguments which support opinions, claims, proposals, decisions, ...

Argumentation has become an Artificial Intelligence keyword for the last fif-
teen years, especially in sub-fields such as nonmonotonic reasoning, inconsistency-
tolerant reasoning, multiple-source information systems, natural language pro-
cessing and human-machine interface also in connection with multi-agents sys-
tems. There are several introductory survey or collections of papers available
on these Al research trends [71, 45, 69].

In [5], the ASPIC consortium has presented an overview of existing argu-
mentation models for inference, decision, dialogue and finally for learning. It is
clear from that overview that the issues of inference and decision have, for a long
time, been considered as two distinct problems and been studied separately. As
a result of this, several models have been proposed for each problem. The basic
idea behind inference is to draw conclusions from a set of premisses, in other
words, to determine whether a given conclusion can be regarded as justified on
the basis of the existing information. The decision problem consists of defining
a pre-ordering on a set of possible choices or alternatives, on the basis of avail-
able information. Indeed, an alternative cannot be true or false, but it can be
preferred to the other alternatives in the current state of the world.

In [4] a first argumentation-based model has been proposed for inference
and decision. Two important features of that model can be outlined. The first
one is its generality compared to existing argumentation systems developed for
inference purposes. Indeed, the new ASPIC model is defined on a unspecified
logical language. The only requirement is that strict and defeasible rules should
be distinguished. The second important feature of the ASPIC model is the fact
that both inference and decision are captured and analyzed. In [2] Amgoud has



argued that inference is part of a decision problem. The basic idea is to infer
from all the available information, the formulas which are “correctly” supported,
then to classify the different decisions on the basis of these formulas. Moreover,
the proposed framework is general enough to capture different kinds of decision
problems such as decision under uncertainty, multiple criteria decision and rule-
based decision.

The acceptability semantics used in ASPIC are exactly the ones defined by
Dung in [33]. In [4] different proofs of acceptability have been proposed.

When defining the ASPIC-formalism, we discovered some very interesting
problems and undesirable results. One may think that this problem is proper
to ASPIC model, unfortunately not. Several existing systems such as Prakken
and Sartor’s system [68], the argument-theoretic version of Nute’s Defeasible
Logic [42] and Garcia and Simari’s system [38] suffer from the same problem.
In order to avoid such anomalies, in [21] Caminada and Amgoud have proposed
different principles (what they call rationality postulates or axioms) that any
argumentation system should fulfill. These postulates will govern the well defi-
nition of an argumentation system and will ensure the correctness of its results.
Three important postulates have been defined: the closeness and the consis-
tency of the results that an argumentation system may return, and also the
phenomenon of non-contamination. These postulates are violated in systems
such as [68, 42, 38]. In [21], Caminada and Amgoud have also proposed differ-
ent solutions in which these postulates can be warranted in the ASPIC model.
In [6], all these results have been reported in detail.

The aim of this deliverable D2.6 is to report the solution chosen to be im-
plemented by ASPIC consortium.

Concerning dialogue, in this document we propose a formal model of dialogue
instantiating the general formal framework for dialogues presented in Section 4
of ASPIC Deliverable D2.1 [5]. The model clearly shows how the argumentation
framework defined in the first part for inference and decision can be used in
dialogues. Within the framework of [5] a formal model of persuasion is defined
and then combined with a model of negotiation dialogue and a partial design of
dialogical agents. Then two possible routes to implementation of the proposed
dialogue models are discussed.

The document is organized in three main chapters. Chapter 2 presents a
general argumentation framework for inference. Chapter 3 extends the first
argumentation framework to deal with decision-making. Chapter 4 is devoted
to models of dialogue. The deliverable ends with a short Conclusion in Chapter
5.



Chapter 2

A general argumentation
system for inference

2.1 Argumentation process

Argumentation is a reasoning model which follows the five following steps:
1. Constructing arguments (in favor of / against a “statement”) from bases.
2. Defining the strengths of those arguments.
3. Determining the different conflicts between the arguments.
4. Evaluating the acceptability of the different arguments.
5. Concluding or defining the justified conclusions.

Indeed, argumentation systems are built around an underlying logical language
L and an associated notion of logical consequence, defining the notion of ar-
gument. The argument construction is a monotonic process: new knowledge
cannot rule out an argument but only gives rise to new arguments which may
interact with the first argument. Since the knowledge bases may be inconsis-
tent, the arguments may be conflicting too. Consequently, it is important to
determine among all the available arguments, the ones which will be justified.
In [33], an argumentation system is defined as follows:

Definition 1 (Argumentation system) An argumentation system (AF) is
a pair (A, Def). A is a set arguments and Def C A x A is a defeasibility
relation. We say that an argument A defeats an argument B iff (A,B) € Def
(or A Def B).

Among all the conflicting arguments, it is important to know which are the
arguments which will be kept for inferring conclusions and for making decisions.
In [33], different semantics for the notion of acceptability have been proposed.
Let’s recall them here.



Definition 2 (Conflict-free, Defence) Let B C A.

o A set B is conflict-free iff there exist no A;, A; in B such that A; Def
A;.

o A set B defends an argument A; iff for each argument A; € A, if A; Def
A;, then there exists Ay in B such that Ay Def A;.

Definition 3 (Acceptability semantics) Let B be a conflict-free set of argu-
ments, and let F: 24 — 24 be a function such that F(B) = {A | B defends A}.

e BB is admissible iff B C F(B).
e BB is a complete extension iff B = F(B).

e B is a grounded extension iff it is the minimal (w.r.t. set-inclusion) com-
plete extension.

B is a preferred extension iff it is a maximal (w.r.t. set-inclusion) com-
plete extension.

e 3 is a stable extension iff it is a preferred extension that defeats all argu-
ments in A\B.

Let & = {E,...,E,} be the set of all possible extensions under a given seman-
tics.

Note that there is only one grounded extension. It contains all the arguments
which are not defeated and also the arguments which are defended directly or
indirectly by non-defeated arguments. Moreover, the following results can be
shown:

Lemma 1 Let (A, Def) be any argumentation framework and B C A. If B is
admissible, then B C F(B).

Lemma 2 Let (A, Def) be any argumentation framework and B C A. If B is
admissible, then F(B) is also admissible.

So far, we have defined the acceptability of sets of arguments. In what
follows, we propose different status of a single argument.

Definition 4 (Status of an argument) Let (A, Def) be an argumentation
framework, & = {FE1,..., E,} its possible extensions under a given semantics.
Let A be an argument.

o A is skeptically accepted under a given semantics iff A belongs to all the
extenstons under the semantics.

e A is credulously accepted under a given semantics iff A belongs to at least
one extension under the semantics.



o A is rejected under a given semantics iff A does not belong to any exten-
ston under the semantics.

The last step of an argumentation process consists of determining, among
all the conclusions of the different arguments, the “good” ones called justified
conclusions. Let Output denote this set of justified conclusions. One way of
defining Output is to consider the conclusions which are supported by at least
one argument in each extension.

Definition 5 (Justified conclusions) Let (A, Def) be an argumentation sys-
tem and {E1, ..., E,} be its set of extensions (under a given semantics).
Output = {¢|VE;,3A € E; such that Conc(A) = ¢} where Conc(A) stands for
the conclusion of the argument A.

2.2 Logical language

In what follows, £ will denote a logical language closed under negation. More-
over, we assume the availability of a function “—”, which works with £, such
that —¢ = ¢ iff ¥ = =¢ and —yp = —¢ iff Y = ¢. Let K be a knowledge base
containing formulas of L.

Definition 6 (Consistent set) Let P C L. P is consistent iff # ¢, ¢ € P
such that 1 = —¢, otherwise it is said inconsistent.

We distinguish between strict rules which will enable to define conclusive infer-
ences and defeasible rules which will enable to define defeasible inferences.

Definition 7 (Strict and defeasible rules) Let ¢1, ..., ¢, ¥ be elements
of L.

A strict rule is of the form ¢1, ..., ¢n — ¢ meaning that if ¢1,. .., ¢n hold,
then without exception it holds that 1.

A defeasible rule is of the form ¢1, ..., ¢ = @ meaning that if ¢1,...,¢n
hold, then it usually holds that 1.

O1,- .., 0n will be called the antecedent of the rule and ¢ its consequent. S
will denote the set of all strict rules and R will denote the set of all defeasible
rules.

Definition 8 (Transposition) A strict rule s is a transposition of ¢1, ..., ¢n
= Yiffs =1, ..., Gim1, Y, Giv1, oo, G — 2y for some 1 < i < n.

Based on the thus defined notion of transposition, we now define a closure
operator for the set S.

Definition 9 (Transposition operator) LetS be a set of strict rules. Cly,(S)
s a minimal set such that:

o S CClLy(S), and

o If s € Cly,(S) and t is a transposition of s then t € Clyy(S).



We say that S is closed under transposition iff Cly,(S) = S.
Definition 10 (Theory) A theory 7 is a tuple ((Clipy(S), R).

Definition 11 (Closure of a set of formulas) Let P C K. The closure of
P under the set S of strict rules, denoted Cls(P), is the smallest set such that:

e P CCls(P).
i if¢17"'7¢n _>1¢/) S S and ¢17'--a¢n S OZS(P) then¢ S CZS(P)
If P = Cls(P), then P is said closed.

2.3 The notion of argument

The basic idea behind an argument, called here epistemic, is the fact that a
given premise is justified on the basis of the available knowledge in K. Such
arguments have a deductive form.

In what follows, for a given argument, the function PREM returns all the
formulas of K (called premises) used to build the argument, PROP returns all
the propositions used in that argument, CONC returns its conclusion, SUB returns
all its sub-arguments and finally the function DefRules returns all the defeasible
rules of the argument.

Definition 12 (Epistemic Argument) An epistemic argument A is:

e ¢ if § € K with:
PREM(A) = {0},
PROP(A) = {¢},
CONC(A) = o,
SUB(A) = ¢,
DefRules(A) = 0.

o Ay,... A, — Y if Ay, ..., A, are epistemic arguments such that there
exists a strict rule CONC(A,),...,CONC(A,) — ¢ in Cly,y(S).

PREM(A) = PREM(A;) U ... UPREM(A,,),
PROP(A) = PROP(A;) U... UPROP(A,) U {¢},
CONC(A) = ),

SUB(A) = SUB(A4;) U...USUB(A,)U{A}.
DefRules(A) = DefRules(A4;)U...UDefRules(A,).

o Ay,... A, = v if Ay, ..., A, are epistemic arguments such that there
exists a defeasible rule CONC(A1),...,CONC(A,) = .
PREM(A) = PREM(A;) U ... UPREM(A,,),
PROP(A) = PROP(A;) U ... UPROP(A,) U {¢},
CONC(A) = 1,
SUB(A) = SUB(A4;) U...USUB(A,)U{A},
DefRules(A) = DefRules(A;) U...UDefRules(4,)U{4;,... A, = ¢}



Let A, be the set of all epistemic arguments.

Definition 13 (Top rule) Let A be an argument. The top rule of the argu-
ment A, denoted TopRule(A), is the last rule used to build it.

Let us illustrate the above definitions on the following example.

Example 1 Let K = 0, S = {— a,— d} and R = {a = b,d = —b}. The
following arguments can be built:

Ay : [—al

Ay [—d]

As: [AL = b

Ay [Ag = b

Let us consider another example.

Example 2 Let K = {a,d}, S =0 and R = {a = b,d = —b}. The following
arguments can be built:

A ¢ [d]

Ay : [d]

As: [Ay = 0]
Ay [Ag = b

Definition 14 (Strict vs. defeasible argument) Let A be an epistemic ar-
gument. A is strict iff DefRules(A) = 0, otherwise A is said defeasible.

2.4 Comparing arguments

In [7, 68], it has been argued that arguments may have forces of various strengths.
These forces will play at least two roles:

1. they allow an agent to compare different arguments in order to select the
‘best’ ones.

2. they are useful for determining the acceptable arguments among the con-
flicting ones.

In what follows = will denote any preference relation between epistemic argu-
ments. For two arguments A and B, A = B means that A is at least as ‘good’
as B. > denotes the strict ordering associated with >. A > B means that A is
strictly preferred over B.

Throughout the document, we suppose that there exists a basic ordering
> on the set of arguments. This basic ordering captures the idea that strict
arguments are preferred to the defeasible ones.



Definition 15 (Basic ordering) Let A, B be two arguments. A = B iff A is
strict and B is defeasible.

The basic ordering can be refined by other principles. In the literature there
are two well-known principles for comparing pairs of epistemic arguments: the
last link principle defined in [68] for legal applications, and the weakest link
principle defined in [7] and applied in the case of handling inconsistency in
knowledge bases.

2.4.1 Last link principle

The basic idea behind this principle is to prefer an argument A over another
argument B if the last defeasible rule(s) used in B is less preferred than the last
defeasible rule(s) in A. This principle takes it for granted the fact that there
exists a partial pre-ordering >, (r for rules) on the set R of defeasible rules. For
two defeasible rules R, R’, R >, R’ means that R is preferred to R’.

Before defining this principle, let us first start by introducing formally the
concept of “last defeasible rule”. Note that an argument may have several
defeasible rules. Those rules are returned by a function LastDefRules defined
as follows:

Definition 16 (Last defeasible rules) Let A be an argument.
e LastDefRules(A) = 0 iff DefRules(A) = 0.

o If A = Ay, ..., A, = ¢, then LastDefRules(A) = {CONC(A41), ...,
CONC(A,,) = ¢}, otherwise LastDefRules(A) = LastDefRules(4;) U ...
U LastDefRules(4,).

The above definition is then used to compare pairs of arguments as follows:

Definition 17 (Last link principle) Let A, B € A.. A is preferred to be B,
denoted A = B, iff 3 R € LastDefRules(B) such thatV R’ € LastDefRules(A),
R > R.

Let us illustrate this definition by the following example.

Example 2 — continued: Let K = {a,d}, S =0 and R = {a = b,d = —b}.
Suppose that a = b >, d = —b. In this case, the argument [[a] = b] is preferred
to the argument [[d] = —b].

2.4.2 Weakest link principle

The idea behind the weakest link principle is to prefer an argument A over an
argument B if the less entrenched belief of A is preferred to the less entrenched
belief of B. In this case, both the knowledge base K and the set R of defeasible
rules are supposed to be equipped with a partial pre-ordering > (resp. >,).
For two elements K and K’ of K K >; K’ means that K is preferred to K’.



Definition 18 (Weakest link principle) Let A, B € A.. A is preferred to
B, denoted by A >~ B, iff:

e VK € PREM(A), 3K’ € PREM(B) such that K > K', and
e VR € DefRules(A), IR’ € DefRules(B) such that R > R'.

Consider again the above example.

Example 2 — continued: Let K = {a,d} and R = {a = b,d = —b}. Suppose
that a = b >, d = —b. If a > d, then the argument [[a] = b] is preferred
to the argument [[d] = —b]. However, if d >y a then the two arguments are
incomparable.

2.5 The conflicts between arguments

Since the information may be inconsistent, the arguments may be conflicting.
Indeed, arguments supporting beliefs may be conflicting.

Two kinds of conflicts between arguments can be distinguished. The first one
corresponds to the case where one argument uses a defeasible rule of which the
applicability is disputed by the other argument. In the following definition, [.]
stands for the objectivation operator [65], which converts a meta-level expression
into an object-level expression.

Definition 19 (Undercutting) Let A and B be arguments in A.. A under-
cuts B iff 3 B’ € SUB(B) of the form BY,..., Bl = and 3 A’ € SUB(A) with
CONC(A') = —[CONC(BY), ..., CONC(B!) = v].

The second kind of conflicts corresponds to the case where two arguments
support contradictory conclusions.

Definition 20 (Rebutting) Let A and B be arguments. A rebuts B iff 3 A’
€ SUB(A) with CONC(A’) = ¢ and 3 B’ € SUB(B) with CONC(B') = —¢.

Example 3 Let K = {a,t}, S = {a — b}, R = {b=c¢,t = —b,~b=d}. The
argument [[[t] = —b] = d] rebuts [[[a] — b] = c|. The reverse is also true.

Property 1 The relation Rebut us symmetrical.

The definition of rebut captures the idea of “Assumption attack” defined in the
deliverable D2.2. In that deliverable, a set of assumptions has been distinguished
from K. However, we argue that those assumptions can be modeled as defeasible
rules with an empty antecedent. So, in what follows “Assumption attack” will
not be considered.

Definition 21 (Restricted rebutting) Let A and B be arguments. A re-
strictively rebuts B on (A’, B’) iff 3 A’ € SUB(A) with CONC(A’) = ¢ and 3 B’
€ SUB(B) of the form BY,..., Bl = —¢.

Note that the restricted version of rebut is a refinement of this last.



Property 2 Restricted rebut = Rebut. The reverse is not always true.
Note 1 In what follows, we will keep the restricted version of rebutting.

The two relations: undercut and restricted rebutting are brought together in a
unique definition of “defeat” as follows:

Definition 22 (Defeating) Let A and B be arguments of A.. We say that A
defeats B iff

1. A restrictively rebuts B on (A’, B') and not (B’ = A’), or
2. A undercut B.

2.6 The acceptability of arguments

Once all the basic concepts introduced, we are now ready to define an argumen-
tation framework for inferring from inconsistent knowledge bases.

Definition 23 (Argumentation framework) Let 7 be a theory. An argu-
mentation framework (AF') built on T is a pair <A., defeat> s.t:

o A, is the set of arguments given in Definition 12,
o defeat is the relation given in Definition 22.

Among all the conflicting arguments, it is important to know which are the
arguments which will be kept for inferring conclusions, in other terms one should
define the acceptable arguments. In what follows, we will use the different
semantics for the notion of acceptability that have been proposed by Dung [33],
and recalled in section 2.1.

E ={E1,..., E,} will denote the set of all possible extensions under a given
semantics of the argumentation system <A, defeat>.

Property 3 An argumentation framework <A, defeat> has a unique grounded
extension which may be empty. It may have different stable, preferred and com-
plete extensions.

In [22], it has been shown that each argument which is in an extension, has all
its sub-arguments in that extension.

Proposition 1 Let <A., defeat> be an argumentation system and E1, ..., E,
its different extensions under a given semantics. ¥ A € E;, then Sub(A4) C E;,
VE;.

Another interesting property concerns the consistency of the results returned
by this system. This is of great importance since it shows clearly that the above
system returns safe conclusions.

10



Proposition 2 Let <A., defeat> be an argumentation system built from a
theory T with S consistent, and E1,...,E, its different extensions under a
given semantics. ¥ E;, the set {Conc(A) | A € E;} is consistent.

The above result shows also that the rationality postulate about direct consis-
tency defined in [21] is satsfied by this argumentation system.

Proposition 3 Let <A., defeat> be an argumentation system built from a
theory T with S consistent, and FE+, ..., E, its different extensions under a
given semantics. YE;, {Conc(A)|A € E;} = Cls({Conc(A)|A € E;}).

The above result shows that the rationality postulate about closedness is
satisfied by the argumentation framework defined in this chapter. The idea of
closedness is that the answer of an argumentation-engine should be closed under
strict rules. That is, if we provide the engine with a strict rule a — b (“if a then
it is also unezceptionally the case that b”), together with various other rules,
and our inference engine outputs a as justified conclusion, then it should also
output b as justified conclusion. Consequently, b should also be supported by
an acceptable argument.

Proposition 4 Let <A., defeat> be an argumentation system built from a
theory T with S consistent, and FE+, ..., E, its different extensions under a
given semantics. YE;, the set Cls({Conc(A)|A € E;}) is consistent.

The argumentation framework proposed here satisfies the third rationality
postulate which is about indirect consistency.

2.7 The consequence relation

Once the acceptable arguments defined, conclusions may be inferred from a
knowledge base.

Definition 24 (Inferring) Let 7 be a theory, AF = <A, defeat> be an ar-
gumentation framework and £ its set of extensions under a given semantics.

Y is inferred from T, denoted by T |~ v, iff V E; € £, 3 A € E; such that
CONC(A) = 1.

output(AF) = {¢ | T f~ v}.

An important result is that the set of all conclusions inferred from 7 is consis-
tent.

Proposition 5 Let <A., defeat> be an argumentation system built from a
theory T with S consistent, and FE+, ..., E, its different extensions under a
given semantics. Output(AF) is consistent.

The set of inferences made from a base using the proposed argumentation frame-
work is closed under strict rules. Formally:

11



Proposition 6 Let <A., defeat> be an argumentation system built from a
theory T with S consistent, and E1,...,E, its different extensions under a
given semantics. Output(AF) = Cls(Output(AF)).

Finally, it is to show that the closure under strict rules of the set of inferences
is also consistent.

Proposition 7 Let <A., defeat> be an argumentation system built from a
theory T with S consistent, and FE1, ..., E, its different extensions under a
given semantics. The set Cls(Output(AF)) is consistent.

2.8 Procedural form

The credulous and the skeptical acceptability of an argument under a given
semantics have been defined in section 2.1. The problem which consists in
deciding if an argument is credulously (resp. skeptically) accepted under a given
semantics is called the credulous (resp. the skeptical) acceptance problem. In
this chapter, we are interested in giving “proofs” of the acceptability.

As indicated in [24], in everyday life, a “proof” often takes the form of a set
of pieces of information, such that these pieces of information, taken together,
can prove the fact, in some sense. The proof can include the way in which the
pieces of information have to be articulated in order to actually prove the fact,
but not always: the idea is then that, given the pieces of information, it is not
too difficult to reconstruct a proof. One interesting aspect of such proofs is
that they provide a kind of “explanation” as to why a given fact is believed to
be true. In this respect, “good” proofs are usually concise and avoid irrelevant
information.

Considering our acceptance problems, we would like to be able to explain
why a given argument is accepted. If we consider the credulous acceptance
problem for the preferred semantics, a proof that an argument a is accepted
could simply be an admissible set that contains a. However, this will probably
not be informative enough as an explanation; it is usually interesting to know
why the set is admissible: against which other arguments it defends itself, and
how. In other words, a more satisfactory proof should exhibit the admissible
set as well as all its attackers, and how the admissible set defends itself against
these attackers.

This implies that a proof of acceptance for a given argument a should at
least separate its arguments in two classes: the ones that are in favor of a in this
proof (the elements of the admissible set in the case of the credulous acceptance
problem under the preferred semantics); and the ones that are “against” a in this
proof (the attackers of the admissible set). A proof can be given a more refined
structure if we take a conciseness requirement into account: in this case, the
only arguments in favor of ¢ that it contains should be there for a good reason,
that is, because they directly, or indirectly, defend a or another defender of a.
Similarly, the only arguments against a in the proof should be the attackers of
a or their defenders.

12



Argument games between a proponent (PRO) and an opponent (OPP) can
be interpreted as constructing proofs of acceptance that have the dialectical
structure underlined above: the proponent starts with the argument to be
“proved”, and attempts to defend that argument against any attack coming
from the opponent. The precise rules of the argument game depend on the
semantics to be captured.

[79] outlines argument games (called Two Party Immediate response Dis-
putes, or TPI-disputes) which have been formalized by [34]. Argument games
have also been formalized in [44], where a general framework is proposed which
enables to define argument games for winning positions in argumentation frame-
works.

Following the formal approach of [44], but with slightly different definitions,
a general framework for argument games has been proposed in [24]. In sec-
tion 2.8.1, we present this framework, which is a particular dialogue system (see
Deliverable D2.1, section 4.2). The two argument games for the credulous accep-
tance problem under the preferred semantics which were introduced in [23, 24]
are presented in section 2.8.2, and the argument game for the skeptical accep-
tance problem introduced in [32] is presented in section 2.8.3. An argument
game for the acceptance problem under the grounded semantics is presented in
section 2.8.4. Finally, some algorithms computing the previous argument games
are presented in section 2.8.5.

2.8.1 A general framework for argument games

The common elements of dialogue systems have been presented in Deliverable
D2.1, section 4.2. An argument game (or dialectical proof theory, as defined in
[24]), is a particular dialogue system, whose elements are instantiated on the
following way:

Dialogue goal: To prove the credulous or the skeptical acceptability of an
argument under a given semantics.

Participants are two, the proponent (PRO) and the opponent (OPP). The
participants are also called the players. The role of PRO is to defend
the argument under consideration against any attack; the role of OPP
is to outline these attacks. The set of commitments associated to each
participant is empty?.

Context: An argumentation system <A, Def>, fixed and finite.
Topic language: The participants play arguments of A.

Communication language: A movein Ais a pair [P, X] where P € {PRO, OPP}
and X € A. A dialogue is a countable sequence of moves.

1Bach participant is implicitly committed to the arguments he or she plays, but in order
to make the framework as simple as possible, we choose to let the set of commitments always
empty.

13



Protocol: A legal-move function defines, at every step in the dialogue, what
moves can be used to continue the dialogue. The players play in turn and
PRO plays first. The dialogue is terminated when the set of arguments
returned by the legal-move function is empty.

Effect rules: None since the set of commitments of a participant is always
empty.

Outcome rules: Winning criteria are defined in order to determine if the ar-
gument under consideration is successfully defended with an argument
game.

Each participant has a strategy depending on the acceptance problem to
solve. This strategy is represented in the legal-move function.

We define now argument games more formally, inspired by [44, 24, 32]. To
this end, we will first define the notion of a dialogue type (involving the formal
definition of a move and a legal-move function), then of a dialogue about an
argument and finally of two winning criteria. All these definitions are set for a
basic argumentation framework (see section 2.1).

Definition 25 (Dialogue type) Let <A, Def> be an argumentation frame-
work.

A move in A is a pair [P, X] where P € {PRO,OPP} and X € A. For a
move p = [P, X], we use pl(u) to denote P and arg(p) to denote X. The set of
moves in A is denoted by M. M* denotes the set of finite sequences of moves.

A dialogue type is a tuple <A, Def,¢p> where ¢ : M* — 24 is a function
called legal-move function.

Definition 26 (Dialogue about an argument) Let <A, Def,¢> be a dia-
logue type. A dialogue d in <A, Def,¢p> (or ¢-dialogue for short) is a countable
sequence popq - .. of moves in A such that:

1. pl(po) = PRO
2. pl(pi) # pl(pit1)
3. arg(pit1) € ¢(po - - - 1)
We say that d is about argument arg(fo).

Remind that when the set of arguments returned by the legal-move function
is empty, the dialogue cannot be continued.

Although [44] allow any conflict-free set of arguments to appear in a move,
we restrict a move to contain one argument only: actually, it is possible to
check easily whether a particular argument can be advanced whereas allowing
“arbitrary” conflict-free sets may lead to difficulties or inefficiencies in deciding
if a particular subset could be used. We have dropped [44]’s requirement that
arg(ui+1) must attack arg(u;) because, in order to have sequential argument

14



games of credulous acceptance with respect to the preferred semantics, we need
to let OPP try all possible attacks against any of PRO’s arguments, but only
one at a time.

Let us now introduce some notations. Let d = popu1...u; be a finite ¢-
dialogue:

e u; is denoted by last(d);

o d(uo-..u;) is denoted by ¢(d);
e PRO(d) will denote the set of arguments advanced by PRO during d.

e The extension of d with a move g in A such that popy...up is a ¢-
dialogue is denoted by the juxtaposition d.u.

We consider two winning criteria: a given dialogue about an argument z
can be won, or there can be a winning strategy for z, that is a way for PRO to
defend z against all attacks of OPP. To give this second criterion, the following
definition is needed: the sequence y is a prefiz of the sequence x or x is an
extension of y if and only if there exists a sequence z such that x is obtained by
the concatenation of y and z, x = y.z.

Definition 27 (Winning criteria) Given a dialogue type <A, Def, ¢p>:

Dialogue won [44]: A ¢-dialogue d is won by PRO if and only if d is finite,
cannot be continued (that is ¢(d) = 0), and pl(last(d)) = PRO.

Winning strategy [24]: A ¢-winning strategy for an argument x is a non-
empty finite set S of finite ¢-dialogues about x won by PRO such that: Vd €
S,Vd' prefiz of d such that last(d’) is played by PRO, Vy € ¢(d'),3d” € S
such that d" is an extension of the juxtaposition d'.[OPP,y].

In other words, a ¢-winning strategy must show that any ¢-dialogue about
x where PRO plays the last move can be extended in a ¢-dialogue won by PRO
whatever the response of OPP to this last move.

The definition of a dialogue which is won is used to define sequential argu-
ment games for the credulous acceptance of an argument under the preferred
semantics (section 2.8.2.1), and for the skeptical acceptance of an argument
under the preferred semantics (section 2.8.3). Winning strategies are used in
section 2.8.2.2 to define tree-like argument games for the credulous acceptance
of an argument under the preferred semantics: the dialogues that compose the
strategy correspond to paths in the tree from the root to leaves of the tree.

2.8.2 Credulous reasoning under the preferred semantics

We first introduce some additional notations.

Notation 1 Let <A, Def> be an argumentation framework. Given an arqu-
ment a € A, we denote:

15



e by RT(a) ={be A|aDefb} the set of the successors of a,
e by R (a) ={be€ A|bDefa} the set of the predecessors of a, and
e by R*(a) the set R*(a) U R (a).

Moreover, given a set S C A of arguments and ¢ € {+,—,+}, R(S) =
Uncs B(a).

Finally, Refl(< A, Def>) = {x € A | xDefx} is the set of arguments that
attack themselves (or self-attacking arguments ). This set will be denoted by Refl
for short.

The credulous acceptance problem is to decide if a given argument x belongs
to at least one preferred extension. As already mentioned, a proof that z is
credulously accepted exhibits an admissible set of arguments that contains x;
the proof must also exhibit attackers of this set, and the structure of the proof
must show how the set defends itself against these attackers.

According to [23, 24], the dialogues introduced in the previous section enable
us to distinguish arguments that defend x from those that attack it: the former,
as well as x itself, are labelled “PRO” in the dialogue, whereas the latter are
labelled “OPP”. The two proof theories that we present below are based on
dialogues such that for every attacker, that is, for every move [OPP, z], there is
always a preceding move [PRO, y| in the sequence, such that z attacks y. This
PRO-argument y justifies/explains the presence of z in the proof. Similarly,
every defender in a proof, that is, every move of the form [PRO,y], must be
immediately preceded in the dialogue by an attacker against which it defends,
that is a move [OPP, z] such that y attacks x.

Another restriction can be put on the moves that can appear in a proof
of credulous acceptance: let d be a finite ¢-dialogue. R*(PRO(d)) contains
the arguments which attack or which are attacked by an argument advanced
by PRO during d. If d is to be a proof of acceptance, then PRO attempts to
build an admissible set of arguments, so PRO cannot choose any argument in
R*(PRO(d)) for pursuing the dialogue d, nor any self-attacking argument. In
the sequel, POSS(d) denotes the set of arguments which may be chosen by PRO
for extending an already conflict-free set PRO(d):

POSS(d) = A\ (PRO(d) U R*(PRO(d)) U Refl).
Note that it is useless for OPP to advance an argument which is attacked by
PRO(d).
2.8.2.1 Linear argument games

The following legal-move function leads to a dialectical proof theory in which
OPP is not obliged to respond to the last argument advanced by PRO. Hence,
the argument games obtained are linear.

Definition 28 (Legal-move function ¢1) [25] Given an argumentation frame-
work <A, Def>, let ¢y : M* — 24 be defined by:

16



e if d is a dialogue of odd length (next move is by OPP),

¢1(d) = R™(PRO(d)) \ R"(PRO(d));

e if d is a dialogue of even length (next move is by PRO),
¢1(d) = R~ (arg(last(d))) N POSS(d).

Combining a dialogue type <A, Def, ¢1> and the first winning criterion
(dialogue won, cf. Def. 27), we obtain ¢-proofs:

Definition 29 (¢;-proof for an argument) [23] A ¢1-proof for the argument
x is a ¢1-dialogue about x won by PRO.

The following result establishes that the ¢1-proof theory is sound, and com-
plete for finite argumentation framework.

Property 4 [23] If d is a ¢1-proof for the argument z, then PRO(d) is an
admissible set containing x.

If the argument x is in a preferred extension of the argumentation framework
<A, Def>, and if A is finite, then there exists a ¢1-proof for x.

2.8.2.2 Tree-like argument games

It is also convenient to present proofs in a more traditional way, on a tree-like
form, where at each stage of the proof, the advanced argument attacks the
previous one. Such proofs are obtained using the following legal-move function.

Definition 30 (Legal-move function ¢3) [23] Given an argumentation frame-
work <A, Def>, let ¢ : M* — 24 be defined by:

e if d is a dialogue of odd length (next move is by OPP),
¢2(d) = R™ (arg(last(d))) \ R (PRO(d));
e if d is a dialogue of even length (next move is by PRO),
$(d) = 61(d) = R~ (arg(last(d))) N POSS(d).

@2 is a restriction of ¢, since, according to ¢2, OPP must advance an argu-
ment which attacks the argument advanced by PRO in the previous move.

Combining a dialogue type <A, Def, $2> and the second winning criterion
(winning strategy, Def. 27), we obtain ¢o-proofs:

Definition 31 (¢2-proof for an argument) [23] A ¢o-proof for the argument
x is a ¢o-winning strategy S for x such that |J,;c g(PRO(d)) is conflict-free.

The ¢o-proof theory is proved sound and complete for the credulous accep-
tance problem, according to the following result.

17



Property 5 [23] There exists a ¢1-proof for the argument x if and only if there
exists a ¢o-proof for x.

An advantage of a ¢o-proof over a ¢1-proof is that one can immediately see,
with a ¢o-proof, which argument is attacked by the argument advanced by OPP
in a move (the argument of the immediately preceding move).

2.8.3 Skeptical reasoning under the preferred semantics

The skeptical acceptance problem under the preferred semantics, which consists
in determining if a given argument is in every extension of a given argumentation
system, is studied in [32]. We present here the results of [32].

2.8.3.1 Skeptical reasoning as credulous meta-reasoning

Determining if an argument is in every extension of an argumentation framework
can be easily (but not efficiently) answered if we can enumerate all the extensions
of the system: we consider a first extension E; and test if x € F4. If it is, this
suggests that « may indeed be in every extension (as opposed to the case where
x ¢ E1). We then consider a second extension Fs: it may happen that x ¢ Es,
so the existence of Ey a priori casts a doubt over the fact that x is in every
extension. However, if it turns out that x € FE5, this reinforces the possibility
that = may be in every extension. Continuing the process, each extension E
starts, with its sole existence, by being an argument suggesting that = may
not be in every extension, to become, if it turns out that x € E, an argument
reinforcing the possibility that x is in every extension. Of course, enumerating
all the extensions will generally not be efficient. We study in the remainder of
this section how we can refine this approach, by enumerating smaller sets that
can be interpreted as “meta’-arguments for or against the possibility that x is
in every extension.

Since every argumentation system has at least one (preferred) extension, an
argument x must be in at least one extension in order to be in all of them,
so x must be in at least one admissible set. Now, suppose we have found one
admissible set P that contains z; so we know that z is in at least one extension
E O P. What could prevent x from being in every extension? If there is
an extension E’ such that ¢ F’, then P ¢ E’, so there must be a conflict
between P and E’ (otherwise, since P and E’ defend themselves, PUE’ would be
admissible, which is not possible since E’ is maximally admissible and P € E’).
Thus if z is not in every extension, there must be some admissible set P’ that
attacks P and such that P’ is not in any extension that contains = (take for
instance P’ = E’). In a sense, P can be seen as a “meta”-argument suggesting
that  may well be in every extension of the system; whereas P’ can be seen
as a counter-argument: it suggests that, since there is an admissible set that
contradicts P, there may be some maximal admissible set of arguments that
does not contain x. This “meta” counter-argument is in turn contradicted if
there is some admissible set of arguments P” that contains both P’ and z.

18



In order to formalise this approach, let us introduce the following definitions
and notations:

Definition 32 (Def-attacks) [32] Let <A, Def> be an argumentation sys-
tem. Let x € A and S,S" C A. z Def-attacks S if there exists y € S such
that xDefy. S Def-attacks x if there exists y € S such that yDefx. Finally,
S Def-attacks S if there exists x € S such that x Def-attacks S.

Notation 2 Given an argumentation system <A, Def>, Adm(<A, Def>) de-
notes the collection of admissible sets of <A, Def>.

Let us define a relation Def, on the admissible subsets of some argumenta-
tion system <A, Def>:

Definition 33 (Def,-attacks) [32] Let <A, Def> be an argumentation sys-
tem. Let X,Y € Adm(<A, Def>). Then XDef,Y (or X Def,-attacks Y)

if:
1. €Y\ X and X Def-attacks Y; or
222€X\Yand X DY.

In case 1., Y suggests that x may be in every extension: it is at least in
all the extensions that contain Y’; but X suggests that there may in fact be
some extensions that do not contain xz: those that contain X cannot contain Y
because X Def-attacks Y.

In case 2., Y suggests that £ may not be in every extension, since it is
admissible and does not contain z; but X shows that Y can be extended to an
admissible set that does contain x.

Note that X Def,-attacks Y is not equivalent to X Def-attacks Y. The
latter means that there is (x,y) € X x Y such that xDefy.

It may be sufficient to restrict Def, to some admissible sets of <A, Def>
only. To this end, we define the set A, as follows:

Definition 34 [32] Let <A, Def> be an argumentation system. Let z € A.
Then A, = ALRO U AQPP where:

APRO s the set of the admissible sets of <A, Def> that contain x;

AOQFP s the set of the admissible sets X of <A, Def> that do not contain x and
are of the form X = Uy ¢y Y, where the Y € Y are parts of A minimal
such that 'Y is an admissible set of <A, Def> and Y Def-attacks some
element of ALRO.

We are now able to express the problem of skeptical acceptance of an ar-
gument x in terms of admissibility, or credulous acceptance, in a “meta”-
argumentation framework. Such a framework has for “meta”-arguments the
admissible sets of A, and Def, is its “meta’-defeat relation. Our first result
is that if there is a “meta”-admissible set in favor of a given argument z, then
x is in every extension of the theory:

19



Proposition 8 [32] An argument x of an argumentation framework <A, Def>
is in every preferred extension of <A, Def> if there exist P € Adm(<A, Def>)
and P € Adm(< A, Defy, >) such that x € P and P € P.

Our next result shows that the approach is complete. It guarantees that if
we can find an admissible set P of <A, Def> that contains z, and an admissible
set of < A, Def, > that contains P, then z is in every extension. However,
this result alone would not guarantee the completeness of the approach: if we
find P, but then cannot find P, is it that z is not in every preferred extension
of <A, Def>, or could it be that we just picked the wrong P? The proposition
below shows that any P can be part of a meta-proof for z, if x is in every
extension:

Proposition 9 [32] If an argument x of an argumentation framework <A, De f>
1s in every preferred extension of <A, Def>, then:

1. for every P € Adm(<A, Def>) such that x € P there exists P € Adm(<
Ay, Def, >) such that P € P;

2. there exist P € Adm(<A, Def>) and P € Adm(< Ay, Def, >) such that
r€Pand PeP.

2.8.3.2 Argument game

Since we have characterized the skeptical acceptance problem as a credulous
acceptance problem in a meta-argumentation framework, any dialectical proof
theory designed for the credulous acceptance problem can be used to solve
the skeptical acceptance problem. We will illustrate this below with a linear
argument game.

Note that we will have to consider the credulous acceptability of a set of
arguments under the preferred semantics, which consists in deciding if a set
of arguments is included in at least one preferred extension. So we extend
the definition of a dialogue in order to define a proof theory for the credulous
acceptance of a set of arguments.

Definition 35 (Dialogue about a set of arguments) Let <A, Def, > be
a dialogue type. A dialogue d in <A, Def,¢> (or ¢-dialogue for short) for a
finite set S = {a1,az,...,an} C A is a countable sequence pig, o, - - - fo, P12 - - -
of moves in A such that:

1. pl(po, ) = PRO and arg(po, ) = ax, for 1 <k <n
2. pl(p1) = OPP and pl(p;) # pl(piv1), fori>1
3. arg(pi+1) € ¢(Koy - - - Ho, i1 - - - i)

We say that d is about S.

20



In a dialogue about a set of arguments, the first n moves are played by PRO
to put forward the elements of the set, and the subsequent moves are played
alternatively by OPP and PRO. Note that a dialogue about an argument z is
equivalent to a dialogue about the set of arguments {z}.

Definition 36 (¢;-proof for a set of arguments) Given a dialogue type
<A, Def,¢1>, a ¢1-proof for a set of arguments S C A is a ¢1-dialogue about
S won by PRO.

The following proposition ensures the soundness and completeness of the
above proof theory for set-credulous acceptance.

Proposition 10 [32] Let <A, Def, ¢1> be a dialogue type where <A, Def> is
an argument system such that A is finite. Let S C A be a conflict-free set. If
d is a ¢1-proof for S, then PRO(d) is an admissible set containing S. If S is

included in a preferred extension of <A, Def> then there exists a ¢1-proof for
S.

Let us now describe informally how this type of dialogue can be used as a
proof theory for the skeptical acceptance problem. Suppose that we want to
prove that some argument x of an argumentation system <A, Def> is in every
extension of <A, Def>. All we need to do is to find an admissible set P that
contains z, and then find a dialogue for { P} won by PRO with respect to the
argumentation system < A, R, >.

In order to find the initial admissible set P that contains x, Proposition 10
says that we can look for a ¢;-dialogue d for {z} won by PRO w.r.t. <A, Def>:
we can then take P = PRO(d). In order to establish that x is in every extension
of the theory, we then start a dialogue with the move [PRO, P], where PRO
denotes the player that tries to establish the acceptability of P in the meta-
graph. In fact, a more detailed dialogue can start with the move [PRO,d],
showing not only P but the entire dialogue that established the admissibility of
P.

In order to continue the meta-dialogue, we need a move of the form [OPP, d;],
where OPP denotes the player who tries to establish that P is not credulously
accepted in the meta-argumentation framework, and where d; must be a dia-
logue in <A, Def> for an argument that Def-attacks P.

PRO must then put forward a dialogue for PRO(dy) U {z} won by PRO,
thereby showing that the admissible set found by OPP in the preceding move
can be “returned” in favor of PRO.

This type of meta-dialogue is best illustrated on an example.

Example 4 Consider the following system:

b
i \c—>d—>e —>-f

el g

21



A meta-dialogue proving that d is in every extension of the theory is depicted be-
low (note that the moves of the dialogues in <A, Def> are in columns, whereas
the mowves of the meta-dialogue in < Ay, R, > are in line):

PRO, [PRO,d] [OPP, [PRO, b]] PRO, [PRO,d|
[OPP, (] [PRO, b]
[PRO, a]

PRO’s first move shows | OPP then plays an ad- | PRO concludes by prov-
that {a,d} is admissible | missible set {b} that at- | ing that {b,d} is admissi-
tacks {a,d} ble in <A, Def>

2.8.4 Skeptical reasoning under the grounded semantics

An argument game for the grounded semantics was described in Section 2.5
of [13]. We here briefly outline a reformulation of this argument game in the
present framework.

Definition 37 (Legal-move function ¢,) Given an argumentation framework
<A, Def>, let ¢4 : M* — 24 be defined by:

e if d is a dialogue of odd length (next move is by OPP),
¢q(d) = R™ (arg(last(d)));
e if d is a dialogue of even length (next move is by PRO),
64(d) = R~ (arg(last(d)) \ (R* (arg(last (d))) U PRO(d)).

Definition 38 (¢4-proof for an argument) A ¢,-proof for an argument x
is a ¢g-winning strategy S for x.

Soundness and completeness (Proposition 2.1 in [13]) can be proved as a
straightforward generalisation of proofs for specific systems in [68] and [8]. Such
a generalised proof can be found in [20].

2.8.5 Algorithms

In this section, we present an algorithm which searches for a proof of the cred-
ulous acceptability under the preferred semantics of an argument. This al-
gorithm, first introduced in [24], relies upon the ¢;-proof theory presented in
Section 2.8.2. We extend this algorithm to search for a proof of the credulous
acceptability under the preferred semantics of a set of arguments. An algorithm
searching for a proof of the skeptical acceptability under the preferred seman-
tics of an argument would rely upon the two previous algorithms. We finally
present an algorithm which searches for a proof of the acceptability of a set of
arguments under the grounded semantics.

22



2.8.5.1 Credulous reasoning under the preferred semantics

Because the ¢1-proof theory is sound and complete with respect to credulous
acceptance of an argument under the preferred semantics (see Section 2.8.2.1),
we can restate the credulous acceptance problem of an argument as follows:

Given an argumentation framework <A, Def>, and an argument
a € A, is there a ¢1-proof for a?

The algorithm that we present below, first introduced in [24], searches for a
¢1-proof for a. It builds a proof from left to right, thereby progressing backwards
in the graph of the defeat relation. The algorithm recursively enumerates all
attackers, that is, predecessors, of arguments put forward by PRO: they are
OPP’s arguments in the proof being built. For each of OPP’s argument that
is not already attacked by PRO, the algorithm chooses one of its predecessors
as defender of the argument that has just been attacked: it is put forward by
PRO.

The choices made by the algorithm when looking for defenders may lead to
an unsuccessful line of defence. In this case, the algorithm must look for another
line of defence: the algorithm comes back to an earlier stage and tries another
choice of defence if any is left; when no other choice is left, it shows that no
¢1-proof can be found for the original argument a. Not everything is forgotten
after such a backtrack: PRO can remember which lines of defence have been
lost before the backtrack, in order not to loose time again with lines of defence
bound to be lost. The fact that such lines of defence can never be won by PRO
is shown by [24], Theorem 4.1.

We are now ready to present our credulous query answering algorithm. We
will do so from the point of view of PRO: its primary goal is to construct an
admissible set “around” a given argument a. Suppose that, at a given stage,
a ¢1-dialogue d about a has been built, and that it is OPP’s turn to make a
move; we know that PRO(d) is conflict-free. At that point, OPP must choose an
attacker of the arguments contained in PRO(d), which is not already attacked by
PRO(d), that is, an element z of ¢1(d) = R~ (PRO(d)) \ RT(PRO(d)). If none
exists, then PRO has won the dialogue. However, if such an z is put forward by
OPP, then PRO must find an attacker y of . There are some restrictions: y
must be in POSS(d) = A\ (PRO(d) U R (PRO(d)) URefl), and y must not lead
to a line of defence tried without success earlier. Let O denote, at any stage,
the arguments that have not yet been put forward by PRO, and cannot/must
not be put forward by PRO (they will be “Out” of the set of arguments built
by PRO): O must contain R*(PRO(d)) U Refl, and the arguments that have
already lead to some unsuccessful line of defence.

Our algorithm can be expressed as a function CredQA,.. which, given a ¢;-
dialogue d and a set O disjoint from PRO(d), returns a ¢;-dialogue d’ won by
PRO and extending d, such that PRO(d')NO = 0, if such a d’ exists; and returns
L if no such d’ exists. The function CredQA,.. is called by the main function
CredQA, which first checks that a ¢ Refl, where a is the argument on query: if
this is the case, CredQA,,. is called with O = Refl U R*(a), and d = [PRO, .

23



Function 1 CredQA,..(Def,d,O)
Parameters: a binary relation Def, a ¢1-dialogue d, and a set O disjoint from
PRO(d)
Result: a ¢;-dialogue d’ won by PRO extending d, such that PRO(d')NO = 0,
if such a d’ exists; L if no such d’ exists
1: if there is € R~ (PRO(d)) \ R*(PRO(d)) such that R~ (z) C O then
2:  return (Ll);
3: if there is x € R~ (PRO(d)) \ RT(PRO(d)) such that R~ (x) € O then
4:  y + some element of R~ (x) \ O;
5 res < CredQA..(Def,d.[OPP,x].[PRO,y],0 U R*(y));
6
7
8:

if res # L then return (res);
else return (CredQA,..(Def,d,O U {y});
else return (d);

Function 2 CredQA(Def,a)

Parameters: a binary relation Def, an argument a

Result: a ¢1-proof for a if a is credulously accepted; L otherwise
1: if @ € Refl then return (L);
2: else return (CredQA,..(Def,[PRO, a],ReflU R*(a)));

The algorithm for the credulous reasoning for an argument can be easily
extended to search for a proof of the credulous acceptability under the preferred
semantics of a set of arguments. This algorithm is expressed as the function
CredQAset. This function first checks if the set to be tested is conflict-free; if
this is the case, a dialogue d putting forward the arguments of the set is built,
and then CredQA,.. is called with O = Refl U R*(S) and d.

Function 3 CredQAset(Def, S)

Parameters: a binary relation Def, a set of arguments S

Result: a ¢;-proof for S if S is credulously accepted; L otherwise
1. if there is x,y € S such that xDefy then return (L);

2: else

3:  let d be an empty dialogue;
4: O «

5. while S # 0 do

6: x «+— some argument of S
7: d — d.[PRO, zJ;

8: O «— O U R*(z);

9: S — S\ {z};

10:  return (CredQA,..(Def,d,ReflUO));

24



2.8.5.2 Skeptical reasoning under the grounded semantics

We can restate the skeptical acceptance problem under the grounded semantics
as follows:

Given an argumentation framework <A, Def>, and an argument
a € A, is there a ¢4-proof for a?

The algorithm that we present below searches for a ¢4-proof for a. In other
words, it tries to build a ¢,-winning strategy S for a, that is, a set of ¢4-
dialogues about a won by PRO such that: Vd € S, Vd' prefix of d such that
pl(last(d')) = PRO, Yz € ¢4(d’), that is, Vo which attacks arg(last(d’)), 3d” € S
such that d” is an extension of d'.[OPP, z].

We define a ¢4-winning strategy for a dialogue d as a set S of ¢4-dialogues
won by PRO that extend d and such that: Vd' € S, Vd" prefix of d’ and extension
of d, such that pl(last(d”)) = PRO, Vz € ¢4(d"”), 3d" € S such that d"’ is an
extension of d”.[OPP, z].

Given an argument a, a ¢4-winning strategy for the dialogue [PRO,a] is
obviously a ¢4-winning strategy for a. Moreover, a ¢4-winning strategy for a
dialogue d is {d} if d is won by PRO; otherwise, if the last move of d is by
PRO, one has to consider the dialogues di,...,d, such that, given ¢4(d) =
{z1,...,2n}, di = d.[OPP,z;]. If one of these dialogues has no ¢,-winning
strategy, then there is no ¢,-winning strategy for d; this happens if no y €
¢q(d;) = R~ (z) \ (RT(z) UPRO(d;)) is such that d.[OPP,z].[PRO,y] has a
¢4-winning strategy. Otherwise, a ¢4-winning strategy for d is the union of the
¢g-winning strategies for the dialogues di,...,dn. A ¢4-winning strategy for a
dialogue d; is in fact a ¢4-winning strategy for a dialogue d; = d;.[PRO,y| =
d.[OPP, z].[PRO, y], with y € ¢4(d;).

Our algorithm relies upon these properties. It is expressed as a function
called GroundedQA,.. which, given a ¢4-dialogue d, the last move of which is
by PRO, returns a ¢,-winning strategy S for d, if one exists; and returns L if
no such § exists. The function GroundedQA,.. is called by the main function
GroundedQA, with d = [PRO, a].

Testing if a set of arguments is included in the grounded extension can be
simply done by testing if each argument of the set is included in the grounded
extension. This is what function GroundedQAset does.

25



Function 4 GroundedQA,..(Def,d)

Parameters: a binary relation Def, a ¢4-dialogue d, the last move of which is
by PRO

Result: a ¢,-winning strategy for d, if such a winning strategy exists; L oth-
erwise.

1. X «— R (arg(last(d)));
2: if X = () then return {d};
3: else
4: S0
5. failure « L;
6: while X # () and — failure do
7 r « some element of X;
8: Y « R~ (z) \ (RT(z) UPRO(d));
9: success «— _L;
10: while Y # () and — success do
11: y < some element of Y
12: res < GroundedQA,..(Def, d.[OPP, z].[PRO, y]);
13: if res=1 then Y — Y\ {y};
14: else success «— T;
15: if success then
16: S — S U res;
17: X — X\ {z}
18: else failure « T;
19:  if failure then return L;
20:  else return S;

Function 5 GroundedQA(Def, a)

Parameters: a binary relation Def, an argument a
Result: a ¢4-proof for a if a belongs to the grounded extension; () otherwise
1: return (GroundedQA,..(Def, [PRO,a)));

26



Function 6 GroundedQAset(Def, X)
Parameters: a binary relation Def, a set of arguments X
Result: a set S that contains a ¢4-proof for each argument of X, if such a set
exists; L otherwise
S — B;
failure «— L;
while X # () and - failure do
a < some element of X;
res < GroundedQA(Def, a);
if res = 1 then failure «— T;
else
S — SU{res};
X — X\ {a};
if failure then return 1;
: else return S;

=
= O

27



Chapter 3

A general argumentation
system for decision making

3.1 Introduction

In the previous chapter, we have presented a general argumentation framework
for inferring from inconsistent knowledge bases. That framework satisfies the
rationality postulates introduced in [21], this means that it delivers safe conclu-
sions. Moreover, the framework handles one type of arguments, called epistemic
arguments. In this section, we will extend that framwork in order to make de-
cisions. For that purpose, in addition to the epistemic arguments, we will show
that two other types of arguments are considered: recommended arguments
and decision arguments. Indeed, epistemic arguments support beliefs, whereas
recommended and decision arguments support decisions. The three types of
arguments may conflict with each other exactly in the two ways described in
the previous chapter. However, in order to avoid in kind of wishful thinking,
epistemic arguments take precedence over recommended and decision ones. An
argumentation framework for decision making takes then as input three kinds of
arguments, as well as the different conflict which may exist between them, and
returns the acceptable ones using the acceptability semantics of Dung. Once the
acceptable arguments are known, decisions will be compared using a principle
on the basis of the quality of their supporting arguments.

3.2 Logical language and the different bases

In what follows we will consider the same language as in Chapter 1 but with some
refinements. £ denotes a logical language closed under negation. We assume
that formulas of £ are built on two kinds of variables: decision variables DV
and non-decision variables N'DV such that DV N N'DV = (). In what follows,
the function VAR will return for an element ¢ of £ the set of all its variables.

28



Thus, from L, the four following sets will be distinguished:
1. D will contain all the possible decisions such that V d € D, VAR(d) C DV.

2. IC will represent the knowledge about the environment of an agent such
that V ¢ € K, VAR(¢) C NDV.

3. G will gather the goals of an agent, i.e what an agent wants to achieve,
such that V g € G*, VAR(g) C DV.

4. G~ will gather the rejections of an agent, i.e what an agent wants to avoid,
such that V g € G—, VAR(g) C DV.

The set S of strict rules (resp. R of defeasible rules) contains three forms of
strict (resp. defeasible rules) rules:

¢ B1yoees bn— & (reSp. B, ..., b = &) Where Vi—1,n, 6, VAR($,), VAR(®)
C N'DV. These rules are used to infer a belief from a set of premises. S;
denotes the set of such rules.

b ¢17 ceey (b’n —d (resp. ¢17 ceey (b’n = d) where V¢i:1,n7 VAR’(¢1) c NDV
and d € D. Such rules are mainly used in rule-based decision making and

they mean “if it is the case that ¢1, ..., ¢, then the decision d should
(resp. may) be taken”. Sz denotes the set of such rules.
® &1, ..., On, d — g (resp. ¢1, ..., ¢n, d = g) where V¢,—1 ,,, VAR(¢;) C

NDV,de D, ge Gt (resp. G7). These rules are encountered in decision
under uncertainty as well as in multiple criteria decision making. They
mean that “if ¢1, ..., ¢, hold, then the decision d will (resp. may) lead
to the satisfaction of the goal g”. S35 denotes the set of such rules.

It is clear that S = & U Sy U Ss.

Example 5 Let us consider the well-known example about taking an umbrella
or not, knowing that the sky is cloudy. The different bases are: K = {c}, D =
{u,~}, Gt ={—~w, =}, G~ = {w, I}, with: 1: to be overloaded, r: it rains,
w: being wet, u: taking an umbrella, c: the sky is cloudy. Let us suppose the
following strict rules: S = {c — 7, u — I, ~u — —=l, u — —w, ;' =u — w,
-r — —w}. We suppose that R = 0.

Note 2 In the above example, the positive goals are the negation of the negative
ones. However, in practice this is not always the case. The same remark holds
for decisions. In a decision making problem, one does not always try to decide
between d and —~d. Consider, for instance, the case of an agent who wants to go
somewhere for holidays and hesitates between the three following destinations:
Toulouse (di), Utrecht (d2) and Liverpool (dz).

Definition 39 (Theory) A theory T is a tuple (D, K, G, G~ ), Clyy(S1) U
Sy U Ss, R>

1Here the semicolon plays the role of a conjunction.

29



3.3 The arguments

Two categories of arguments will be defined: epistemic arguments for supporting
beliefs (see Definition 12) and non-epistemic arguments for supporting decisions.
Among non-epistemic arguments, one may distinguish between recommending
arguments and decision arguments. The idea is that a given decision may be
justified in two ways:

1. it is recommended in a given situation (in the case of rule-based decision),
or

2. it satisfies / violates some goals of the decision maker (in the case of
decision under uncertainty and in multiple criteria decision [3, 11]).

3.3.1 Recommending arguments

In rule-based decision making, one generally specifies when a decision can be
applied. Such rules are captured in this framework in terms of strict or defeasible
rules of the form ¢1,...¢, — d (resp. ¢1,...¢, = d) with ¢1,...¢, € K and
d € D. These rules mean that if the situation ¢, ... ¢, holds then one “should”
take the decision d (resp. “can” take the decision d). Recommending arguments
are thus based on epistemic ones and have a deductive form. Formally:

Definition 40 (Recommending Argument) A recommending argument is

o Ay,... A, — d if Ay,..., A, are epistemic arguments, d € D and there
exists a strict rule CONC(Ay),...,CONC(4,) — d,
PREM@4)::PREM(A1)LJ LJPREML4 ),

PROP(A) = PROP(A;) U... UPROP(A,,) U {d},

CONC(A) = d,
SUB(A) = SUB(A;) U... USUB(A,) U {4},
DefRules(A) = DefRules(A4;)U...UDefRules(A,).

o Ay,... A, = d if Ay,..., A, are epistemic arguments, d € D and there
exists a defeasible rule CONC(A1),...,CONC(A,) = d,

PREM(A) = PREM(A;) U ... UPREM(A,,),
PROP(A) = PROP(Al) .UPROP(A,,) U {d},
CONC(A) =

SUB@@-—SUBQM) ...USUB(4,,) U{A},
DefRules(A) =DefRules(A;)U...UDefRules(A,)U{CONC(A;),...,CONC(4,) =

d}.

A, stands for the set of all recommended arguments. If A is a recommended
argument with CONC(A) = d , then d is called a recommended decision.

Note 3 Note that the recommended decision appears in the top rule of the ar-
gument. Moreover, the argument is based only on beliefs.

30



Property 6 Let A € A,.. VA’ € SUB(A) such that A # A’, A’ is an epistemic
argument.

Let us illustrate this category of arguments through the following example.

Example 6 Let K = {age > 18}, D = {v,~w} and Gt =G~ = 0. Let also S
= {age >=18 — v,age < 18 = v}, R = 0, with v stands for “to vote”.

In this case, one can construct the following argument for v: [[age >= 18] —
v].

3.3.2 Decision arguments

In decision under uncertainty (resp. in multiple criteria decision), the preferred
decisions are generally the ones which “highly” satisfy the goals/preferences
(resp. the criteria). As shown in [3, 11], a decision is related to the goals by
means of rules of the form ¢1,...¢,,d — g (resp. ¢1,...¢,,d = g) meaning
that in the case where ¢1,...¢, are true, if the decision d is taken then this
leads to the satisfaction of the goal g.

In what follows, for a given decision argument, the functions GOALS™ and
GOALS™ will return respectively the goals and the rejections satisfied by the
decision supported by that argument.

Definition 41 (Decision Argument) A decision argument is

o Ay ... A,,d— g if Ai,..., A, are epistemic arguments and there exits a
strict rule CONC(Ay), ..., CONC(A,,), d — g such that d € D and g € G
(resp. g € G~ ).

PREM(A) = PREM(A;) U...UPREM(4,,),

PROP(A) = PROP(A;) U...UPROP(4,) U{g},
GOALS™(A) = {g} (resp. GOALS™(A) = {g}),

CONC(A) =d,

SUB(A) = SUB(A4;) U...USUB(A,)U{A}.
DefRules(A) = DefRules(A4;)U...UDefRules(A4,).

o Ay,...A,,d = g if A1,..., A, are epistemic arguments and there exits
a defeasible rule CONC(A1), ..., CONC(A,), d = g such that d € D and
geGT (resp. g€ G™).

PREM(A) = PREM(A;) U ... UPREM(A,,),

) =
PROP(A) — PROP(A;) U ... U PROP(A,,) U {9},
GOALS™(A) = {g} (resp. GOALS™ (A) = {g}),

CONC(A) = d,

SUB(A) = SUB(A;) U... USUB(A,) U {A}.

DefRules(A) =DefRules(A;)U...UDefRules(A,,)U{CONC(A,),...,CONC(4,) =

d}.

Let Ay be the set of all decision arguments.

31



Note 4 Note that the decision and the satisfied goal appear in the top rule of
the argument. Moreover, the argument is based only on beliefs. A decision will
have as many decision arguments as it satisfies goals.

Example 5 — continued: From the theory T given in example 5, the two
epistemic arguments A1 and Ao are built:

A1 : [C]
Ag : [Al — T‘]

In addition to the above arguments, the following decision arguments can also
be built:

Azt [u—1]

As: [u — —w)
A5+ [u — ]
Ag : [A2,u — ~w]

As for recommending arguments, the subarguments of a decision argument are
epistemic. Formally:

Property 7 Let A € A;. VA’ € SUB(A) such that A # A’, A’ is an epistemic
argument.

In [9], it has been argued that arguments are presented in a bipolar way since
arguments in favor of (or PRO) a conclusion can be considered as positive and
arguments against (CON) the conclusion as negative ones. In some sense this is
true since the two kinds of arguments have different and opposite roles. Indeed,
the positive arguments will strengthen their conclusions, whereas the negative
ones will weaken them.

In an inference problem, one tries to decide what to believe: ¢ or —¢ 7 In this
particular case, it is easy to guess that an argument against ¢ is an argument
in favor of —¢. Moreover, these arguments are conflicting. Thus, for each of the
two conclusions only one set of arguments is considered: the arguments in favor
of it. The decision is then made on the basis of the quality of those arguments.

In a decision making problem, things seem different since in this case the
decision maker wants to decide between different alternatives (what we call in
this document decisions): dy, ..., d,. For instance, consider the case of Peter
and Mary who discuss about the place of their next holidays. They have three
alternatives: Toulouse, Utrecht and Liverpool. Here each alternative cannot be
true or false, but it can be more/less preferred to the other alternatives. In
order to make this preference ordering, Mary and Peter compute the arguments
in favor of and arguments against each alternative, then the alternatives are
compared on the basis of those arguments. For instance, the alternative which
has less arguments against it may be preferred. Note that in this case, for each

32



alternative the pair <arguments in favor of, arguments against> is considered
in the reasoning. It is also clear in this case, that an argument against Toulouse
is not necessarily an argument in favor of Utrecht or Liverpool. For example,
an argument against Toulouse is the fact that it is too warm. This argument
is unfortunately against even Utrecht. Moreover, the arguments in favor of and
against a given decision are not necessarily conflicting to.

Let us define two functions which return respectively for a given decision the
arguments which are in favor of it and the arguments against it. Intuitively, an
argument is in favor of a decision if that decision leads to the satisfaction of a
positive goal. The arguments which recommend decisions are also in favor of
that decision.

Definition 42 (Arguments PRO) Letd € D and B C A, U A,.

ArgPRO(d, B) = {A € B|CONC(A) = d and (GOALS™Y(A) # 0, or d € PROP(A))}.

An argument is against a decision if the decision leads to the satisfaction of a
negative goal. Hence, arguments PRO a decision stress the positive consequences
of the decision, while arguments CON are only focusing on the negative ones.

Definition 43 (Arguments CON) Letd € D and B C A,.
ArgCON(d,B) = {A € B|CONC(A) = d and GOALS™ (A) # 0}.

Note 5 The notions of strict/defeasible/inconsistent (recommending/decision)
argument are defined exactly in the same way as for epistemic arguments.

3.4 Comparing arguments

In what follows > will denote any preference relation between arguments. For
two arguments A and B, A > B means that A is at least as ‘good’ as B. >
denotes the strict ordering associated with >=. A > B means that A is strictly
preferred over B.

Throughout the document, we suppose that there exists a basic ordering
> on the set of arguments. This basic ordering captures the idea that strict
arguments are preferred to the defeasible ones. Moreover, epistemic arguments
always take precedence over arguments for decisions. The reason is that a deci-
sion cannot be well supported if the beliefs on which it is based are not justified.
Finally, since recommending arguments are built from laws and obligations, it
is natural to prefer a recommending argument to a decision one.

Definition 44 (Basic ordering) Let A, B be two arguments. A = B iff:
e A is strict and B is defeasible, or

e A is an epistemic argument and B is a non-epistemic argument, or

33



o A be a recommending argument and B a decision one.

Recommending arguments are compared exctaly in the same way as epis-
temic arguments, i.e two recommending arguments are compared using either
the last link principle or the weakest link principle defined respectively in [68]
and [7].

Unlike epistemic (and recommending) arguments, arguments in favor of and
arguments against decisions involve both goals and beliefs. Thus, the force
of such arguments depends not only on the quality of beliefs used in these
arguments, but also on the importance of the satisfied (resp. violated) goals.

This means that the knowledge base K is supposed to be equipped with a
partial pre-ordering >, and the two bases of goals Gt and rejections G~ are
equipped with a partial ordering >,. Indeed, for two goals g1 and g2, g1 >4 92
means that the goal g; is more important for the agent than the goal go.

Intuitively, a decision is ‘good’ if, according to the most certain beliefs, it
satisfies an important goal. A decision is weaker if it involves beliefs with a low
certainty, or if it only satisfies a goal with low importance. In other terms, the
force of an argument represents to what extent the decision maker is certain
that the decision will satisfy its most important goals.

This suggests the use of a conjunctive combination of the certainty and the
priority of the most important satisfied (resp. violated) goal.

Definition 45 (Decision arguments) Let A, B be two decision arguments.
A = B iff:

. GOAL?(A) >, GOAL(B), and
. VK € PREM(A), 3K’ € PREM(B) such that K > K', and
3. VR € DefRules(A),3R’ € DefRules(B) such that R >, R'.

In [4], different other principles for comparing decision arguments have been
suggested.

® ~

3.5 Acceptability of arguments

In what follows, let A = A, U A, U Ay. The argumentation framework which
will be used for making decisions is as follows:

Definition 46 (Argumentation framework) Let 7 be a theory. An argu-
mentation framework (AF) built on T is a pair <A, defeat> s.t:

e A=A UA UA,,

o defeat is the relation given in Definition 22 by replacing A. by A and the
preference relation between arguments by the new one.

To compute the acceptable arguments, any semantics (grounded, preferred,
complete, stable) can be used. Let &€ = {E1,...,E,} be the set of extensions
under a given semantics.

2The function GOAL here stands for either GOALT or GOAL™.

34



3.6 Decision criteria

Elements of Qutput(AF') are considered as true. Note that decisions are not
inferred. The reason is that one cannot say that a given decision is true or
false. A decision is intrinsic to the decision maker and depends on its prefer-
ences. The idea in a decision problem, is to construct the arguments in favor
of and against each decision. Then among all those arguments, only the strong
(acceptable) ones are kept and the different decisions are compared on the basis
of them. Comparing decisions is an important step in a decision process. Below
we present an example of intuitive principle which is reminiscent of classical
principles in decision.

Definition 47 (Comparing decisions) Let T be a theory, AF = <A, defeat>
be an arqumentation framework, and E its grounded extension. Let dq, de € D.
Let ArgPRO(dy, E) = (Py, ..., P.) and ArgPRO(ds, E) = (P, ..., P!). Each of
these wvectors is assumed to be decreasingly ordered w.r.t = (e.g. Py = ... =
P.). Let v = min(r, s).

A pre-ordering > on D is defined as follows: dy > dg iff:

e P = P{, or
e 3k < v suchthat Py = P/ andV j <k, P; = P}, or
or>vandeSU7szPg{-

The above principle takes into account only the arguments pro, and prefers
a decision which has at least one acceptable argument pro which is preferred
(or stronger) to any acceptable argument pro the other decision. When the
strongest arguments in favor of d; and dy have equivalent strengths (in the
sense of &), these arguments are ignored.

In Deliverable D2.2 [4] three categories of principles for comparing decisions
have been proposed: unipolar principles in which only arguments PRO or CON
decisions are considered, bipolar principles in which both arguments PRO and
CON are considered, and finally non-polar principles. These last consist of ag-
gregating all the arguments PRO and against a decision into a unique argument,
then to compare pairs of decisions on the basis of their aggregated arguments.

In [2], it has been shown that that modeling decision making and inference
in the same framework does not affect the result of inference. Before that, let
us define when two argumentation frameworks are equivalent.

Definition 48 (Equivalent frameworks) Let T be a theory and AF = <A,
defeat>, AF' = <A’, defeat’ > be two argumentation frameworks built on the
theory T .

The argumentation framework AF is equivalent to the argumentation framework
AF’ iff Output(AF) = Output(AF").

In [2] it has been shown that an argumentation framework in which only epis-
temic arguments are taken into account will return exactly the same inferences

35



as an argumentation framework is which all the different kinds of arguments are
considered at the same time.

Proposition 11 The two argumentation frameworks <A., defeat.> and <A,
defeat> are equivalent, with defeat, C defeat and defeat, C A, X A..

36



Chapter 4

A general system for
dialogue

4.1 Introduction

With the rise of distributed computation, and especially the Internet, interaction
and communication between distinct computational entities has become of in-
creasing importance. Almost every request for a web-page sent across the World-
Wide-Web, for example, will involve a dialogue between a requesting client ma-
chine and a requested server machine using the automated dialogue protocol
known as Hyper-Text Transfer Protocol, or HTTP. Although this protocol was
designed for transfers of static information (in fact, for sharing of physics re-
search papers) between two parties — what are now called information-seeking
dialogues — the protocol is now used for interactions between multiple parties,
interactions which may involve co-ordination over actions and/or transfers of
dynamic information or even computer programs, in addition to static infor-
mation. The dialogues involved may include negotiation (as in e-commerce),
deliberation (as in e-democracy and computer-supported group working), or
persuasion (as in weblogs and chatboards), with such applications implemented
conceptually at layers above that of the HTTP used for communication.

In parallel to these practical developments computer scientists have also be-
gun to consider dialogue between intelligent and autonomous entities. These
entities, which may be humans and/or software programs, are known as agents,
and provide an effective means to conceptualize the distinct entities which com-
prise a distributed computational system. Agents will execute actions proac-
tively to achieve some goal or goals, which they, to some greater or lesser extent,
will have selected, using means which they have also selected [82]. Real-world
applications of agent systems have become significant — for example, see the
applications described in [63] — and many observers believe the agent paradigm
will be as important in future software engineering as is the objects paradigm
currently [49].

37



To the extent that agents are autonomous they cannot normally be com-
manded to act (or not act) in given situations by other agents; they can only be
requested to act (or not act). To the extent that they are intelligent, agents will
require reasons and justifications for such requests, since an intelligent agent
would not necessarily accede to every request it receives. Systems of intelli-
gent autonomous agents will therefore require argumentation to enable effective
interaction and communications between the constituent agents.

This has been recognized in computer science, starting with the work of
Parsons, Jennings and Sierra [59, 60], Kraus, Sycara and Evenchik [47], Reed [70]
and Dignum and colleagues [27, 28]. Since Reed [70], work on argumentation-
based dialogue in computer science has been strongly influenced by a model of
human dialogues due to argumentation theorists Doug Walton and Erik Krabbe
[81]. As part of an effort exploring commitment in dialogues, particularly in
persuasion dialogues, Walton and Krabbe created a classification of dialogue
types between human participants. This classification was based upon: firstly,
the various beliefs (pertinent to the topic of the dialogue) which the participants
have at the commencement of the dialogue; secondly, the goals of the individual
participants at commencement; and, thirdly, the goals at commencement that
are shared by the participants, goals we may view as those of the dialogue itself.
With this structure, Walton and Krabbe identified six primary types of human
dialogues (re-ordered from [81]):

Information-Seeking Dialogues: One participant seeks the answer to some
question(s) from another participant, who is believed by the first partici-
pant to know the answer(s).

Inquiry Dialogues: The participants collaborate to answer some question or
questions whose answers are not known to any one participant.

Persuasion Dialogues: One participant seeks to persuade another to endorse
a belief or statement he or she does not currently endorse. These dialogues
typically begin with one participant supporting a particular statement
which another participant does not, and the first seeks to convince the
second to adopt the statement. The second party may not share this goal
of the dialogue.

Negotiation Dialogues: The participants bargain over the division of some
scarce resource in a manner acceptable to all participants, with each indi-
vidual party aiming to maximize his or her share. In these dialogues, the
individual goals of the participants may well be in conflict.’

Deliberation Dialogues: Participants collaborate to decide what action or
course of action to take in some situation. Participants commence the
dialogue with a common belief that they share a responsibility to decide

INote that this definition of Negotiation is that of Walton and Krabbe. Within Artificial
Intelligence, the word negotiation is often used to refer to interactions involving other matters
besides the division of scarce resources.

38



the course of action, which may be executed by others not present in the
dialogue.

Eristic Dialogues: Participants quarrel verbally as a substitute for physical
fighting, with participants aiming to give vent to feelings or emotions.

Significant recent effort in Al has now been devoted to formal models and studies
of these different types of dialogue, including: Information-Seeking dialogues
[29, 30]; Inquiry dialogues [53]; Persuasion dialogues [19, 41, 50, 55, 66, 72,
84]; Negotiation dialogues [47, 60, 73, 51, 77, 83]; and Deliberation dialogues
[14, 52, 76]. Even Eristic dialogues have been studied, since they find potential
application in the design of customer service scripts in call-centers, e.g., [37,
36]. Walton and Krabbe do not claim their classification is comprehensive,
and indeed, other dialogue types have been described, for example, command
dialogues [40] and various types of query dialogues [25].

The main purpose of this chapter is to present a framework in which dia-
logues and combinations of dialogues may be represented formally, and readily
implemented. The work presented starts from the general formal framework
for dialogues presented in Section 4 of ASPIC Deliverable D2.1 [5], and so this
framework is first summarized again (informally) in Section 4.2. The following
section, Section 4.3, then presents an instantiation of this framework with a
Persuasion dialogue of the same form as was presented in Section 3.3 of ASPIC
Deliverable D2.5 [6]. A formalization of this protocol using a variant of the
well-known FEwvent Calculus is then presented in Section 4.4. To demonstrate
that this approach is not specific to the protocol selected, it is applied to an-
other protocol developed prior to ASPIC, a Persuasion dialogue protocol, here
called PWA, of Parsons, Wooldridge and Amgoud [62]; this is presented in Sec-
tion 4.5. We next present an example of a protocol for negotiation dialogues
containing embedded persuasion dialogues, along with some of the properties of
the combined protocol, in Section 4.6. The design of agent dialogue policies (or
strategies) under such a combined protocol is considered here, in the context of
the e-Consent Scenario articulated in Section 6 of ASPIC Deliverable D2.3 [10].
The penultimate section, Section 4.7, then describes two implementations, one
of the protocol studied in Sections 4.3 and 4.4, and the other of the Information-
seeking dialogue protocol presented for the e-Consent Scenario [10]. Finally, the
chapter concludes with a discussion of Combinations of Dialogues and the issues
this raises, in Section 4.8.

4.2 A general model for dialogue

This section presents briefly and informally the framework for dialogues first
presented in Section 4 of ASPIC Deliverable D2.1 [5]. It is presented here simply
as a reminder of the framework and its elements, prior to the new material
presented in the later sections of the Chapter. Dialogue systems comprise the
following elements:

39



e A logical language for representation of topics, and a possibly non-monotonic
logic for this language.

e A communication language for utterances of speech acts regarding the
topics.

e A dialogue purpose.

e Finite sets of participants and of roles, with participants assigned to roles.
Participants have a set of commitments and may have a databases of
beliefs.

e A context, being that knowledge which all participants pre-suppose through-
out the dialogue.

o A set of effect rules specifying the effects of utterances on the commitments
of participants.

e A protocol for specifying the legal moves at each stage of the dialogue.

e Rules defining the outcomes of dialogues under the protocol.

Full details of the formal framework can be found in Section 4.2 of ASPIC
Deliverable D2.1 [5].

4.3 A formal framework for persuasion dialogues

This section presents a formal framework for dialogue games for persuasion and
instantiates it with some specific games. The formal definitions of the framework
are repeated with some minor revisions from Section 3.3 of ASPIC Deliverable
D2.5 [6]. For an introductory discussion, examples and proofs of formal results
the reader is referred to that Deliverable. First, the essentials of logical systems
for defeasible argumentation are sketched, which provide the logical basis for
dialogue systems for argumentation. Then, the framework is briefly outlined
with its fixed and variable elements indicated, after which it is formally defined.

The discussion in this section will, whenever possible, abstract from the
logical structure of the individual reasoning of the dialogue participants. Nev-
ertheless, some choices have to be made. Since argumentation typically in-
volves defeasible reasoning, we need a nonmonotonic logic. Since we are dealing
with dialogues for argumentation, one particular form of nonmonotonic logic
is very appropriate, viz. argumentation systems. In particular, the framework
presented will assume an argumentation system conforming to the Dung-plus
format of Chapter 2 above, with inference defined according to grounded se-
mantics.

40



4.3.1 The framework: general ideas

The framework allows for variations on a number of issues: for different under-
lying argument-based logics (but all with grounded semantics), for various sets
of locutions, for different turntaking rules and different rules on whether multi-
ple replies, postponing of replies and coming back to earlier choices is allowed.
On the other hand, the framework imposes some basic common structure on all
dialogues, most importantly, an explicit reply structure on moves, where each
move either attacks or surrenders to one earlier (but not necessarily the last)
move of the other player. This structure is exploited to allow for various degrees
of coherence and flexibility when it comes to maintaining focus of a dialogue
(for instance, whether they may make more than one move in a turn, or whether
they may move alternative replies to a move). A reply structure is implicit in
the protocols of many existing systems but usually not made explicit. It seems
especially suited for “verbal struggles” (a term coined by [15] in their classifica-
tion of speech act verbs). We do not claim, however, that all dialogues should
or do conform to this structure. It may, for instance, be less suited for dialogues
where the focus is more on inquiry or deliberation than on settling a conflict
of opinion. Another assumption of the framework is that during a dialogue the
players implicitly build a structure of arguments and counterarguments related
to the dialogue topic.

Thus, according to the present approach a dialogue can be regarded in three
ways. One can look at the order in which the moves are made, in which case
a dialogue is regarded as a linear structure. One can also look at the reply
relations between the moves, in which case the dialogue is conceived of as a
tree. Finally, one can look at the arguments that are exchanged in reply to
each other, in which case the dialogue is regarded as a dialectical structure of
arguments and counterarguments.

4.3.2 The framework formally defined

Now the framework will be formally defined. All dialogues are assumed to be
for two parties arguing about a single dialogue topic t € Ly, the proponent (P)
who defends ¢ and the opponent (O) who challenges t. As for notation, for any
player p, we define p=0O iff p=Pand p= P iff p= 0.

The top level definition of the framework is as follows.

Definition 49 [Dialogue games for argumentation]. A dialogue system for ar-
gumentation (dialogue system for short) is a pair (L, D), where L is a logic for
defeasible argumentation and D is a dialogue system proper.

The elements of the top level definition are in turn defined as follows. Log-
ics for defeasible argumentation are defined as an instance of Dung’s abstract
framework [33] with a specific, tree-based form of arguments and conforming
to grounded semantics. Essentially, this format instantiates the definitions of
Chapter 2 with any system for grounded semantics. Since for present purposes
not all detail of Chapter 2 is needed, we will use a slightly modified notation.

41



Definition 50 A logic for defeasible argumentation L is a tuple (L, R, Args, —),
where Ly (the topic language) is a logical language, R is a set of inference rules
over Ly, Args (the arguments) is a set of AND-trees of which the nodes are in
Ly and the AND-links are inferences instantiating rules in R, and — a binary
relation of defeat defined on Args. For any argument A, prem(A) is the set of
leaves of A (its premises) and conc(A) is the root of A (its conclusion).

An argumentation theory Tr within L (where F' C L) is a pair (A, —/4)
where A consists of all arguments in Args with only nodes from F and — 4 is
— restricted to A x A. Trg is called finitary if none of its arguments has an
infinite number of defeaters.

For any set A C Args the information base I(A) is the set of all formulas
that are a premise of an argument in A. The closure CI(A) of a set of arguments
A € Args is the argumentation theory Ty(a).

An argument B extends an argument A if conc(B) = ¢ and ¢ € prem(A).
The concatenation of A and B (where B extends A) is denoted by B ® A. De-
feasible inference in L is assumed to be defined according to grounded semantics.
The defeat relation of L is assumed to satisfy the following property: if A defeats
B, then for all C extending A and D extending B it holds that C ® A defeats
D® B.

(Here, our L; corresponds to Chapter 2’s £, R corresponds to SUR and —
corresponds to ‘defeat’. For a precise definition of the notion of arguments as
AND-trees see Definition 12.)

The idea of an argumentation theory is that it contains all arguments that
are constructible on the basis of a certain theory or knowledge base. Note that
each link of an argument corresponds to a (deductive or defeasible) inference
rule in R. The present framework fully abstracts from the nature of these rules.
Note also that the assumption on the defeat relation is not completely innocent:
it is not satisfied in systems where arguments are compared on their ‘weakest
links’, as, for instance, in the work of Pollock [64, 65].

Definition 51 A dialogue system proper is a triple D = (L., P,C) where L.
(the communication language) is a set of locutions, Pr is a protocol for L., and
C is a set of effect rules of locutions in L., specifying the effects of the locutions
on the participants’ commitments.

A communication language is a set of locutions and two relations of attacking
and surrendering reply defined on this set.

Definition 52 A communication language is a tuple L. = (S, Ry, Rs), where
S is a set of locutions and R, and R are two binary relations of attacking and
surrendering reply on S. Each s € S is of the form p(c) where p is an element
of a given set P of performatives and c either is a member or subset of Ly, or
is a member of Args (of some given logic L). Both R, and R, are irreflexive
and in addition satisfy the following conditions:

1. ReNR, =10

42



2. Ya,b,c: (a,b) € Ry = (a,¢) &
3. Va,b,c: (a,b) € Ry = (c,a

) &
The function att : Ry — ’P(R ) assigns to each pair (a,b) € Rs one or more
attacking counterparts (c,b) € R,.

Condition (1) says that a locution cannot be an attack and a surrender at the
same time, condition (2) says that a locution cannot be an attack on one locution
and a surrender to another locution, and condition (3) says that surrenders
cannot be attacked (this is since they effectively end a line of dispute).

The protocol for L. is defined in terms of the notion of a dialogue, which in
turn is defined with the notion of a move:

Definition 53 (Moves and dialogues.)

o The set M of moves is defined as N x {P,O} x L? x N, where the four
elements of a move m are denoted by, respectively:

id(m), the identifier of the move,
— pl(m), the player of the move,

s(m), the speech act performed in the move,

t(m), the target of the move.

o The set of dialogues, denoted by M=, is the set of all sequencesmy, ..., mj, ...

from M such that
— each i*" element in the sequence has identifier i,
— t(ml) = 0,’

— for alli > 1 it holds that t(m;) = j for some m; preceding m; in the
sequence.

The set of finite dialogues, denoted by M <, is the set of all finite se-

quences that satisfy these conditions. For any dialogue d = my, ..., My, ...,
the sequence myq, ..., m; is denoted by d;, where dy denotes the empty di-
alogue.

Note that the definition of dialogues implies that several speakers cannot speak

at the same time.
When t(m) = id(m’) we say that m replies to m’ in d and also that m/ is the

target of m in d. We will sometimes slightly abuse notation and let ¢(m) denote
a move instead of just its identifier. When s(m) is an attacking (surrendering)
reply to s(m’) we will also say that m is an attacking (surrendering) reply to
m'.

A protocol also assumes a turntaking rule.
Definition 54 A turntaking function T is a function

o T': M<>® — P({P,0})

43



such that T(0) = {P}. A turn of a dialogue is a maximal sequence of stages in
the dialogue where the same player moves.

When T'(d) is a singleton, the brackets will be omitted. Note that this definition
allows that more than one speaker has the right to speak next.

We are now in the position to define the central element of a dialogue game,
the ‘rules of the game’, in other words, the protocol.?

Definition 55 A protocol on M is a set P C M<> satisfying the condition
that whenever d is in P, so are all initial sequences that d starts with.
A partial function Pr : M<°° — P(M) is derived from P as follows:

e Pr(d) = undefined whenever d ¢ P;
e Pr(d) ={m|d,m € P} otherwise.

The elements of dom(Pr) (the domain of Pr) are called the legal finite dialogues.
The elements of Pr(d) are called the moves allowed after d. If d is a legal
dialogue and Pr(d) =0, then d is said to be a terminated dialogue.

All protocols are further assumed to satisfy the following basic conditions for
all moves m; and all legal finite dialogues d.

If m € Pr(d), then:
® Ry: pl(m) € T(d);

Ry: If d # do and m # my, then s(m) is a reply to s(t(m)) according to
Le;

Rs: If m replies to m', then pl(m) # pl(m’);

Ry: If there is an m’ in d such that t(m) = t(m’) then s(m) # s(m/).

Rs: For any m' € d that surrenders to t(m), m is not an attacking coun-
terpart of m'.

Together these conditions capture a lower bound on coherence of dialogues.
Note that they state only necessary conditions for move legality. Rule R; says
that a move is legal only if moved by the player-to-move. Ry says that a replying
move must be a reply to its target according to L., and R3 says that one cannot
reply to one’s own moves. Rule R4 states that if a player backtracks, the new
move must be different from the first one. (‘backtracking’ in this chapter is
taken to mean any alternative reply to the same target in a later turn). Finally,
Rs5 says that surrenders may not be ‘revoked’. At first sight, it would seem
that Rs could be formulated as “t(m) does not have a surrendering reply in
d”. However, later we will see that it makes sense to attack one premise of an
argument even if another of its premises has been surrendered.

Finally, a commitment function is a function that assigns to each player at
each stage of a dialogue a set of propositions to which the player is committed
at that stage.

2The first part of the following definition is taken from [16, p. 160].

44



Table 4.1: Speech acts for liberal dialogues

| Acts | Attacks | Surrenders
claim ¢ why @ concede
why ¢ arque A (conc(A) = ) | retract ¢

argue A why ¢ (¢ € prem(A)) concede o
argue B (B defeats A) | (¢ € prem(A) or ¢ = conc(A))

concede @
retract ¢

Definition 56 A commitment function is a function
o O: M=* x {P,O} — P(L;).
such that Cy(p) = 0. Cy(p) denotes player p’s commitments in dialogue d.

4.3.3 Liberal dialogue systems

So far any ‘verbal struggle’ could fit the framework. It will now be specialised
for argumentation with a particular communication language and some basic
protocol rules motivated by this language. In fact, a class of liberal dialogue
systems will be defined (parametrised by a logic £), in which the participants
have much freedom, and which is intended to be the core of all other dialogue
systems of this study.

The communication language allows for making a claim, for challenging,
conceding and retracting a claim, for supporting a claim with an argument, and
for attacking arguments with counterarguments or by challenging their premises.

Commitment rules are defined, but the commitments are only used in defin-
ing termination and outcome of dialogues; they do not constrain move legality
(see for that Section 4.3.6 below). There are only weak relevance requirements
of moves, viz. those given by the reply structure of L., and there are no restric-
tions at all on length of turns. Basically, a speaker may continue speaking as
long as he is not interrupted by the listener, and he may make any move as long
as according to L. it is a well-formed reply to some earlier move of the listener.
So liberal dialogues greatly rely for their coherence on the cooperativeness of
the dialogue participants.

4.3.3.1 The communication language

The communication language is listed in Table 4.1. In examples below, when
an argument contains a single inference, it will usually be listed as conclusion
since premises. Note that counterarguments must defeat their target according
to L. Attacking counterparts of a surrender are at the same line of the sur-
render except for the second line of the argue A row: argue B is an attacking
counterpart of concede ¢ only if the conclusion of B negates or is negated by ¢.
(So the attacking counterpart of conceding a premise is an premise-attack and
the attacking counterpart of conceding a conclusion is a rebuttal.)

45



4.3.3.2 The commitment rules

The following commitment rules seem to be uncontroversial and can be found
throughout the literature. (Below s denotes the speaker of the move; effects on
the other parties’ commitments are only specified when a change is effected.)

o If s(m) = claim(p) then Cs(d, m) = Cs(d) U {p}
= why(p) then Cs(d, m) = Cs(d)
concede(p) then Cy(d,m) = Cs(d) U {p}
= retract(p) then Cy(d,m) = Cs(d) — {¢}
argue(A) then Cs(d, m) = Cy(d) U prem(A) U{conc(A)}

(

o If s(m
o If s(m
o If s(m
o If s(m

)
) =
)
) =

4.3.3.3 Turntaking

As for the turntaking function, proponent starts with a unique move (which
introduces the topic of the dialogue), opponent then replies and after that it is
simply assumed that it is always the speaker’s turn; in other words, the turn
shifts as soon a new speaker succeeds in saying something.

o T1: T(dy) = P, T(d1) = O, else T(d) = {P,O}.

Thus protocol rule R; is always satisfied for any dialogue with at least two
moves.

4.3.3.4 The protocol

The protocol for liberal dialogues adds two protocol rules to those of the general
framework.

If m € Pr(d), then:
e Rg: If d =0, then s(m) is of the form claim(yp) or argue A.

e R7: If m concedes the conclusion of an argument moved in m/, then m’
does not reply to a why move.

R¢ says that each dialogue begins with either a claim or an argument. The
initial claim or, if a dialogue starts with an argument, its conclusion is the
topic of the dialogue. R; restricts concessions of an argument’s conclusion to
conclusions of counterarguments. This ensures that propositions are conceded
at the place in which they were introduced. Consider the following dialogue:

Py p since q
Os: why q
Ps: q since T

O4[Ps]:  concede g

R7 invalidates O4 as a reply to Ps; it should instead be targeted at P;, which
is when the proponent introduced gq.

46



Definition 57 A dialogue system for liberal dialogues is mow defined as any
dialogue system with L. as specified in Table 4.1, with turntaking rule Tr, and
such that a move is legal if and only if it satisfies protocol rules R1-R7.

Note that systems for subsets of L. can be defined as slight variations of systems
for liberal dialogues by simply declaring the use of certain moves illegal at all
times.

4.3.3.5 Termination and outcome of dialogues

Next termination and outcome of dialogues must be defined. In practice, ter-
mination of dialogues is often conventional so that an ‘any time’ definition of a
dialogue outcome is called for.

In the philosophical literature on two-party-persuasion, the most usual ter-
mination criterion is that a dialogue terminates if and only if the opponent con-
cedes proponent’s main claim or the proponent retracts his main claim. Above
in Definition 55 instead the usual ‘mathematical’ approach was followed, in
which a dialogue is defined as terminated just in case no legal continuation is
possible. So to capture the ‘philosophical’ definition, a dialogue system should
ideally be defined such that the players run out of legal moves just in case the
main claim is conceded or retracted.

However, more can be said about termination of dialogues. In general the
individual knowledge bases of the players will evolve during a dialogue: the
players may learn from each other, they may ask advice of third parties, or they
may perform other knowledge-gathering actions, such as consulting databases
or making observations. For this reason, a player will rarely run out of attacking
moves, since it is (theoretically) always possible to find an argument for a claim
or a counterargument to an argument. So it will rarely be possible to force the
other player to concede or retract the main claim. In addition, a ‘filibustering’
player can always challenge the premises of any new argument. For these reasons
realistic dialogues will often not terminate by retraction or concession of the
main claim, but by external agreement or decision to terminate it, so formal
termination results are of limited practical value.

When the traditional philosophical termination rule is adopted, the obvious
outcome rule is to declare proponent the winner if opponent has conceded his
main claim and to declare opponent the winner if proponent has retracted his
main claim. The winner can then be defined such that the proponent wins if the
opponent has conceded his main claim and the opponent wins if the proponent
has retracted his main claim.

However, for dialogues that can terminate by convention this may in certain
contexts be too restrictive; a player may avoid losing simply by never giving
in and continue debating till the other player becomes tired and agrees to ter-
minate. To deal with contexts where this is undesirable, ‘any time’ outcome
definitions need to be studied, which allocate ‘burdens to attack’ to the players,
so that if at a certain dialogue stage a participant has not yet fulfilled his burden
to attack, he may be the ‘current’ loser even if he has not conceded (opponent)

47



or retracted (proponent) the main claim. Besides for identifying the current
winner, such a notion can also be used to regulate turntaking and to define
relevance of moves, as will be explained in detail in Section 4.3.4.

Consider the following simple liberal dialogue:

Pi: claim p
Oy why p

At this stage it seems reasonable that P’s main claim is not successfully de-
fended, since there is an unanswered challenge. So P has the burden to attack
this challenge on the penalty of being the current loser. Suppose P fulfills this
burden with

Ps: p since q

Then it seems reasonable to say that P’s claim is successfully defended, since
its only challenge has been met, so the burden to attack has shifted back to the
opponent.

One way to define an ‘any time’ outcome notion is simply to apply a ‘black-
box’ logical proof theory for £ to the premises of all arguments moved at a
certain dialogue stage that are not challenged or retracted. If the main claim is
justified in £ on the basis of these premises, proponent is the current winner,
otherwise opponent is the current winner. This is the approach adopted in,
for example, [19, 41, 48]. However, we argue that a more natural approach
is to incorporate the proof theory of £ into the dialogue protocol as much as
possible, and then to prove that the dialogue outcome corresponds to what
logically follows. Thus the protocol is arguably more realistic as a model of
human dialogues, which may be beneficial in several contexts.

To this end we now define an any-time outcome notion that does not ap-
peal to a black-box logical consequence notion. The definition is in terms of
the dialogical status of an attacking move, which formalises the informal ideas
explained in the previous subsection. The definition assumes a notion of a sur-
rendered move, which needs to be defined separately for each instantiation of
the framework of Section 4.3.

Definition 58 [Dialogical status of moves] All attacking moves in a finite dia-
logue d are either in or out in d. Such a move m is in iff

1. m is surrendered in d; or else
2. all attacking replies to m are out

Otherwise m is out.

Definition 59 (The current winner of a dialogue) The status of the ini-
tial move my of a dialogue d is in favour of P(O) and against O(P) iff m1 is
in (out) in d. We also say that my favours, or is against p. Player p currently
wins dialogue d if my of d favours p.

48



For liberal dialogue systems and all further systems to be discussed in this
chapter the notion of a surrendered move is defined as follows.

Definition 60 A move m in a dialogue d is surrendered in d iff

e it is an argue A move and it has a reply in d that concedes A’s conclusion;
or else

e m has a surrendering reply in d.

Proposition 12 For each finite dialogue d there is a unique dialogical status
assignment.

A counterexample for infinite dialogues is an infinite sequence of attacking moves
mi,Ma,...,M;,...each replying to the immediately proceding move. This dia-
logue has two dialogical status assignments: one in which all even moves are in
and all odd moves are out, and one with the converse assignments.

Now the ‘current’ winner of a dialogue can be defined as follows:

Definition 61 For any dialogue d the proponent wins d if m1 s in, otherwise
the opponent wins d.

4.3.4 Protocols for relevant dialogues

In this section it will be shown that liberal protocols only weakly enforce struc-
tural coherence of dialogues and then two notions of strong and weak (structural)
relevance of moves will be defined that remedy this.

4.3.4.1 Motivation

Liberal protocols promote relevance through the protocol rules Ry, R4 and Rs.
According to these rules, Figure 4.1 displays two legal liberal dialogues, sharing
the first three moves. In dialogue 1 move Os is in a certain sense superfluous
since with Oy the opponent already launched another attack on P;. Also, P in
his second turn first attacks O’s argument for —¢ with P; and then retracts ¢
with Ps. Arguably, this behaviour of the proponent is not very coherent: first
he counterattacks an attack on his initial argument and then he surrenders to
another attack on that argument. Dialogue 2 displays a variant of such rather
incoherent behaviour: proponent first concedes the conclusion of O3’s argument
with P4 and then attacks its premise with Ps.

Figure 4.2 displays another legal liberal dialogue that is not entirely coherent.
Here the opponent in his third turn attacks with O7 in a line of the dialogue
which P has meanwhile implicitly retreated with Ps: his current reason for ¢
is v. Arguably O’s argument for —u is at this point irrelevant for the dialogue
topic.

These dialogues illustrate that there is a need for stricter protocols, where
each move is relevant to the dialogue topic. A rigorous way to enforce relevance

49



O2: why q

O3: why q | | O3: —q since r

dialogue 1 dialogue 2

Figure 4.1: Two somewhat incoherent dialogues.

Oy: whyt| |O7: -u sinces| |08: why v

Figure 4.2: Another somewhat incoherent dialogue.

of moves is to have a unique-move and unique-reply protocol. Then in the dia-
logues of Figure 4.1 O’s first turn ends after his challenge of ¢, after which P has
to choose between retracting ¢ or defending it. And in Figure 4.2 the dialogue
ends after P5’s retraction and P is penalised for making the ‘wrong’ choice of
argument at P3. However, this comes with a price. Firstly, as argued in the
introduction, it may not in all contexts be fair to disallow the players to repair

a0



mistakes or to move alternative arguments in the same turn. Secondly, there
are more subtle reasons to allow backtracking. Consider the implied arguments
of a dialectical graph. Fairness demands that when such arguments are relevant
for the outcome of a dialogue, their moving should be legal at least at one stage
during the dialogue. However, as shown in [67], the more a protocol restricts
the possibility to move alternatives to earlier moves, the more it runs the risk
of making such arguments illegal at any stage. So unique-reply protocols can
be unfair.

In general, any ‘any time’ definition of the dialogue outcome can be used
to constrain turntaking and promote relevance: for instance, protocols could
be made immediate-reply and and all moves can be required to have an effect
on the outcome of the dialogue. These ideas will now be made more precise in
terms of the dialogical status of moves.

Intuitively, a replying move is structurally relevant if it is capable of changing
the dialogical status of the initial move, given the various ways the players have
backtracked and surrendered. Two typical grounds for irrelevance of a move
are that it is made in a dialogue branch from which the other adversary has
retreated (cf. move Oz in Figure 4.2), or in a dialogue branch containing a
surrendered move, of which the status therefore cannot be changed (cf. move
Ps in dialogue 2 of Figure 4.1).

4.3.4.2 Relevance defined

The requirement that each move be relevant allows the players maximal freedom
on issues such as backtracking and postponing replies while yet ensuring a strong
focus of a dialogue. The present notion of relevance extends the one of [67],
which only applied to argument games.

As for the formal definition of relevance, as just explained, what is crucial is a
move’s effect on the status of the initial move. In order to determine relevance
of surrendering moves, their effect is checked as if they were their attacking
counterpart. Thus a move is relevant iff any attacking counterpart with the
same target would change the status of the initial move of the dialogue. This is
formally defined as follows.

Definition 62 [Relevance] An attacking move in a dialogue d is relevant iff it
changes the dialogical status of d’s initial move. A surrendering move is relevant
iff its attacking counterparts are relevant.

This definition is not meant to fully capture the notion of relevance in dialogue,
since it only looks at structure of a dialogue, not at its content. Clearly, an
argument like “You owe me 50,000 dollars since the earth is round’ violates a
legal sense of relevance, but it might well be relevant in the present sense.

Together the above definitions imply that a reply to a surrendered move
is never relevant. Note also that, if not surrendered, an irrelevant target can
become relevant again later in a dialogue, viz. if a player returns to a dialogue
branch from which s/he has earlier retreated.

o1



To illustrate these definitions, consider Figure 4.3 (where + means in and
- means out). The dialogue tree on the left is the situation after P;. The tree
in the middle shows the dialogical status of the moves when O has continued
after P; with Og, replying to Ps: this move does not affect the status of P;, so
Oy is irrelevant. Finally, the tree on the right shows the situation where O has
instead continued after P; with Of, replying to P7: then the status of P; has
changed, so Oy is relevant.

pL* pLt P1-
B 3 B
02 02 02
P3 - p7 * P3- p7t P3- P7 -
/ \ / \ / \ ,’_}‘_.;\
o4~ 06" 04 o6" 04~ 06" 08 !
p5 * P5 p5 *
l’_‘_?}-\\
1 O8 |
\____/
O8isirrelevant 08’ isrelevant

Figure 4.3: Dialogical status of moves.

To be a protocol for relevant dialogue, a protocol must also satisfy some
additional conditions on the notions of move legality, turntaking and winning.
The following protocol rule is added to those of liberal dialogue systems.

If m € Pr(d), then:
e Rg: if m is a replying move, then m is relevant in d.

To prevent premature termination of a dialogue this rule must be combined
with an immediate-reply turntaking rule (cf. [48]):

o T;: T(dp) = P and if d # dy then T'(d) = p iff p currently wins d.

Together, Rg and T; enforce that when a player is to move, s/he keeps moving
until s/he has changed the status of the initial move his or her way (since after
such a change no further move of the same player can be relevant). In other
words, each player first moves zero or more relevant surrenders, and then moves
zero or one relevant attacker: if no attackers are moved, this is because the
player has no legal moves.

Definition 63 A dialogue system for relevant dialogues is any dialogue system
with L. as specified in Table 4.1, with turntaking rule T; and such that a move
1s legal if and only if it satisfies protocol rules R1-Rg.

92



4.3.5 Protocols for weakly relevant dialogues

Comparing systems for liberal and for relevant dialogues, the main advantage of
the relevance requirement is that it keeps a dialogue focussed by ensuring that
no resources are wasted on ‘superfluous’ moves, i.e., moves that have no bearing
on the status of the initial move. However, there are reasons to study a weaker
sense of relevance. Perhaps the main drawback of the relevance condition is that
it must be combined with an immediate-reply turntaking rule, which prevents
the moving in one turn of alternative ways to change the status of the initial
move. This may be a drawback, for instance, in discussions where the parties
cannot immediately reply to each other, and therefore reply to all moves of the
preceding turn (as in parliamentary debate).

This disadvantage of the relevance rule can be met with a weakening of the
notion of relevance, to require only that each attacking move creates a new
‘winning part’ of the speaker or removes a ‘winning part’ of the hearer. First
a winning part of a dialogue must be defined. Informally, it is the part of a
dialogue that ‘makes’ the initial move have its dialogical status.

Definition 64 Let d be a dialogue currently won by player p. A winning part
dP of d is recursively defined as follows.

1. First include mq;

2. for each move m of p that is included, if m is surrendered, include all its
surrendering replies, otherwise include all its attacking replies;

3. for each attacking move m of p that is included, include one attacking
reply m’ that is in in d.

The idea of this definition is that, by omitting all moves of p that are surrenders
or from which p has backtracked, dP contains that part of d that makes p win.
In general, d? is not unique, since p might have moved alternative attacking
replies to a move, neither of which were successfully challenged by p.

We can now define the notion of weak relevance.

Definition 65 [Weak relevance.] An attacking move in a dialogue d is weakly
relevant iff it creates a new winning part of d for the speaker or removes a win-
ning part of the hearer. A surrendering move is weakly relevant iff its attacking
counterparts are weakly relevant.

Relevance according to Definition 62 will now be called strong relevance. Clearly,
each strongly relevant move is also weakly relevant. The relevance rule is now
weakened as follows:

e R{: if m is a replying move, then m is weakly relevant in d.
Finally, the turntaking rule is relaxed as follows.
o Ty: T(dy) = P. If d; # dy then T'(d;) = pl(m;) if pl(m;) currently wins d
and T'(d;) = {P, O} if pl(m;) currently wins d.

33



This says that interrupting the speaker is allowed but not obligatory as soon as
the speaker has made himself the current winner.

Definition 66 A dialogue system for weakly relevant dialogues is any dialogue
system with L. as specified in Table 4.1, with turntaking rule T, and such that
a move is legal if and only if it satisfies protocol rules Ri-Ry, Rg.

The structure of weakly relevant dialogues differs in two main respects from
that of strongly relevant dialogues. Firstly, a player has some freedom to make
additional moves after he has made himself the current winner, possibly creating
additional winning parts. Secondly, each player must counterattack all attacks
of the other player in order to make himself the current winner.

It is straightforward to prove that the soundness and fairness results for
liberal and relevant dialogues still hold for weakly relevant dialogues.

To illustrate the weak notion of relevance, consider again the dialogue be-
tween Paul and Olga from the introduction. A weakly relevant version of this
dialogue is when Olga moves her second argument for ‘not safe’ directly after
her first in the same turn, after which Paul must attack both of them in his
next turn to change the status of his main claim.

4.3.6 Respecting commitments

A further means to promote coherence of dialogues is by using the players’ com-
mitments in regulating move legality. Players can, for instance, be required to
keep their own commitments consistent or restore consistency upon demand, or
not to challenge their own commitments. In this section the addition will be
studied of protocol rules referring to commitments to the protocols discussed so
far. However, since commitments are a topic of their own, the discussion will be
restricted to some simple rules and a more advanced treatment of commitments
will be left for future research.

If m € Pr(d) and pl(m) = p, then:
e Ry: Cp(d,m) is consistent.
o Rig: If s(m) = why ¢, then C,(d) I/ ¢.

Rg ensures logical consistency of the players’ commitments and Ry prevents
players from challenging a proposition to which they are themselves committed.

It should be noted that in the preset stup there is a tension between the
effects of moves as replies to targets, which are local, and their effects as oper-
ations on commitment sets, which are global. As a reply to a target, a move’s
direct effect is on the target’s dialogical status. As an operation on commit-
ments, a move’s direct effect is on the speaker’s commitment set, which is global
to the dialogue. The dialogue in Figure 4.4 illustrates this tension. After Pg the
protocols of this study allow opponent to continue with challenging s in P5 and
proponent to reply to this challenge with an argument for s. This dialogue is
not very coherent since proponent already retracted s. Additional conventions

o4



. P3: q since s . Pg: q since s’ | | Ps: r since s

Figure 4.4: Replies vs. commitments.

could be added that reflect the global nature of commitments, for example, that
a proposition may only be supported with an argument if the speaker is still
committed to the proposition, or that once a proposition is retracted, no new
commitment to the same proposition may be incurred by the same player.

4.4 Formalising dialogue games with the Event
Calculus

Logical specification of dialogue systems could benefit both the formal investi-
gation of such protocols and their implementation in declarative programming
languages. Yet so far few persuasion systems have been fully formally specified
in a declarative way. Two notable exceptions are [12] and [19]. However, the
argumentation protocols formalised in these papers are rather simple and the
logical specification of more complex protocols like the ones just mentioned still
awaits further investigation. This section therefore studies the logical speci-
fication of the persuasion dialogue games discussed above. These games will
first be formalised in a variant of the Event Calculus proposed by [75] and then
implemented as a Prolog program (in Section 4.7).

%)



4.4.1 The Event Calculus

The Event Calculus (EC) is a theory specified in first-order logic about events
and their effects on states-of-affair in the world (called ‘fluents’ in EC). EC was
originally developed by Kowalski and Sergot in 1986 [46]; in this deliverable we
use a later variant, due to Shanahan [75], called the ‘Full Event Calculus’. Its
axioms express principles like ‘If an event happens at time T that initiates a
some fluent then that fluent starts to hold at 7" and ‘If a fluent holds at 7" and
nothing terminates it then it also holds at 7'+ 1’. The latter is commonly called
the ‘law of inertia’; it can be overruled by axioms expressing when a fluent is
terminated. In applications of EC its general axioms must be supplemented
with domain-specific axioms.

Our use of EC for the specification of dialogue protocols is motivated by the
fact that a dialogue game can be seen as a dynamic system where dialogue ut-
terances are events that initiate and terminate various aspects of the ‘dialogical
world’, such as a player being the player-to-move or not, player being committed
to a certain proposition or not and a move being legal or not. Such aspects will
be modelled as fluents, the value of which can change as an effect of utterances
made during the dialogue.

A particularly attractive feature of EC is that it can easily be implemented as
a Prolog program. This allows the modelling of temporal persistence of fluents
through negation as failure: if termination of a fluent cannot be derived, it can
be assumed to persist. Thus, for instance, a proposition added to a player’s
commitments can be assumed to remain a commitment until this is explicitly
terminated. Also, it can be elegantly modelled that the present protocol allows
replies to any earlier move in the dialogue and not only to the last move. This
is modelled by the fact that the legality of a reply persists until it is explicitly
terminated.

To be able to reason about fluents, they are reified in EC. Reification means
that the fluents are treated as first-class objects so that they can be used as
arguments of predicates. For example, the sentence “at time point 2 it is the
turn of participant P” can be represented as follows:

HoldsAt( Turn(P),2)

Here the statement Turn(P) is reified as an object to allow it to an be argument
of the predicate HoldsAt.

The axioms of the Full EC make use of a number of special predicates. We
now describe their informal meaning and indicate how they can be used in the
specification of dialogue games. The first two predicates concern the effects of
an action on the value of a fluent.

Initiates(a, 8,7) means that fluent § starts to hold after action « at time
7. This formula will be used in the following ways. Firstly, it will be used to
express the addition of a statement to a player’s commitment set in effect of an
utterance. For instance,

Initiates(move(1, P, claim ¢,0), CS(P,q),1)

96



says that proponent’s claim in his first move of ¢ adds ¢ to his commitments
(the move identifier following the speech act is the move’s target, in this case a
dummy value to express that the claim is the dialogue’s first move). In a similar
way it can be expressed that in effect of an utterance another move becomes
legal. For instance,

Initiates(
move(1, P, claim ¢,0),
Legal(move(id, O, why q,1id),t))

says that proponent’s claiming of ¢ in his first move initiates the legality of a
challenge of ¢ by opponent. Finally, the fact that a move makes a player the
player-to-move can be expressed in a similar way.

Terminates(«, 3,7) means that fluent 3 ceases to hold after action « at time
7. This predicate is the ‘mirror predicate’ of Initiates: in can be used in an
analogous way as that predicate for expressing the deletion of a commitment,
the termination of legality of a move and the termination of a player being the
one to move.

At the beginning of a dialogue certain fluents will hold and certain fluents
will not hold. The following two predicates can be used to express the begin
situation of a dialogue.

Initiallyp(8) means that fluent 3 holds at the beginning of the dialogue.
This formula will be used to define the commitment set of the players at the
beginning of the dialogue and for defining the legal moves at the beginning of
the dialogue.

Initiallyy(8) means that fluent 8 does not hold at the beginning of the di-
alogue. The formula will be used to define which moves are not legal at the
beginning of the dialogue, which participant is not allowed to make a move and
which propositions a participant is not committed to.

To express that a fluent holds at a certain time point the following predicate
is used.

HoldsAt(3,7) means that fluent 8 holds at time point 7. For instance, the
formula
Holdsat(Legal(move(4, O, why q,1),4))

expresses that a challenge of ¢ by opponent is legal at move 4 as a reply to move
1. Such formulas will (often with variables) be used in the conditions of the
rules for move legality, turntaking and termination.

A dialogue is a sequence of events that happen. To express that a move is
made the following predicate can be used.

57



Happens(«,71,72) means that action « starts at time point 71 and ends at
time point 72. This predicate will be used to express all moves made during the
dialogue. Since a dialogue move is assumed to have no duration, it will always
hold that 71 = 72.

Besides persistence of a fluent, it must be possible to express termination
and initiation of fluents at certain time points. This can be done with the
predicates Clipped and Declipped; they are used in the general axioms of EC
but we will not use them in our domain-specific axioms.

Clipped (71, 3,72) means that fluent § is terminated between times 71 and
T2.

Declipped (71, 3,72) means that fluent § is initiated between times 71 and
T2.

We next list the general axioms of the full Event Calculus. Following the
usual conventions, variables are assumed to be implicilty universally quantified.
The unique-name axioms, which are part of the Event Calculus, are left implicit,
as well as the usual definitions of (in)equality. The first two axioms concern the
conditions that should be met in order for a fluent to persist. The third axiom
concerns the conditions for a fluent to terminate to hold. Then three axioms
are presented which express exactly the opposite. The fourth axiom expresses
when a fluent does not persist and the fifth and sixth axiom express what
conditions should be met for a fluent to start to hold. The last axiom ensures
that an event takes a non-negative amount of time. Note that in our Prolog
implementation the occurrences of classical negation — will be implemented as
negation-as-failure, to capture the law of inertia.

1. HoldsAt(f,t) « Initially p(f) A = Clipped (0, f,t)
This axiom states that if a fluent initially holds and is not terminated
between time point 0 and time point ¢ then the fluent still holds at time
point .

2. HoldsAt(f,t3) «— Happens(a,tl,t2)A\Initiates(a, f,t1)A(t2 < t3)A—~Clipped (t1, f,t3)
This axiom states that if event a which initiates fluent f occurs then fluent
f starts to hold until fluent f is terminated.

3. Clipped(t1, f,t4) < 3a,t2,t3(Happens(a,t2,t3) A (t1 < t3) A (12 < t4) A
Terminates(a, f,t2))
This axiom states that if and only if there exists an event a which occurs
and terminates fluent f then fluent f is said to be clipped.

4. = HoldsAt(f,t) «— Initially 5 (f) A ~Declipped (0, f,t)
This axiom states that if a fluent did not initially hold and was not initiated
between time point 0 and time point ¢ then the fluent does not hold at
time point .

98



5.

—HoldsAt(f,t3) «— Happens(a,tl,t2) A Terminates(a, f,t1) A (t2 < £3) A
—Declipped (t1, f,t3)

This axiom states that if event a which terminates fluent f occurs then
fluent f does not hold as long as fluent f is not initiated.

Declipped (t1, f,t4) < Fa,t2,t3(Happens(a,t2,t3) A (t1 < 3) A (12 < t4) A
Initiates(a, f,t2))

This axiom states that if and only if there exists an event a which occurs
and initiates fluent f then fluent f is said to be declipped.

Happens(a,t1,t2) — (t1 < t2)
This axiom ensures that the time an event takes can never be negative.

4.4.2 Formalisation of a persuasion game

In this subsection the liberal persuasion game of Section 4.3.3 will be formalised.

4.4.2.1 Additional fluents

The following additional fluents will be used.

move(id, p, s, tr) This fluent states that this is the id*" move where partic-
ipant p states locution s targeted at tr. Just as in Prakken’s Framework,
a quadruple is used for defining a move. The id is the identifier of a move
and stands for the id"™ move in the dialogue. It seems reasonable to unify
the time points with the identifier of the move because every move is an
event. However, this becomes problematic when a participant states an
illegal move, this move will cause no changes to the fluents but will move
time with one unit. So the time point is raised while the identifier of
the move is not. For this reason the time points and the identifiers are
not unified. The p is the player of the move, either the proponent or the
opponent. The s is the speech act made in the dialogue and the tr is the
target of the move, this is the identifier of the move it is targeted at.

Legal(yp) This fluent expresses that it is legal to make move ¢ where ¢
represents a tuple move(id, p, s, tr). This fluent is initiated when move ¢
is legal to make. In Prakken’s Framework as well as in the PWA System
the only legal moves are the ones that serve as a reply to another move.
So every move initiates one or more legal fluents as a reply to that move.

CS(p, ) This fluent represents that participant p is committed to propo-
sition . CS stands for commitment set and is initiated when participant
p becomes committed to proposition .

Turn(p) is a fluent which is initiated when it becomes the turn of partici-
pant p.

P stands for proponent.

99



e O stands for opponent.
e p and p are defined as: p = O if and only if p = P and p = P if and only
ifp=0.
In the Event Calculus the predicate Happens is used for uttering a statement.
This predicate is to be instantiated with a fluent (id, p, s, tr) and holds without

conditions. A typical locution looks like this: Happens(1, P, claim(a), 0). This
locution states a first move by the proponent, claiming that a is the case.

4.4.2.2 The protocol

The formalisation of the protocol first specifies which initial moves are legal.
Initially the only legal moves are a claim or an argue move by the proponent.
After his first move the legality of these moves terminates.

Initially p(Legal(move(1, P, s,0))) —
s = claim ¢V s = arque A

Initially 5 (Legal (move(id, p, s, tr))) —

p=0 Vv
(id #1) v
(s # claim @ A s # argue A) v
(t#0)

Terminates(move(1, P, s1,0), Legal(move(1, P, s3,0)), t) —
HoldsAt(Legal(move(1, P, s1,0)),t)

The next formulas specify how the legality of non-initial moves is initiated,
capturing rules Ro, Rs, R4 and Rz of the protocol. Defeats(B, A) means ‘argu-
ment B defeats argument A’. Note that the rules for argue moves assume that
the well-formedness of arguments and their defeat relations are determined by
external means. The general format of the legality-initiating rules is as follows:

my initiates the legality of mo if

m1 was moved legally, and

pl(ms) is the player-to-move, and

s(me) is a well-formed reply to s(m1), and

the specific conditions for mo, if any, are satisfied.

But the rule for replies to initial moves can be simpler:

Initiates(move(1, P, claim ¢,0), Legal(move(id, O, s,1)),t)  «
s = why ¢V s = concede @

Initiates(move(id, p, why ¢, tr), Legal(move(id,, p, s, id)),t) —
HoldsAt(Legal(move(id, p, why ¢, tr)),t) A
HoldsAt( Turn(p),t) A
((s = argue AN conc(A) = @) V (s = retract ¢))

60



Initiates(move(id, p, argue A, tr), Legal(move(id,, P, s, id)), t)

HoldsAt(Legal(move(id, p, argue A, tr)),t) A
HoldsAt( Turn(p),t) A
((s = why ¢ Ay € prem(A))

V

(s = argue B A Defeats(B, A))

V

(s = concede p N p = conc(A)A

—(Happens(move(tr, p, why o, tra),ta) Aty < t)
\Y
(s = concede @ N ¢ € prem(A)))

Next the conditions are specified under which the legality of non-initial moves
terminates. The first rule below says that after a move with a specific content
is made, it terminates to hold as a legal move with that specific content and the
same target.

Terminates(move(id,p, s, tr), Legal(move(id,, p, s, tr)), t) —
HoldsAt( Turn(p),t)
HoldsAt(Legal(move(id, p, s, tr)),t)

The second rule captures protocol rule R5 and states that when a move is a
surrendering move to a target the attacking counterpart of this move at the
same target terminates to be legal.

Terminates(move(id,p, s1, tr), Legal(move(idy, p, s2, tr)), 1) —
HoldsAt(Legal(move(id, p, s1, tr)),t) A
HoldsAt(Legal(move(id,, p, 2, tr)),t) A
HoldsAt( Turn(p),t) A

(s1 = concede @ N\ so = why @)
V

w
Il

(s1 = concede @ N\ s = arque AN —p = conc(A))

V
(s1 = retract A s = argue AN o = conc(A)))

Summarising, EC’s ‘law of inertia’ is used in this formalisation as follows. Ini-
tially, only a claim and argue move are legal and all other moves are illegal.
After a move is made its legality is terminated (but only with that specific
content) and the legality of well-formed replies to that move’s speech act is ini-
tiated. Such legality persists until the move is made. The illegality of moves
persists until its legality is initiated as just described.

4.4.2.3 Commitment set

Initially, the commitment set of both players is empty as stated. When per-
forming a move, the commitment set of the participant performing the locution

61



is affected. It is always checked whether the performing participant uses a legal
move initiated as a reply to a previous locution. It is also checked whether it is
the turn of the participant. The following four rules ensure the altering of the
commitment set during the dialogue.

Initially 5 (CS (p, )

Initiates(move(id, p, s, tr), CS(p, @), t) —
HoldsAt(Legal(move(id,p, s, tr)),t) A
HoldsAt(Turn(p),t) A
(s = claim @V s = concede )

Terminates(move(id, p, retract @, tr), CS(p,¢),t) —
HoldsAt(Legal(move(id, p, retract o, tr)),t) A
HoldsAt(Turn(p),t)

Initiates(move(id, p, argue A, tr), CS(p,¢),t) —
HoldsAt(Legal(move(id, p, argue A, tr)),t) A
HoldsAt(Turn(p),t) A
(¢ = conc(A) V ¢ = prem(A))

4.4.2.4 Turntaking

In the last four rules the turntaking in the dialogue system is realised. The
first move is always made by the proponent after which the turn switches. This
means that after the first move, the turn of the proponent terminates to hold and
the turn of the opponent is initiated. After the second move, both participants
can participate in the dialogue so now also the turn of the proponent is initiated.

Initially p( Turn(P))
Initially n (Turn(O))

Terminates(move(l, P, s,0), Turn(P),t)  «
HoldsAt(Legal(move(l, P, s,0)),t)

Initiates(move(id, p1, s, tr), Turn(pz2),t) —

HoldsAt(Legal(move(id,pl, s, tr)),t) A
((id=1Ap1=PANtr=0At=1Aps =0)
V

(id=2Ap1 =OAtr=1At=2Apy =P))

This completes the specification of the liberal persuasion protocol of Sec-
tion 4.3.3.

62



4.5 Another illustration of our approach

We now apply the above approach to formalisation and implementation of pro-
tocols to a second dialogue system for persuasion, that of Parsons, Wooldridge
and Amgoud [62], which we refer to as PWA or the PWA System. The rea-
son for a second application is to illustrate the generality of our approach by
applying it to a pre-existing protocol. The logic used in PWA is that of Am-
goud and Cayrol [8], a nonmonotonic argumentation system instantiating the
grounded semantics of Dung [33]. The notational conventions used by Parsons,
Wooldridge and Amgoud in [62] will be unified below with the notation we used
above.

4.5.1 The PWA system
We first describe the PWA System as presented in [62].

4.5.1.1 Communication Language

The following table compares the names for the locutions used by Parsons,
Wooldridge and Amgoud [62] and those used here.

PWA System | Present Framework
assert claim

accept concede

challenge why

As just noted, we will adjust the names used in the PWA System to ours. Their
communication language then consists of the locutions in Table 4.2.

e claim p, a participant claims proposition ¢

e claim S, a participant claims the set of propositions S

e concede p, a participant concedes proposition ¢

e concede S, a participant concedes the set of propositions S

e why @, a participant challenges the other participant to state an argument
to support proposition ¢

Table 4.2: Locutions

4.5.1.2 Protocol
Protocol rules

The protocol is unique-move, which means that the turn shifts after each move.
Also, except for replies to claim moves it is unique-reply, which means that

63



alternative replies to the same move are not allowed. The exception is when a
participant claims a set of propositions as reply to a why move: then the other
participant can give a reply to each proposition of this set. The possible replies
to a locution have a preferred order: if the first, most preferred response is not
a legal one, the next best option is considered. The legality of a move partly
depends on the attitude of the agent which is explained below. The first move is
always made by the proponent, agent A, who claims proposition p after which
the opponent, agent B, makes a move.

1. A claims p.

2. B concedes p if it is a legal according to its concede-attitude,
If it is not legal to concede p, B claims —p if it is legal according to its
claim-attitude,
Otherwise B challenges p with a why move.

3. If B claimed —p then
goto 2 with roles of the agents reversed and —p in place of p.

4. If B challenged p with a why move then
A claims S, the support for p;
Goto 2 for each s € S in turn.

Table 4.3: Protocol

Attitudes

Whether it is legal to claim or concede a proposition also depends on the ability
of the agent of finding an argument of a certain kind to support the proposition.
Every participating agent has one claim-attitude and one concede-attitude. This
attitude is fixed for the agent during the entire dialogue.

Definition 67 Claim-attitude

e A confident agent can claim any proposition p for which it can construct
an argument A where p = conc(A).

o A careful agent can claim any proposition p if it is not able to construct
a stronger argument A for proposition —p where —p = conc(A).

e A thoughtful agent can claim any proposition p for which it can construct
a justified argument A where p = conc(A).
Definition 68 Concede-attitude

e A credulous agent can concede to any proposition p if it is able to construct
an argument A where p = conc(A).

64



e A cautious agent can concede to any proposition p if it is not able to
construct a stronger argument A where —p = conc(A).

o A skeptical agent can concede to any proposition p if it is able to construct
a justified argument A where p = conc(A).

In these definitions a participant is supposed to construct arguments on the
basis of its own internal knowledge base plus the commitments of the other
participant.

4.5.1.3 Effect Rules

The effect rules are essentially the same as in our framework, with the obvious
addition that conceding or claiming a set of propositions commits to the entire
set.

4.5.1.4 Turntaking

Generally, the protocol is unique-move so the turn switches after every move,
this is regulated directly through the structure of the protocol. Only when a set
of propositions is claimed the turn does not need to switch after every move.
When a reply move is made by the opponent to one proposition of the set
propositions the proponent claimed and this proposition is eventually conceded
by the opponent, the turn does not switch and the opponent can reply to another
proposition of the set of propositions claimed by the proponent.

4.5.1.5 Termination Rules

The dialogue terminates when there are no more moves. This happens when
there are no more propositions the agents do not agree upon. Besides the
termination rules there is also an outcome rule. If an agent is not able to
make a move when it is his turn, he has to concede the dialogue game. If the
proponent has to concede the dialogue game, he has not succeeded in persuading
the opponent. If the opponent has to concede the dialogue game then the
proponent is succeeded in persuading his opponent.

4.5.2 Formalisation of PWA in Event calculus

We next formalise the PWA Persuasion protocol, using the same approach as
above.

4.5.2.1 Additional fluents

To formalise the PWA System, further fluents are used in addition to those used
to formalise the system of Section 4.3.3 above.

65



ConcedeAttitude(p, ¢) means that the concede-attitude of participant p is
the attitude c¢ this fluent is used to define the concede-attitude of the
participants at the beginning of the dialogue. The attitude remains static
throughout the dialogue.

ClaimAttitude(p, ¢) means that the claim-attitude of participant p is the
attitude c. This fluent functions the same as the ConcedeAttitude(p, c).

Allows(s,p) is a fluent which holds if the attitude of participant p allows
move s. This fluent is initiated after every move if the formal definition of
the attitudes as discussed in Tables 67 and 68 allows the proposition used
in the move.

ConcedeGame(p) is a fluent that defines that participant p concedes to
the dialogue. A participant should concede to the dialogue if the partici-
pant is not able to make the indicated move. The dialogue ends when a
participant concedes to the dialogue.

Retain(p) is a fluent used for storing move ¢. After claiming a set of
propositions the other participant can reply to each proposition. The
propositions which are not replied to directly are stored in the Retain(y)
fluent.

Formula(A,id) is a fluent used for expressing that formula A has pref-
erence order id. In the PWA System the preference of arguments and
propositions is agreed upon before the dialogue starts. In the formalisa-
tion this fluent will be used at the beginning of the dialogue to initiate
all arguments with their preference order available in the “world” of the
agents.

Acceptable(A, p) is a fluent used to express that argument A is an accept-
able argument for participant p. In this formalisation it is not specified
when an argument holds as acceptable, acceptable arguments are simply
initiated.

KB(A,p) is a fluent which denotes that argument or proposition A4 is an
element of the knowledge base KB of participant p. This fluent is used
to express that an agent has access to an argument or proposition in the
dialogue.

4.5.2.2 Begin situation

Due to the closed world assumption of the Event Calculus all fluents have to
be known initially and therefore should be known as to initially hold or not
hold. In the PWA System there are several fluents whose initial value depends
on the dialogue. These fluents are Acceptable(a,p), Formula(a,id), KB(a,p),
Allows(s,p), ClaimAttitude(a,b) and ConcedeAttitude(a,b). The fluents with
values that hold at the beginning of the dialogue should be added to the for-
malisation before starting the dialogue by the agents or the user of the system.

66



These clauses will, for example, have the following form.
Initially p(Acceptable(since(P,Q)))

The user of the system should express which arguments are acceptable for
each participant at the beginning of the dialogue, what the preference order of
each formula is during this dialogue, which propositions and arguments are in
the knowledge base of the participants, which propositions and arguments are
allowed for the proponent to use according to its attitude at the beginning of
the dialogue and also the claim and concede attitudes should be added to the
formalisation. All other values of these fluents are assumed not to hold at the
beginning of the dialogue. This is covered by the following six rules where the
clause Initially 5 holds if Initially p does not hold. The first three rules cover
the available propositions and arguments during the dialogue and the last three
rules deal with the attitudes of the participants and the suitability of arguments
according to these attitudes.

BS 1 Initially 5 (Acceptable(a, p)) —
—Initially p(Acceptable(a, p))

BS 2 Initially y (Formula(a, id)) —
—Initially p(Formula(a, id))

BS 3 Initially y(KB(a,p))  «
—Initially p(KB(a, p))

BS 4 Initially y (Allows(s, p)) —
—Initially p(Allows(s, p))

BS 5 Initially 5 (ClaimAttitude(a, b)) —
—Initially p( ClaimAttitude(a, b))

BS 6 Initially 5 (ConcedeAttitude(a, b)) —
—Initially p(ConcedeAttitude(a, b))

In the PWA System it is the turn of the proponent at the start of the dialogue
and his only legal move is making a claim.

BS 7 Initially p( Turn(P))
BS 8 Initially p(Legal(move(1, P, claim ¢,0)))

It is necessary to specify that initially it is not the turn of the opponent.
This is specified by BS 9. BS 10 specifies which moves do not hold as legal at
the beginning of the dialogue. This rule states that no move of the opponent
holds as legal and that except for a claim move no move holds at the beginning
of the dialogue.

67



BS 9 Initially y (Turn(O))

BS 10 Initially 5 (Legal(move(id, p, s,0))) —

p=0 \Y,
=(id = 1) Y
(s = claim ) v

Initially the commitment set of both participants is empty. This means that
there is no fluent CS(p, ) that initially holds. Also the fluent ConcedeGame(P)
does not hold at the beginning of the dialogue and there are no retained moves
so the fluent Retain(s) does not hold initially.

BS 11 Initially 5 (CS(p, )
BS 12 Initially 5 (ConcedeGame(p))

BS 13 Initially 5 (Retain(s))

4.5.2.3 Legal moves

This subsection deals with the PWA System Protocol as stated in Table 4.3. In
the PWA System a reply can be given to a claim and to a why move. Only one
locution is legal as a reply to a move. It might be possible however that there are
several propositions to use in the locution as a reply. There are three possible
replies to a claim move; which one is legal depends on the attitude of the agent.
A claim move can be made for a set of propositions or just for one proposition.
The following formula, LE 1, deals with initiating the three possible replies to
a claim move for a single proposition. The formula after that, LE 2, deals with
initiating the three possible replies to a claim move for a set of propositions.
The third formula, LE 3, deals with the reply to a why move. To a why move
only one reply is possible. The last formula of this subsection, LE 4, deals with
the termination of the legality of moves.

The reply move to a claim is a concede move if the concede-attitude allows
it. If the concede-attitude does not allow a concede move, a claim move is
initiated as legal if the claim-attitude allows it. When the concede as well
as the claim move are not allowed according to the attitudes, a why move is
initiated as legal. This is described in the third part of the formula. It is checked
whether it is the turn of the moving participant and whether the move is legal.
The conditions under which fluent Allows(s, p) holds is described in Subsection
4.5.2.6 and indicates whether the attitude of participant p allows the statement
of the locution.

LE 1 Initiates(move(id, p, claim @, tr), Legal(move(id2,p, s, id)),t) —

68



HoldsAt(Legal(move(id, p, claim ¢, tr)),t) A

HoldsAt(Turn(p),t) A
((s = concede ¢ A
HoldsAt(Allows(s,p),t))

V

(s = claim —¢ A
—HoldsAt(Allows(concede p,p),t) A
HoldsAt(Allows(s,p),t))

V

(s = why ¢ A
—HoldsAt(Allows(concede p,p),t) A

t
—HoldsAt(Allows(claim —,D),t)))

The following formula deals with the initiation of legal replies to a claim
with a set of propositions in the same way as the previous formula describes the
initiation of legal replies to a claim with a single proposition.

LE 2

Initiates(move(id, p, claim S, tr), Legal(move(id2, p, s, id)),t) —
HoldsAt(Legal(move(id, p, claim S, tr)),t) A
HoldsAt(Turn(p),t) A
((s = concede ¢ A
HoldsAt(Allows(s,p), t) A

p€S)

V

(s = claim ¢ A
—HoldsAt(Allows(concede —p,p),t) A
HoldsAt(Allows(s,p), t) A
~p€S)

V

(s = why ¢ A
—HoldsAt(Allows(concede ¢, p),t) A
—HoldsAt(Allows(claim —p,p),t) A
p€eS))

The next formula deals with the initiation of a legal move as reply to a why
move. The only legal reply to a why move is claiming a set of propositions.
This set of propositions, S, must be support for proposition ¢ challenged by
the other participant. This means that there must be an argument A available
to participant p with conclusion ¢ and premises S in its knowledge base. The
premises S must be available in its own knowledge base or in the commitment
set of the other participant.

LE 3 Initiates(move(id, p, why ¢, tr), Legal(move(id2, p, claim S, id)),t) —

69



HoldsAt(Legal(move(id, p, why ¢, tr)),t)
HoldsAt(Turn(p),t)

conc(A) = ¢

prem(A) =S

HoldsAt(KB(A,p),t)

(x € S A (HoldsAt(KB(x,p),t) V HoldsAt(CS(x, p),t)))

> > > >

After making a move, the legality of the move is terminated. When a claim
move for a set of propositions is made all propositions of this set can be replied
to and will be initiated as legal by formula LE 2. When participant p makes
one of the initiated moves, all legal moves, including the move participant p
made, terminate to hold as legal. In the dialogue it is possible to reply to
each proposition of this set propositions, this is described in Subsection 4.5.2.4.
All legal moves of participant p with target ¢r terminate to hold as legal after
making a move. It is important to notice that this construction does not prevent
the ability of making the same move twice. The protocol as stated in [62] does
not prohibit making the same move twice and therefore this will also be allowed
in this formalisation.

LE 4 Terminates(move(id,p, s, tr), Legal(move(id2,p, s2, tr)),t) —
HoldsAt(Legal(move(id,p, s, tr)),t) A
HoldsAt(Turn(p),t)

4.5.2.4 Claiming a set of propositions

When a participant claims a set of propositions to support another proposition,
the other participant can reply to each proposition of this claim separately. In
the protocol of [62] it is not specified what the order is in which propositions
should be dealt with when there is more than one retained move. There are two
ways of dealing with this situation. The first option is to deal first with the first
retained move and when these propositions are all addressed then start looking
at other retained moves. This is a First-In, First-Out system. The second op-
tion is to treat the retained moves as a stack where one proposition is completely
dealt with first before starting with another. Both options are illustrated in the
following examples where in the first example after the concede move of P1
the dialogue continues with the first retained move and in the second example
continues the dialogue with the most recent retained move.

First option: first in first out.
P1: claim S
P2: why q,qg€ S

P2: claim T
Pl:whyrireT

P1: concede r

70



P2: why v,v €S

Second option: last in first out.
P1: claim S
P2: why q,q €S

P2: claim T
Pl:why r,reT

P1 : concede r
Pl:why s,seT

Here the second option is chosen. This means that when the replying par-
ticipant has chosen a proposition to reply to, the rest of the claim should be
retained to serve as a basis for a next reply to that retained move when the dis-
cussion about the first proposition has ended. The fluent used for this purpose
is Retain. As soon as a set of propositions is claimed, the fluent Retain for this
move is initiated.

SP 1 Initiates(move(id, p, claim S, tr), Retain(move(id, p, claim S, tr)),t) <
HoldsAt(Legal(move(id,p, claim S, tr)),t) A
HoldsAt(Turn(p),t)

Every reply to a claim of a set of propositions initiates the Retain fluent for
that claim move without the proposition it replies to. Formula SP 2 ensures
this for all three reply moves; concede, claim and ask why. First it is checked
whether it is the participant’s turn en whether the move is legal. The second
condition is that there must be a Retain move to which the move replies. The
last condition checks whether the remaining set of propositions S is not empty.

SP 2 Initiates(move(id,p, s, id2), Retain(move(id2, p, claim S, tr2)),t) —

HoldsAt(Legal(move(id, p, s, id2)),t) A
HoldsAt( Turn(p),t) A
HoldsAt(Retain(move(id2, p, claim S2,tr2)),t) A
S0 A
((s = concede p NS = 52/¢)

V

(s = claim ¢ NS = 52/-p)

V

(s =why ¢ NS =52/p))

The original Retain fluent, the one with the proposition it replies to, is
terminated at the same time. The following formula formalises this termination.

71



SP 3 Terminates(move(id,p, s, id2), Retain(move(id2, p, claim S, tr2)),t)  «—
HoldsAt(Legal(move(id, p, s, 1d2)),t) A
HoldsAt( Turn(p),t) A
HoldsAt(Retain(move(id2, p, claim S, tr2)),t)

The fluent Retain results in additional rules for initiating legal moves and
only plays a role when the dialogue threatens to end because there are no more
possible moves. This can happen if a participant concedes a proposition or when
a participant is not able to support a proposition with a claim S move. Formula
SP 4 formalises the first case and formula SP 5 formalises the second case.

In the first case it now becomes possible to proceed the dialogue after a
concede move because there still may be a retained move. This means that
instead of ending the dialogue after a concede move, it is first tried to initiate
a reply from the retained set. Participant p2 stating the concede move can
be the participant who made the retained claim S move, namely p, as well
as the participant who now can reply to this retained claim S move, namely
participant p. Just as when a reply is made to a normal claim move, there are
three possible replies whose legality depends on the attitude of participant p.
There are several conditions to be checked. First the move must be legal and it
must be the turn of participant p2. There must also be a retained claim move
to which the move, that needs to be initiated as legal, replies to. The attitudes
concerning the legality of a move according to the protocol stated in Subsection
4.5.1.2 must hold and the proposition 9 to be stated should be an element of
the set S of the claim move. To ensure that the retained moves are dealt with
as in a stack, there cannot be a retained move with a higher identifier in case of
more than one retained move, meaning that there cannot be a move that was
retained after the retained move that is going to supply the proposition to reply
to.

SP 4

Initiates(move(id, p2, concede @, tr), Legal(move(id2, p, s, id3)),t) —
HoldsAt( Turn(p2),t) A
HoldsAt(Legal(move(id, p2, concede p, tr)),t) A
HoldsAt(Retain(move(id3, p, claim S, tr2)),t)) A
—(HoldsAt(Retain(move(x,p3, s, tr3),t) Az > id3) A
((s = concede ¢ A
HoldsAt(Allows(s, p),t) A
Y€ S)
V
(s = claim A
—HoldsAt(Allows(concede =), p),t) A
HoldsAt(Allows(s, p),t) A
—1p € 5)
V
(s = why ¢ A
—HoldsAt(Allows(concede 1, p),t) A

72



—HoldsAt(Allows(claim—, p), t) A
b€ S))

The other situation in which the fluent Retain should be checked is when the
dialogue threatens to end because a participant is not able to construct support
for a proposition and therefore is not able to make the indicated claim move.
Also in this case it should be checked whether there is a retained claim move.
This should be done in the last possible move which is the move preceding the
impossible claim move. The only move preceding a claim move is a why move.
So after a why move, it should be checked whether the other participant is able
to construct a legal move and whether there is a retained move available. The
conditions are like the conditions of formula SP 4.

SP 5 Initiates(move(id,p2, why ¢, tr), Legal(move(id2, p, concede 1), id3)), 1)
HoldsAt(Retain(move(id3, p, claim S, tr2)),t))
—HoldsAt(Legal(move(id4, p2, claim S2,id)))
HoldsAt( Turn(p2),t)

HoldsAt(Legal(move(id, p2, why o, tr)),t)
HoldsAt(Allows(concede 1), p), t)

Yes

—(HoldsAt(Retain(move(z,p3, s, tr3))) Az > id3)

> > > > > >

4.5.2.5 Attitudes

As noted above, in the PWA System the assertion and acceptance attitudes of
the agent partly determine which speech acts are allowed at which point in the
dialogue, where the agents are assumed to reason with the commitment sets of
both agents and their own private knowledge base. After a claim as well as a
concede move the commitment set of the moving participant is altered according
to the effect rules. This means that after a concede or claim move the set of
speech acts which are allowed according to the attitude of the agent might
change. To ensure the flexibility of the formalisation all fluents Allows(s,p),
indicating which speech acts s where allowed for participant p at the time of the
move, are terminated. After terminating all fluents of the form Allows(s, p) it is
checked which fluents Allows(s, p) start to hold by making use of the attitudes of
the participant. This attitude is activated at the beginning of the dialogue with
an Initially,,( ConcedeAttitude(p, c)) statement where c¢ indicates which attitude
the participant adopts throughout the dialogue.

AT 1 Terminates(move(id,p, s, tr), Allows(p, p),t) —
HoldsAt(Turn(p),t) A
HoldsAt(Legal(move(id, p, s, tr)), t) A
(s = claim ¢ V s = concede )

AT 2
Initiates(move(id, p, s, tr), Allows(claim ¢, p),t) —

73



HoldsAt(Turn(p),t)

HoldsAt(Legal(move(id,p, s, tr)),t)

(s = claim ¥ V s = concede 1)

HoldsAt( ClaimAttitude(p, ¢), t)

((¢c = confident A HoldsAt(KB(A,p),t) A p = conc(A)
S = prem(A) Nz € S A (HoldsAt(KB(z,p),t) V HoldsAt(CS(x,p),t)))

V

(¢ = careful N —(HoldsAt(KB(A,p),t) A p = conc(A)
S = prem(A) ANz € S A (HoldsAt(KB(x,p),t) V HoldsAt(CS(z,p),t))
HoldsAt(Formula(A, id3),t) A\ HoldsAt(KB(B, p),t)
R = prem(B) ANy € RA (HoldsAt(KB(y,p),t) V HoldsAt(CS(y,p),t))
- = conc(B) A HoldsAt(Formula(B, id4),t) A id4 > id3))

V

(¢ = thoughiful A HoldsAt(KB(A,p),t) A p = conc(A)
S = prem(A) Az € S A (HoldsAt(KB(x,p),t) V HoldsAt(CS(z,p),t))
HoldsAt(Acceptable(A, p),t)))

AT 3
Initiates(move(id, p, s, tr), Allows(concede @, p),t) —
HoldsAt(Turn(p),t)
HoldsAt(Legal(move(id,p, s, tr)),t)
(s = claim ¥ V s = concede 1)
HoldsAt(ConcedeAttitude(p, ¢), t)
((¢c = credulous N HoldsAt(KB(A,p),t) A = conc(A)
S = prem(A) Nz € SN (HoldsAt(KB(z,p),t) V HoldsAt(CS(x,p),t)))
V
(¢ = cautious N —~(HoldsAt(KB(A,p),t) A o = conc(A)
S = prem(A) Ax € S A (HoldsAt(KB(x,p),t) V HoldsAt(CS(z,p),t))
HoldsAt(Formula(A, id3),t) A HoldsAt(KB(B, p),t)
R =prem(B) Ay € RA (HoldsAt(KB(y,p),t) V HoldsAt(CS(y,p),t))
- = conc(B) A HoldsAt(Formula(B, id4),t) A id4 > id3))
V
(¢ = skeptical A\ HoldsAt(KB(A,p),t) A ¢ = conc(A)
S = prem(A) ANz € S A (HoldsAt(KB(x,p),t) V HoldsAt(CS(x,p),t))
HoldsAt(Acceptable( A, p),t)))

4.5.2.6 Turntaking

Generally, after every move the turn switches. Of course a move should be
a legal move and it has to be the participant’s turn in order for a move to
change the turn. The termination and initiation of the turn of the participants
is specified in the first two formulas, TU 1 and TU 2. There is one case in which
the turn does not need to switch, namely when a concede move is done. There
is no legal reply to a concede move so in general the dialogue ends but when the
concede move is made as a reply move to one proposition of a claim move with
a set of propositions, the dialogue may then proceed. This is described in the

74

> > > > > > > > > > > > > >

> > > >

>



third and fourth formula, TU 3 and TU 4 of this subsection.

TU 1 Terminates(move(id,p, s, tr), Turn(p), t) —
HoldsAt(Legal(move(id, p, s, tr)), t) A
HoldsAt(Turn(p),t) A
s # concede ¢

TU 2 Initiates(move(id,p, s, tr), Turn(p),t) —
HoldsAt(Legal(move(id, p, s, tr)), t) A
HoldsAt( Turn(p),t) A
s # concede ¢

When the dialogue does not end after a concede move because there are still
propositions left to reply to, it can be the turn of both players. This depends
on the original claim move with a set of propositions. If this move is made by
the proponent then the opponent may reply to the remaining propositions and
it will be the turn of the opponent. This can also be the other way around in
which case it will be the turn of the proponent. This means that after a concede
move the turn may or may not change. The formulas dealing with retaining
the claim move can be found in Subsection 4.5.2.4.

The next formula ensures that after the concede move the participant whose
turn it is starts to hold. Of course the initiating concede move should be legal
and it must be the turn of participant p. The turn only switches if the partici-
pant p who states the concede ¢ move also made the retained claim S move. If
there are more than one retained claim moves the one with the highest identifier
is dealt with first. This can be looked at as being a stack; first in last out.

TU 3 Initiates(move(id,p, concede @, tr), Turn(p), t) —

HoldsAt(Legal(move(id, p, concede o, tr)),t) A
HoldsAt( Turn(p),t) A
HoldsAt(Retain(move(id3, p, claim S, tr2)),t) A

—(HoldsAt(Retain(move(z,p2, s, tr3)),t) Az > id3)

If the turn switches after the concede move it terminates to be the turn of
participant p. The conditions of the following formula are therefore the same
as of the preceding ones.

TU 4 Terminates(move(id, p, concede @, tr), Turn(p),t) —

HoldsAt(Legal(move(id, p, concede ¢, tr)),t) A
HoldsAt( Turn(p),t) A
HoldsAt(Retain(move(id3, p, claim S, tr2)),t)) A

—(HoldsAt(Retain(move(x, p2, s, tr3)),t) Az > id3)

4.5.2.7 Effect of a move on the commitment set

The commitment set of the participants changes after performing a move. When
a move is made by a participant the commitment set is updated according to
the effect rules.

(6]



ER 1 Initiates(move(id,p, s, tr), CS(p, ¢),1t) —
HoldsAt(Legal(move(id, p, s, tr)),t)
HoldsAt(Turn(p),t) A
(s = claim ¢ V s = concede @)

4.5.2.8 Ending the dialogue

The dialogue ends when a participant is not able to make the indicated move.
This can also be found in the Subsection 4.5.1.5. There are two cases in which
a participant is not able to make the indicated move. The first is when a par-
ticipant has to construct an argument to support a proposition to make a claim
move in the fourth step of the protocol described in Subsection 4.5.1.2. When
the participant is unable to find this support for the proposition the participant
has to “concede” the game. It should be checked whether the participant does
not have any retained moves left. If there are retained moves for this participant
then those should be dealt with first. Retained moves for the other participant
are not relevant in this case because this will not help the case of the participant
who has to concede to the game. This is represented in the following formula.

EN1
Initiates(move(id, p, why ¢, tr), ConcedeGame(p), t) —
HoldsAt(Legal(move(id, p, why ¢, tr)),t) A
HoldsAt( Turn(p)) A
—(HoldsAt(KB(since(p, S),p), t)A
(x € S A\ (HoldsAt(KB(z,p),t) V HoldsAt(CS(x,p),t)))) A

—HoldsAt(Retain(move(id2,p, s, tr2)),t)

The other way to end a dialogue is after a concede move when there are no
more legal moves and there is no move retained. In this case the dialogue will
just not proceed because there are no more legal moves. The dialogue will not
be actively ended by the formalisation.

4.6 Argument-based negotiation

The need for negotiation protocols with embedded argumentation was identi-
fied in several preceding ASPIC deliverables. To summarise, the idea is that
if negotiating agents exchange reasons for their proposals and rejections, the
negotiation process may be more efficient and the negotiation outcome may be
of higher quality. This section especially focuses on reasons given for rejections
of proposals. If an agent explains why he rejects a proposal, the other agent
may be able to infer which of her future proposals will be rejected and thus,
if she is rational, she will not waste effort making such proposals. Thus effi-
ciency is promoted. In such exchanges, reasons are not only exchanged, they
can also become the subject of debate. Suppose a car seller offers a Peugeot to
the customer but the customer rejects the offer on the grounds that French cars
are not safe. The car seller might then try to persuade the customer that he

76



is mistaken about the safety of French cars. If she succeeds in persuading the
customer that he was wrong, she can still offer her Peugeot. Thus the quality
of the negotiation is promoted, since the buyer has revised his preferences to
bring them in agreement with reality.

This example illustrates that a negotiation dialogue (where the aim is to
reach a deal) may contain an embedded persuasion dialogue (where the aim is
to resolve a conflict of opinion). The aim of this section is to formulate a protocol
for negotiation with embedded persuasion dialogues about the reasons for re-
jecting a proposal. The key idea is that the propositional commitments incurred
by the agents in the embedded persuasion dialogue constrain their behaviour in
the surrounding negotiation dialogue. The question of interactions of commit-
ments between agents engaged in different connected dialogues is considered in
greater detail in Section 4.8.

Our proposal here will be stated in a dialogue game form. It will combine
a negotiation protocol and language of Walton and Krabbe [83] with the dia-
logue system for relevant dialogues of Section 4.3.4 above, with the additional
requirement of Section 4.3.6 that moves leave the players’ commitments consis-
tent. The combined protocol will satisfy the general format of Section 4.3, so
that formalisation with the Event Calculus presented in Section 4.4 above and
the implementation presented in Section 4.7 below are both also possible for
this combined protocol.

4.6.1 A language and protocol for multi-attribute negoti-
ation

The negotiation system we will use is that of Wooldridge and Parsons [83]. The
negotiation topic language L} of this system assumes that in a negotiation
agents try to reach agreement over the values of a finite set V = {v1,..., v}
of negotiation issues. Each issue v can be assigned at most one value from a
range C(v) of values. An outcome of a negotiation is an assignment of values to
a subset of V. A proposal is expressed in a subset of the language of first-order
logic as a conjunction of expressions of the form vRc, where v € V and ¢ € C(v)
or ¢ =7, (where 7 technically is a free variable, capturing that the issue has not
been assigned a value) and R denotes one of the relations =, <, >, < or >.

The negotiation communication language L} can be used to talk about
proposals. The left column of table 4.4 shows the speech acts that agents can
perform and the right column their possible replies. The formulas ¢ and ¢’
are elements of LY. Request(p) is a request for an offer. Here ¢ typically is
wholly or partially uninstantiated (i.e., it may contains occurrences of 7): the
speech act request(price =7 A warranty = 12) can be read as “What is the
price if I want a 12 months warranty?”. The speech act offer(p) makes a fully
instantiated proposal ¢, and with accept(p) an agent accepts an offer ¢ made
by another agent. With reject(¢) such an offer is rejected. With withdraw an
agent withdraws from the negotiation.

We next outline the negotiation protocol of [83] for this language, with
notation slightly adapted to our purposes. A negotiation takes place between

7



two agents, one of whom starts with either an offer or a request. The agents
then take turns after each utterance, selecting their replies from Table 4.4. As
the table indicates, a negotiation terminates when an agent accepts an offer or
withdraws from the negotiation. Finally, moves may not be repeated by the
same player.

Table 4.4: Speech acts and replies in L

Acts Replies:

request(p)  offer(o’)

offer(yp) offer(¢’) or accept(p) or
reject(p) or withdraw

reject(p)  offer(y’) or withdraw

accept(p)  end of negotiation

withdraw  end of negotiation

(p#¢')

To ensure that the offers exchanged during a negotiation and its outcome
are related to an initial request, we add the following rule to the protocol of
[83]:

o If request(yp) is the initial request of a dialogue then for any move offer(1))
in the dialogue:

— 1 is logically consistent with ¢; and

— 1 contains at least the same issues as ¢.

Since issues have at most one value, this rule implies that an instantiated part
of a request cannot be changed by an offer (but the offer may contain more
issues than the request). Therefore:

Proposition 13 If a negotiation that starts with a request terminates with ac-
ceptance of an offer, that offer is consistent with and fully instantiates the re-
quest.

We illustrate the system with an example in which two agents, Paul (P)
and Olga (O), negotiate over the sale of a car. The dialogue starts when Paul
requests to buy a car, and shows that he is interested in the brand and the price.

Py: request(brand = 7 A price = 7)

Os: offer(brand = peugeot A price = 10000)

Ps: reject (brand = peugeot A price = 10000)

(Olga has offered a Peugeot for 10000, but Paul has rejected the offer. Olga
makes him another offer.)

Oy: offer(brand = renault N price = 8000 A stereo= yes)

Ps: reject(brand = renault A price = 8000 A stereo= yes)

78



Og: offer(brand = audi N price = 10000)

Pr: accept(brand = audi A price = 10000)

(Olga offers a Renault with stereo for 8000. Paul again rejects after which Olga
offers a non-French car for 10000. Paul accepts and the dialogue terminates.
Move Oy illustrates that an offer may introduce additional issues, for instance,
to make an offer more attractive or to make a trade-off possible.)

4.6.2 The combination

We now combine the negotiation and persuasion systems in a way that allows
persuasion dialogues to be embedded in negotiation dialogues. In a negotia-
tion dialogue it is the reject move that shows that there is a conflict between
the preferences of an agent and the offer that it receives. By starting a per-
suasion dialogue, the offerer can question the reasons that the offeree has for
rejecting. Statements made during persuasion invoke commitments that reflect
the preferences of the agents. These commitments are used to restrict further
negotiations.

In formally realising the combination of the two dialogue systems, the key
idea is to reformulate the negotiation system in the format of the persuasion
system so that the mechanisms of relevance and dialogical status can also be
applied to the negotiation part of a dialogue. These mechanisms will then be
used to ensure that as long as a persuasion move is legal, no negotiation move
can be made: thus the protocol will capture the idea of embedding persuasion in
negotiation. As for notation, the above notations for the persuasion topic and
communication languages and protocol are now assumed to have a superscript
p.

First the combined communication language L. is defined in Table 4.5. As
can be seen, the negotiation language is reformulated in the format of the frame-
work of Section 4.3 by dividing the “Replies” of Table 4.4 into surrendering
replies (accept(p)) and attacking replies (all other replies). Next a new attack-
ing reply is added, viz. why-reject(p) as a reply to reject(¢). The only possible
reply to this new locution other than a withdrawal is with a claim move from
L.P of which the content negates the conjunction of one or more elements of
the rejected offer. Thus the player who rejected the offer can indicate which
elements of the offer made him reject it. The use of this reply induces a shift
from a negotiation to a persuasion subdialogue.

Next, in order to specify the combined protocol, the notion of negotiation
moves must be adapted to fit the format of Definition 53 (which we leave im-
plicit). The combined protocol is then defined as follows.

Definition 69 (The protocol Pr for L..) For all dialogues d and moves m it
holds that m € Pr(d) if and only if m satisfies all of the following rules.

e Ry: m satisfies R1 — Ry of protocols for relevant dialogues with consistent
commitments, but where in Ry, LY s replaced by L. and Rs now says that
if d =, then s(m) is of the form request(y);

79



Table 4.5: Speech acts and replies in L..

Acts | Attacks | Surrenders
negotiation
request () offer(¢’)
withdraw
Ter?) Fer @) (7 £ 7) )
reject ()
withdraw
reject(y) offer(¢") (¢ # ¢')
why-reject ()
withdraw
accept(p)
why-reject (o1 A ... Agy) || claim(=(pi A...Ap;)) (1 <i<j<n)
withdraw
withdraw
persuasion
claim(y) why(p) concede(p)
why(p) arque(A) (conc(A) = p) retract(y)
argue(A) why(p) (¢ € prem(A)) concede(yp)
argue(B) (B defeats A) (p € prem(A)
or
© = conc(A))
concede(p)
retract(y)

o Ry: If s(m) = offer(¢) and s(m1) = request(y’) then {p, ¢’} is consistent
and o contains at least the same issues as @';

o Rs: If s(m) = offer(p) then of no m’ € d, s(m') = offer(p);

o Ry: If s(m) = accept(p) then ¢ contains no variables;

e Ry: If m is a negotiation locution then m replies to the most recent target
to which a reply is legal;

e Rg: If m is a negotiation locution then there is no move m' € Pr(d) such
that s(m’) is a persuasion locution;

o Ry7: If s(m) = offer(p) then Cs(d) U {p} and Cs(d) U{p} are consistent.

Rule R; generalises the general structure of the persuasion protocol to the com-
bined protocol and says that each combined dialogue starts with a request for
an offer. Rules Ry — R4 formalise the negotiation protocol rules of [83] that are
not implied by R; (see also below). Rule R5 prevents unnecessary negotiation

80




backtracking moves. Finally, rules Rg and Ry perform a key role in the em-
bedding of persuasion in negotiation. Rg enforces that the relation between the
negotiation and persuasion parts of dialogues is one of embedding of the latter
in the former (cf. [54]): as long as a persuasion move is legal, no negotiation
move is legal. And R7; formalises the intuition that offers need to respect the
reasons for rejection given by the other party when these reasons have been
successfully defended in an embedded persuasion dialogue.

Rule Ry is justified by the following property of the persuasion protocol of
Section 4.3.4: under some plausible assumptions on the contents of arguments a
retract(t) move in reply to a challenge of the initial claim is always legal. Then
by Rg of the persuasion protocol, which requires retractions to be successful,
a player who has defended a rejection with a claim(t) move in a terminated
persuasion dialogue is committed to ¢ only if he has won the persuasion dialogue
about t.

The turntaking rule of the combined system is the same as for persuasion.
Given L., this rule implies that just as in Section 4.6.1 the turn shifts after each
negotiation move except after an accept move, which terminates a dialogue.

Finally, the new commitment rules need to be defined. In fact, they are
the same as for persuasion moves in Section 4.3.3. The effects that negotiation
moves have on the players’ commitments are irrelevant as long as a dialogue has
not terminated, since an offer commits the offeree to an action only after the
offer has been accepted: so checking compliance with negotiation commitments
lies outside the negotiation dialogue in which the commitment was incurred.

Note that the new system completely preserves the original persuasion sys-
tem and as much as possible preserves the original negotiation system. Above
we already noted that turntaking in the negotiation part is still the same. Fur-
thermore, backtracking from negotiation moves (which was impossible in the
original system) is legal in two cases only: if the one who challenges a rejection
loses the resulting persuasion dialogue, s/he must move an alternative reply to
the rejection, and if the other party loses such a persuasion dialogue, s/he must
move a counteroffer or withdrawal in reply to the rejected offer.

4.6.3 Properties of the combined protocol

The main property of the new protocol is about the maximum number of nego-
tiation moves needed to reach a certain agreement.

Proposition 14 For any proposal ¢ the mazimum length of a negotiation di-
alogue to end with acceptance of ¢ is never higher and sometimes lower in the
system of Section 4.6.2 than in the system of Section 4.6.1.

proof: This follows from the fact that the only effect of a terminated persua-
sion dialogue on an embedding negotiation dialogue is that it may make offers
illegal since they do not respect the commitments of the other agent. Thus the
number of legal offers in a negotiation according to Section 4.6.2 is never higher
and sometimes lower than in a negotiation according to Section 4.6.1.

81



Since our persuasion protocol is not guaranteed to terminate, the same holds for
our combined protocol. However, on the assumption that a persuasion dialogue
always terminates, Proposition 14 implies that the ‘success’ result on the nego-
tiation protocol proven by [83] still holds for our combined protocol: if the set
of possible outcomes is finite then any negotiation is guaranteed to terminate
with a withdraw or an accept.

4.6.4 An example

We next illustrate our new protocol by extending our example from Section 4.6.1
with an embedded persuasion dialogue. For simplicity we paraphrase the con-
tents of the arguments. To illustrate the use of defeasible inference rules,
some arguments are assumed to be constructed with presumptive argumentation
schemes from [80]. In [18] it is discussed how such schemes can be formalised
as defeasible inference rules and their critical questions as pointers to under-
cutters. Elementary inferences within arguments are paraphrased as conclusion
since premises. All moves in the dialogue except proponent’s last four moves
reply to their immediate predecessor.

Py: request(brand =7 A price = 7)

Os: offer(brand = peugeot A price = 10000)

Ps: reject (brand = peugeot A price = 10000)

Olga now exploits the additional features of the protocol by asking Paul why he
rejected the offer.

Oy: why-reject(brand = peugeot A price = 10000)

Paul now meets Olga’s challenge of his rejection so that the negotiation shifts
into a persuasion. All persuasion moves below until P4 reply to their immedi-
ate predecessor.

Ps: claim(— brand = peugeot)

Paul says that he rejected the offer since he does not want a Peugeot. He is now
committed to the content of his claim.

Og: why (— brand = peugeot)

Pr: argue (= brand = peugeot since brand = peugeot — brand = french and —
brand = french)

It turns out that Paul rejected the offer since a Peugeot is a French car and
he does not want French cars. If Olga now simply concedes Paul’s claim as an
alternative reply to P7, the persuasion dialogue terminates and the negotiation
is resumed. Then Olga cannot reply to P5; in the same way as in section 4.6.1
by offering another french car. Olga could offer a non-French car (as in Og in
section 4.6.1) but she chooses to try to persuade Paul that he is wrong in not
wanting a French car and she therefore challenges Paul’s second premise.

Og: why (= brand = french)

Py: argue (- brand = french since having french cars is bad; this is so since
french cares are unsafe and having an unsafe care usually is bad.)

Paul defends his second premise with an argument from (bad) consequences.
O10: why (french cars are unsafe)

82



Py1: arque (french cars are unsafe since car magazine mycar says so and mycar
are experts about cars)

This is a defeasible argument based on the argumentation scheme from expert
opinion: “what experts say is normally true”.

O12: argue (magazine mycar is biased since magazine mycar is german and
german car magazines are usually biased against french cars)

Using a default rule, Olga constructs an undercutter of the argument from ex-
pert opinion, namely that this expert is biased.

Py3: concede (magazine mycar is german)

Py4: concede (german car magazines are usually biased against french cars)
Even though Paul has conceded the premises of Olga’s undercutter, he can still
move a counterargument, since the argument is defeasible because it uses a de-
fault rule. Paul chooses to rebut the undercutter, using another default rule.
Py5: argue (— magazine mycar is biased since magazine mycar has a very high
reputation and car magazines with high reputation usually are not biased)
Note that P4 is a second and P;5 a third reply to Oqs.

O16: why (magazine mycar has a very high reputation)

Let us assume that Paul now realises that he has no plausible way to defend
his premise that the car magazine has a high reputation. At this point, all of
Olga’s persuasion moves are relevant targets for Paul. He could, for instance,
move another rebuttal of Olga’s undercutter, or another argument why French
cars are not safe or why he does not want french cars. But suppose that Paul
sees no plausible way of doing so and instead retracts that he does not want
French cars by moving an alternative reply to Og and then retracting his main
claim as a second reply to Os.

Py7: retract (— brand = french)

Pyg: retract (— brand = peugeot)

Now Paul has no legal persuasion moves any more since all targets have be-
come irrelevant: since Paul has surrendered to Og, his main claim Ps cannot be
changed from out to in. So the persuasion dialogue terminates and the negoti-
ation resumes with Olga to move after P,. Since with P;g Paul has ended his
commitment to his main claim, Olga is now allowed to offer another French car,
perhaps even a Peugeot for a lower price. The negotiation could now continue
as in Section 4.6.1 with move Oy.

It is instructive to construct the dialectical graph of arguments and counter-
arguments exchanged by Paul and Olga during the persuasion dialogue (p ~ ¢
reads as “if p then usually ¢”).

The graph contains a simple argument game according to the proof theory
of the underlying logic. Since on the basis of the information exchanged during
the persuasion dialogue no other counterarguments to one of these three argu-
ments can be constructed, the graph is actually a proof that, on the basis of
this information, the proposition = peugeot is justified. However, the last argu-
ment in the graph has one challenged premise, viz. highrep, so this argument
is not defended (indicated by the dotted box). The defended part of the graph
is instead a proof that — peugeot is not justified on the basis of all defended
information.

83



mycar : " frenchunsafe”  expert
frenchunsafe ~» frenchbad frenchunsafe
frenchbad
peugeot— french —french
—peugeot

german german ~ biased

biased

" highrep highrep ~» —biased :

—biased

Figure 4.5: The dialectical graph

4.6.5 Adding dialogue policies for the e-Consent Scenario

We next outline a way in which dialogical agents could be designed that interact
according to the combined negotiation-persuasion protocol, in the context of the
e-Consent Scenario of Section 6 of ASPIC Deliverable D2.3 [10]. In this scenario,
a requesting agent requests information about a patient and a responding agent
must decide about this request. Here, we model this as a negotiation dialogue,
since a request here for information is a request to another agent to perform
an action (i.e., retrieve some data and transfer it) which will likely involve
resource-use. This is unlike a dialogue where some the requesting agent simply
seeks to determine whether or not a proposition is true. The ideas in this
subsection were developed in collaboration with and are also reported in [29]
(where these ideas are applied to information exchange between police forces in
crime investigations).

Our idea is to specify policies for what an agent will choose to do at various
points in a dialogue. Two main kinds of dialogue policies need to be specified,
viz. for negotiation and for persuasion. One of the first proposals for formal
dialogue policies for argumentation dialogues was that of Parsons, Wooldridge
and Amgoud in [61], who called them “agent attitudes”. (See also Section 4.5.1.2
above.)® That paper only defined policies for persuasion; because here we are
particularly interested in policies for negotiation, we largely adopt their persua-
sion policies. An important difference with [61] is that when a policy requires
an agent to construct arguments, in our case the agent only reasons with his
initial knowledge base plus the propositions that he has explicitly conceded in
the persuasion dialogue, while in [61] the agent must also reason with everything
the other agent has said, regardless of whether he has conceded to this or not.

3 Another early proposal was contained in [74].

84



We regard the latter assumption as less realistic than the one we have adopted.

Our negotiation policies consider two issues: the normative issue of whether
accepting an offer is obligatory, permitted or forbidden, and the teleological issue
of whether accepting an offer is in the agent’s interest. Accordingly, we assume
that the agents’ internal knowledge bases contain relevant domain knowledge
about their obligations and permissions and about the likely consequences of
their communicative acts for the achievement of their internal goals and desires.
We also assume that they have the appropriate mechanisms to reason about
these issues. Reasoning about desires and goals can, for instance, be modelled
as proposed in Chapter 3 above.

Of course the dialogue policies can be different for the requesting and the
responding agent. Also, different responding agents may have different policies.
One agent, for example, might easily be persuaded to give information and thus
agree with every request he receives, while another agent may guard his secrets
more closely, adding extra conditions to the information exchange to make sure
the information does not fall into the wrong hands. For simplicity we have
chosen to specify just one set of policies which we think best suits our domain
(although we will comment on other design choices when relevant).

4.6.5.1 Notation

The following notation will be used in the policies. Recall first that L} is
the negotiation topic language and L? is the persuasion topic language. The
content of an offer is a conjunction of literals from L}. For any formula p of L}
and agent a the notation p® denotes the conjunction of all conjuncts in p that
describe actions performed by a. Also, K Bg4(a) C LY denotes the set of internal
beliefs of agent a at dialogue stage d. Note that these beliefs may change during
persuasion if the agent concedes or retracts propositions and then brings his
internal beliefs in agreement with his (public) commitments. Finally, we assume
that each offer content p is divided into two conjunctive parts g A ¢, where ¢
are the essentials of an offer, which the offeror does not want to be changed
in counteroffers, and where ¢ are the conditions of the offer, which the offeror
does not mind to be changed in counteroffers. For instance, an offer “send me
a file containing all you know about patient Jones” can be decomposed into an
essential element “inform me about all you know about patient Jones” and a
condition “send me the information in a file”. The offeror thus indicates that he
does not want to receive counteroffers “I will tell you how to find out everything
about patient Jones” but that he does not mind receiving a counteroffer “I will
tell you everything I know about patient Jones over the phone but I will not
send you a file”.

We now specify the dialogue policies, starting with the negotiation policies.

4.6.5.2 Negotiation policies

Responding to an offer We first specify the policy agent a should apply in
responding to an offer in a dialogue. Note that the offer can be the initial one

85



(i.e., a request) or a counteroffer.
When agent a receives an offer p = g A ¢, where ¢ are the essentials of the
offer and ¢ the conditions, he should perform the following actions:

e Determine whether K By(a) supports a (justified/defensible) argument for
the conclusion that p® is obligatory. If there is such an argument, then
accept the offer. Otherwise,

e Determine whether K By(a) supports a (justified/defensible) argument for
the conclusion that p® is forbidden. If there is such an argument, then
reject the offer. Otherwise,

e Determine whether K B,(a) supports a (justified/defensible) argument for
the conclusion that p® violates a’s interests. If there no such argument,
then accept the offer. Otherwise:

— Find a subset-minimal set ¢/ C L} such that K By(a) U ¢’ supports a
(justified /defensible) argument for the conclusion that p does not vio-
late a’s interests and K Bg(a) does not support a (justified /defensible)
argument for the conclusion that g A ¢ is forbidden.

— If there is one such set ¢’, then make a counteroffer g A ¢’.

— If there are more than one such sets, make a counteroffer ¢ A ¢’ where
¢’ is a subset-minimal set that has a maximal number of elements in
common with c.

— Otherwise reject the offer p.

This negotiation policy contains a number of design choices. It is especially
suitable for those multi-agent systems where the overall goal of the system
is to exchange as much information as possible while respecting the relevant
regulations. Of course, in other domains a choice for other types of agents can
be made. For example, the agent could also reject the request for information if
there is no justified argument which says he is obliged to give the information.
Furthermore, in our design of the policy we have not yet specified whether the
agent needs justified or defensible arguments for his conclusions. This can have
a significant impact on the behaviour of the agent. For example, an agent
who accepts defensible arguments that say that it is not forbidden to give a
certain piece of information will be more readily persuaded than an agent who
only accepts justified arguments for the conclusion that giving the information
is not forbidden. So the first agent, who only needs a defensible argument,
will not be as protective of his information as the second agent, who needs a
justified argument. Different policies are also possible with respect to making a
counteroffer. We have described a policy where having as few extra conditions
as possible is more important than making a counteroffer which includes the
conditions offered by the opponent. In our policy it is thus possible to delete
some or all conditions of the opponent’s offer. Another policy would be one
where an agent can only add conditions to the original offer. Another choice
option is in how an agent should internally reason about whether an offer is in

86



the agent’s interests. Is the reasoning only about his own actions or also about
the actions of the other agent? The different design options mentioned here
may be mostly empirical questions, to be answered by domain analysis.

Responding to a rejection The next policy describes responding to a re-
jection.

e First respond with a why-reject move. If the resulting persuasion subdia-
logue is won, then it is the other agent’s turn. Otherwise,

e If the reject move responded to the initial offer then reply with a withdraw,
while

e If the reject move responded to a counteroffer, backtrack to the target of
the reject move.

— If an alternative counteroffer exists that satisfies the policy for re-
sponding to an offer then make it.

— Otherwise reply with a withdraw.

4.6.5.3 Persuasion policies

We now turn to a less formal specification of persuasion policies, which deter-
mine how an agent should respond to argue and why moves. Other persuasion
policies can be developed similarly. We first specify how an agent can respond
to an argument.

Responding to arguments Can the agent construct a (justified/defensible)
counterargument?

e If the agent can construct such an argument, it should be moved in the
dialogue.

e If the agent cannot construct such an argument and there is a premise p of
the opponent’s argument for which the agent has no (justified/defensible)
argument, then the agent should ask a why p question.

e If the agent cannot construct such an argument and for all of the premises
of the opponent’s argument has a justified argument then concede to the
conclusion of the opponent’s argument.

Responding to why moves Suppose that the requesting agent asks a why p
question in response to a claim or argue move by the responding agent. Can
the responding agent construct a (justified/defensible) argument for p?

e If the agent can construct such an argument, it should be moved in the
dialogue.

87



e If the agent cannot construct such an argument, he should retract his
claim p or the conclusion of the argument of which p is a premise.

There are several points to note regarding these persuasion policies. Firstly,
as in the negotiation policies, we have not specified what kind of arguments
(justified or defensible) an agent needs for his decisions. Secondly, the agent is
cooperative in that he only asks why p questions if he does not have an argument
for p. Clearly, several other policies are possible. One option we want to explore
in future research is to make policies partly domain-specific. For example, the
second part of the policy for responding to arguments could be refined such that
premises are never challenged when they are about subject X and/or when they
are claimed by person Y, who is considered to be a reliable source of information
concerning X.

4.7 Implementation

In this section, two software implementations of dialogue protocols are reported.
The first is an implementation in Prolog of the formalization using the Event
Calculus of the Persuasion Protocol presented above in Sections 4.3 and 4.4.
This first implementation is included to show the support which the Event Cal-
culus formalization provides for implementation, a feature which strengthens
the case for such a formalization. The second is an implementation using Tu-
ple Spaces of the protocol for Information-Seeking-dialogues-with-Permissions
presented in Chapter 6 of ASPIC Deliverable D2.3 [10]. This second implemen-
tation is included in addition because the Tuple Space semantics of Deliverable
D2.3 has guided implementation of the prototype dialogue manager of ASPIC
Workpackage 4, and may also guide development of the large-scale Demonstrator
of ASPIC Workpackage 5. The Information-Seeking-with-Permissions dialogue
protocol was applied to the e-Consent Scenario in Deliverable D2.3.

4.7.1 Persuasion protocol implementation

In this Section, we discuss an implementation in Prolog of the Persuasion dia-
logue protocol of Section 4.3.3. The source code for the full implementation is
available on the web at www.ewi.utwente.nl/~bodenstaffl.

4.7.1.1 The basics

A Prolog program consists of a database of clauses that specify which facts can
be computed and not how they are computed. Variables in Prolog are written
as capitals and anonymous variables are written as underscores (-). Constants
are denoted by lowercase letters or numbers and every clause ends with a period.
These clauses can be facts as well as rules. To illustrate the basics of Prolog a
simple example with two facts and one rule is used.

88



holds_at(turn(p),2).
holds_at(legal(move(Id,P,S,Tr)),2).

The first fact states that holds_at(turn(p),2) is true and thus that at
time point 2 it is the turn of participant p. The second fact states that
holds_at(legal(move(Id,P,S,Tr)),2) is true and therefore that at time point
2 all moves are legal. A typical rule is of the form A : — B, C. This rule means

that if B and C are both true then A is true. Logical “or” is written as *;
Next, the rule of this example is stated.

initiates(X, turn(P),T): —
holds_at(legal(X),T),
holds_at(turn(Q),T),
P \ —

)

holds_at(turn(o),T).

This rule states that if the predicates holds_at(legal(move(X)),T), holds_at(turn(Q),T)
and P and Q are not equal are all true or if holds_at(turn(o),T) is true then
initiates(move(X), turn(P),T) is also true. After consulting a database con-
sisting of these clauses in a Prolog interpreter, queries can be entered in the in-
terpreter about the database. These queries are to be entered after the prompt
(?—) as in the next example.

? — initiates(move(l,p,claimq,0), turn(p),2).

Prolog will try to match facts in its database with the query. Here there is
no match because the only two facts in the database are initially P(turn(p))
and holds_at(legal(move(Iqd,P,S, Tr)),2). When this attempt fails Prolog will
try to find rules where the conclusion matches with the query. This will succeed
because the only rule in this example has a matching conclusion. Prolog will
assign values to the variables in the rule. Prolog will bind move(1,p, claim g, 0)
to X, bind p to P and bind 2 to T. Next Prolog will try to satisfy all variables
in the premises. In this case Prolog will answer “no” to the query because
p will bind to Q and this results in the same constant assignment to P and Q
therefore the third condition will fail; P \ == Q is false. Also the last condition,
holds_at(turn(o),T), is false because there is no matching fact.

Besides queries where Prolog is only able to answer “yes” or “no” it is also
possible to leave anonymous variables in the query. Now Prolog will return all
possible values of this variable if there are any. Another example of a query is
as follows.

? — initiates(move(1,R,claimq,0), turn(p),2).

Now Prolog will answer: “R = o” because with the assignment of o to R the
rule is satisfied. After this answer the user of the interpreter enters a semicolon

89



after which Prolog will give another assignment if there is one. If not Prolog will
return “no”. This feature will prove to be very useful for the implementation of
the persuasion game. Although this is a very concise introduction to Prolog it
is sufficient to understand the implementation described in this thesis.

4.7.1.2 Implementation

As for the implementation, here only the important implementation choices, the
specific program characteristics and an example run are surveyed.

Axioms

Largely, the implementation of the axioms of the Event Calculus resembles
the format of the above formalisation of the Event Calculus, except for the
treatemnt of negation. Since Prolog, interprets negation as ‘negation as failure’
while our EC formalisation contains classical negations, some care is needed in
the transformation to Prolog clauses. The negations in the conditions of the
general EC axioms can safely be translated as negation-as-failure to capture
the law of inertia. Furthermore, the negations in the conditions of our specific
axioms can be translated as negation-as-failure since in the current application
the closed-world assumption can safely be made: a dialogue state can be com-
pletely specified, so what is not specified can be assumed false. However, for
classical negations in the consequents of axioms a special predicate not_holds_at
has to be introduced and the program has to be designed such that for no fluent
both holds_at(F,T) and not holds_at(F, T) can be derived (in our program this
was straightforward). The implementation of, for example, Axiom 4 now is as
follows.

% Axiom 4

not_holds_at(F, T) :-
initially_n(F),
\+ declipped(0, F, T).

Throughout the entire implementation this new predicate is used instead of
the negation of holds_at. Another difference is that Axiom 7 has not been im-
plemented. Axiom 7 ensures that an event takes a positive amount of time. In
this thesis events have no duration but happen at one time point, recall that the
predicate happens is binary in this thesis and not ternary, and therefore it is not
necessary to specify that the duration of an event has to take a positive amount
of time. The last difference is that in the implementation a ternary predicate
happens3 is used although the participants are able to enter the binary predi-
cate happens to add events to the database. As soon as a binary happens clause
is added to the database the program deals with this according to the following
rule where the binary predicate can be read as ternary by duplicating the time
point.

90



happens3(A, T1, T1) :- happens(A, T1).

Rules

Moreover, the implementation of the rules resembles the formalisation in the
Event Calculus for the most part. Some rules may seem quite different at first
glance because Prolog requires the conditions to be in Horn clause format and
therefore many of the rules had to be rewritten. Rule I7 is a good example of
this rewriting. First the rule as stated in the Event Calculus and after that the
rule as implemented in Prolog is denoted.

17

Initiates(move(id, pl, s, tr), Turn(p2),t) —
HoldsAt(Legal(move(id,pl, s, tr)),t) A
(id=1Apl=PAtr=0At=1Ap2=0)
V
(id=2Apl=0Atr=1ANt=2Ap2=P))

% I7
initiates(move(Id, P1, S, Tr), turn(P2), T) :-
Id =1,
P1 = p,
Tr = 0,
P2 = o,

holds_at(legal(move(Id, P1, S, Tr)), T)

)

Id = 2,
P1 = o,
Tr = 1,
P2 = p,

holds_at(legal(move(Id, P1, S, Tr)), T).

In addition to rewriting the rules in Horn clauses, the evaluation of argu-
ments is also different from the way they are formalised in the Event Calcu-
lus. An argument in the implementation is represented as since(Phi,Psi) and
should be read as “Phi since Psi”. The support for proposition Phi, namely
Psi, should be entered as a list. In Prolog a list is of the form: [p,q,r]. This
list structure is necessary for the implementation. In several rules one of the
conditions to be checked is whether a proposition is an element of the premises
of an argument. Rule E3 is a good example of the use of this list structure. The
first part of the “or” clause is deals with the conclusion of the argument. The
second part of the “or” clause deals with the premises of the argument. Now
the predicate member (X, XS) makes sure that the only propositions added to the
commitment set are elements of the premises of the argument.

% E3

91



initiates(move(Id, P, argue(since(Phi,Psi)), Tr), cs(P,Chi), T) :-
Phi = Chi,
holds_at(legal (move(Id, P, argue(since(Phi,Psi)), Tr)), T),
holds_at (turn(P), T)
member_(Chi,Psi),
holds_at(legal (move(Id, P, argue(since(Phi,Psi)), Tr)), T),
holds_at (turn(P), T).

4.7.1.3 Running the program

The implementation has been tested extensively. In this subsection the method
of testing is explained. It should first be noted that in the test runs no defeat
relations where used. This relation should be used as a condition in L3 where
the legality of an argue move after another argue move depends on the defeat
relations between those two arguments. It is possible to use the implementation
including the defeat conditions. The user should then add Initially, clauses
for those defeat relations at the beginning of the dialogue. It is also important
to realise that it is assumed that the available arguments and propositions of
the knowledge base of the participants are part of the internal representation
and thus are not denoted in the implementation.

After loading the program in a Prolog interpreter the user is able to state
queries about fluents at certain time points. The following queries are useful for
planning the first move and should be entered one by one.

holds_at(turn(P), 0). holds_at(cs(P,A),0).
holds_at(legal (move(1,P,S,0)), 0).

Prolog will show whose turn it is at time point 0, what the commitments
of the participants are at time point 0 and which moves are legal at time point
0. When the dialogue proceeds these queries can be used with different time
points to plan the following move and to check whether previous moves had the
expected effect on, for example, the commitment sets. These queries can also
be entered with constants and in negated form. Consider the following example
queries.

not_holds_at(turn(o), 0). holds_at(cs(p,q),3).
not_holds_at(legal(move(3,0,claim q,2)), 4).

When the user has decided on the move he wants to make he enters this move
with an assert command. Assert is a built-in predicate that adds its argument
as a fact to the program that is loaded at that time. This means that by entering
the next clause in the Prolog window that happens(move(1,p,claim(a),0),1)
becomes a fact in the program. Asserting a clause always succeeds in Prolog.

assert (happens (move(l,p,claim(a),0),1)).

92



By asserting several happens clauses a dialogue is simulated. In the next
subsection a test run is presented.

Example run

We now give an example run of the program. A user wants to simulate the fol-
lowing dialogue in the protocol for liberal dialogues to find out whether this is a
legal dialogue according to the protocol. The knowledge base of the proponent
is {2;¢;2,q — a} and the one of the opponent is {d;d — c}.

Time point | Move | CSp | CSo
Ty move(1, P, claim a,0) | {a}
T move (2,0, why a, 1) {a}
T5 move(3, P, argue A,2) | {a,z,q}
conc(A) = a,
prem(A) = z,q
Ty move(4, 0, argue B,3) | {a,z,q} | {c,d}
conc(B) = ¢,
prem(B) =d
Ts move(5, P, why d,4) {a,z,q} | {c,d}
Ts move(6, O, retract d,5) | {a,z,q} | {c,d}

After loading the program the user enters the fist move by the proponent.
This move is a claim a move and is entered by the assert command.
?- assert (happens (move(1l,p,claim(a),0),1)).
Yes 7-

The user now tries to plan his next move and enters the following query to
find out which participant is allowed to utter which locution.

?- holds_at(legal (move(2,P,S,1)), 2). P = 0 S = why(a) ;
P = 0 S = concede(a) ;
No 7-

The user finds out that only the opponent is allowed to make a move and
that its only legal locutions are why a and concede a. The user of the system
now proceeds his original plan and asserts the following move. After that also
the remaining part of the dialogue is given as it is simulated in Prolog. After
the planned actions the user wishes to know which legal moves are left.

?7- holds_at(legal (move(3,P,A,2)), 3).

93



P=pA

argue(since(a, _G511)) ;

P

p A = retract_(a) ;
No ?- assert(happens(move(3,p,argue(since(a, [z,q9]1)),2),3)).

Yes 7- holds_at(legal(move(4,P,A,3)), 4).

P = o A = why(z) ;
P = o A = why(q) ;
P = 0o A = argue(_G481) ;

No ?- assert (happens (move(4,0,argue(since(c, [d])),3),4)).
Yes 7- holds_at(legal(move(5,P,S,4)), 5).

P

p S = concede(d) ;
P = p S = why(d) ;
P =p S = argue(_G481) ;

P concede(c) ;

]
el

w0
Il

No 7- assert (happens (move(5,p,why(d),4),5)).
Yes 7- holds_at(legal(move(6,P,S,5)), 6).

P

oS

argue(since(d, _G660)) ;

P

oS

retract_(d) ;
No ?7- assert (happens(move(6,0,retract_(d),5),6)).

Yes ?- holds_at(legal (move(7,P,A,N)), 7).

P =0 A = concede(a) N =1 ;
P=pA = retract_(a) N = 2 ;

P =0 A = why(z) N

3

P =0 A =vwhy(q) N

]
w

94



P = 0 A = concede(z) N

]
w

I
w

P =0 A = concede(q) N

P=p A = argue(_G500) N = 4 ;

]
S

P =p A = concede(c) N

P =p A = concede(d) N

]
S

No 7-

It should be noted that two other moves are legal at time point 7 but are
not returned by Prolog in the last question holds_at(legal(move(7,P,A,N)), 7).
These moves are move(7,p, argue(since(a, Phi)), 2) where Phi cannot be [z, q]
and move(7, 0, argue(Psi), 3) where Psi cannot be [d] because the moves with
these propositions already happened at time point 3 and 4 respectively. Prolog
fails to return these two clauses because not all available propositions are legal to
use in these argue moves. However, when the user asks whether a specific argue
move is legal, for example, holds_at(legal(move(7, p, argue(since(a,b)),2)),7)
Prolog will answer affirmatively.

4.7.2 Information-seeking protocol implementation

In Section 6 of ASPIC Deliverable D2.3 [10], we presented the syntax and a se-
mantics for an Information-seeking dialogue protocol in which participants could
seek, and present, arguments to justify their rights to receive requested infor-
mation. This protocol was applied to the e-Consent Scenario, in which an agent
seeks medical information from a patient record database outside the requesting
agent’s normal jurisdiction, and thus is required to provide, to an agent con-
trolling access to the database, a justification for the information sought. The
agent dialogue can therefore be considered as an Information-Seeking dialogue-
with-Permissions. Such dialogues had been considered once before, in [17],
which presents an axiomatic semantics for these dialogues.* However, this ear-
lier formalization did not include the possibility of arguments for or against
permissions.

Accordingly, Deliverable D2.3 presented a novel syntax and a denotational
semantics, in which utterances in a dialogue under the protocol are translated
into operations on partitioned Tuple Spaces [35, 39]. These spaces, originally
developed as models of distributed computation, are databases or repositories
whose access is shared between the dialogue participants. An implementation of
such a semantics may be viewed as an instantiation of an abstract Co-ordination
Artefact between agents, a formal theory of which is now emerging [57, 78].

4See Section 2 of ASPIC Deliverable D2.3 [10] for definitions of different types of semantics
for agent communications languages and protocols.

95



Subsequent to the completion of Deliverable D2.3, the research underlying our
work was reported in [30, 31].

One of the reasons for considering a semantics using Tuple Spaces was a
belief that this should facilitate implementation of the protocol. In order to
assess this belief, we undertook an implementation of the protocol presented in
Section 6 of ASPIC Deliverable D2.3 [10]. The implementation was executed
using the TuCSoN software platform for tuple center applications [26], devel-
oped at the Alma Mater Studiorum — Universita di Bologna, in Cesena, Italy.®
Tuple Centers are an extension of the notion of Tuple Spaces in which the shared
spaces are not merely passive, but may be programmed to act in anticipation of
or react in response to events such as the deposit in them of particular tuples
[56]. In the case of the TuCSoN framework, programming of the shared spaces
is undertaken in a Prolog-like language. Because this implementation was not
intended for production use, only the protocol itself (and the supporting tuple
space semantic framework) was implemented, and no agents capable of inter-
acting via the protocol were created. The selection of locutions, within those
legally-permitted, at each step in a dialog and the creation of content for these
locutions, was therefore left to human participants. The implementation was un-
dertaken on a standard desktop PC running linux, with simulation of the client
(requesting access to some information) and server (controlling access to that
information) enabled through TuCSoN. The implementation is available from:
www.csc.liv.ac.uk/research/techreports/tr2005/tr05010abs.html.

The key outcome of this exercise was to demonstrate how readily the pro-
tocol could be successfully implemented. Prior experience with developing a
multi-agent co-ordination application using TuCSoN meant that no learning of
the platform was required, which no doubt eased implementation. One issue
that did arise in the implementation concerned the partitioned nature of the
tuple space. The semantic framework described in Section 6.2 of Deliverable
D2.3 [10] partitions the tuple space for a dialog into four subspaces for each
client-server pair, with potentially-different access for different clients to these
subspaces. During the implementation, it was found that the current available
version of TuCSoN does not permit a space to be partitioned in this way explic-
itly, and so we developed a virtual, on-the-fly, partitioning of the tuple center.
This was achieved through the use of client identifiers in the names of output
tuples created in response to successful requests for information. In this way,
clients without the appropriate identifier would not be able to read the par-
ticular tuples, thus maintaining information security. Of course, this is not an
ideal solution, since in real-world applications client identities may be emulated
by malevolent others, but is the best possible given the current architecture of
TuCSoN.6

5 Available from: http://lia.deis.unibo.it/research/tucson/
5We understand that the ability to partition Tuple Centres may be added as a feature to
TuCSoN in a near-term release.

96



4.8 Combining Dialogues

In Section 4.6, we presented a protocol for negotiation dialogues in which per-
suasion dialogues may be embedded. Embedding is one way in which different
dialogues may be combined, and it has received some attention in the philosophy
of argumentation literature, for example in [81]. Real-world dialogues, whether
between humans or software agents or both, may combine different types of
dialogues in other ways, for instance, sequentially, or in parallel. To repre-
sent such different possible combinations, Reed [70] proposed a formalism for
combinations of dialogues of different types, with no restrictions on the types of
dialogues which can be represented. Reed’s formalism, however, does not permit
parallel combination of dialogues and it is descriptive rather than generative:
in other words, it could not (on its own) be used to create automated dialogues
between agents.

In response to Reed’s framework, McBurney and Parsons proposed in [54] a
generative formalism which permitted several different forms of combinations of
atomic dialogue types between the same group of participants, including: itera-
tion (repeated occurrence of dialogues of the same type); sequential combination
of two or more dialogues of any types; parallel combination of two or more di-
alogues of any types; and embedding of one dialogue inside another dialogue,
both of any type. The formalism was represented in a modal logical formalism
similar to that of Propositional Dynamic Logic [43] and inspired by Parikh’s
Game Logic [58].7 In addition, the framework proposed a Control Layer, above
the layer at which dialogue combinations were represented, to allow participants
to agree to initiate a dialogue or a specified combination of dialogues, of a given
type (or types) on a given topic (or topics).

One issue of importance in considering combinations of dialogues is that of
the interaction of commitments made by the participants in different dialogues.
There are no universally-applicable rules for how commitments should interact,
as the following example illustrates (taken from [54]). For dialogues conducted
sequentially, one opinion may be that the commitments incurred in earlier di-
alogues should take precedence over those from later ones, as is usually the
case in legal and contractual domains. Alternatively, another opinion may be
that the commitments incurred in later dialogues should take precedence over
those from earlier ones, as is usually the case with party political promises, or
edicts issued by religious authorities. It is clear that the rules for commitment-
interaction adopted in any specific combination of dialogue types will depend
on the wider context of the dialogues and, perhaps, on the preferences and goals
of the participants.

The formalism of McBurney and Parsons [54] distinguished between dialog-
ical commitments, which only concern matters inside a given dialogue (such as
a responsibility to respond to a question), and semantic commitments, which
create an obligation on a participant in the external world beyond the dialogue
(such as a responsibility to pay for an agreed purchase). That formalism also

"The formalism of [54] did not expressly represent interleaving of two or more dialogues,
but this should also be possible.

97



allowed participants to agree at the Control Layer how commitment-interaction
in specific dialogue combinations should be addressed. In other words, the rules
for commitment-interaction in that framework were decided at dialogue-run-
time, by the participants, rather than at protocol-design-time, by the protocol
designer. The latter approach, of course, was adopted in the negotiation-with-
embedded-persuasion dialogue combination presented above in Section 4.6. As
with the commitment-interaction rules themselves, which approach is more ap-
plicable will depend on the nature and wider context of the application and on
the preferences and goals of the participants or the designer.

Further research is needed to make use of dialogue-combination frameworks
such as that of Reed and that of McBurney and Parsons within the ASPIC
argumentation framework. This work has commenced [1], and will continue
between the ASPIC partners.

98



Chapter 5

Conclusion

Argumentation theory is seen as a foundation for reasoning systems. Conse-
quently, an increasing number of argumentation systems have been proposed.
While, these systems use generally the same acceptability semantics, they differ
in the way they define their logical language, the notion of argument and the
defeasibility relation. These last are defined in ad hoc way and this leads the
systems to encounter some problems such as returning counter-intuitive results.

In order to avoid such problems, in a previous deliverable we have defined
some postulates or axioms that any argumentation system should satisfy. These
postulates govern the well definition of an argumentation system and guarantee
the safety of its outputs. We have focused on four important postulates: the
closeness, the direct consistency, the indirect consistency of the results of a sys-
tem and non-contamination. These last are violated by several argumentation
systems such as [38, 42, 68]. Then we have presented different solutions that
warrant those postulates. In particular, we have proposed two closure operators
that allow to make more explicit some implicit information. These closure op-
erators solve the problems encountered by the argumentation systems defined
in in [68, 42, 38].

This deliverable reports the solution chosen to be implemented by the AS-
PIC consortium. It presents first a general argumentation-based framework for
inference, then this last is extended for making decisions. This offers for the
first time a coherent setting for argumentation-based inference and decision.
The properties of the framework are deeply studied.

Concerning dialogue, a formal framework which captures different types of
dialogues has been proposed. Moreover, different protocols for persuasion dia-
logues have been analyzed, and two small-scale implementations reported.

99



Bibliography

1]

[2]

L. Amgoud. Towards an abstract dialogue framework. Technical report,
Paul Sabatier University, 2005.

L. Amgoud. A general argumentation framework for inference and decision
making. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, UAI’2005, 2005, to appear.

L. Amgoud, J-F. Bonnefon, and H. Prade. An argumentation-based ap-
proach to multiple criteria decision. In Proceedings of the 8th European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, ECSQARU’2005, pages 269-280, 2005.

L. Amgoud, M. Caminada, C. Cayrol, S. Doutre, MC. Lagasquie,
H. Prakken, and G. Vreeswijk. Draft formal semantics for inference and
decision-making. Technical report, Deliverable D2.2 of ASPIC project,
2004.

L. Amgoud, M. Caminada, C. Cayrol, S. Doutre, MC. Lagasquie,
H. Prakken, and G. Vreeswijk. Theoretical framework for argumentation.
Technical report, Deliverable D2.1 of ASPIC project, 2004.

L. Amgoud, M. Caminada, S. Doutre, H. Prakken, and G. Vreeswijk. Draft
formal semantics for aspic systems. Technical report, Deliverable D2.5 of
ASPIC project, 2005.

L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based
argumentation frameworks. International Journal of Automated Reasoning,
Volume 29 (2):125-169, 2002.

L. Amgoud and C. Cayrol. A reasoning model based on the production of
acceptable arguments. Annals of Mathematics and Artificial Intelligence,
34:197-216, 2002.

L. Amgoud, C. Cayrol, and M.-C. Lagasquie-Schiex. On the bipolarity
in argumentation frameworks. In J. Delgrande and T. Schaub, editors,
Proc. of the 10" NMR workshop (Non Monotonic Reasoning), Uncertainty
Framework subworkshop, pages 1-9, Whistler, BC, Canada, 2004.

100



[10]

[16]

[17]

[18]

[19]

L. Amgoud, S. Doutre, P. McBurney, and S. Parsons. Draft formal se-
mantics for communication, negotiation and dispute resolution. Technical
report, Deliverable D2.3 of ASPIC project, 2004.

L. Amgoud and H. Prade. Using arguments for making decisions. In Pro-
ceedings of the 20th Conference on Uncertainty in Artificial Intelligence,
pages 10-17, 2004.

A. Artikis, M. J. Sergot, and J. Pitt. An executable specification of an
argumentation protocol. In Proceedings of the Ninth International Confer-
ence on Artificial Intelligence and Law (ICAIL-03), pages 1-11, New York,
2003. ACM Press.

ASPIC. Theoretical framework for argumentation. Technical report, De-
liverable D2.4 of ASPIC project, 2004.

K. Atkinson, T. Bench-Capon, and P. McBurney. Computational represen-
tation of practical argument. Synthese: Knowledge, Rationality and Action,
2005. In press.

T. Ballmer and W. Brennenstuhl. Speech Act Classification. A Study in
the Lexical Classification of English Speech Activity Verbs. Springer Verlag,
Berlin, 1981.

J. Barwise and L. Moss. Vicious Circles. Number 60 in CSLI Lecture
Notes. CSLI Publications, Stanford, CA, 1996.

T. J. M. Bench-Capon. Specifying the interaction between information
sources. In G. Quirchmayr, E. Schweighofer, and T. J. M. Bench-Capon,
editors, DEXA, volume 1460 of Lecture Notes in Computer Science, pages
425-434. Springer, 1998.

F. J. Bex, H. Prakken, C. Reed, and D. N. Walton. Towards a formal
account of reasoning about evidence: argumentation schemes and general-
isations. Artificial Intelligence and Law, 12, 2004. In press.

G. Brewka. Dynamic argument systems: a formal model of argumentation
processes based on situation calculus. Journal of Logic and Computation,
11:257-282, 2001.

M. Caminada. For the sake of the Argument. Explorations into argument-
based reasoning. Doctoral dissertation Free University Amsterdam, 2004.

M. Caminada and L. Amgoud. An axiomatic account of formal argumen-
tation. In Proceedings of the 20th National Conference on Artificial Intel-
ligence, AAAI’2005, pages 608—613, 2005.

M. Caminada and L. Amgoud. On the evaluation of argumentation for-
malisms. In IRIT Technical report, 2006.

101



[23]

[28]

[29]

[30]

[31]

C. Cayrol, S. Doutre, and J. Mengin. Dialectical Proof Theories for the
Credulous Preferred Semantics of Argumentation Frameworks. In EC-
SQARU 2001, volume 2143 of LNAI, pages 668-679. Springer-Verlag, 2001.

C. Cayrol, S. Doutre, and J. Mengin. On Decision Problems related to the
preferred semantics for argumentation frameworks. Journal of Logic and
Computation, 13(3):377-403, 2003.

E. Cogan, S. Parsons, and P. McBurney. What kind of arguments are we
going to have today? In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P.
Singh, and M. Wooldridge, editors, Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS 2005), Utrecht, The Netherlands, pages 544-551, New York City, NY,
USA, 2005. ACM Press.

DEIS. TuCSoN Guide: TuCSoN Version 1.4.0. DEIS, Universit’a di
Bologna, Bologna, Italy, document revision 003 edition, 2002. Last changes
16.12.2004.

F. Dignum, B. Dunin-Keplicz, and R. Verbrugge. Agent theory for team
formation by dialogue. In C. Castelfranchi and Y. Lespérance, editors,
Seventh Workshop on Agent Theories, Architectures, and Languages, pages
141-156, Boston, USA, 2000.

F. Dignum, B. Dunin-Keplicz, and R. Verbrugge. Creating collective in-
tention through dialogue. In J. Cunningham and D. Gabbay, editors, Pro-
ceedings of the International Conference on Formal and Applied Practical
Reasoning, pages 145-158, London, UK, 2000. Department of Computing,
Imperial College, University of London.

P. Dijkstra, F.J. Bex, H. Prakken, and C.N.J. De Vey Mestdagh. Towards
a multi-agent system for regulated information exchange in crime investi-
gations. Artificial Intelligence and Law, 13, 2005. In press.

S. Doutre, P. McBurney, and M. Wooldridge. Law-governed linda as a
semantics for agent interaction protocols. In F. Dignum, V. Dignum,
S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, editors, Proceed-
ings of the Fourth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2005), Utrecht, The Netherlands, pages
1257-1258, New York City, NY, USA, 2005. ACM Press.

S. Doutre, P. McBurney, M. Wooldridge, and W. Barden. Information-
seeking agent dialogs with permissions and arguments. Tech-
nical Report ULCS-05-010, Department of Computer Science,
University of Liverpool, Liverpool, UK, 2005. Available from:
www.csc.liv.ac.uk/research/techreports/tr2005/tr05010abs.html.

S. Doutre and J. Mengin. On sceptical versus credulous acceptance for
abstract argument systems. In Ninth Furopean Conference on Logics in
Artificial Intelligence (JELIA 2004), pages 462-473, September 2004.

102



[33] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321-357, 1995.

[34] P. E. Dunne and T. J. M. Bench-Capon. Two party immediate response dis-
pute: Properties and efficiency. Artificial Intelligence, 149:221-250, 2003.

[35] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns
and Practice. Addison-Wesley, USA, 1999.

[36] D. M. Gabbay and J. Woods. More on non-cooperation in Dialogue Logic.
Logic Journal of the IGPL, 9(2):321-339, 2001.

[37] D. M. Gabbay and J. Woods. Non-cooperation in dialogue logic. Synthese,
127(1-2):161-186, 2001.

[38] A.J. Garcfa and G.R. Simari. Defeasible logic programming: an argumen-
tative approach. Theory and Practice of Logic Programming, 4(1):95-138,
2004.

[39] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, 1985.

[40] R. Girle. Commands in Dialogue Logic. In D. M. Gabbay and H. J.
Ohlbach, editors, Practical Reasoning: Proceedings of the First Inter-
national Conference on Formal and Applied Practical Reasoning (FAPR
1996), Bonn, Germany, Lecture Notes in Artificial Intelligence 1085, pages
246-260, Berlin, Germany, 1996. Springer.

[41] T.F. Gordon. The Pleadings Game. An Artificial Intelligence Model of Pro-
cedural Justice. Kluwer Academic Publishers, Dordrecht/Boston/London,
1995.

[42] G. Governatori, M.J. Maher, G. Antoniou, and D. Billington. Argumen-
tation semantics for defeasible logic. Journal of Logic and Computation,
14(5):675-702, 2004.

[43] D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenther, editors,
Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic,
pages 497-604. D. Reidel, Dordrecht, The Netherlands, 1984.

[44] H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation
frameworks. In Proceedings of the Seventh International Conference on
Artificial Intelligence and Law (ICAIL-99), pages 53-62, New York, 1999.
ACM Press.

[45] P. Kirschner, S. Buckingham Shum, and C. Carr, editors. Visualizing
Argumentation: Software Tools for Collaborative and Educational Sense-
Making. Springer-Verlag: London, 2003.

103



[46]

[47]

(48]

[49]

R. Kowalski and M. Sergot. A logic-based calculus of events. New Gener-
ation Computing, 4(1):67-96, 1986.

S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through ar-
gumentation: a logical model and implementation, volume 104. Journal of
Artificial Intelligence, 1998.

R.P. Loui. Process and policy: resource-bounded non-demonstrative rea-
soning. Computational Intelligence, 14:1-38, 1998.

M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technol-
ogy: Computing as Interaction. A Roadmap for Agent Based Computing.
AgentLink III, the European Co-ordination Action for Agent-Based Com-
puting, Southampton, UK, 2005.

J. D. MacKenzie. Question-begging in non-cumulative systems. Journal of
Philosophical Logic, 8:117-133, 1979.

P. McBurney, R. M. van Eijk, S. Parsons, and L. Amgoud. A dialogue-game
protocol for agent purchase negotiations. Journal of Autonomous Agents
and Multi-Agent Systems, 7(3):235-273, 2003.

P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of delib-
eration dialogue. International Journal of Intelligent Systems, 2005. In
press.

P. McBurney and S. Parsons. Representing epistemic uncertainty by means
of dialectical argumentation. Annals of Mathematics and Artificial Intelli-
gence, 32(1-4):125-169, 2001.

P. McBurney and S. Parsons. Games that agents play: A formal framework
for dialogues between autonomous agents. Journal of Logic, Language and
Information, 13:315-343, 2002.

R. McConachy and I. Zukerman. Dialogue requirements for argumenta-
tion systems. In Proceedings of IJCAI’99 Workshop on Knowledge and
Reasoning in Practical Dialogue Systems, 1999.

A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of
Computer Programming, 41(3):277-294, 2001.

A. Omicini, A. Ricci, and M. Viroli. Agens Faber: towards a theory of
artefacts for MAS. Electronic Notes in Theoretical Computer Science, 2006.
In press.

R. Parikh. The logic of games and its applications. Annals of Discrete
Mathematics, 24:111-140, 1985.

S. Parsons and N. R. Jennings. Negotiation through argumentation—a
preliminary report. In Proceedings of the 2nd International Conference on
Multi Agent Systems, pages 267-274, 1996.

104



[60]

[61]

[64]
[65]

[66]

S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate
by arguing. Journal of Logic and Computation, 8(3):261-292, 1998.

S. Parsons, M. Wooldridge, and L. Amgoud. An analysis of formal inter-
agent dialogues. In Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-02), pages 394-401,
2002.

S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of
formal inter-agent dialogues. Journal of Logic and Computation, 13(3):347—
376, 2003.

M. Pechoucek, D. Steiner, and S. Thompson, editors. Proceedings of the In-
dustry Track of the Fourth International Joint Conference on Autonomous
Agents and Multi Agent Systems, New York City, NY, USA, 2005. ACM
Press. Universiteit Utrecht, The Netherlands, 25-29 July 2005.

J. L. Pollock. Defeasible reasoning. Cognitive Science, 11:481-518, 1987.

J. L. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person.
MIT Press, Cambridge, MA, 1995.

H. Prakken. On dialogue systems with speech acts, arguments, and coun-
terarguments. In Proceedings of the 7th European Workshop on Logic for
Artificial Intelligence (JELIA-00), number 1919 in Springer Lecture Notes
in Artificial Intelligence, pages 224-238, Berlin, 2000. Springer Verlag.

H. Prakken. Relating protocols for dynamic dispute with logics for defea-
sible argumentation. Synthese, 127:187-219, 2001.

H. Prakken and G. Sartor. Argument-based extended logic programming
with defeasible priorities. Journal of Applied Non-Classical Logics, 7:25-75,
1997.

H. Prakken and G.A.W. Vreeswijk. Logics for defeasible argumenta-
tion. In D. Gabbay and F. Giinthner, editors, Handbook of Philosoph-
ical Logic, volume 4, pages 219-318. Kluwer Academic Publishers, Dor-
drecht/Boston/London, second edition, 2002.

C. Reed. Dialogue frames in agent communication. In Proceedings of the
3rd International Conference on Multi Agent Systems, pages 246-253, 1998.

C. Reed and T. J. Norman, editors. Argumentation Machines: New Fron-
tiers in Argument and Computation. Kluwer Academic Publishers, 2004.

N. Rescher. Dialectics: A Controversy-Oriented Approach to the Theory of
Knowledge. State University of New York Press, Albany, NY, 1977.

F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: Agent varieties
and dialogue sequences. In Proceedings of the International Workshop on
Agent Theories, Architectures and Languages, ATAL, 2001.

105



[74]

[79]

F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation:
an abductive approach. In M. Schroeder and K. Stathis, editors, Pro-
ceedings of the Symposium on Information Agents for E-Commerce, Artifi-
cial Intelligence and the Simulation of Behaviour Conference (AISB-2001),
York, UK, 2001. AISB.

M. Shanahan. The event calculus explained. Lecture Notes in Computer
Science, 1600:409-430, 1999.

Y. Tang and S. Parsons. Argumentation-based dialogues for delibera-
tion. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, editors, Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005),
Utrecht, The Netherlands, pages 552-559, New York City, NY, USA, 2005.
ACM Press.

F. Tohmé. Negotiation and defeasible reasons for choice. In Proceedings of
the Stanford Spring Symposium on Qualitative Preferences in Deliberation
and Practical Reasoning, pages 95-102, 1997.

M. Viroli and A. Ricci. Instructions-based semantics of agent-mediated
interaction. In N. R. Jennings, C. Sierra, E. Sonenberg, and M. Tambe,
editors, Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2004), New York
City, NY, USA, pages 102-109, New York City, NY, USA, 2004. ACM
Press.

G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argu-
ment games for preferred semantics. In Proceedings of the 7th European
Workshop on Logic for Artificial Intelligence (JELIA-00), number 1919 in
Springer Lecture Notes in Al, pages 239-253, Berlin, 2000. Springer Verlag.

D. N. Walton. Argument Schemes for Presumptive Reasoning. Lawrence
Erlbaum Associates, Mahwah, NJ, USA, 1996.

D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. SUNY Series in Logic and Language.
State University of New York Press, Albany, NY, USA, 1995.

M. J. Wooldridge. Introduction to Multiagent Systems. John Wiley and
Sons, New York, NY, USA, 2002.

M. J. Wooldridge and S. Parsons. Languages for negotiation. In W. Horn,
editor, Proceedings of the Fourteenth European Conference on Artificial In-
telligence (ECAI 2000), pages 393-397, Berlin, Germany, 2000. IOS Press.

S. Zabala, 1. Lara, and H. Geffner. Beliefs, reasons and moves in a model
for argumentation dialogues. In Proceedings of the Latino-American Con-
ference on Computer Science, 1999.

106



