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Preface

This volume contains the proceedings of FTP’07, the sixth workshop on First-
Order Theorem Proving, held September 12 and 13, 2007, in Liverpool, England
(UK). As for the previous events of this series, the focus of this workshop is
on first-order theorem proving as a core theme of Automated Deduction, and
its aim is to provide a forum for presentation of recent work and discussion of
research in progress. The workshop was co-located with the sixth International
Symposium on Frontiers of Combining Systems (FroCoS’07), held September
10-12, 2007 also in Liverpool. On September 12, 2007, there was also a joint
session with Viorica Sofronie-Stokkermans as (joint) invited speaker.

These proceedings contain seven regular papers and the abstract of three
“presentation-only” papers (i.e. papers submitted or accepted for publication
elsewhere), each of which was reviewed by three referees. The regular papers
present and discuss various topics related to first-order theorem proving such
as a calculus for clauses admitting existential quantifiers (called geometric res-
olution), a reasoning system based on Manna and Waldinger’s tableaux to be
used in education, theorem proving for functional programming, simplification of
complex proof obligations obtained from program verification, automated proofs
of a modularity result for the termination of term rewriting systems, inductive
theorem proving in the context of term rewriting systems modulo some equa-
tional theories. The three “presentation-only” papers selected by the program
committee present simulation results for propositional modal logic calculi by
first-order resolution, discuss the support that can be provided by first-order
resolution for theorem proving in the monodic fragment of first-order temporal
logic, and introduce a calculus for an extension of temporal logic. For these, only
abstracts have been included in the proceedings.

I welcomed three invited lectures: one by Viorica Sofronie-Stokkermans on
“Hierarchical and Modular Reasoning in Complex Theories: The Case of Local
Theory Extensions” (joint with FroCoS’07), one by Martin Giese on “Aspects
of First-order Reasoning in the KeY system”, and one by Bernd Fischer on
“Applying FTPs in Formal Software Safety Certification.”. Short abstracts of
all talks are included in this volume.

I would like to thank the members of the program committee and one external
referee for their care and time in reviewing the submitted papers. I would also
like to thank the members of the local organisation committee. In particular, I
express my gratitude to the local organisation committee chair, Ullrich Hustadt,
for his help and support in all phases of the workshop.

Finally, I gratefully acknowledge the financial support provided by EPSRC
grant EP/F014058/1 to this workshop.

Silvio Ranise
LORIA and INRIA-Lorraine

Nancy, August 2007
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William McCune University of New Mexico, Albuquerque, New Mexico,

USA
Ingo Dahn University of Koblenz-Landau, Koblenz, Germany
Ullrich Hustadt University of Liverpool, UK
Paliath Narendran University at Albany - SUNY, Albany, New York, USA
Nicolas Peltier CNRS, Grenoble, France
Silvio Ranise LORIA and INRIA-Lorraine, France
Stephan Schulz RISC-Linz, Austria
Gernot Stenz Munich University of Technology, Germany
Cesare Tinelli University of Iowa, Iowa City, Iowa, USA
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Hierarchical and Modular Reasoning in Complex

Theories: The Case of Local Theory Extensions

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E1 4, D-66123 Saarbrücken, Germany
sofronie@mpi-inf.mpg.de

Abstract

Many problems in computer science can be reduced to proving the satisfiability
of conjunctions of literals w.r.t. a background theory. This can be a concrete
theory (e.g. the theory of real or rational numbers), the extension of a theory with
additional functions (free, monotone, or recursively defined) or a combination of
theories. It is therefore very important to have efficient procedures for checking
the satisfiability of conjunctions of ground literals in such theories.

We give an overview of results on hierarchical and modular reasoning in
complex theories (cf. e.g. [1,2,3,4]). We show that for a special type of extensions
of a base theory, which we call local, hierarchical reasoning is possible (i.e. proof
tasks in the extension can be hierarchically reduced to proof tasks w.r.t. the
base theory). Many theories important for computer science or mathematics
fall into this class (examples are theories of data structures, theories of free
or monotone functions, functions occurring in mathematical analysis, but also
complex extensions, in which various types of functions or data structures are
taken into account at the same time). We show how local theory extensions can
be identified and under which conditions locality is preserved when combining
theories, and we investigate possibilities of efficient reasoning in local theory
extensions and combinations. We also present several examples of application
domains where local theory extensions occur in a natural way. We show, in
particular, that various phenomena analyzed in the verification literature can be
explained in a unified way using the notion of locality.
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Aspects of First-order Reasoning in the

KeY System

Martin Giese

Research Institute for Symbolic Computation, Johannes Kepler University
Altenbergerstr. 69, A-4040 Linz, Austria
martin.giese@risc.uni-linz.ac.at

Abstract

The deductive program verification system developed as part of the KeY project
[4,3,1] is based on a sequent calculus for a certain dynamic logic, which is spe-
cially tailored to the verification of Java-Card programs. The sequent calculus
symbolically executes programs, until proof obligations in first-order logic are
obtained. To simplify reasoning about objects of a Java program, the first-order
logic of KeY has strongly typed terms and subtyping [7]. In the context of pro-
gram verification, it is desirable to have an integrated interactive and automated
theorem prover [5], and moreover, an automated proof procedure that does not
require backtracking [6]. Theory-specific reasoning in KeY is done by enhanc-
ing the prover with theory-specific rules, known as taclets [2], which can easily
be formulated in a special rule language. Alternatively, KeY may call various
external SMT solvers to handle common datatypes.
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Schmitt. The KeY system 1.0 (deduction component). In Proceedings of CADE-21,
Bremen, pages 379–384, 2007.
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Applying First-Order Theorem Provers in

Formal Software Safety Certification

Bernd Fischer

School of Electronics and Computer Science, University of Southampton
Southampton SO17 1BJ, United Kingdom

b.fischer@ecs.soton.ac.uk

Abstract

Formal software safety certification approaches like proof-carrying code use Hoare-
style techniques to prove that programs satisfy a variety of safety properties.
The properties range from simple language-specific properties like initialization-
before-use or array-bounds safety to more complex domain-specific properties
as for example frame safety, which is specific to the navigation domain. All of
these properties are simpler than full functional correctness, so that the emerging
proof obligations are simpler as well, and come within reach of the capabilities
of current fully automated first-order theorem provers.

In this talk, I will describe our approach to safety certification of automat-
ically generated code, where we exploit its idiomatic structure to construct the
annotations (e.g., loop invariants) necessary for fully automatic proofs. The an-
notations can be constructed during the code generation process, by embedding
annotation templates into the code templates, or during a completely separate
post-generation inference phase, where aspect-oriented techniques are used to
annotate the crucial code fragments. We have implemented both techniques and
integrated them into our AutoBayes and AutoFilter program generation sys-
tems; in ongoing work, we apply the inference technique to code generated from
Matlab-models. Here I will focus on our experience in integrating first-order
theorem provers as “off-the-shelf” components into such systems. I will outline
the requirements this application puts on the provers and present the results we
achieved with different provers.

Joint work with Ewen Denney and Johann Schumann, RIACS/NASA Ames
Research Center.
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Inductive Proof Search Modulo

Fabrice Nahon1, Claude Kirchner2, Hélène Kirchner2

1 LORIA⋆

2 INRIA & LORIA
Nancy, France

Abstract. We present an original narrowing-based proof search method
for inductive theorems in equational rewrite theories given by a rewrite
system R and a set E of equalities. It has the specificity to be grounded
on deduction modulo and to rely on narrowing to provide both induction
variables and instantiation schemas. Whenever the equational rewrite
system (R, E) has good properties of termination, sufficient complete-
ness, and when E is constructor and variable preserving, narrowing at
defined-innermost positions leads to consider only unifiers which are con-
structor substitutions. This is especially interesting for associative and
associative-commutative theories for which the general proof search sys-
tem is refined. The method is shown to be sound and refutationaly com-
plete.
Keywords: Deduction modulo, Noetherian induction, equational rewrit-
ing, equational narrowing.

Introduction

Proof by induction is a main reasoning principle and is of prime interest in infor-
matics. Typically in hardware and software verification problems, when dealing
with security protocols or safety properties of embedded systems, reasoning on
complex data structures with infinite data or states makes a prominent use of
induction.

Three main approaches have been developed for mechanizing inductive
proofs: (i) explicit induction, used in proof assistants like Nqthm-ACL2 [KM96],
Coq[BC04], Isabelle[NPW02] or Inka [AHMS99], (ii) implicit induction by
rewriting used in automated theorem provers like RRL [KZ95] or Spike [BKR92]
and that should not be confused with the third one, (iii) induction by consis-
tency, as clearly emphasized in [Com01, section 1.3] where the interested reader
can also find all the relevant references on that last approach. As a bridge be-
tween the two first trends, a proof search mechanism for such inductive proofs
has been explored in [DKKN03,Dep02,KKN07] relying on the deduction modulo
approach [DHK03]. Although already quite expressive, the latter approach is
designed for theories expressed as rewrite rules and is thus limited by the fact
that axioms like commutativity cannot be oriented as a rule without loosing
termination of the underlying rewrite system.

⋆ UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP



Inductive Proof Search Modulo 5

The solution consists then of using equational rewriting (also called rewrit-
ing modulo) as pioneered by [PS81] and [JK86] and to extend the proof search
method developed in [DKKN03] in order to perform induction in theories con-
taining such non orientable axioms. This extension should also be compared
to implicit induction techniques used for induction modulo associativity and
commutativity as done in [BBR96] and [Aot06] who generalises [Red90]. The
following example is helpful to make this comparison and show how our method
is essentially different from the previous ones. Assume that we want to prove

– Sorts: nat;
– constructors: 0 : → nat s : nat→ nat
– defined functions: + : nat× nat→ nat ∗ : nat× nat→ nat
– rules:

x+ 0 → x x ∗ 0 → 0 exp(x, 0) → s(0)
x+ s(y) → s(x+ y) x ∗ s(y) → x ∗ y + x exp(x, s(y)) → x ∗ exp(x, y)

Fig. 1. Simple arithmetic

the proposition ∀x, y, n exp(x ∗ y, n) ≈ exp(x, n) ∗ exp(y, n), where + and ∗
are also assumed to be associative and commutative (AC). The method de-
veloped in [Ber97] is based on induction schemes. More precisely, it computes
a subset of variables of the goal, the induction variables, and a set of terms,
the test set. The induction variables are replaced by elements of the test set,
and such replacements produce new conjectures which are simplified by rewrite
rules of the specification and smaller instances of the original conjecture (the
induction hypothesis). The proof is completed when all newly generated con-
jectures are simplified into known or trivial inductive theorems. Algorithms are
provided to compute induction variables and test sets. In the example above,
the induction variables are x, y, and n, and the test set is {0, s(x)}. Therefore,
a test instance is exp(s(x′) ∗ s(y′), s(n′)) ≈ exp(s(x′), s(n′)) ∗ exp(s(y′), s(n′)).
However, this last equality can be reduced by rules of the specification into
s(x′) ∗ s(y′) ∗ exp(s(x′ + y′ + x′ ∗ y′), n′) ≈ exp(s(x′), n′) ∗ exp(s(y′), n′), which
cannot be simplified by the induction hypothesis, and the proof attempt may
fail. One can avoid this difficulty if the set of induction variables is restricted.
That is why [Ber97] have defined an heuristic in order to select good induction
variables relying on observations of the Nqthm-ACL2 system. Using this strategy
in the example above, only the variable n is instantiated and the proof search
succeeds. However, the method does not remain refutationaly complete under
such an heuristic.

In our approach, the induction step is performed by narrowing at defined-
innermost positions, when the theory is axiomatized by a sufficiently complete
and terminating equational rewrite system. More precisely, it suffices to per-



6 Fabrice Nahon, Claude Kirchner, Hélène Kirchner

form the narrowing step at only one defined-innermost position. In the situation
above, these defined innermost positions are 1.1, 2.1 and 2.2. Now, since ∗ is
commutative, the goal remains equivalent by permuting the variables x and y,
therefore two possibilities remain: narrowing at the defined-innermost position
1.1 where the symbol ∗ occurs, or 2.1 where the symbol exp occurs. Considering
the latter better, since it further creates more reductions, we choose to narrow at
the position 2.1. After normalization, we obtain the trivial subgoal s(0) ≈ s(0)
and x ∗ y ∗ exp(x ∗ y, n) ≈ x ∗ y ∗ exp(x, n) ∗ exp(y, n) which can be reduced by
the induction hypothesis.

It is important to emphasize that the latter strategy for selecting one defined-
innermost position to perform the narrowing step remains refutationaly com-
plete, whenever the specification has good properties: more precisely, this is the
case when, given a rewrite system R and a set E of equalities, the rewrite re-
lation R, E of Peterson and Stickel [PS81,JK86] is terminating and sufficiently
complete modulo E, and when E is constructor preserving. Furthermore, under
those conditions, narrowing at defined-innermost positions leads to consider only
unifiers which are constructor substitutions. Hence, serious difficulties, related
to the size of complete sets of unifiers, can be avoided. For instance, it becomes
possible to perform induction modulo non finitary theories like associativity.

The paper is structured as follows. Section 1 recalls basic results about rewrit-
ing and narrowing, and introduces the concepts of constructor preserving theo-
ries, defined-innermost positions and complete sets of constructor unifiers that
are used in the following. In Section 2, we explain how deduction modulo man-
ages the Noetherian induction principle and we present the proof search sys-
tem for inductive proofs modulo a general theory E, which is proved sound
and refutationaly complete. Section 3 deals with the special case of associative-
commutative theories or associative theories. The proof system of Section 2 is
instantiated in these cases with more operational proof steps.

1 Basic ingredients

For the main notations and classical results on term rewriting, we refer for in-
stance to [BN98] or [KK99].

We assume given a many sorted signature (S, Σ) (or simply Σ, for short)
where S is a set of sorts and Σ is a set of function symbols, each symbol f
given with a rank f : S1 × . . . × Sn → S, where S1, . . . , Sn, S ∈ S and n is
the arity of f . We assume moreover that the signature Σ comes in two parts,
S = C ∪ D, where C is a set of constructor symbols, and D is a set of defined
symbols. A constructor term is a term built only with constructor symbols. Let
X be a family of sorted variables. The set of well-sorted terms over Σ (resp.
well-sorted constructor terms) with variables in X will be denoted by T (Σ,X )
(resp. T (C,X )). The subset of T (Σ,X ) (resp. T (C,X )) of variable-free terms,
or ground terms, is denoted T (Σ) (resp. T (C)). A term t ∈ T (Σ,X ) is identified
as usual to a function from its set of positions (strings of positive integers)
Dom(t) to symbols of Σ and X . We note ε the empty string (root position).
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The subterm of t at position ω is denoted by t|ω. The result of replacing t|ω with
s at position ω in t is denoted by t[s]ω. This notation is also used to indicate
that s is a subterm of t and, in this case, the position ω may be omitted. Var(t)
denotes the set of (free) variables of the term t and |Var(t)| its cardinality.

We define
−−−−→
Var(t) as the vector of variables assumed linearly ordered by their

name. These notations are extended to equalities t1 ≈ t2 seen as terms with top
symbol ≈ of arity 2, as well as to rewrite rules. A substitution is a finite mapping
{x1 → t1, . . . , xn → tn} where x1, . . . , xn ∈ X and t1, . . . , tn ∈ T (Σ,X ). We use
postfix notation for substitutions application and composition. The domain of
a substitution σ is the set Dom(σ) = {x ∈ X | xσ 6= x}, the set of variables
introduced by σ is the set Ran(σ) =

⋃

x∈Dom(σ)

Var(xσ), and the image of σ is the

set Im(σ) = {t ∈ T (Σ,X ) | ∃x ∈ Dom(σ), t = xσ}. A substitution σ is ground
whenever Im(σ) ⊆ T (Σ), and is constructor whenever Im(σ) ⊆ T (C,X ). Given
two terms s and t, a unifier of s and t is a substitution σ such that sσ = tσ, and
a most general unifier of s and t (mgu(s, t) for short) is a unifier σ such that,
for any unifier θ of s and t, there exists a substitution µ such that θ = σµ on
the variables of s and t.
Given a relation→ on T (Σ,X ),

+
→ and

∗
→ denote the transitive and the reflexive

transitive closure of→ respectively. A normal form of t, denoted t ↓, is such that
t

∗
→ t ↓ and t ↓ cannot be reduced by the relation →. The normalized form σ ↓

of a substitution σ is defined by x(σ ↓) = (xσ) ↓ for all x ∈ Dom(σ). An equality
is an expression of the form e1 ≈ e2, where e1 and e2 are two terms of the same
sort. Given a set E of equalities, =E denotes the congruence generated by E.
We always understand equalities in a symmetric way, i.e. we make no difference
between e1 ≈ e2 and e2 ≈ e1.
Given two terms s and t, an E-unifier of s and t is a substitution σ such that
sσ =E tσ, and a complete set of E-unifiers of s and t (CSUE(s, t) for short) is a
set of E-unifiers of s and t satisfying: for any E-unifier θ of s and t, there exists
a substitution µ such that θ =E σµ[Var(s) ∪ Var(t)], i.e. θ(x) =E σµ(x) for all
x ∈ Var(s) ∪ Var(t).

Definition 1.1. A set E of equalities is regular iff for any equality e1 ≈ e2 ∈ E,
Var(e1) = Var(e2). A set E of equalities is constructor preserving whenever E
is regular, and, for any equality e1 ≈ e2 ∈ E, e1 ∈ T (C,X )⇒ e2 ∈ T (C,X ).

As a consequence of this definition, a set E of equalities is constructor preserving
iff two terms cannot be E-equivalent whenever one of them is constructor and
the other is not. Typically, if + ∈ D and 0 ∈ C, 0 + x = x (as well as all
non-constructor headed collapse axioms) is not constructor preserving (since
0 + 0 = 0) but associativity or commutativity of + are.

1.1 Equational rewriting and narrowing

We recall some basic notions introduced in [JK86]. A rewrite rule is an ordered
pair of terms l → r such that Var(r) ⊆ Var(l) and l is not a variable. A
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conditional rewrite rule c⇒ l→ r moreover satisfies Var(c) ⊆ Var(l). A rewrite
system R is a set of rewrite rules. An equational rewrite system is given by a
set of rewrite rules R and a set of equalities E. Let →R/E (R/E for short)
be the relation =E ◦ →

R
◦ =E which simulates the relation induced by R in

E-equivalence classes.

Definition 1.2. An equational rewrite system (R, E) is terminating modulo E
iff the relation R/E is Noetherian, i.e. there is no infinite sequence of the form
t0 =E t′0 →

R
t1 . . . tn =E t′n →

R
tn+1 → . . .. It is ground terminating modulo E if

it is terminating modulo E over the set of ground terms.

Given an equational rewrite system (R, E), the rewriting modulo E relation
→R,E (R, E for short) and the narrowing modulo E relation ;R,E are defined
as follows:

Definition 1.3. Given two terms s, t ∈ T (Σ,X ), s rewrites modulo E to t,
denoted s →R,E t, whenever there exist a rewrite rule l → r ∈ R, a position
ω ∈ Dom(t), and a substitution σ, such that s|ω =E lσ and t = s[rσ]ω. In this
case, s is said R, E-reducible. In addition, for a conditional rule c ⇒ l → r, cσ
must evaluate to true when applying the rule. Also, s narrows modulo E into
t, denoted s ;R,E t, whenever there exist a rewrite rule l → r ∈ R, a position
ω ∈ Dom(t), and a substitution σ, such that s|ωσ =E lσ and t = (s[r]ω)σ.

Since →R⊆→R,E⊆→R/E , termination of R/E implies termination of →R and
→R,E . Sufficient completeness is a fundamental property which states that it is
always possible to rewrite any ground non-constructor term into a constructor
one:

Definition 1.4. A relation → is sufficiently complete modulo E when, for any
s ∈ T (Σ), there exists t ∈ T (C), such that s

∗
→ t. The equational rewrite system

(R, E) is sufficiently complete modulo E if the relation →R,E is.

For ground terminating and sufficiently complete modulo E rewrite systems,
it is possible to specify particular positions in terms where reductions must apply,
and where case analysis by rewriting can usefully be done.

Definition 1.5. For any t ∈ T (Σ,X ), a position ω in t is called defined-
innermost, and we denote ω ∈ DI(t), if t(ω) ∈ D and t(ω′) ∈ C ∪ X whenever
ω < ω′.

For instance, considering the Peano’s integers defined in the simple arithmetic
example of Fig. 1, in s((0 + 0) + s(0 + s(x))), the positions 1.1 and 1.2.1 are
defined-innermost but 1 is not.
The following proposition states that defined-innermost positions are ground
R, E-reducible under appropriate assumptions:

Proposition 1.1. Assume that (R, E) is sufficiently complete modulo E and
that E is constructor preserving. Then, for any term t, for any ground R, E-
normalized substitution α, and for any ω ∈ DI(t), tα is R, E-reducible at the
position ω.
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1.2 Constructor E-unifiers

A main difference between previous narrowing or superposition-based ap-
proaches and the one proposed in this paper, is that the unification used here
to perform narrowing is quite restricted. For instance, when reasoning modulo
associativity, instead considering potentialy infinite sets of unifiers, we can safely
restrict to finitely many ones.

For a given set E of equalities, constructor E-unifiers are a key to tame the
proof search system IndNarrowModE presented below. Complete sets of construc-
tor E-unifiers are generating sets of constructor unifiers:

Definition 1.6. Let s, t ∈ T (Σ,X ), a substitution σ is a constructor E-unifier
of s and t if sσ =E tσ and Im(σ) ⊆ T (C,X ). Given two terms s, t ∈ T (Σ,X ),
CSUCE(s, t) is a complete set of constructor E-unifiers of s and t, if:

Correctness: every σ of CSUCE(s, t) is a constructor E-unifier of s and t;

Completeness: for any constructor E-unifier of s and t, there exist σ ∈
CSUCE(s, t) and a substitution µ, such that θ =E σµ [Var(s) ∪ Var(t)];

Domain: for any σ ∈ CSUCE(s, t), Ran(σ) ∩ Dom(σ) = ∅.

If E is constructor preserving and satisfy syntactic conditions detailled
in [Nah07], the subset of all constructor elements of CSUE(s, t) is a complete
set of constructor E-unifiers of s and t. This is in particular the case when con-
sidering AC of A theories involving only defined symbols. More precisely, when
E is an AC theory involving only defined symbols, if s and t are terms and ω is
a defined-innermost position in s, then CSUCE(s|ω, t) is CSUCF (s|ω, t), where
F denotes the subset of commutativity axioms of E. In other words, in this case
AC constructor unification reduces to C constructor unification. Similarly if E
is an associative theory involving only defined symbols, although CSUE(s|ω, t)
may be infinite, CSUCE(s|ω, t) is CSUC∅(s|ω, t) which of course simplifies con-
siderably the induced proof space.

To conclude this section, the following proposition shows that, whenever
E is constructor preserving and (R, E) is sufficiently complete modulo E, the
narrowing step at defined-innermost positions is performed with constructor
substitutions:

Proposition 1.2. Assume that (R, E) is sufficiently complete modulo E and
that E is constructor preserving. Then, for all t1, . . . , tn ∈ T (C,X ), for any f ∈
D, for any ground R, E-irreducible instantiation α of f(t1, . . . , tn), and for any
set V such that Dom(α) ⊆ V , there exist a rewrite rule l → r ∈ R, a substitution
σ ∈ CSUCE(f(t1, . . . , tn), l) and a substitution µ such that: σµ =E α [V ].

Thanks to these settings, we now present an inductive proof search system,
relying on a main induction rule that uses narrowing to choose both the induction
variables and the instantiation schema.
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2 A proof search system for induction modulo

The proof search system IndNarrowModE for inductive proofs introduced in this
section is based on (restricted) narrowing and rewriting. The main rule, called
Induce, performs the induction step. Its intuition is the following: in order
to apply the induction hypothesis, one should decrease the size of the goal by
rewriting it using a noetherian rewrite system. Whenever the goal does not
rewrite, it should be first instantiated to be then rewritten, i.e. it should be
narrowed. By expressing this in the sequent calculus modulo, we provide an
explicit and constructive bridge between the rewrite-based implicit and explicit
approaches of induction.

2.1 The proof search system IndNarrowModE

Let < be a Noetherian order on a set τ , i.e. such that there is no infinite sequence
of elements of the form a0 > a1 > . . . > an > . . . . The Noetherian induction
principle states that a proposition P holds for any element x of τ if P holds for
all b in τ with b < x. Formally, if ∀x x ∈ τ ∧ (∀b b ∈ τ ∧ b < x⇒ P (b))⇒ P (x),
then P holds for all x in τ . Hence, if we write Noeth(<, τ) to state that < is
a Noetherian relation over τ , and NoethInd(P,<, τ) the proposition above, the
Noetherian induction principle is the right-hand side of the following implication:

NI : ∀ < ∀τ [Noeth(<, τ)⇒ ∀P (NoethInd(P,<, τ)⇒ ∀xP (x))]

To emphasize the order condition b < x, and since b is universally quantified, we
rename b into x. From now on, we instantiate τ by the set of ground terms T (Σ),
P by an equality predicate ≈ and < by the proper part of a quasi ordering 6

defined on the set of terms T (Σ,X ). The induction hypothesis becomes therefore
∀x(x < x ⇒ s(x) ≈ t(x)), with x any variable of s ≈ t. It is also possible
to define an induction hypothesis with respect to all variables of s ≈ t. Let
−→x ∈ X n denote the vector of variables of s ≈ t. In order to compare n-tuples
of terms, we use the standard extension on the Cartesian product 6n of 6:
∀−→u ,−→v ∈ T (Σ,X )n −→u 6n

−→v ⇔ (∀i 1 ≤ i ≤ n ⇒ ui 6 vi). In which case the
induction hypothesis becomes:

REind(s ≈ t, <n, T (Σ)n) : (−→x ∈ T (Σ)n ∧−→x <n
−→x )⇒ s(−→x ) ≈ t(−→x )

and −→x is therefore the vector of free variables of REind(s ≈ t, <n, T (Σ)n).
In order to simplify the notations, and when no confusion can occur, we denote
it simply REind(s ≈ t, <). The following notation, where σ is any substitution,
will also be used:

REind(s ≈ t, <)σ : (−→x ∈ T (Σ)n ∧ −→x <n
−→x σ)⇒ s(−→x ) ≈ t(−→x )

There is no space here to detail how an inductive proof (that requires at least
second-order logic) can be formalized in HOLλσ[DHK01]. This is in particular
detailled in [Dep02] whose main idea relies on deduction modulo [DHK03], where
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the computational and deduction parts of a proof, as well as their interactions,
are identified as such. In first-order logic, for example based on the sequent cal-
culus, a congruence on propositions models computation and often consists of a
confluent term rewrite system, rewriting terms to terms and atomic propositions
to propositions. For instance, modulo such a congruence ∼, the right rule for the
conjunction in sequent calculus modulo is written:

Γ ⊢∼ A,∆ Γ ⊢∼ B,∆

Γ ⊢∼ D,∆
if D ∼ A ∧B.

In order to provide the notational support for expressing our proof search
methodology, this is further refined by writing the sequents Γ1|Γ2 ⊢RE1|RE2

Q,
where Γ1 is the deductive part of the user definitions, RE1 is their computational
part; Γ2 is the deductive part for other statements, RE2 is their computational
part; Q is an equational goal. The distinction between Γ1,RE1 and Γ2,RE2 is
needed because only RE1 will be used for narrowing. For simplicity, we assume
that RE1 contains only unconditional rules or equalities, and we assume from
now on, that Γ1 contains a constructor preserving theory E, such that (RE1, E)
is terminating and sufficiently complete modulo E. Γ2 is initialized with the
proposition NI defined above, with the theory of equality Th≈ satisfied by the
binary relation ≈, and, if the goal and the rules in RE2 contain n free variables,
with the proposition Noeth(<n, T (Σ)n), and may contain other lemmas. RE2

will receive the induction hypotheses provided by application of the proof search
rules, so RE2 may contain conditional equalities.

Example 2.1. Assume that RE1 contains the rules of simple arithmetic given in
Figure 1. RE1 is terminating and sufficiently complete modulo associativity and
commutativity of the ∗ and + operators (denoted AC(+, ∗)). Let Γ1 = AC(+, ∗),
Γ2 = Th≈ ∪ {NI, Noeth(<4, T (Σ)4)}, and Q = (x1 + x2 + x3) ∗ x4 ≈ x1 ∗ x4 +
x2 ∗ x4 + x3 ∗ x4. Then, we can consider the goal Γ1|Γ2 ⊢RE1|∅ Q.

The proof search rules are presented in Figure 2.

Sequents are gathered in a multiset structure modeled with the • operator
that is an AC operator on sequents with 3 as neutral element.

The rule Induce performs the induction step. It uses narrowing to choose
both the induction variable(s) and the instantiation schema. Narrowing is applied
only at defined innermost positions DI(Q′) of a goal Q′ E-equivalent to the
current goal Q. Indeed Q′ may be Q itself, and this will be the case for the
derived inference systems where E is A or AC.

The other rules are doing the following: Trivial eliminates a trivial equation,
Rewrite (1 or 2) rewrites using a rule, an equation, or a smaller instance of
a previous goal. Rewrite is duplicated because of the Γ1,RE1 and Γ2,RE2

distinction.

This inference rule set is generic and prepares to more operational versions
tailored for AC and A-theories.
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Induce Γ1|Γ2 ⊢RE1|RE2
Q ֌

•
l → r ∈ RE1

σ′ ∈ CSUCE(Q′
|ω′ , l)

Γ1|Γ2 ⊢RE1|RE2σ′∪{REind(Q,<)σ′} (Q′[r]ω′)σ′

if Q′ =E Q and ω′ ∈ DI(Q′)

Rewrite1 Γ1|Γ2 ⊢RE1|RE2
Q ֌ Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE1/E Q′

Rewrite2 Γ1|Γ2 ⊢RE1|RE2
Q ֌ Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE2/E Q′

Trivial Γ1|Γ2 ⊢RE1|RE2
t ≈ t′ ֌ 3

if t =E t′

Refutation Γ1|Γ2 ⊢RE1|RE2
Q ֌ Refutation

when no other rules can be applied

Fig. 2. The proof search system IndNarrowModE

2.2 Properties of IndNarrowModE

From now on, let us assume that (R, E) is terminating and sufficiently complete
modulo E, and that E is constructor preserving.

Soundness: Proving soundness amounts showing that for each rule of the proof
search system IndNarrowModE of the form S ֌ S′, if S′ is derivable in the
sequent calculus modulo, then one can also build a proof of S. The main delicate
point is to prove this result for the Induce rule, as stated in the next theorem.

Theorem 2.1. If the sequent Γ1|Γ2,
−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q)σ′}

(Q′[r]ω′)σ′ is derivable in the sequent calculus modulo, where:

1. Q =E Q′ and ω′ ∈ DI(Q′);
2. l→ r ∈ RE1 and σ′ ∈ CSUCE(Q′

|ω′ , l);
3. RE2σ

′ is the rewrite system obtained by the replacement of each free variable
x of any rewrite rule in RE2 by a corresponding xσ′;

4. −→xσ′ ∈ X nσ′ is the vector of free variables of RE2σ
′ ∪ {Qσ′};

then, one can build a proof in the sequent calculus modulo of Γ,−→x ∈
T (Σ)n ⊢RE1|RE2

Q where −→x ∈ X n denotes the vector of free variables of
RE2 ∪ {Q}.

Refutational correctness: Proving refutational correctness amounts showing
that for each rule of the proof search system IndNarrowModE of the form S ֌ S′,
if S is derivable in the sequent calculus modulo, then one can also build a proof
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of S′. Again the main delicate point is for the Induce rule, and is stated as
follows.

Theorem 2.2. If the sequent Γ1|Γ2,
−→x ∈ T (Σ)n ⊢RE1|RE2

Q where −→x ∈ X n is
the vector of free variables of RE2 ∪ {Q}, admits a proof in the sequent calculus
modulo, then one can build a proof of:

Γ1|Γ2,
−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q,<)σ′} (Q′[r]ω′)σ′

where Q′ =E Q, l → r ∈ RE1, ω
′ ∈ DI(Q′), σ′ ∈ CSUCE(Q′

|ω′ , l), and −→xσ′ ∈

X nσ′ is the vector of free variables of RE2σ
′ ∪ {Qσ′}.

Refutational completeness: Proving refutational completeness is achieved
thanks to the Refutation rule which applies when no other rule of IndNarrow
can be applied.

Theorem 2.3. If Γ1|Γ2 ⊢RE1|RE2
Q

∗

֌ Refutation then the sequent Γ1|Γ2,
−→x ∈

T (Σ)n ⊢RE1|RE2
Q has no proof in the sequent calculus modulo.

3 Induction modulo AC and A

The general IndNarrowModE proof search system is indeed working directly on
equivalence classes modulo E, a situation not directly implementable for most
theories E. To focus on more operational proof search systems where instead
of working with →R/E , we use the operational rewrite relation →R,E , we focus
in this section on the case of associative-commutative or associative theories.
We introduce two proof search systems IndNarrowModAC and IndNarrowModA
as special instances of IndNarrowModE with specific improvements and illustrat-
ing examples. Soundness and refutational correctness and completeness of these
systems will be consequences of the properties of IndNarrowModE.

3.1 More about flattened terms

In associative and associative-commutative theories, equivalence classes of terms
are often represented by flattened terms. We refer for the basic definitions and
results about positions and subterms to [Mar93]. Intuitively flattening a term
amounts to recursively replace f(f(s, t), u) or f(s, f(t, u)) by f(s, t, u) if f is
an associative symbol. This is the key point bridging the proof search systems
IndNarrowModAC and IndNarrowModA on the one hand, and IndNarrowModE on
the other hand.

From now on, we assume that some function symbols in a subset V of Σ
may have an unbounded arity. Let A(V) = {f(fxy)z ≈ fx(fyz) | f ∈ V} and
AC(V) = A(V) ∪ {fxy ≈ fyx | f ∈ V}. In the following, we assume that
all symbols in V are defined symbols, that constructor symbols do not have
unbounded arities, and that + and ∗ denote symbols with unbounded arity.
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[Mar93] defines a transformation which associates to each position in a given
term t a position in the flattening t of t, also called the flattening of this position.
However, a position in t is not always the flattening of some position in t, and
this led us to introduce the following definition:

Definition 3.1. For a flattened term s, a position ω ∈ Dom(s) is flattened if
there exist i, k ∈ N, and a word ω0, s.t. ω = ω0.i or ω = ω0.{i, i+ 1, . . . , i+ k}.

The above flattened positions are precisely the flattening of positions [Nah07]. To
define a rewrite relation on the set of flattened terms, the notion of replacement
has to be generalized:

Definition 3.2. Given two flattened terms s = fs1 . . . sn, t, and a position
ω ∈ s, the replacement by t in s at the position ω is inductively defined by:

– s[t]ε = t

– If ω ∈ {1, . . . , n}

• Case 1: there exist i, k ∈ N, such that ω = {i, i+ 1, . . . , i+ k}.

s[t]ω = fs1 . . . si−1 t si+k+1 . . . sn

• Case 2: otherwise, let {i1, . . . , ik} = {1, . . . , n} − ω.

s[t]ω = fsi1 . . . sik
t.

– s[t]i.ωi
= fs1 . . . si[ωi ← t] . . . sn.

Now, we introduce a rewrite relation on the set of flattened terms as follows:

Definition 3.3. Given a rewrite system R, we define the relation →R on the
set of flattened terms by s →R t whenever there exist a rule c ⇒ l → r ∈ R, a
flattened position ω ∈ Dom(s) and a substitution σ such that:

– s|ω = lσ, t = s[rσ]ω
– and the condition cσ is true.

If ≡p denotes the classical equivalence induced on the set of flattened terms by
permutation of the arguments of symbols in V, we consider the extension R/ ≡p

of R on the set of ≡p-equivalences. As previously, in order to perform induction
by narrowing at defined-innermost positions, we must define such positions for
flattened terms:

Definition 3.4. For any s ∈ T (Σ,X ), and for any ω ∈ Dom(s), the position ω
is called defined-innermost whenever there exist f ∈ Σ and terms s1, . . . , sn ∈
T (C,X ), such that s|ω = fs1 . . . sn, and moreover n = 2 if f ∈ V .

Intuitively, the position ω in s is defined-innermost when s|ω coincides with its
flattened form.
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InduceAC Γ1|Γ2 ⊢RE1|RE2
Q ֌

•
l → r ∈ RE1

σ ∈ CSUCAC(Q|ω, l)

Γ1|Γ2 ⊢RE1|RE2σ∪{REind(Q,<)σ} (Q[r]ω)σ

if ω ∈ DI(Q)

Rewrite1AC Γ1|Γ2 ⊢RE1|RE2
Q ֌ Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE1/≡p
Q′

Rewrite2AC Γ1|Γ2 ⊢RE1|RE2
Q ֌ Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE2/≡p
Q′

TrivialAC Γ1|Γ2 ⊢RE1|RE2
t ≈ t′ ֌ 3

if t ≡p t′

RefutationAC Γ1|Γ2 ⊢RE1|RE2
Q ֌ Refutation

when no other rules can be applied

Fig. 3. The proof search system IndNarrowModAC

InduceA Γ1|Γ2 ⊢RE1|RE2
Q ֌

•
l → r ∈ RE1

σ ∈ CSUCA(Q|ω, l)

Γ1|Γ2 ⊢RE1|RE2σ∪{REind(Q,<)σ} (Q[r]ω)σ

if ω ∈ DI(Q) and ω flattened.

Rewrite1A Γ1|Γ2 ⊢RE1|RE2
Q ֌ Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE1
Q′

Rewrite2A Γ1|Γ2 ⊢RE1|RE2
Q ֌ Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE2
Q′

TrivialA Γ1|Γ2 ⊢RE1|RE2
t ≈ t′ ֌ 3

if t 6= t′

RefutationA Γ1|Γ2 ⊢RE1|RE2
Q ֌ Refutation

when no other rules can be applied

Fig. 4. The proof search system IndNarrowModA

3.2 The proof search systems IndNarrowModAC and IndNarrowModA

The specific proof search systems IndNarrowModAC and IndNarrowModA are re-
spectively given in Figure 3 and Figure 4.
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Soundness, refutational correctness and completeness of IndNarrowModAC
and IndNarrowModA are consequences of the following proposition that states
a correspondence between a deduction on a goal Q using IndNarrowModE and
a deduction on the corresponding flattened goal using IndNarrowModAC or Ind-
NarrowModA.

Theorem 3.1. Let E = AC(V) (resp.E = A(V)).

1. If Γ1|Γ2 ⊢RE1|RE2
Q ֌IndNarrowModE Γ1|Γ2 ⊢RE1|RE′

2
R, then

Γ1|Γ2 ⊢RE1|RE2
Q ֌IndNarrowModAC Γ1|Γ2 ⊢RE1|RE′

2
R. (resp.

Γ1|Γ2 ⊢RE1|RE2
Q ֌IndNarrowModA Γ1|Γ2 ⊢RE1|RE′

2
R ).

2. If Γ1|Γ2 ⊢RE1|RE2
Q ֌IndNarrowModAC Γ1|Γ2 ⊢RE1|RE′

2
R (resp.

Γ1|Γ2 ⊢RE1|RE2
Q ֌IndNarrowModA Γ1|Γ2 ⊢RE1|RE′

2
R), there exists R′ such

that R′ =AC R (resp. R′ =A R), and Γ1|Γ2 ⊢RE1|RE2
Q ֌IndNarrowModE

Γ1|Γ2 ⊢RE1|RE′
2
R′

3.3 Two simple examples

In order to get a better intuition on the way these sets of rules are working, let
us look at two examples. In the following, we always refer to the specification
and the set of rewrite rules given in Figure 1. The first example of proof uses
AC properties of + and ∗ induction modulo AC, and the second one uses the
same rules but just associativity of these two symbols.

An AC−example: In the context of Example 2.1, let us consider the following
sequent: Γ1|Γ2 ⊢RE1|∅ Q and first apply the rule InduceAC. The innermost
positions in Q are 1.1.{1, 2}, 1.1.{1, 3}, 1.1.{2, 3}, 2.1, 2.2 and 2.3. Since the
goal remains equivalent by permutation of the variables x1, x2 and x3, only
two possibilities remain: narrowing at a position where the symbol + occurs, or
where the symbol ∗ occurs. Since the last choice creates more reductions than
the first one, we arbitrarily choose to narrow at the position 2.1 of the goal.
Therefore, we must compute the set CSUCAC(x1 ∗ x4, l) for any rewrite rule
l → r of RE1. This restricts to rules such that l(ε) = ∗, and we obtain:

l CSUCAC(x1 ∗ x4, l)

x ∗ 0
σ1 = {x1 → y1; x→ y1; x4 → 0}
σ2 = {x1 → 0; x→ y4; x4 → y4}

x ∗ s(y)
σ3 = {x1 → y1; x→ y1; y → y4; x4 → s(y4)}
σ4 = {x1 → s(y1); x→ y4; y → y1; x4 → y4}

After normalization, this leads us to prove the four sequents:

Γ1|Γ2 ⊢RE1|REind(Q)σ1
0 ≈ 0

Γ1|Γ2 ⊢RE1|REind(Q)σ2
(x2 + x3) ∗ y4 ≈ x2 ∗ y4 + x3 ∗ y4

Γ1|Γ2 ⊢RE1|REind(Q)σ3

(y1 + x2 + x3) ∗ y4 + y1 + x2 + x3

≈ y1 ∗ y4 + y1 + x2 ∗ y4 + x2 + x3 ∗ y4 + x3

Γ1|Γ2 ⊢RE1|REind(Q)σ4
(y1 + x2 + x3) ∗ y4 + y4 ≈ y1 ∗ y4 + y4 + x2 ∗ y4 + x3 ∗ y4
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Trivial gets rid of the first one. Since (y1, x2, x3, y4) <4 (y1, x2, x3, s(y4)),
Rewrite2 can be applied on the third one, and since (y1, x2, x3, y4) <4

(s(y1), x2, x3, y4), Rewrite2 can be applied on the fourth one. Hence we get:

Γ1|Γ2 ⊢RE1|REind(Q)σ2
(x2 + x3) ∗ y4 ≈ x2 ∗ y4 + x3 ∗ y4

Γ1|Γ2 ⊢RE1|REind(Q)σ3

y1 ∗ y4 + x2 ∗ y4 + x3 ∗ y4 + y1 + x2 + x3

≈ y1 ∗ y4 + y1 + x2 ∗ y4 + x2 + x3 ∗ y4 + x3

Γ1|Γ2 ⊢RE1|REind(Q)σ4

y1 ∗ y4 + x2 ∗ y4 + x3 ∗ y4 + y4
≈ y1 ∗ y4 + y4 + x2 ∗ y4 + x3 ∗ y4

Trivial gets rid of the two last subgoals. The application of Induce to the first
one at position 2.1 generates four subgoals. Trivial gets rid of the two first ones,
the application of Rewrite2 to the last ones creates two new subgoals which are
trivial and we are done.

An A-example: Assume thatRE1 contains the rules of simple arithmetic given
in Figure 1. RE1 is terminating and sufficiently complete modulo associativity
of the ∗ and + operators (denoted A(+, ∗)) Let us prove that distributivity of ∗
over + is an inductive theorem.
Let Γ1 = A(+, ∗), Γ2 = Th≈∪{NI, Noeth(<3, T (Σ)3)}, andQ = x1∗(x2+x3) ≈
x1 ∗ x2 + x1 ∗ x3. Let us start from the sequent: Γ1|Γ2 ⊢RE1|∅ Q.
We can apply InduceA at the innermost positions 1.2, 2.1 and 2.2 in Q and
Theorem 2.1 ensures that each of these choices is correct. Since narrowing at
position 2.1 creates less further reductions than the ones at positions 1.2 or 2.2,
we choose to narrow at the position 2.2 of the goal. Thus, we need to compute
CSUCA(x1 ∗x3, l) for any rewrite rule l→ r of RE1. This restricts to rules such
that l(ε) = ∗, and we obtain:

l CSUCA(x1 ∗ x3, l)
x ∗ 0 σ1 = {x1 → y1; x→ y1; x3 → 0}
x ∗ s(y) σ2 = {x1 → y1; x→ y1; y → y3; x3 → s(y3)}

After normalization, we obtain the subgoals:

Γ1|Γ2 ⊢RE1|REind(Q)σ1
y1 ∗ x2 ≈ y1 ∗ x2

Γ1|Γ2 ⊢RE1|REind(Q)σ2
y1 ∗ (x2 + y3) + y1 ≈ y1 ∗ x2 + y1 ∗ y3 + y1

Trivial gets rid of the first subgoal. Since (y1, x2, y3) <3 (y1, x2, s(y3)),
Rewrite2A can be applied on the second one. Hence, we get:

Γ1|Γ2 ⊢RE1|REind(Q)σ2
y1 ∗ x2 + y1 ∗ y3 + y1 ≈ y1 ∗ x2 + y1 ∗ y3 + y1

and Trivial gets rid of this last subgoal.
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4 Conclusion

We have extended the inductive proof search method based on narrowing to the
case where theories contain non-orientable axioms. The main inference rule is
based on a restricted application of narrowing at defined-innermost positions and
with a restricted notion of equational unifiers based only on constructors. This
general approach is proved correct and refutationaly complete. We then applied
it to the specific case of rewriting modulo AC or A axioms and show on two
examples how the method safely restricts the proof search space. This provides
a significant improvement on the current inductive proof search approaches.

An interesting side result of our approach is the introduction of a new kind
of E-unifiers that we called constructor E-unifiers. In the case of associative and
associative commutative theories E, they have the nice property to considerably
reduce the number of unifiers to be considered in a complete set of unifiers that
may be huge or even infinite in these theories. A natural and challenging question
is to build a unification theory for these specific unifiers.

First motivated by the wish to provide a bridge between explicit and implicit
induction, our approach achieves this goal through a specific instance of the se-
quent calculus modulo [DHK01] that clarifies the respective roles and uses of the
noetherian induction principle and of equational rewriting. As a consequence, we
plan to have an automated construction of such proofs into the sequent calculus
for insertion into proof assistants like lemuridæ which is based on superdeduc-
tion [BHK07]. Such proof assistants will therefore rely on an implementation of
our inference systems, a task that still remains to be done.
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Orsay (France), October 1993.

Nah07. F. Nahon. Preuves par induction dans le calcul des séquents modulo. PhD
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Abstract. We have previously shown how the distillation program trans-
formation algorithm can be used to prove inductive theorems in which
there is no explicit quantification, and all variables are assumed to be
implicitly universally quantified. These techniques were implemented in
the theorem prover Poit́ın. In this paper, we show how Poit́ın can be ex-
tended to prove inductive theorems which contain explicit universal and
existential quantifiers. This extension has also been implemented and
added to Poit́ın; we give the results of applying the resulting theorem
prover to a number of example conjectures.

1 Introduction

A wide range of inductive theorem proving systems have been developed (for
example, NQTHM [4], CLAM [7], INKA [2], RRL [15]), but these tend to con-
centrate mainly on universal quantification. The inclusion of existential quantifi-
cation is very problematic and greatly complicates the theorem proving process.
The usual approach to proving existential inductive conjectures is to try to con-
structively find witnesses and prove that they satisfy the respective inductive
property. However, the finding of such witnesses often requires the use of higher-
order unification, which is in general undecidable. In this paper, we present an
alternative approach to proving existential conjectures which performs a pure
existence proof without the need to construct existential witnesses.

In previous work [11], we have presented the distillation program transfor-
mation algorithm, which was originally devised with the goal of eliminating in-
termediate data structures from functional programs. The distillation algorithm
was largely influenced by Turchin’s supercompilation [21], but improves greatly
upon it. For example, supercompilation can only produce a linear speedup in pro-
grams, while distillation can produce a superlinear speedup. Turchin has shown
how supercompilation can be used in inductive theorem proving [20], which also
influenced our work on showing how the distillation algorithm can be used in
inductive theorem proving in our theorem prover Poit́ın [10].

Our previous work on Poit́ın did not include any explicit quantification; all
free variables within the input conjecture were assumed to be implicitly univer-
sally quantified. In this paper, we show how Poit́ın can be extended to prove
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inductive theorems which contain explicit universal and existential quantifiers.
This extension has also been implemented and added to Poit́ın. We apply the re-
sulting theorem prover to a number of example conjectures, the results of which
are very promising.

The remainder of this paper is organised as follows. In Section 2, we give a
brief overview of the distillation algorithm. In Section 3, we define rules to show
how the Poit́ın theorem prover can be extended to handle explicit quantification
and give examples of the application of these rules. In Section 4, we give the
results of applying our extended version of Poit́ın to a number of inductive
conjectures. In Section 5, we consider related work, and Section 6 concludes.

2 Distillation

In this section, we define the language used throughout this paper and we give a
brief overview of the distillation algorithm. Due to space constraints, we cannot
give much detail of the algorithm here; full details can be found in [11].

Definition 1 (Language). The language used throughout this paper is a simple

higher-order functional language as shown in Fig. 1. 2

prog ::= e0 where f1 = e1 ; . . . ; fn = en ; program
e ::= v variable

| c e1 ... en constructor application
| λv.e lambda abstraction
| f function variable
| e0 e1 application
| case e0 of p1 ⇒ e1 | ... | pk ⇒ ek case expression
| let v = e0 in e1 let expression
| letrec f = e0 in e1 letrec expression

p ::= c v1 . . . vn pattern

Fig. 1. Language

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. The intended operational semantics of the language is normal
order reduction. It is assumed that the language is typed using the Hindley-
Milner polymorphic typing system (so erroneous terms such as (c e1 . . . en) e

and case (λv.e) of p1 ⇒ e1 | · · · | pk ⇒ ek cannot occur). The variables in the
patterns of case expressions and the arguments of λ-abstractions are bound;
all other variables are free. We use the notation e[e1/v1 . . . en/vn] to represent
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the simultaneous substitution of the sub-expressions e1, . . . , en for the free oc-
currences of variables v1, . . . , vn, respectively, within e. We require that each
function has exactly one definition and that all variables within a definition are
bound. The propositional operators (and , or , implies, etc.) are implemented as
functions in this language.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has
arity 2. Within the expression case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek , e0 is called
the selector, and e1 . . . ek are called the branches. The patterns in case expres-
sions may not be nested. Methods to transform case expressions with nested
patterns to ones without nested patterns are described in [1,23]. No variables
may appear more than once within a pattern. We assume that the patterns in a
case expression are non-overlapping and exhaustive.

Distillation is a powerful program transformation technique to remove in-
termediate data structures from higher-order functional programs and is sig-
nificantly more powerful than the supercompilation algorithm [21]. This extra
power is obtained through the use of a stronger form of matching prior to fold-
ing. In supercompilation, matching is performed on flat terms only; functions
are considered to match only if they have the same name. In the distillation
algorithm, matching is also performed on recursive terms, so different functions
are considered to match if their corresponding recursive definitions also match.

The transformation rules in distillation are of the form T [[e]] ρ φ where e
is the expression to be transformed, ρ is the set of previously encountered ex-
pressions and φ is the set of function definitions. These rules essentially perform
normal-order reduction. Folding is performed when an expression is encountered
which is an instance of a previously encountered expression, and generalization

is performed to ensure termination of the transformation process. This general-
ization is performed when an expression is encountered which is an embedding

of a previously encountered expression. The form of embedding which we use to
guide this generalization is the homeomorphic embedding relation which was de-
rived from results by Higman [12] and Kruskal [18] and was defined within term
rewriting systems [8] for detecting the possible divergence of the term rewriting
process.

Definition 2 (Distilled Form). The expressions resulting from the distillation

of a boolean expression are in the distilled form dt as defined in Fig. 2. 2

In addition, all of the functions within a distilled expression are terminating, as
all possibly non-terminating functions are replaced by ⊥ during distillation.

In order to use the distillation algorithm within our inductive theorem prover
Poit́ın, we apply distillation to the input conjecture. The result of this transfor-
mation will be in distilled form. Inductive proof rules are then applied to this
expression to try and prove it. The output from these proof rules will be ei-
ther True indicating that the conjecture is true, or else ⊥ which provides no
information.
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dt := v
| True
| False
| ⊥
| case v of p1 ⇒ dt′1 | . . . | pk ⇒ dt′k
| letrec f = λv1 . . . vn.dt in f v′1 . . . v

′
n

| f e1 . . . en

Fig. 2. Distilled Form of Boolean Expressions

3 Explicit Quantification in Poit́ın

In this section, we show how the theorem prover Poit́ın can be extended to handle
explicit quantification. We add quantifiers of the form ALL v.e and EX v.e to
our language and, later in this section, we define sets of rules A for handling
universal quantifiers and E for handling existential quantifiers. A proof of the
soundness of these rules can be found in a longer version of this paper [14].
The transformation rules T for distillation are extended to be able to handle
quantifiers as shown in Fig. 3.

T [[ALL v1 . . . vn.e]] ρ φ = A[[e′]] {} {v1 . . . vn} (T 1)
where
e′ = T [[e]] {} φ

T [[EX v1 . . . vn.e]] ρ φ = E [[e′]] {} {v1 . . . vn} (T 2)
where
e′ = T [[e]] {} φ

Fig. 3. Distillation Rules for Quantifiers

Rule (T 1) handles universally quantified expressions. Within a universally quan-
tified expression ALL v1 . . . vn.e, the subterm e (within which the variables
v1 . . . vn are therefore free) is first of all transformed using the rules T for distil-
lation. The proof rules defined by A are then applied to the resulting expression.
In a similar way, existential quantification is handled by application of the rule
(T 2). Within an existentially quantified expression EX v1 . . . vn.e, the subterm
e is first of all transformed using the rules T for distillation. The proof rules
defined by E are then applied to the resulting expression.
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If there are a number of nested quantifiers within the conjecture to be proved,
then the proof rules will be applied to the innermost quantified term first. These
inner quantified terms may contain free variables, which will be bound by another
quantifier in some outer scope. The term resulting from the application of these
proof rules may therefore also contain free variables if these were present in
the original term. We therefore construct a hierarchy of transformations which
correspond to metasystem transitions [22,9].

3.1 Proving Universally Quantified Conjectures.

The rules for proving a universally quantified conjecture e are defined by A[[e]] ρ φ
as shown in Fig. 4, where the parameter ρ is the set of previously encountered
function calls and φ is the set of universally quantified variables.

A[[v]] ρ φ = ⊥, if v ∈ φ
= v, otherwise

(A1)

A[[True]] ρ φ = True (A2)

A[[False]] ρ φ = ⊥ (A3)

A[[⊥]] ρ φ = ⊥ (A4)

A[[case v of p1 : e1 | . . . | pn : en]] ρ φ (A5)
= (A[[e1]] ρ (φ ∪ {v11 . . . v1k1})) ∧ . . . ∧ (A[[en]] ρ (φ ∪ {vn1 . . . vnkn})),

if v ∈ φ
= case v of p1 : (A[[e1]] ρ φ) | . . . | pn : (A[[en]] ρ φ), otherwise
where
pi = ci vi1 . . . viki

A[[letrec f = λv1 . . . vn.e0 in f v1 . . . vn]] ρ φ (A6)
= A[[e0]] (ρ ∪ {f v1 . . . vn}) φ, if {v1 . . . vn} ⊆ φ
= letrec f = λv′1 . . . v

′
k.(A[[e0]] (ρ ∪ {f v1 . . . vn}) φ) in f v′1 . . . v

′
k,

otherwise
where
v′1 . . . v

′
k = {v1 . . . vn} \ φ

A[[f e1 . . . en]] ρ φ (A7)
= True, if {v1 . . . vn} ⊆ φ
= (f v′1 . . . v

′
k)[e1/v1 . . . en/vn], otherwise

where
(f v1 . . . vn) ∈ ρ
v′1 . . . v

′
k = {v1 . . . vn} \ φ

Fig. 4. Proof Rules for Universal Quantification
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Note that these rules will only be applied to terms which are in distilled form.
Using these rules, the universally quantified variables contained within φ are
eliminated, and a simplified expression defined over the remaining free variables
is obtained. If there are no free variables, then the input conjecture is either
reduced to True indicating that it is true, or else ⊥ which provides no informa-
tion. In rule (A1), if a universally quantified variable is encountered, then since
it must be a Boolean, the value ⊥ is returned as the variable cannot always be
True. If a free variable is encountered, then it is left unchanged. In rule (A2),
if the value True is encountered, then the value True is returned. In rules (A3)
and (A4), if the values False or ⊥ are encountered, then the value ⊥ is returned.
In rule (A5), if we encounter a case expression, then since this expression will
be in distilled form, the redex must be a variable. If this variable is free, then
it remains in the resulting term, and the proof rules are further applied to the
branches of the case expression. If the selector variable is universally quantified,
then a case split is performed in which we prove the current term separately for
each of the possible values of the selector, and then return the conjunction of
the resulting values. The different possible values of the selector are simply the
patterns within the case expression. In rule (A6), if we encounter a letrec func-
tion definition and all the parameters in the initial application of this function
are universally quantified, then this function application is a potential inductive
hypothesis. Since at least one of these parameters must be decreasing, this pa-
rameter can be used as the induction variable. If we subsequently encounter a
recursive call of this function in rule (A7), then we have re-encountered this in-
ductive hypothesis, so the value True is returned. If a function definition contains
free variables, then the function is re-defined over these free variables.

Example 1. Consider the following conjecture:

ALL xs ys.eqnum (length (append xs ys)) (plus (length xs) (length ys))
where
eqnum = λx.λy.case x of

Zero ⇒ case y of
Zero ⇒ True

| Succ y ′ ⇒ False

| Succ x ′ ⇒ case y of
Zero ⇒ False

| Succ y ′ ⇒ eqnum x ′ y ′

length = λxs.case xs of
Nil ⇒ Zero
| Cons x xs ′ ⇒ Succ (length xs ′)

append = λxs.λys.case xs of
Nil ⇒ ys

| Cons x xs ′ ⇒ Cons x (append xs ′ ys)
plus = λx.λy.case x of

Zero ⇒ y

| Succ x ′ ⇒ Succ (plus x ′ y)
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This conjecture states that the length of appending two lists is equal to the sum
of their individual lengths. The result of distilling this term is as follows:

letrec
f0 = λxs.case xs of

Nil ⇒ case ys of
Nil ⇒ True

Cons y ys ′ ⇒
letrec
f1 = λy.λys′.case ys ′ of

Nil ⇒ True

| Cons y ′ ys ′′ ⇒ f1 y ′ ys ′′

in f1 y ys ′

| Cons x xs ′ ⇒ f0 xs ′

in f0 xs

The proof of this term proceeds as shown in Figs 5 and 6.

A[[f0 xs]] {} {xs, ys}
= (by A6)
A[[ case xs of

Nil ⇒ case ys of
Nil ⇒ True
Cons y ys ′ ⇒

letrec
f1 = λy.λys′. case ys ′ of

Nil ⇒ True
| Cons y ′ ys ′′ ⇒ f1 y ′ ys ′′

in f1 y ys ′

| Cons x xs ′ ⇒ f0 xs ′]] {f0 xs} {xs, ys}
= (by A5)
(A[[ case ys of

Nil ⇒ True
| Cons y ys ′ ⇒ letrec f1 = λy.λys′. case ys ′ of

Nil ⇒ True
| Cons y ′ ys ′′ ⇒ f1 y ′ ys ′′

in f1 y ys ′]] {f0 xs} {xs, ys})
∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})
= (by A5)
(A[[True]] {f0 xs} {xs, ys})
∧ (A[[ letrec f1 = λy.λys′. case ys ′ of

Nil ⇒ True
| Cons y ′ ys ′′ ⇒ f1 y ′ ys ′′

in f1 y ys ′]] {f0 xs} {xs, ys, y, ys′}) ∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})

Fig. 5. Universal Proof
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= (by A2)
True ∧ (A[[ letrec f1 = λy.λys′. case ys ′ of

Nil ⇒ True
| Cons y ′ ys ′′ ⇒ f1 y ′ ys ′′

in f1 y ys ′]] {f0 xs} {xs, ys, y, ys′})
∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})

= (by A6)
True ∧ (A[[ case ys ′ of

Nil ⇒ True
| Cons y ′ ys ′′ ⇒ f1 y ′ ys ′′]] {f0 xs, f1 y ys ′} {xs, ys, y, ys′})

∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})
= (by A5)
True ∧ (A[[True]] {f0 xs , f1 y ys ′} {xs, ys, y, ys′})

∧ (A[[f1 y ′ ys ′′]] {f0 xs, f1 y ys ′} {xs, ys, y, ys′, y′, ys′′})
∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})

= (by A2)
True ∧ True ∧ (A[[f1 y ′ ys ′′]] {f0 xs, f1 y ys ′} {xs, ys, y, ys′, y′, ys′′})

∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})
= (by A7)
True ∧ True ∧ True ∧ (A[[f0 xs ′]] {f0 xs} {xs, ys, x, xs′})
= (by A7)
True ∧ True ∧ True ∧ True
= True

Fig. 6. Universal Proof (continued)

3.2 Proving Existentially Quantified Conjectures.

The rules for proving an existentially quantified conjecture e are defined by
E [[e]] ρ φ as shown in Fig. 7, where the parameter ρ is the set of previously
encountered function calls and φ is the set of existentially quantified variables.
Using these rules, the existentially quantified variables contained within φ are
eliminated, and a simplified expression over the remaining free variables is ob-
tained. The rules are similar to those for universal quantification, with the only
differences being in rules (E1), (E5), (E6) and (E7). In rule (E1), if an existen-
tially quantified variable is encountered, then since it must be a Boolean, the
value True is returned as the value of the variable can be True. In rule (E5), if
the selector in a case expression is an existentially quantified variable, then we
also perform a case split and prove the current term separately for each of the
possible values of the selector, but in this instance we return the disjunction of
the resulting values. In rules (E6) and (E7), function applications are no longer
possible inductive hypotheses as they contain existential variables. However, if
all of the parameters in a function application are existentially quantified then
the value ⊥ is returned as we know that the search space of these existential
variables has been exhausted.
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E [[v]] ρ φ = True, if v ∈ φ
= v otherwise

(E1)

E [[True]] ρ φ = True (E2)

E [[False]] ρ φ = ⊥ (E3)

E [[⊥]] ρ φ = ⊥ (E4)

E [[case v of p1 : e1 | . . . | pn : en]] ρ φ (E5)
= (E [[e1]] (φ ∪ {v11 . . . v1k1})) ∨ . . . ∨ (E [[en]] ρ (φ ∪ {vn1 . . . vnkn})),

if v ∈ φ
= case v of p1 : (E [[e1]] ρ φ) | . . . | pn : (E [[en]] ρ φ), otherwise
where
pi = ci vi1 . . . viki

E [[letrec f = λv1 . . . vn.e0 in f v1 . . . vn]] ρ φ (E6)
= E [[e0]] (ρ ∪ {f v1 . . . vn}) φ, if {v1 . . . vn} ⊆ φ
= letrec f = λv1 . . . vk.(E [[e0]] (ρ ∪ {f v1 . . . vn}) φ) in f v1 . . . vk,

otherwise
where
v1 . . . vk = {v1 . . . vn} \ φ

E [[f e1 . . . en]] ρ φ (E7)
= ⊥, if {v1 . . . vn} ⊆ φ
= (f v′1 . . . v

′
k)[e1/v1 . . . en/vn], otherwise

where
(f v1 . . . vn) ∈ ρ
v′1 . . . v

′
k = {v1 . . . vn} \ φ

Fig. 7. Proof Rules for Existential Quantification

Example 2. Consider the following conjecture:

ALL x.EX y.iff (even x ) (eqnum (double y) x )
where
iff = λx.λy.case x of

True ⇒ y

| False ⇒ case y of
True ⇒ False

| False ⇒ True

even = λx.case x of
Zero ⇒ True

| Succ x ′ ⇒ case x ′ of
Zero ⇒ False

| Succ x ′′ ⇒ even x ′′
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eqnum = λx.λy.case x of
Zero ⇒ case y of

Zero ⇒ True

| Succ y ′ ⇒ False

| Succ x ′ ⇒ case y of
Zero ⇒ False

| Succ y ′ ⇒ eqnum x ′ y ′

double = λx.case x of
Zero ⇒ Zero
| Succ x ′ ⇒ Succ (Succ (double x ′))

This conjecture states that for all values of x, there exists a y such that if x
is even, then y is exactly half of x. The result of distilling this term is as follows:

letrec f1 = λx.λy.case x of
Zero ⇒ case y of

Zero ⇒ True

| Succ y ′ ⇒ False

| Succ x ′ ⇒ case x ′ of
Zero ⇒ case y of

Zero ⇒ True

| Succ y ′ ⇒ True

| Succ x ′′ ⇒ f1 x ′′ y

in f1 x y

As the innermost quantifier in the original conjecture is an existential quantifier,
existential proof rules are applied first to this term as shown in Figs 8 and 9.

E [[ letrec f1 = λx.λy. case x of
Zero ⇒ case y of

Zero ⇒ True
| Succ y ′ ⇒ False

| Succ x ′ ⇒ case x ′ of
Zero ⇒ case y of

Zero ⇒ True
| Succ y ′ ⇒ True

| Succ x ′′ ⇒ f1 x ′′ y
in f1 x y ]] {} {y}

Fig. 8. Example Proof

As the outermost quantifier in the original conjecture is a universal quantifier,
universal proof rules are then applied to the resulting term as shown in Fig. 10.
The result of applying these rules is the value True, so the original conjecture
has been proved.
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= (by E6)
letrec f1 = λx.E [[ case x of

Zero ⇒ case y of
Zero ⇒ True

| Succ y ′ ⇒ False
| Succ x ′ ⇒ case x ′ of

Zero ⇒ case y of
Zero ⇒ True

| Succ y ′ ⇒ True
| Succ x ′′ ⇒ f1 x ′′ y ]] {f1 x y} {y}

in f1 x
= (by E5, E5)
letrec
f1 = λx. case x of

Zero ⇒ E [[ case y of
Zero ⇒ True

| Succ y ′ ⇒ False]] {f1 x y} {y}
| Succ x ′ ⇒ case x ′ of

Zero ⇒ E [[ case y of
Zero ⇒ True

| Succ y ′ ⇒ True]] {f1 x y} {y}
| Succ x ′′ ⇒ E [[f1 x ′′ y ]] {f1 x y} {y}

in f1 x
= (by E5, E5)
letrec f1 = λx. case x of

Zero ⇒ (E [[True]] {f1 x y} {y})
∨ (E [[False]] {f1 x y} {y})

| Succ x ′ ⇒ case x ′ of
Zero ⇒ (E [[True]] {f1 x y} {y})

∨ (E [[True]] {f1 x y} {y})
| Succ x ′′ ⇒ E [[f1 x ′′ y ]] {f1 x y} {y}

in f1 x
= (by E2, E3, E2, E2, E7)
letrec f1 = λx. case x of

Zero ⇒ True
| Succ x ′ ⇒ case x ′ of

Zero ⇒ True
| Succ x ′′ ⇒ f1 x ′′

in f1 x

Fig. 9. Example Proof (continued)

4 Results

Some results of applying Poit́ın to a range of conjectures are shown in Table 1.
The times given in this table are for an average of 10 runs on an Intel Pentium
4 PC with 2.40 GHz and 512 MB RAM. As can be seen, these times are all
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A[[ letrec f1 = λx. case x of
Zero ⇒ True

| Succ x ′ ⇒ case x ′ of
Zero ⇒ True

| Succ x ′′ ⇒ f1 x ′′

in f1 x ]] {} {x}
= (by A6)
A[[ case x of

Zero ⇒ True
| Succ x ′ ⇒ case x ′ of

Zero ⇒ True
| Succ x ′′ ⇒ f1 x ′′]] {f1 x} {x}

= (by A5, A5)
(A[[True]] {f1 x} {x}) ∧ (A[[True]] {f1 x} {x, x′})

∧ (A[[f1 x ′′]] {f1 x} {x, x′, x′′})
= (by A2, A2, A7)
True ∧ True ∧ True
= True

Fig. 10. Example Proof (continued)

very low, so the results are encouraging. All the conjectures were proved by
performing only generalization without using any intermediate lemmas, whereas
some other inductive theorem provers require both lemmas and generalizations
to prove these theorems. Some of the conjectures listed in Fig. 1 were proved by
SPIKE [3] using a divergence critic [24], NQTHM [4,5], CLAM [7] using rippling,
and Periwinkle [16] by proposing lemmas or performing generalizations.

5 Related Work

The distillation algorithm and the Poit́ın theorem prover were largely inspired
by Turchin’s work on supercompilation [21], and its use in theorem proving [20].
Over-generalization occurs a lot more frequently when using supercompilation
as opposed to distillation, thus greatly limiting its power. In order to show that
the term resulting from supercompilation terminates, Turchin requires that all
functions are total, so the onus is on the user to show that this really is the case.
In Poit́ın, the termination of the term resulting from distillation is determined
automatically. Turchin’s use of metasystem transitions in theorem proving is
analagous to the hierarchy of transformations which we use in Poit́ın.

A number of different approaches have been developed to identify potentially
failing proof attempts, and to apply appropriate techniques to allow the proof to
go through. Rippling is a powerful technique developed at the University of Ed-
inburgh for proving theorems involving explicit induction [6]. In the step case of
an inductive proof, the induction conclusion typically differs from the induction
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No. Conjecture Time
(in Seconds)

1. ALL x.ALL y.eqnum (plus x y) (plus y x) 0.0094
2. ALL x.eqnum (plus x (Succ x)) (Succ (plus x x)) 0.0016
3. ALL x.ALL y.ALL z.eqnum (plus (plus x y) z ) (plus x (plus y z )) 0.0032
4. ALL x.eqnum (plus (plus x x) x) (plus x (plus x x)) 0.0046
5. ALL x.eqnum (gcd x x) x 0.0016
6. ALL x.ALL y.eqnum (sub (plus x y) x) y 0.0016
7. ALL x.odd (plus (Succ x) x) 0.0015
8. ALL x.ALL y.eqnum (plus x (Succ y)) (Succ (plus x y)) 0.0015
9. ALL x.even (plus x x) 0.0016
10. ALL x.even (doublea x Zero) 0.0016
11. ALL x.ALL y.((even x) ∧ (even y)) ⇒ (even (plus x y)) 0.0078
12. ALL x.(eqbool (even x) (True)) ⇒ (eqbool (odd x) (False)) 0.0015
13. ALL x.EX y.(even x) ⇔ (eqnum (double y) x) 0.0077
14. ALL x.EX y.(even x) ⇔ (eqnum (mult y (Succ (Succ Zero))) x) 0.0016
15. ALL x.ALL y.EX z.(less x y) ⇒ (eqnum (plus x z ) y) 0.0032
16. ALL x.EX y.(eqnum x Zero)∨(eqnum x (Succ y)) 0.0031
17. ALL x.EX y.eqnum y (plus x (Succ Zero)) 0.0032
18. ALL x.ALL y.EX z.(leq y x) ⇒ (eqnum (plus z y) x) 0.0046
19. ALL x.EX y.(eqnum (double y) x) ∨ (eqnum (Succ (double y)) x) 0.0015
20. ALL x.ALL y.EX z.(eqnum (plus x z ) y) ∨ (eqnum (sub x z ) y) 0.022
21. ALL xs.ALL ys.eqnum (length (append xs ys)) (length (append ys xs)) 0.0109
22. ALL xs.ALL ys.eqnum (length (append xs ys)) (plus (length xs) (length ys)) 0.0016
23. ALL xs.ALL ys.ALL zs.eqlist (append xs (append ys zs))

(append (append xs ys) zs) 0.0063
24. ALL xs.ALL ys.(even (length (append xs ys))) ↔

(even (length (append ys xs))) 0.0548
Table 1. Some Conjectures Proved by Poit́ın

hypothesis. Rippling uses annotations to mark these differences and applies an-
notated rewrite rules to remove them. In the case where no rewrite rules can be
applied, the proof becomes blocked. In this case, proof critics [13] can be applied.
Various critics for explicit induction have been developed that speculate missing
lemmas, perform generalizations, etc. There are significant differences between
the rippling approach, and the approach described here. Firstly, rippling works
in an explicit induction setting, as opposed to the implicit approach described
here. Secondly, in rippling, the difference matching is performed statically on the
rewrite rules (although a dynamic version of rippling has also been developed
[19]). In distillation, this difference matching is dynamically performed on each
term as it is encountered during rewriting. Thirdly, rippling often requires the
use of additional lemmas to allow the proof to go through. This may therefore
require a reasonable amount of search, and possible user guidance. In Poit́ın, no
additional lemmas are required, thus reducing the amount of search required,
and allowing proofs to be performed fully automatically.
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The notion of rippling has been extended to be able to deal with existentially
quantified variables and synthesis in the work on middle-out reasoning [16]. This
approach requires trying to construct existential witnesses and prove that they
satisfy the required property. However, the finding of such witnesses usually
requires the use of higher-order unification, which is in general undecidable. In
the approach presented here we perform a pure existence proof without the need
to construct existential witnesses.

In [17], rippling is combined with matrix-based constructive theorem proving.
This approach is used to generate inductive specification proofs and for automat-
ing the synthesis of recursive programs. This approach does have the advantage
that it guarantees that the synthesized program is correct, so this does not need
to be verified afterwards. However, like the other approaches described here, it
does require a high degree of user interaction, which is not the case for Poit́ın.

6 Conclusions

In this paper, we have shown how the Poit́ın theorem prover can be extended to
prove inductive theorems which contain explicit universal and existential quan-
tification. We argue that the Poit́ın theorem prover greatly extends the range
of theorems which can be proved fully automatically without the need for in-
termediate lemmas. Poit́ın is also fully deterministic and only needs to search
through a subset of previously encountered expressions, rather than through a
large collection of rules and axioms. We therefore argue that Poit́ın is likely to
be more efficient than other theorem provers which have a relatively large search
space and require backtracking.

We have implemented the described extension to the Poit́ın theorem prover,
and shown some of the results obtained by applying it to a range of inductive
conjectures. Although the results are encouraging, there are still a number of
fairly straightforward conjectures which cannot currently be proved by Poit́ın;
we are currently working on these. There are a number of possible directions
for further work. Firstly, the implementation of Poit́ın must be improved as
mentioned above, and run on a wider range of test cases. This would allow a more
thorough examination of the range of theorems which can be proved by Poit́ın,
and a more detailed comparison with other theorem provers. Secondly, Poit́ın
cannot currently extract programs from existential proofs. Work is currently
under way to try to achieve this. This would then allow us to construct programs
from their specifications.
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Abstract

This paper explores the use of resolution as a meta-framework for developing
different deduction calculi for modal dynamic logics. Dynamic modal logics are
PDL-like extended modal logics which are closely related to description logics.
We show how tableau systems, modal resolution systems and Rasiowa-Sikorski
systems, which are dual tableau systems, can be developed and studied by using
standard principles and methods of first-order theorem proving. The approach is
based on the translation of modal logic reasoning problems to first-order clausal
form and using a suitable refinement of resolution to construct and mimic deriva-
tions of the desired proof method. The inference rules of the calculus can then
be read off from the clausal form used. We show how this approach can be used
to generate new proof calculi for logics that have not been considered in the lit-
erature before and prove soundness, completeness and decidability results. This
slightly unusual approach allows us to gain new insight and results for familiar
and less familiar logics and different proof methods, and compare them in a
common framework.
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Abstract. We present very short mechanised proofs of Bachmair and
Dershowitz’s termination theorem in different variants of Kleene alge-
bras. Through our experiments we also discover three novel refinement
laws for nested infinite loops. Finally, we introduce novel divergence mod-
ules in which full automation could be achieved. These structures seem
very promising for automated reasoning about infinite behaviours in pro-
grams and discrete dynamical systems.

1 Introduction

In 1986, in a fundamental study of commutation, transformation and termination
properties of rewrite systems [4], Bachmair and Dershowitz proved the following,
by now classical theorem: Termination of the union of two rewrite systems can
be separated into termination of the individual systems if one rewrite systems
quasicommutes over the other. In this context, rewrite systems are considered as
abstract reduction systems which are essentially sets of binary relations. Quasi-
commutation models a quite general way of rearranging rewrite sequences that
subsumes a number of interesting cases. The termination theorem yields a pow-
erful tool for analysing termination of rewrite systems. It also provides a very
general transformation and refinement law for programs, reactive and concurrent
systems. The proof sketch contained in the original paper informally analyses
infinite rewrite sequences.

Motivated by applications in concurrency control, Ernie Cohen posed this
termination theorem as a challenge for variants of Kleene algebras at a Dagstuhl
Seminar in 2001 [7], conjecturing that it cannot be proved in this setting, and
he repeated this challenge at a DIMACS workshop [8].

Nevertheless, a proof in a variant of Kleene algebra was published in 2006 [19],
but it is rather indirect and tedious. This is interesting, since statements of sim-
ilar complexity could recently be proved fully automatically [14,15]. So, sharp-
ening Cohen’s challenge, can Bachmair and Dershowitz’s termination theorem
be proved automatically in variants of Kleene algebras?

This paper shows that this is indeed the case. But since the previous proof
requires a series of lemmas and a direct proof from the axioms of Kleene al-
gebras does not succeed1, new ways must be explored. We therefore perform

1 In all experiments, we used a Toshiba Tecra laptop under Linux with an Intel Pen-
tium 1.73GHz processor with 6.5MB memory available.
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proof experiments with the automated theorem prover SPASS [3] to “learn” the
hypotheses needed for the proofs, by (manually) discarding computationally ex-
pensive axioms and by adding potentially useful lemmas in a rather random way.
Hypothesis sets that are too weak can often be detected by a counterexample
checker, e.g. Mace4 [2].

In the case of Bachmair and Dershowitz’s termination theorem, a seemingly
unrelated special unfold law for nested loops that has previously been automat-
ically proved and used in the context of action system refinement is the key to
success. With this law added to the set of hypotheses, SPASS returns a proof
in less than 5min. Retranslating this resolution proof into equational reasoning
yields a fully formal proof of the termination theorem in essentially one line.

Moreover, a closer inspection of the equational proof reveals a novel refine-
ment law for nested infinite loops, to which the termination theorem is a trivial
corollary. This result is immediately applicable to concurrency control and action
system refinement [5]. Since Kleene algebras are very abstract, the result holds
in a variety of models relevant for programs and transition systems, including
relations, traces, paths and languages.

Using this structural information, the automated proofs can easily be re-
played in other variants of Kleene algebras to obtain termination and loop re-
finement theorems also in these settings.

The first variant—von Wright’s demonic refinement algebras [21]—are appro-
priate for predicate transformer semantics of refinement, but not for relational
models. The results obtained are comparable to the previous ones.

The second variant is based on the Kleene modules studied by Leiß [18] and
by Ézik and Kuich [12]. We add a Park-style divergence operator that either
models infinite iteration in the context of ω-regular languages or, in the context
of discrete dynamical systems, that part of a state space from which infinite
behaviour may arise. With these novel divergence modules, the proof of the loop
refinement theorem can even be fully automated without any axiom restrictions
and additional hypotheses in SPASS, i.e, without the loop unfold law mentioned.

The results obtained not only further confirm that variants of Kleene alge-
bras in combination with off the shelf automated theorem provers are very useful
as light-weight formal methods with heavy-weight automation for analysing pro-
grams and reactive systems. They also provide new structural insights related to
Bachmair and Dershowitz’s termination theorem, to action system refinement,
to ω-regular languages and to discrete dynamical systems.

To make our experiment accessible and reproducible, all theory input files,
all axiom restrictions, all additional hypotheses and all SPASS outputs are docu-
mented in an extended version [20]. Inputs will also be made available in TPTP-
format at a web-site [1]. Since we are mainly interested in robust results for
a formal methods context, we abstain from tuning the prover, avoid extreme
running times and do not use extremely powerful hardware. In particular cases,
stronger results can certainly be obtained by experts in theorem proving.
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2 Kleene Algebras and Omega Algebras

Omega algebras provide an abstract axiomatisation of the objects and opera-
tions needed for specifying and proving Bachmair and Dershowitz’s termination
theorem. Relation algebras could be used as well, but omega algebras possess
fewer operations and simpler axioms, which is beneficial for automated deduc-
tion. Omega algebras are simple extension of Kleene algebras that have recently
emerged as foundational structures in computing.

An idempotent semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a
commutative monoid with idempotent addition, (S, ·, 1) is a monoid, multiplica-
tion distributes over addition from the left and right and 0 is a left and right zero
of multiplication. Let S be a semiring. For all x, y, z ∈ S, the semiring axioms
are

x+ (y + z) = (x+ y) + z,

x+ y = y + x,

x+ 0 = x,

x(yz) = (xy)z,

1x = x,

x1 = x,

x(y + z) = xy + xz,

(x+ y)z = xz + yc,

0x = 0,

x0 = 0.

As usual in algebra, we stipulate that multiplication binds more strongly
than addition, and we omit the multiplication symbol. The relation ≤ defined
by x ≤ y ⇔ x+ y = x for all elements x, y is a partial order. Every idempotent
semiring is therefore also a semilattice (S,≤) with addition as join and the
following splitting law holds, which is very useful for automated deduction.

x ≤ z ∧ y ≤ z ⇔ x+ y ≤ z. (1)

A Kleene algebra [17] is an idempotent semiring K extended by the star
operation (or finite iteration operation) ∗ : K → K that satisfies, for all x, y, z ∈
K, the star unfold and star induction axioms

1 + xx∗ ≤ x∗, 1 + x∗x ≤ x∗

z + xy ≤ y ⇒ x∗z ≤ y, z + yx ≤ y ⇒ zx∗ ≤ y.

An omega algebra [6] is a Kleene algebra K extended by the omega operation
(or infinite iteration operation) ω : K → K that satisfies, for all x, y, z ∈ K the
omega unfold and omega coinduction axiom

xxω = xω, y ≤ z + xy ⇒ y ≤ xω + x∗z.
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Kleene algebras have originally been conceived as algebras of regular events, i.e.,
to model the operations of addition (or union), multiplication (or concatenation)
and star as they arise in language theory.

Kleene algebras also model actions (of a transition system). The constants
0 and 1 model the abortive and the ineffective action. Addition models non-
deterministic choice of actions; it therefore has to be idempotent. Multiplication
models the composition of actions. The star models the finite iteration of actions.
The first star unfold axiom, e.g., says that a finite iteration x∗ is either ineffective,
whence 1, or it continues after one single x-action. By the first star induction
law, x∗ is the least element with that property. The omega models the strictly
infinite iteration of actions. The omega unfold axiom says that prefixing actions
x does not change an infinite iteration xω. The omega coinduction axiom implies
that xω is the greatest element with that property; it also links finite and infinite
iteration with respect to some “terminal action” z.

By the star and omega axioms, finite and infinite iteration is expressed within
first-order logic with Park-style rules as least and greatest prefixed points (which
are also least and greatest fixed points). Operationally, the induction axioms
serve as star elimination rules at left-hand sides of equations, the coinduction
axioms serve as omega elimination rules at their right-hand sides.

Encodings of omega algebras for theorem proving can be found in the research
report [20] and at the web-site [1]. It follows from the definition of partial order on
Kleene algebras that equational as well as order-based encodings can be used.
Experience shows that the order-based encoding, although ≤ is treated as an
ordinary predicate symbol for which no specialised inference rules are available,
usually yields better results with more complex theorems. We therefore base all
our arguments on the order-based encoding.

Some further facts are important for our considerations. First, the unfold
axioms can be strengthened to the identities, 1 + xx∗ = x∗, 1 + x∗x = x∗ and
xω = xxω Second, all operations are isotone with respect to the ordering ≤, i.e.,

x ≤ y ⇒ x+ z ≤ y + z

and likewise for multiplication, star and omega. These properties are also used
in the encoding of Kleene algebras for theorem proving.

3 Kleene Algebras and Abstract Reduction Systems

Kleene algebras have a rich model class that includes languages, sets of paths in
a graph and sets of program traces. In the present context, however, relational
models are our main interest.

So let R = 2A×A denote the set of all binary relations over some set A. For
all r, s ∈ R, let r + s = r ∪ s, i.e., set union and let r · s = {(a, b)|∃c.(a, c) ∈
r ∧ (c, b) ∈ s}), i.e., the relational product of r and s. Let 0 = ∅ be the empty
relation and let 1 = {(a, a)|a ∈ A} be the unit relation. Finally, let r∗ =

⋃

i≥0 r
i,

where r0 = 1 and ri+1 = r · ri. It is easy to see that r∗ models the reflexive
transitive closure of r. The following theorem is well-known and easy to verify.
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Theorem 3.1. (R,+, ·, 0, 1, ∗) is a Kleene algebra.

It is often called the full relation Kleene algebra over A. Obviously, R is its
maximal element. It follows from basic results of universal algebra that every
subalgebra of the full relation Kleene algebra is again a Kleene algebra. See, e.g.,
[10] for a discussion.

Now each full relation Kleene algebra is complete and, by the Knaster-Tarski
theorem, the greatest fixed point of the function λy.z+xy exists and is equal to
xω + x∗z.

Theorem 3.2. (R,+, ·, 0, 1, ∗, ω) is an omega algebra.

Note, however, that xω is not necessarily equal to an iteration
⋂

i≥0 x
i ·R, since

this would presuppose distributivity of multiplication over arbitrary infima. Nev-
ertheless, xω =

⋂

i≥0 x
i ·R holds whenever A is finite. Finally, the following result

has been shown (cf. [13] for details).

Proposition 3.3. In every (full) relation semiring, rω = 0 if and only if there
are no infinitely ascending r-chains, that is, if and only if r terminates.

The analysis of Bachmair and Dershowitz’s termination theorem is entirely
based on abstract reduction systems, i.e., it disregards the subterm property
which is present in concrete term rewrite systems. Formally, an abstract re-
duction system is a family ri of binary relations on some set A. Every abstract
reduction system can therefore be embedded into the full relation omega algebra
on A.

Corollary 3.4. Let R be an abstract reduction system. Then (R,+, ·, 0, 1, ∗, ω),
with the operations defined as before, is a relation omega algebra.

Corollary 3.4 and Proposition 3.3 yield the general justification that termination
properties of abstract reduction systems can be analysed in terms of omega
algebras.

4 First Proof

Based on the general results from Section 3, we can now abstract the notions of
quasicommutation and termination, and the statement of the separation theorem
in omega algebra.

We assume that rewrite systems x and y are elements of some omega alge-
bra. This is reasonable, since rewrite systems—more precisely abstract reduction
systems—are relations, and since relations under union, composition, reflexive
transitive closure and infinite iteration together with the empty relation and the
unit relation form an omega algebra.

For specifying Bachmair and Dershowitz’s termination theorem, two notions
are essential. Let x and y be elements of some omega algebra. Then

– x quasicommutes over y if yx ≤ x(x+ y)∗;
– x terminates if xω = 0.
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Termination as absence of infinite x-chains has been used by Bachmair and
Dershowitz. The termination theorem can now be rephrased as follows.

Theorem 4.1. Let x and y be elements of some omega algebra and let x quasi-
commute over y.

(x+ y)ω = 0⇔ xω + yω = 0.

It is well known that the right-to-left direction does not require quasicommu-
tation. It can be proved with SPASS in less than 0.13s. The SPASS output of
this and all other proofs together with detailed information about restrictions on
the axiom set and additional hypotheses used can be found in the technical re-
port [20]. The information provided in the report will allow readers to replay all
proofs. In this particular case, no restrictions on the axiom set and no additional
hypotheses are needed.

A proof of the left-to-right direction of Theorem 4.1 in a full sweep is impos-
sible with the hardware available. Experimenting with different hypothesis sets,
as mentioned in the introduction, we can find a proof from a restricted axiom
set and with additional hypotheses in about 4min. The key to success is the law

(x+ y)ω = yω + y∗x(x+ y)ω, (2)

which has previously been automatically verified and used in the context of
program refinement [14].

An equational proof can be reconstructed from the resolution proofs. For its
presentation, the following property is worth mentioning.

yx ≤ x(x+ y)∗ ⇔ y∗x ≤ x(x+ y)∗. (3)

The right-to-left direction can be proved in 0.33s without any restrictions. The
right-to-left direction took about 27s from a reduced axiom set and an addition
hypothesis.

The equational proof of Theorem 4.1 is then a one-liner:

Proof. (of Theorem 4.1)

(x+ y)ω = yω + y∗x(x+ y)ω ≤ yω + x(x+ y)∗(x+ y)ω = yω + x(x+ y)ω.

The first step is by Equation (2); the second step by quasicommutation and
Equation (3); the third step uses the identity x∗xω = xω. Then

(x+ y)ω ≤ xω + x∗yω (4)

follows by omega coinduction. Now (x+y)ω = 0 immediately follows from xω = 0
and yω = 0.

The converse direction follows—without quasicommutation—from x ≤ x+y,
y ≤ x+ y, isotonicity of omega and the fact that zωzω = zω . ⊓⊔

This results, obtained from experimenting with SPASS, is certainly surpris-
ing. It is much simpler and much more direct than the previous proof in [19] and
its circumstantial mechanisation with Prover9 in [14]. However, from the puristic
point of view, it is still not satisfactory since it relies on axiom restrictions and
an additional lemma.
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5 A Novel Loop Refinement Law

A closer look at the equational proof of Theorem 4.1 reveals Equation (4)—a
refinement law for infinite loops in the presence of quasicommutation—which is
interesting in its own right and of which the termination theorem turns out to
be just a special case.

Theorem 5.1. Let x and y be elements of some omega algebra and let x quasi-
commute over y. Then

(x+ y)ω = xω + x∗yω. (5)

Proof. For (x + y)ω ≤ xω + x∗yω replay the proof of Theorem 4.1 to equation
(4). This direction depends on quasicommutation.

The converse direction follows from x ≤ x+y, y ≤ x+y, isotonicity of omega,
x∗xω = xω and the fact that zωzω = zω . ⊓⊔

The left-to-right direction could be proved in 13s from a restricted axiom set
and with additional hypotheses. The right-to-left direction could be proved in
13min35s without any restrictions.

Intuitively, Equation (5) says that a strictly infinite repetition of actions
x or y chosen non-deterministically can be separated into the non-derministic
execution of a strictly infinite repetition of x-actions or a finite (possibly empty)
repetition of x-actions followed by a strictly infinite repetition of y-actions.

The assumption of quasicommutation is quite general; it is implied by other
notions of commutation like ba ≤ a+b∗, where a+ = aa∗, ba ≤ ab or ba = ab. All
these conditions model meaningful properties of systems: inequalities typically
model preference or priority properties whereas equations model independence
properties.

Theorem 4.1 now follows from Theorem 5.1 by setting xω = 0 = yω. The
proof with SPASS takes 0.04s without any restrictions or additional hypotheses.

6 Demonic Refinement Algebras

We now provide an alternative proof of a variant of the above loop refinement
theorem and of Bachmair and Dershowitz’s termination theorem in another vari-
ant of Kleene algebra called demonic refinement algebra [21]. Formally, these are
structures (K,∞) such that K is a Kleene algebra without the right zero axiom
and the operation ∞ of strong iteration is axiomatised by the strong unfold, the
strong coinduction and the isolation axiom

x∞ = 1 + xx∞, y ≤ z + xy ⇒ y ≤ x∞z, x∞ = x∗ + x∞0

for all x, y, z ∈ K. The converse strong unfold law, 1 + x∞x = x∞, follows from
the axioms and strong iteration is isotone with respect to the ordering.

The particular axioms of demonic refinement algebra can easily be moti-
vated from the predicate transformer model of refinement with infinite iteration,
cf. [21]. It has been shown in Back and von Wright’s refinement calculus [5] that
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x∞ = xω + x∗. The same proof trivially holds in demonic refinement algebra.
Therefore, strong iteration comprises finite and strictly infinite iteration. It is
also immediately obvious that demonic refinement algebras do not capture the
relational semantics of programs, since in the presence of the right zero axiom
(which is satisfied in relational models), the isolation axiom collapses strong it-
eration to finite iteration. Therefore, the results of the following section are not
directly related to Bachmair and Dershowitz’s termination theorem. But as re-
finement theorems within the refinement calculus they are certainly interesting
in their own right.

Also, all theorems of demonic refinement algebra that do not mention strong
iterations are also theorems of Kleene algebra.

The code for demonic refinement algebras in SPASS can again be found in
the research report [20].

7 Second Proof

In the context of demonic refinement algebras, quasicommutation can of course
be written as before. But there are now two different notions of termination. We
say that

– x weakly terminates if x∞ = x∗;
– x strongly terminates if x∞0 = 0.

Lemma 7.1. In every demonic refinement algebra, strong termination implies
weak termination, but the converse need not hold.

The implication of weak termination by strong termination can be shown with
SPASS in less than 0.06s without any restrictions or additional hypotheses. For
the converse direction, the counterexample generator Mace4 [2] finds a coun-
terexample with three elements. It is presented in the research report [20].

It has already been shown automatically that a variant of Equation (2) holds
in demonic refinement algebra [1].

(x+ y)∞ = y∞ + y∗x(x+ y)∞. (6)

Moreover, x∗x∞ = x∞, so that—up to the coinduction step—the equational
proof of Theorem 5.1 can be translated into demonic refinement algebra. With
the strong coinduction law as a last step, we then obtain the following loop
refinement law.

Theorem 7.2. Let x and y be elements of some demonic refinement algebra
and let x quasicommute over y. Then

(x+ y)∞ = x∞y∞. (7)

The right-to-left direction follows immediately from isotonicity and the identity
x∞x∞ = x∞. The proof from left to right with SPASS takes 0.48s. It reuses the
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information of the corresponding proof of Theorem 5.1, i.e., a restricted set of
axioms and additional hypotheses. The right-to-left proof takes 11s. It also uses
a restricted set of axioms and additional hypotheses.

Due to the two variants of termination, we now obtain two variants of the
termination theorem as corollaries.

Theorem 7.3. Let x and y be elements of some demonic refinement algebra
and let x quasicommute over y. Then

(i) x∞ = x∗ ∧ y∞ = y∗ ⇒ (x+ y)∞ = (x+ y)∗;
(ii) x∞0 + y∞0 = 0⇒ (x+ y)∞0 = 0.

For (i), to show that (x+ y)∞ ≤ (x+ y)∗ follows from the hypotheses takes 13s.
It uses a restricted axiom set and an additional hypothesis. (x+ y)∗ ≤ (x+ y)∞

can be proved in 0.04s without any restrictions or additional hypotheses. The
proof of (ii) takes 0.05s, again without any restrictions or additions.

For the converse direction, we can prove the following statement.

Theorem 7.4. Let x and y be elements of some demonic refinement algebra.
Then

(x+ y)∞0 = 0⇒ x∞0 = 0 ∧ y∞0 = 0.

This can be proved in 1min3s without any restrictions or additions.
However, a similar statement for strong termination does not hold. Mace4

yields a counterexample with three elements, which is presented in the research
report [20].

8 Kleene Modules

We will now show how notions of divergence and termination can be specified
in the setting of Kleene modules. Such structures were first studied by Ésik
and Kuich [12] and by Leiß [18]. However, an operator for modelling program
divergence as a Park-style fixed point operator has, to our knowledge, not yet
been given.

Divergence and termination have already been investigated in the context
of modal Kleene algebras [10,9]. Every modal Kleene algebra is also a Kleene
module, but not vice versa [11]. So it is necessary to reconsider the notions of
termination and divergence. We study them in this more general setting because
it simplifies automated deduction and provides some structural insights.

A Kleene module [18] (K,L, :) is a two-sorted structure of a Kleene algebra
K, a semilattice L = (L,+, 0) with zero and a scalar product : from K ×L to L
that satisfies the following axioms.

(x+ y)p = xp+ yp, x(p+ q) = xp+ xq,

(xy)p = x(yp), 1p = p, x0 = 0,

xp+ q ≤ r ⇒ x∗q ≤ r,
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for all x, y ∈ K and p, q, r ∈ L. We usually omit the scalar product symbol.
A divergence module (K,L, :, ∇) is a structure such that (K,L, :) is a Kleene

module and ∇ : K → L a mapping that satisfies the divergence-unfold and the
divergence-coinduction axioms

x∇ ≤ xx∇, p ≤ xp+ q ⇒ p ≤ x∇ + x∗q,

for all x ∈ K and p, q ∈ L. Previously, the notation ∇(x) has been used to
denote the divergence of x [9]. Here, we use x∇ to emphasise the similarity to
the omega and the strong divergence operator.

This novel definition of divergence modules is very general; it admits at least
two interesting interpretations.

Under the first interpretation, xp models the preimage of a set p under a
relation x and x∇ models the set of all states from which infinite x-sequences may
emanate. This divergence set is stable under x-actions and it is the greatest set
with that property (0 being the lest such set). Then x terminates if x∇ = 0. This
definition is consistent with the standard set-theoretic notion of Noethericity. In
set theory p−xp models the set of x-maximal elements of p, i.e., the set of those
elements from which no further x-action is possible. Now p − xp = 0, which
is equivalent to p ≤ xp, says that p has no x-maximal elements. Then, if x is
Noetherian, the empty set 0 is the only element with that property; whence
p ≤ ap ⇒ p = 0. See [9] for further discussion in the setting of modal Kleene
algebras.

Under the second interpretation, elements of K model finite computations
or actions of a program whereas elements of L model infinite ones. The scalar
product relates finite and infinite computations in a reasonable way that makes
it impossible to compose an infinite element at its right-hand side with any other
element. In this setting, the divergence operation maps finite elements to infinite
ones. The divergence axioms are precisely typed (or sorted) variants of the unfold
and coinduction axioms of omega algebra. So divergence acts as the appropriate
omega operator under this interpretation and therefore, x∇ = 0 means again
absence of infinite iteration.

The two interpretations of omega make this operation very versatile and
applicable in different contexts. Beyond modal reasoning, the first interpretation
is interesting for the analysis of infinite behaviours in discrete dynamical systems.
The second one is more compatible with the definition of ω-regular languages
than omega algebra. It seems challenging to obtain a completeness theorem with
respect to ω-regular languages from this setting.

Since here, relational models are again admitted, divergence modules capture
again Bachmair and Dershowitz’s termination theorem. The correspondence be-
tween divergence and termination is even more transparent than for omega alge-
bra. A discussion of the general correspondence between divergence and omega
(for modal Kleene algebras) can be found in [13].

As a special case, the carriers of K and L can be the same and ∇ becomes
an endomorphism. This immediately yields the following fact.
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Proposition 8.1. Every theorem of divergence modules is a theorem of omega
algebra (modulo translation).

The converse direction does, of course, not hold. xω0 = 0 holds in omega algebra
for every element x, but a corresponding identity cannot even be written down
in divergence modules.

It follows immediately from (x + y)p = xp + yp, from x(p + q) = xp + xq
and from the definition of the partial ordering that scalar products are isotone
in both arguments, i.e.,

x ≤ y ⇒ xp ≤ yp and p ≤ q ⇒ xq ≤ xq.

This can easily be proved from an equational encoding of divergence modules in
SPASS. We will add these properties together with the other isotonicity laws to
the prover input files. Since the equational encoding is of no further interest, we
neither document this encoding nor the proofs in this paper. An order-based en-
coding of divergence modules in SPASS can be found in the research report [20].

9 Third Proof and Full Automation

The proofs of variants of the loop refinement theorem and of Bachmair and
Dershowitz’s termination theorem in Kleene modules is particularly simple and
can therefore be automated without any restrictions or additional hypotheses.

Analogously to the previous sections, we can prove a variant of the special
unfold law for divergence modules. Since it has not yet been considered, we
present it as a lemma.

Lemma 9.1. Let x and y be elements of some divergence module. Then

(x+ y)∇ = y∇ + y∗x(x+ y)∇. (8)

The left-to-right direction takes 1min25s; its converse 2min53s. Both direc-
tions are proved from the full axiom set and need no additional hypotheses. This
law is interesting in its own right as a refinement law, but we will not need it in
further proofs.

The next statement is an analogue to the loop refinement laws Theorem 5.1
and Theorem 7.2 that hold in omega algebras and demonic refinement algebras.
We display an equational proof to demonstrate that it is precisely along the lines
of omega algebras.

Theorem 9.2. Let x and y be elements of some divergence module and let x
quasicommute over y. Then

(x+ y)∇ = x∇ + x∗y∇.

Proof. We calculate

(x+ y)∇ = y∇ + y∗x(x+ y)∇ ≤ y∇ + x(x+ y)∗(x+ y)∇ = y∇ + x(x+ y)∇.

The claim then follows from divergence-coinduction. The identity x∇ = x∗x∇

can easily be verified. ⊓⊔
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In contrast to previous approaches, this statement can now be proved without
any restrictions on the axiom set and without any additional hypotheses with
SPASS. The left-to right direction that uses quasicommutation takes 1min51s.
Its converse takes 3min6s.

The fact that proof automation is particularly simple in divergence modules
might at first sight seem surprising, since the axiom set of divergence modules
is more complex than those of omega algebras and demonic refinement algebras.
However, in the two-sorted setting, operations are applied to terms in a more
restrictive way, especially the computationally expensive rearrangements due to
associativity and commutativity of addition and to the fixed-point laws for finite
and infinite iterations that allow self-substitutions can be better controlled. This
certainly explains the success of SPASS which can manage sorts in an efficient
way.

Theorem 9.2 is quite general and admits many different interpretations be-
yond rewrite systems. Under the modal interpretation, since the divergence x∇

models the basin of non-termination of x in the state space L, these basins of
non-termination can be separated by Theorem 9.2. This is certainly relevant to
the analysis of discrete dynamical systems.

Under the interpretation with finite and infinite actions, it models again loop
separation, which is interesting for program verification.

A third variant of Bachmair and Dershowitz’s termination theorem now fol-
lows as a corollary, as before.

Theorem 9.3. Let x and y be elements of some divergence module and let x
quasicommute over y. Then

(x+ y)∇ = 0⇔ x∇ + y∇ = 0.

The left-to-right direction takes 3min9s; its converse, assuming Theorem 9.2,
0.11s. The proofs are again obtained from the full axiom set without additional
hypotheses.

Since every modal Kleene algebra is a Kleene module, our results holds a
fortiori in the former setting. The relationship between the two approaches can
intuitively be described as follows. First, instead of defining Kleene modules
over a semilattice, we could use a Boolean algebra in the second component.
The resulting structures have been investigated in [11]; they are strongly related
to dynamic algebras, which are algebraic variants of propositional dynamic log-
ics, and they are Boolean algebras with operators in the sense of Jónsson and
Tarski [16]. Second, to obtain modal Kleene algebras, the Boolean algebra can
be embedded into the subalgebra bounded by 0 and 1 of the Kleene algebra
such that mixed terms between Kleenean and Boolean elements can be written
down. The axiom set for modal operators can then be reduced to three simple
equations. The precise connection has been set up in [11].

However, due to the more complex axiomatisation of dynamic logics, Boolean
algebras with operators and modal Kleene algebras, it cannot be expected to
obtain a similar degree of automation. Moreover, due to the abstractness and
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universality of variants of Kleene algebras, our results hold in models including
relations, program traces, paths and languages.

10 Conclusion

We solved a sharpened variant of Cohen’s challenge by proving Bachmair and
Dershowitz’s termination theorem mechanically in variants of Kleene algebras
and, in particular, fully automatically in the setting of divergence modules.
Through our proof experiments that involve hypothesis selection, we found par-
ticularly simple proofs that could be retranslated into fully formal equational
proofs with essentially one line of calculation. This is in sharp contrast to the
original argument by Bachmair and Dershowitz, a formalisation of which would
certainly require several pages, and which seems infeasible to automation.

The concise formalism of Kleene algebras and the discipline of proof enforced
in this setting also revealed some structural insight in the setting of Bachmair
and Dershowitz’s theorem. Through the equational proof we discovered a new
refinement theorem for nested infinite loops to which the termination theorem
is a simple corollary.

Using this structural insight, we replayed our proofs in further variants of
Kleene algebras and were particularly successful in the newly developed setting
of divergence modules.

The simple treatment of the termination theorem in the context of Kleene
algebras is based, of course, on a significant amount of abstraction. The formal-
isation gap between concrete rewrite systems and Kleene algebras is, however,
closed once and for all by the well-known proofs that abstract reduction sys-
tems form omega algebras or divergence modules. The proofs obtained are short
relative to that abstraction.

When starting our proof experiments, we used McCune’s Prover9 [2], but
then moved to SPASS when proofs in the two-sorted setting of divergence mod-
ules seemed infeasible. We then replayed all proofs for omega algebras and de-
monic refinement algebras with SPASS, to be able to present more coherent
results. Since we do not want to overload this paper, we do not present a com-
parison of Prover9 and SPASS. Let us only mention that for omega algebras and
demonic refinement algebras they were comparable.

¿From a more general point of view, this work contributes to a series of papers
devoted to the automation of first-order algebraic structures with applications
in program development, refinement and verification [14,15]. Our results suggest
that the combination of off the shelf automated theorem proving with domain-
specific algebras has considerable potential to further establish first-order the-
orem proving as a feasible alternative to model checking and interactive proof
assistants. Due to the abstraction and universality provided by the algebras, we
believe that light-weight formal methods with heavy-weight automation can be
obtained.

This line of work also leads to interesting research questions in automated
deduction. A first strand is the integration and implementation of solvers and
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decision procedures for concrete data types as they arise in verification scenarios,
e.g., arithmetics, lists, queues, arrays in automated theorem provers. A second
strand is the implementation of order-based reasoning through ordered chaining
calculi. Order-based reasoning often highly advantageous for automated alge-
braic proofs but rather neglected by the theorem proving community. A third
strand is the development of focused inference rules for the algebras under con-
sideration, which would further help to guide proof search and allow one to
prover relevant theorems of even greater complexity. Finally our algebraic ap-
proach provides challenging benchmarks for first-order theorem provers that are
both computationally hard and practically relevant. We will therefore make all
inputs available in TPTP-format [1].

While preparing the final version of this paper, Peter Höfner and the author
were even able to push some of the results from this paper a step further. Bach-
mair and Dershowitz’s termination theorem (Theorem 4.1) could now be proved
in some minutes; the loop refinement theorem in demonic refinement algebra
(Theorem 7.2) could be proved in a couple of hours without any axiom restric-
tions or additional lemmas. These unexpected results were obtained by running
Prover9 with an equational axiomatisation of omega algebras and demonic re-
finement algebras. These results are documented at the web-site [1]. They are in
contrast to our previous experience that an order-based approach work better
with more complex theorems. Further consideration of these novel results and a
comparison between different approaches is planned for an extended version of
this paper.
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Abstract. ProofBuilder is an interactive first-order theorem-proving system. It is designed to help
students learn to construct proofs by structuring proofs and their construction clearly and performing
menial or error-prone symbolic manipulations, so students can concentrate on the higher-level process
of deduction. This system is further designed to be usable as widely as possible by allowing different
forms of input and providing a variety of popular proof methods.

1 Introduction

This paper presents an interactive first-order theorem-proving system named ProofBuilder, which is
designed to enable student users to do basic proofs such as those for a course in Discrete Mathematics.
As with other systems, ProofBuilder’s capabilities include rewriting for logic operators, simplification,
elimination of quantifiers, substitution of equivalents or equals, and stepwise and strong induction; but
what distinguishes ProofBuilder is that it is designed to enable users to prove theorems like the way they
prove theorems manually. Such aspects of the design include a framework that clarifies which formulas
in a proof are premises that are hypothesized to be true, and which formulas are goals that need to be
proven; and mechanisms to apply a variety of proof methods and strategies such as forward and backward
reasoning, proving by contradiction, transforming one side of an equation or equivalence to the other, and
proving by cases. ProofBuilder is intentionally interactive — not completely automated — for pedagogical
reasons: automated systems enable students to avoid the intellectual deductive work of doing proofs. But
though it doesn’t do all the deductive work for students, ProofBuilder does help them learn to construct
proofs by: (i) structuring proofs and their construction clearly, avoiding confusion; (ii) showing in menus
the variety of options for deductive steps; (iii) performing menial or error-prone symbolic manipulations,
e.g. substituting “0” and “n+1” where appropriate when applying stepwise induction; and (iv) enforcing
soundness of deductive steps.

ProofBuilder is written in Java, so it is usable on essentially all common modern platforms (Mi-
crosoft Windows, LINUX, Apple Macintosh, UNIX, etc.); and it has a graphical user interface, including
capabilities for copying and pasting formulas from other convenient sources such as Web pages; and it uses
proper mathematical characters such as “ ≤”, “∀”, “⊆”, and “

∑
”.

2 Related Work

For one recent survey of the field of theorem-proving systems, see [1]. Regarding theorem-proving sys-
tems that are designed for educational purposes, see the Journal of Automated Reasoning, Vol.32 (2004)
No.3 (February), which was a special issue involving education. But most theorem-proving systems have
the explicit goal of automating deduction: they are cleverly designed to do as much deduction as possible
automatically, working as hard as possible to minimize the amount of deduction that users must do — even
if the users may be students learning to do proofs. Further, their interfaces are minimally GUI: they’re really
designed to ‘grind’ through logic formulas (which are treated like data) to automatically generate proofs,
rather than to just assist users in learning to achieve construction of proofs themselves much.

Some systems such as Omega and Mizar can be used interactively and have been used in educational
settings. [2,3] But consider the following:

First, instead of supporting the language the mathematician is used to, most systems impose their own formal
language on the user and require a machine-oriented formalization of the mathematical content to allow for
powerful automatic inference capabilities. As a result, the line of reasoning is often unnatural and obscured.
Next, the proofs are at a level of excruciating detail spelling out many logically necessary steps, which a
human would nevertheless consider trivial or obvious. [4]
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For example, here is part of some material for Mizar:

for k being Nat holds k + 0 = k;

And here is part of some material for Isabelle/Isar(/HOL):

let ?k = n! + 1
obtain p where prime: p ∈ prime and dvd: p dvd ?k
using prime-factor-exists by auto

[5]

By contrast, ProofBuilder uses more standard mathematical notation than those systems, and it involves
less ‘machinery’ — neither libraries1 nor automatic reasoning. Again, the purpose of ProofBuilder is to
provide simply an environment for students to learn to construct formal proofs, as indicated in textbooks
for teaching Discrete Mathematics.

There are some other systems that are supposed to help students learn to construct proofs, e.g. [6] and [7].
But those systems are designed more for checking proofs that students enter rather than really helping them
construct proofs by performing logical steps that they select; and the installations are platform dependent
and not very standalone, involving the automated theorem provers Otter [8] or Isabelle [9], respectively, in
the background.

Some other related systems are “Deductive Tableau” [10] and “Deduct” 2, but those two systems limited
their scope to material of [11]; and perhaps more significantly, the original authors of those systems no
longer support them. ProofBuilder, presented here, may be construed as developing those latter two systems
further: enabling users to avoid tedious ‘low-level’ steps of [11]’s formal scheme (such as applying associativity
to the formula “¬P ∨ (P ∨ Q)” to simplify it to “true”); providing more proper mathematical notation such
as “∀” and “≤” instead of “forall” and “<=”; handling more topics such as sets, summations, and O();
and formally providing more proof methods/strategies such as proving by contradiction or by cases, and
transforming one side of an equation to the other.

Some other pieces of software are pedagogical or used pedagogically in contexts where students learn
to construct proofs, but these pieces of software aren’t really designed for general construction of proofs.
For example, Maple [12] is referenced in textbooks such as [13] and [14], and the latter also references
Mathematica [15]; there are applets etc. illustrating algorithms [16]; and [17] has associated Flash software
enabling students to interactively work on piecing proofs together. But that proof-constructing work appears
to be either merely illustrative, algebraic, or prefabricated. For example, with [17] users form proofs simply
by putting several lines of prewritten text in proper order.

Incidentally, this work is not related to other software named “ProofBuilder” such as typographical
software nor even the work of Brauner et al.3

3 Illustrations of Operating ProofBuilder

To expedite the presentation of ProofBuilder, illustrations of it are used. Here is a first sample proof
produced in ProofBuilder:

1 “The size of the Mizar library is about 50 megabytes, while that of Isabelle is about 10 megabytes (including the
sources of the system and the example theories).” [5]

2 The “Deduct” software, by Michael Colón et al., has not been published, but it has been available upon request
from the REACT research group under the supervision of Zohar Manna at Stanford University.

3 Not yet published at this time.
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ProofBuilder extends the deductive-tableau proof scheme of [11]. As shown in the sample proof above,
ProofBuilder constructs a proof in a table with two main columns labeled “Suppositions” and “Theo-
rem/Subgoals” containing the logic formulas used in the proof, a column labeled “Used” containing check-
boxes indicating whether formulas have been used yet in a proof, and two columns labeled “(#)” and “Names”
containing numbers and names for identifying the logic formulas. And in addition to the formulas, there are
also narrative texts (and blank lines) which serve to clarify the construction of the proof.

Construction of a proof in this system begins with the user entering the theorem to be proved as the first
formula in the “Theorem/Subgoals” column. If desired/needed, the user can also enter axioms or lemmas as
initial entries in the “Suppositions” column. For example, in the sample proof above the theorem is in the
row numbered (3), and a couple of basic definitions or axioms which are used in this proof are in the rows
numbered (1) and (2). Then, the user applies deductive steps — selected from the menu labeled “Deduc-
tion” — to formulas in the deductive tableau, generating additional formulas which are added to the deductive
tableau, until a deductive step achieves the proof-terminating ‘subgoal’ of true (or a ‘supposition’ of false,
when proving by contradiction). See Section 4 below for further details about operating ProofBuilder,
including options for different symbols such as “⇒”/“→”/“implies”/“IMPLIES”.

The first deductive step illustrated in the sample proof above is Quantifier Removal, which is applied to the
theorem formula (3), (∀S)[∅ ⊆ S], yielding the formula (4), ∅ ⊆ A, which is added as a new goal formula to be
proved; at this point ProofBuildermarks formula (3) as used, for clarity. As shown, ProofBuilder provides
‘canned’ narrative text for deductive steps; naturally, these texts can be changed. Proving the validity of
such a derived goal (4) would prove the validity of the original universally quantified theorem formula (3) as
with classical Hilbert-style logic’s deductive step of universal generalization, which specifies that proving a
formula ϕ containing a constant symbol c suffices to prove the formula (∀x)ϕ̂, where ϕ̂ is obtained from ϕ
by replacing occurrences of c with x (under some conditions). ProofBuilder does Quantifier Removal also
implicitly/automatically when handling supposition formulas that are universal quantifications. For example,
in the sample proof above the supposition formula (2), (∀x)[¬(x ∈ ∅)], is handled as “¬(x ∈ ∅)”. This
variant of Quantifier Removal is like quantifier removal when converting formulas to clausal form. See the
documentation of ProofBuilder (referenced in Section 4 below) for further details about Quantifier Removal.

The second deductive step illustrated in the sample proof above is Equivalence Substitution, which is
applied to formulas (1) and (4) yielding formula (5), at which point formulas (1) and (4) are marked as used.
When an equivalence formula of the form “ϕ1 ⇔ ϕ2” such as formula (1) above is available and one side
of the equivalence can be safely unified with another formula ϕ3 — e.g. here, equivalence formula (1)’s left-
hand side, S1 ⊆ S2, can be safely unified with formula (4), ∅ ⊆ A, via the substitutions [S1 := ∅, S2 := A] —
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then the formula ϕ3 may be replaced by the other side of the equivalence — e.g. here, the other side of the
equivalence is (∀x)(x ∈ S1 ⇒ x ∈ S2) — subject to application of the safely unifying substitutions. The
result here is formula (5), (∀x)(x ∈ ∅ ⇒ x ∈ A). The use of “=” in the narrative here is derived from [18].
See the documentation of ProofBuilder (referenced in Section 4 below) for further details about using
Equivalence Substitution (and safely unifying formulas).

Another deductive step illustrated in the sample proof above is nonclausal Resolution, which is applied
to formulas (2) and (6), yielding formula (7). [19,20] describe nonclausal resolution. Whereas clausal resolu-
tion involves joining two clauses containing unifiable terms of the form “P(. . .)” for which one of the terms is
negated and the other is not, nonclausal resolution here joins two formulas containing safely unifiable subfor-
mulas ϕ1 and ϕ2 for which their “polarities” are opposite. Polarity generalizes negation: goal formulas have
positive polarity, supposition formulas have negative polarity, and negation that is explicit or implicit (as
with “α” in an implication formula “α⇒ κ”) yields reverse polarity. For example, in the sample proof above
the supposition formula (2), (∀x)[¬(x ∈ ∅)], has negative polarity, and the underlined subformula x ∈ ∅

inside it has positive polarity; the goal formula (6), a ∈ ∅ ⇒ a ∈ A, has positive polarity, and the underlined
subformula a ∈ ∅ inside it has negative polarity; (See the documentation of ProofBuilder (referenced in Sec-
tion 4 below) for further details about polarities). And these two underlined subformulas which have opposite
polarities are safely unifiable via the substitution [x := a]. (Again, ProofBuilder implicitly/automatically re-
moves supposition formula (2)’s universal quantifier, (∀x).) To do nonclausal resolution here, the user selects
the desired formulas and subformulas. When a supposition formula ς contains a subformula ϕ1 with positive
polarity and a goal formula γ contains a subformula ϕ2 with negative polarity and ϕ1 and ϕ2 are safely
unifiable, then in this case nonclausally resolving these formulas yields a new goal formula ¬ς̂ ∧ γ̂, where ς̂ is
derived from ς by replacing ϕ1 with true and γ̂ is derived from γ by replacing ϕ2 with false — plus the safely
unifying substitutions are applied, and ProofBuilder also simplifies the result. For example, in the sample
proof above, the result of nonclausally resolving formula (2) and formula (6) — with the subformulas in them
selected as indicated above — is the formula ¬[¬(true)] ∧ (false ⇒ a ∈ A), which ProofBuilder then sim-
plifies as follows: the subformula ¬[¬(true)] simplifies to true, the subformula (false ⇒ a ∈ A) simplifies
to true, and then the intermediate result at this point, true∧true, simplifies to true, which ProofBuilder

adds to the deductive tableau as formula (7) — and that completes this proof. See Section 4 below for further
details about simplifying, and see the documentation of ProofBuilder (referenced in Section 4 below) for
further details about using nonclausal Resolution.

Here is a second sample proof, of the theorem
∑

1≤i≤n

i =
n(n+ 1)

2
, i.e.

n∑

i=1

i =
n(n + 1)

2
:
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Features of ProofBuilder highlighted with this proof are as follows. For details beyond what’s indicated
here (e.g., for strong induction), see the documentation of ProofBuilder (referenced in Section 4 below).

– In addition to the notation shown above for summations, derived from [21] (and to a lesser extent
from [18]), ProofBuilder also accepts notation like what is more common: “

∑
i for i = 1 to n”.
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– ProofBuilder uses notation shown in formula (2), “e@[v := y + 1]”, to represent substitution. This
notation is derived from [11,18].

– ProofBuilder performs induction as shown with formulas (9)-(10).
– As shown above with formula (11), ProofBuilder enables the user to handle parts of a goal formula in

separate cases. Parts of a supposition formula can be handled similarly.
– As shown with formulas (15)-(17), ProofBuilder enables the user to do direct proof.
– As shown with formulas (17)ff., ProofBuilder enables the user to prove an equation conveniently by

transforming one side to the other.
– As shown with formulas (18)-(26), an additional deductive step is Equality Substitution. This is similar

to Equivalence Substitution.
– As shown with formulas (3)-(5) (the latter of which is used with formula (21)), ProofBuilder enables

the user to instantiate a universally quantified supposition with a value.

Finally, here is a third sample proof produced in ProofBuilder:

The theorem here, (P ∧ Q) ⇒ (Q ∨ R), could be proved several other ways in ProofBuilder; but the point
here is that this is one way that people like to do proofs, and ProofBuilder is capable of this method as
well as others. Rewritings like the ones shown here work for predicate as well as propositional formulas. See
Section 4 below for details about Rewriting.

4 Details of Operating ProofBuilder

Running ProofBuilder

ProofBuilder is written in Java (version 5.0), so it runs on any platform where that (or a later version of
Java) is installed. The software is contained in the file ProofBuilder.jar. Anyone can obtain the software
and documentation (etc.) at the following URL: http://www.cis.gvsu.edu/~mcguire/ProofBuilder/ .
In a GUI operating system such as Microsoft Windows, one can start running ProofBuilder by double-
clicking on ProofBuilder.jar (if Java ≥5.0 is installed properly). Or in a command-line environment such
as LINUX, one can start running ProofBuilder by typing the following command:

java -ea -jar ProofBuilder.jar

ProofBuilder starts by presenting a window in which the user can enter the theorem being proved;
as indicated above, ProofBuilder inserts the theorem in the first row in the Theorem/Subgoals column.
An item in the Editing menu enables the user to enter premises, i.e. suppositions other than than ones
arising inside the proof (an example of a supposition arising inside a proof is when a goal formula is an
implication α⇒ κ and we suppose that α is true, and we try to prove κ).
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After entering the theorem and premises, the user uses the mouse to select expressions and uses the De-
duction menu to choose deductions for ProofBuilder to apply to the selected expressions, and ProofBuilder

adds the results of the deductions to the proof until it achieves a goal of true (or a supposition of false),
which concludes the proof. The deductions that ProofBuilder provides are as follows:

Rewrite selection
Split formula into components
Suppose negation
Separate into cases
Remove quantifier

Use additional row
Invoke bivalance
Substitute using equivalence
Substitute using equation
Invoke induction

Transform one side to other
Instantiate universal supposition
Try Simplification
Conjoin two suppositions

Notation

When typing a theorem or presupposition formula, the user can copy and paste formulas from other
convenient sources such as Web pages — including symbols such as “≤”, “∀”, and “⊆”. Alternatively, the user
can type such symbols by pressing the ALT key together with specified keys; for example, pressing ALT-<
yields “≤, pressing ALT-A yields “∀, and pressing ALT-{ yields “⊆. (On an Apple Macintosh, it may be
necessary to press the CTRL key also.) Here are such keymappings that ProofBuilder provides:

A −→ ∀ E −→ ∃ s −→
∑

p −→
∏

= −→ ≡ B −→ ⇔ b −→ ↔ I −→ ⇒ i −→ →
o −→ ∨ a −→ ∧ : −→ ← # −→ 6= < −→ ≤ > −→ ≥ e −→ ∈ [ −→ ⊂ { −→ ⊆
u −→ ∪ t −→ ∩ + −→ Θ W −→ Ω w −→ ω n −→ ¬ y −→ ∞ R −→ R Q −→ Q

Z −→ Z N −→ N / −→ ∅

superscript: 0 −→ 0 1 −→ 1 2 −→ 2 3 −→ 3 - −→ −

And actually, the user can use different symbols for things as desired; for example, the user can use any of
the symbols “⇒”, “→”, “implies”, and “IMPLIES” as an implication symbol. Thus, ProofBuilder can be
used by people who have different preferences for notation.

Incidentally, note the ‘näıveté’ of the logic, e.g. for set theory as demonstrated in the first illustra-
tion in Section 3 above. As is standard with textbooks for introductory courses on Discrete Mathematics,
ProofBuilder makes no restrictions on types of variables or other terms (Deductive Tableau and Deduct

provided such restrictions, but they were annoying), nor are axioms necessarily restricted to non-näıve ones
for set theory such as Zermelo-Fraenkel. It might be considered bad that ProofBuilder thus allows one to
enter a Russell’s-paradox formula such as (∃r)(∀x)[x ∈ r ⇔ ¬(x ∈ x)] and then instantiate x with the the
value obtained for r, obtaining a contradiction. But enabling students to play with this paradox may actually
facilitate leading into discussion of non-näıve set theories.4

Simplifying

Here are simplifications that ProofBuilder performs, automatically. In this list, the abbreviations “f”
and “t” are used for “false”, and “true”, respectively.

f ∧ ϕ −→ f t ∧ ϕ −→ ϕ ϕ ∧ ϕ −→ ϕ ϕ ∧ ¬ϕ −→ f

f ∨ ϕ −→ ϕ t ∨ ϕ −→ t ϕ ∨ ϕ −→ ϕ ϕ ∨ ¬ϕ −→ t

f⇒ ϕ −→ t ϕ⇒ f −→ ¬ϕ t⇒ ϕ −→ ϕ ϕ⇒ t −→ t

ϕ⇒ ϕ −→ t ϕ⇒ ¬ϕ −→ ϕ ¬ϕ⇒ ϕ −→ ¬ϕ
¬ϕ1 ⇒ ¬ϕ2 −→ ϕ2 ⇒ ϕ1 ¬(ϕ1 ⇒ ¬ϕ2) −→ ϕ1 ∧ ϕ2 ¬¬ϕ −→ ϕ
ξ = ξ −→ t ξ 6= ξ −→ f

Additionally, ProofBuilder simplifies evaluable arithmetic expressions to their values. For example,
1 + 2 −→ 3, 4 < 5 −→ true, and 48 mod 7 −→ 6.

Rewriting

Here are Rewritings that ProofBuilder can perform:

¬ (ϕ1 ∧ ϕ2) ←→ ¬ϕ1 ∨ ¬ϕ2

¬ (ϕ1 ∨ ϕ2) ←→ ¬ϕ1 ∧ ¬ϕ2

ϕ1 ⇒ ϕ2 ←→ ¬ϕ1 ∨ ϕ2

ϕ1 ∧ (ϕ2 ∨ ϕ3) ←→ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)
ϕ1 ∨ (ϕ2 ∧ ϕ3) ←→ (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)

ϕ1 ⇔ ϕ2 ←→ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)
ϕ1 ⇔ ϕ2 ←→ (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)
¬(∀ν)ϕ ←→ (∃ν)[¬ϕ]
¬(∃ν)ϕ ←→ (∀ν)[¬ϕ]

4 In the future, ProofBuilder may provide types as in [18].
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Further Rewritings are too trivial to list here, e.g. commutativity for ∧, ∨, and ⇒.
As shown in Section 3, ProofBuilder applies a Rewriting chosen by the user to an expression selected

by the user (using the mouse).

Safely Unifying

Some of ProofBuilder’s deductive steps, notably nonclausal resolution and Equivalence Substitution,
require safely unifying subformulas of two formulas. Details of safe unification are as follows:

1. The subformulas are not allowed to contain any quantified variables because it is unsound to allow
arbitrary substitution for quantified variables.

2. Renaming is done as necessary to ensure that the two formulas have distinct variables.
3. Then, unifying substitutions of terms for free variables are accumulated, subject to the restriction that

a variable must not occur in the term being substituted for it.

Further Details

For further details of operating ProofBuilder, see the full documentation of it at the following URL:
http://www.cis.gvsu.edu/~mcguire/ProofBuilder/ .

5 Conclusion

To summarize, ProofBuilder is an interactive system designed to help students learn to construct proofs,
by allowing use of symbols and steps as in different textbooks, by structuring proofs and their construction
clearly, and by performing menial or error-prone symbolic manipulations so students can concentrate on the
higher-level process of deduction. It provides powerful capabilities such as nonclausal resolution, forward and
backward reasoning, proving by contradiction, transforming one side of an equation or equivalence to the
other, and proving by cases; but it does not automatically do such deductions: ProofBuilder leaves the
activity of directing the deductive process to the student users, so they learn it.

Future Work

ProofBuilder is still a work in progress. Future work planned for it includes the following:

– Enhance the user interface. For example, enable the user to change formulas’ formats — amounts of
spaces, line breaks, indentation, and delimiters.

– Employing graphics, provide more canonical mathematical notations for things such as summations and
sequences (e.g., “an”).

– Cover more topics such as graphs, boolean algebra, and formal languages.
– Extend ProofBuilder to more advanced logics such as modal temporal logic.
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Appendix: Soundness and Completeness of ProofBuilder

This explanation is derived from [11].
We associate with each deductive tableau a formula of the form “ς ⇒ γ”, where ς here is obtained as the conjunction

of the universal closures of the deductive tableau’s supposition formulas, and γ is obtained as the disjunction of the
existential closures of the deductive tableau’s goal formulas. I.e., if a deductive tableau’s supposition formulas are
ς1, ς2, ς3, . . . , ςm and its goal formulas (i.e., the theorem and subgoals) are γ1, γ2, γ3, . . . , γn, then the associated formula is

^

1≤i≤m

(∀∗)ςi ⇒
_

1≤j≤n

(∃∗)γj, where “(∀∗)” and “(∃∗)” stand for universal and existential quantifications of all appropriate

free variables.
For example, consider the following ‘artificial’ deductive tableau:

Suppositions Theorem/Subgoals

IsZero(0)

(∀z)(y < z) ∧ IsZero(x)

(∃y)(x < y)

z < 0

If the symbols “x”, “y”, and “z” are variables, then the associated formula for this deductive tableau is as follows:

[IsZero(0)] ∧ [(∀x)(∃y)(x < y)] ⇒
h

(∃x,y)
“

(∀z)(y < z) ∧ IsZero(x)
”i

∨ [(∃z)(z < 0)]

Or when one starts constructing a proof of a theorem τ with presuppositions ς1, ς2, and ς3, then the deductive tableau
appears as follows:

Suppositions Theorem/Subgoals

ς1
ς2
ς3

τ

If ς1, ς2, ς3, and τ are closed formulas (i.e., if all of the variables in these formulas appear within the scope of quantifiers
in these formulas), then the associated formula for this deductive tableau is (ς1∧ ς2 ∧ ς3) ⇒ τ . Clearly, at this starting
point, the deductive tableau’s associated formula may be valid (i.e., true under every model or interpretation) if and
only if every model that satisfies the presuppositions ς1, ς2, and ς3 also satisfies τ . That is to say, the validity of the
associated formula of the initial deductive tableau corresponds to the validity of the theorem being proved (relative
to presuppositions such as axioms or lemmas that are added to the proof).

The criterion for soundness here is that each deductive step is supposed to preserve the validity or nonvalidity
of deductive tableaux’ associated formulas. That is to say, the associated formula of a deductive tableau after a
deductive step may be valid or nonvalid if and only if the associated formula of the deductive tableau before the
deductive step was also equally valid or nonvalid. (In fact, almost all of the deductive steps here preserve equivalence
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of deductive tableaux’ associated formulas, not just validity.) For example, suppose a supposition formula ς contains
a subformula ϕ1 with positive polarity and a goal formula γ contains a subformula ϕ2 with negative polarity and ϕ1

and ϕ2 are safely unifiable, in which case nonclausally resolving these formulas yields a new goal formula γnew which
is ¬ς̂ ∧ γ̂, where ς̂ is derived from ς by replacing ϕ1 with true and γ̂ is derived from γ by replacing ϕ2 with false

(plus the safely unifying substitutions are applied). Recall that the associated formula α of the deductive tableau

is
^

i

(∀∗)ςi ⇒
_

j

(∃∗)γj, with γnew included among the γjs after the deductive step but not before it. We show that

nonvalidity (or validity) is preserved as follows:

– If the associated formula after the deductive step is not valid, i.e. if in some model the associated formula after
the deductive step has the value false, then clearly in that model each formula (∀∗)ςi has the value true and each
formula (∃∗)γj has the value false after the deductive step — which is when γnew is included among the γjs. Then
clearly in that model each formula (∀∗)ςi had the value true and each formula (∃∗)γj had the value false also
before the deductive step when γnew was not included among the γjs, hence in that model the associated formula
before the deductive step had the value false, hence the associated formula before the deductive step was not
valid,

– If the associated formula before the deductive step was not valid, i.e. if in some model the associated formula before
the deductive step had the value false, then (like above) in that model each formula (∀∗)ςi had the value true
and each formula (∃∗)γj had the value false before the deductive step when γnew was not included among the γjs.
Recall that formula γnew is ¬ς̂ ∧ γ̂, where ς̂ is derived from ς by replacing ϕ1 with true and γ̂ is derived from γ
by replacing ϕ2 with false (plus the safely unifying substitutions are applied). Also note that in the model here,
the formula (∀∗)ς has the value true and the formula (∃∗)γ has the value false. Also, (∃∗)γnew i.e. (∃∗)[¬ς̂ ∧ γ̂]
is equivalent to ¬(∀∗)ς̂ ∧ (∃∗)γ̂ because ς̂ and γ̂ have undergone safe unification, which ensures that all their
respective free variables are actually distinct. We will see that in the model here, the value of (∃∗)γnew is false.
Consider the value assigned by the model here to the formula ϕ obtained when ϕ1 and ϕ2 are unified; this value
is either true or false.
• First, suppose this value is true. Well, recall that the value of (∀∗)ς is true in this model. Safely unifying

substitutions are applied to ς, changing some of its free variables to other terms; but since (∀∗)ς is true
in this model, ς is true for all values at the places of its free variables, so (∀∗)ς with the safely unifying
substitutions applied to ς is true in this model. Now, the unifying substitutions change ϕ1 inside ς to ϕ,
and we are assuming in this case that the value of ϕ is true in this model. Then replacing ϕ inside there
with true should still yield the same value. Thus, (∀∗)ς̂ must be true in this model. Then, in this case, the
value of ¬(∀∗)ς̂ ∧ (∃∗)γ̂] is false, i.e. the value of (∃∗)γnew is false.

• Otherwise, suppose the value of ϕ is false in the model here. Well, recall that the value of (∃∗)γ is false in
this model. Safely unifying substitutions are applied to γ, changing some of its free variables to other terms;
but since (∃∗)γ is false in this model, γ is false for all values at the places of its free variables, so (∃∗)γ with
the safely unifying substitutions applied to γ is false in this model. Now, the unifying substitutions change
ϕ2 inside γ to ϕ, and we are assuming in this case that the value of ϕ is false in this model. Then replacing
ϕ inside there with false should still yield the same value. Thus, (∃∗)γ̂ must be false in this model. Then,
in this case also, the value of ¬(∀∗)ς̂ ∧ (∃∗)γ̂] is false, i.e. the value of (∃∗)γnew is false.

Thus, even when γnew is included among the γjs after the deductive step here, each formula (∀∗)ςi has the
value true and each formula (∃∗)γj has the value false, so the associated formula after the deductive step has the
value false in the model here. Consequently, the associated formula after the deductive step is not valid.

Thus, the associated formula of a deductive tableau after this deductive step may be nonvalid if and only if the
associated formula of the deductive tableau before the deductive step was also equally nonvalid. This implies that the
associated formula of a deductive tableau after this deductive step may be valid if and only if the associated formula
of the deductive tableau before the deductive step was also equally valid.

Now, consider a final deductive tableau containing either a proof-terminating ‘supposition’ ςm which is false or
a ‘subgoal’ γn which is true. If either ςm is false or γn is true, then clearly the associated formula at this point,

^

1≤i≤m

(∀∗)ςi ⇒
_

1≤j≤n

(∃∗)γj, is valid. But every deductive step here preserves validity of deductive tableaux’ associated

formulas, i.e. the associated formula of a deductive tableau after any deductive step is valid if and only if the associated
formula of the deductive tableau before the deductive step was also valid. Well then, with the associated formula
of the final deductive tableau being valid, then the associated formula of the initial deductive tableau must also be
valid. But also, the validity of the associated formula of the initial deductive tableau corresponds to the validity
of the theorem being proved (relative to presuppositions such as axioms or lemmas that are used in the proof).
Therefore, achieving a ‘subgoal’ of true (or a ‘supposition’ of false) establishes the validity of the theorem being
proved (relative to presuppositions such as axioms or lemmas that are used in the proof).

Regarding completeness, ProofBuilder can do all the steps of classical clausal resolution — including the process
of reducing a given theorem to clausal form; thus, as is known for classical clausal resolution, ProofBuilder is
refutation complete.
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Abstract

The distributed temporal logic DTL [3] is a logic for reasoning about temporal
properties of distributed systems from the local point of view of the system’s
agents, which are assumed to execute sequentially and to interact by means of
synchronous event sharing.

DTL was first proposed in [3] as a logic for specifying and reasoning about
distributed information systems. The logic has also been used in the context
of security protocol analysis for reasoning about the interplay between protocol
models and security properties [1,2]. However, all of the previous results have
been obtained directly by semantic arguments. It would be reassuring, and useful
in general, to have a usable deductive system for DTL. An attractive possibility
in this regard is a labeled tableaux system as deductions will then closely follow
semantic arguments.

We present a sound and complete labeled tableaux system for DTL. To
achieve this, we formalize a labeled tableaux system for reasoning locally at
each agent and afterwards we combine the local systems into a global one by
adding rules that capture the distributed nature of DTL.
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Abstract

Temporal logics have long been recognised as introducing appropriate languages for speci-
fying a wide range of important computational properties in computer science and artificial
intelligence. However, the use of first-order temporal logic has been hampered by its lack
of a complete proof system. Hodkinson, Wolter, and Zakharyaschev [1] were the first to
show that a non-trivial fragment of first-order temporal logic, called the monodic fragment,
or monodic first-order temporal logic, has the completeness property. This initial result
was followed by an examination of the monodic fragment in terms of decidable subclasses,
automated deduction, and applications.

In particular, Konev, Degtyarev, Dixon, Fisher and Hustadt investigated monodic first-
order temporal logic in the context of resolution. In [4,5] they devise the fine-grained reso-

lution calculus for monodic first-order temporal logic. This calculus forms the basis of the
prover TeMP [2]. A refinement of this calculus, ordered fine-grained resolution with selec-
tion, is presented by Hustadt, Konev, and Schmidt [3], and shown to decide the guarded
fragment and the dual Maslov class K fragment of monodic first-order temporal logic.

In this paper we first recall the definition of the ordered fine-grained resolution with
selection calculus. We then discuss the contribution that classical first-order resolution can
make to the implementation of that calculus, using the architecture of TeMP and its
connection with Vampire to illustrate this particular approach. Finally, we discuss a problem
with this particular architecture, namely that derivations in general cannot be guaranteed
to be fair and present a revised architecture which solves this problem.
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Abstract. In previous works on verifying C programs by deductive ap-
proaches based on SMT provers, we proposed the heuristic of separation
analysis to handle the most difficult problems. Nevertheless, this heuris-
tic is not sufficient when applied on industrial C programs: it remains
some Verification Conditions (VCs) that cannot be decided by any SMT
prover, mainly due to their size.
This work presents a strategy to select relevant hypotheses in each VC.
The relevance of an hypothesis is the combination of two separated de-
pendency analysis obtained by some graph traversals. The approach is
applied on a benchmark issued from an industrial program verification.

1 Introduction

Using formal methods for verifying properties of programs at their source code
level has gained more interest with the increased use of embedded programs,
as for instance, plane command control, cars, smart cards. . . Such embedded
programs, which require a high-level of confidence, are often written in C. In
such a case, it is widely known that verifying safe pointers manipulation is one
of the most critical tasks: aliasing, that is referencing a memory location by
several pointers and out-of-bounds array access must be taken into account for
instance.

Among the verification methods, the deductive one consists in transform-
ing logical annotations of the program (pre- and post-conditions of a function,
invariants) into formulae whose validity implies the correctness of these annota-
tions. In practice, the technique that has shown itself the most effective is the
Weakest Precondition (wp) calculus of Dijkstra [12]. It is the basis of effective
tools such as ESC/Java [11], several tools for Java programs annotated using
the Java Modeling Language [4], Boogie [1] for the C# programming language,
and a tool of our own for C programs called Caduceus/Why [14].

However all these methods suffer from generating large Verification Condi-
tions (VCs) when applied on industrial programs where scalability and efficiency

⋆ This work is partially funded by the French Ministry of Research, thanks to the CAT
(C Analysis Toolbox) RNTL (Reseau National des Technologies Logicielles).
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are of paramount importance. Possible solutions are to optimize the memory
model (e.g. by introducing separations of zones of pointers [16]), to improve
the calculus of weakest precondition [17] and to apply strategies for simplifying
VCs [15,9,18].

This work focuses on the latter. A VC is expressed as a goal and a context.
The goal encodes the execution of the program, which can be seen as hypotheses,
and the property that the program should satisfy, namely the conclusion. The
context is an extension of a base theory (usually a combination of equality with
uninterpreted function symbols and linear arithmetic) with a large set of axioms.
context describes many features of the program such as the memory model.

Verification Conditions may contain useless axioms (e.g., when the program
does not manipulate pointers, all the axioms about pointers could be dropped)
and a huge number of useless hypotheses (e.g., when the property is initially
established and does not concern subsequent instructions) introduced by wp.
Moreover, a large number of useless axioms/hypotheses unnecessarily enlarge the
search space of SMT solvers (i.e., Satisfiability Modulo Theories), and degrade
unacceptably their performances.

Instead of invoking the SMT solvers blindly on the whole set of hypotheses
in the whole context, we present a method to remove as many hypotheses as
possible by a suitable selection strategy, which allows us to significantly prune
the search space of SMT solvers.

The idea of the strategy developed here is quite natural: an hypothesis is rel-
evant if it contains both the predicates and the variables needed to establish the
conclusion. To compute this relevance result, we analyse dependencies between
variables of the conclusions and variables of each hypothesis on one hand and
predicates of the conclusion, predicates of the hypotheses and predicates used in
the theory on the other hand.

Section 2 presents how the goal is preprocessed as the first step of the method.
Section 3 presents a running example. Section 4 shows how we store dependencies
in graphs. The selection of hypotheses is then presented in Sec. 5. These last two
sections are the first contribution. The second contribution is the implementation
of this strategy as a module of Caduceus/Why [14] and its application on an
industrial C example that is about 4000 lines of annotated C code (Sec. 6).
Section 7 discusses related work, concludes and presents future work.

2 Verification Conditions Normal Form

This section presents the normal form for VCs that we consider in the rest of
this paper. A first point to be noted is that due to the application of a weakest
precondition calculus on imperative programs, the usual form of Verification
Condition is

∀X(H1 ⇒ (H2 ⇒ . . . (Hn ⇒ C)))

where X is the set of variables in the formula collected during a prenexing step,
Hi, 1 6 i 6 n and C are first-order logic formulas.
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In what follows we consider C and Hi, 1 6 i 6 n to be quantifier free.
Such a restriction is not a problem since each remaining quantified subformula
ϕ may be replaced by a predicate p(Y ), where p is a fresh symbol and Y is
the set of free variables in ϕ with Y ⊆ X . To be correct and complete, we add
the axiom ∀Y . p(Y ) ⇔ ϕ into the theory (see [7] for more details and proof of
equisatisfiability).

split(H1 ∨H2 ⇒ C) = split(H1 ⇒ C) ∪ split(H2 ⇒ C)
split(H ⇒ C) =

S

c∈split(C){H ⇒ c}

split(C1 ∧ C2) = split(C1) ∪ split(C2)
split(ϕ) = {ϕ}

Fig. 1. Generating small VCs with split function

For simplification purpose, we consider that each hypothesis is written in
DNF and the conclusion is written in CNF. We use then a function that reduces
the size but raise the number of the VCs by splitting conjunctions in positive
occurrences and equivalently disjunction in negative occurrence. It is formalized
with the function split given in Fig. 1, where rules are applied from the left to
the right and where the last rule is considered if upper ones can not be applied.
It results in a set of valid VCs if and only if the given larger VC is valid. Notice
that resulting VCs are free of negative occurrences of disjunction and positive
occurrence of conjunction.

We are left with VCs of the form

l11 ∧ . . . ∧ l
m1
1 ⇒ (l12 ∧ . . . ∧ l

m2
2 ⇒ . . .⇒ (l1n ∧ . . . ∧ l

mn
n ⇒ (l1n+1 ∨ . . . ∨ l

mn+1

n+1 )))

where each li,1 6 i 6 n+ 1 is a literal. Obviously, each VC of this form is valid
if and only if one of the mn+1 VCs given by

(
l11 ∧ . . . ∧ l

m1
1

∧

. . .
∧

l1n ∧ . . . ∧ l
mn
n

)
⇒ lin+1,

1 6 i 6 mn+1, is valid. The normal form of our VC is

(
l1 ∧ . . . ∧ ln

)
⇒ ln+1, (1)

where each li is a literal which is a Horn Clause.

3 Running Example

Figure 2 is the starting point of the running example that illustrates the ap-
proach throughout the following sections. The left side column of this C pro-
gram introduces matryoshka structures, whereas the right side column presents
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struct p{
int x;
} p;

struct s{
struct p v[2];
} s;

struct t{
struct s *y;

}t;

/*@ requires \valid(c)
assigns c−>v[0].x*/

void g(struct s *c);

/*@ requires \valid(a) && \valid(b)
&& \valid(a−>y)

assigns a−>y−>v[0..1].x*/
void f(struct t *a, struct p *b){
int i = b−>x;
g(a−>y);
a−>y−>v[1].x=i;
}

Fig. 2. C running example

the interface g and the function f. This later function calls g and explicitly mod-
ifies the value stored in one of the innermost fields of the structure pointed by a

(namely a−>y−>v[1].x).

Functions are annotated in the language of the Caduceus/Why [14], which
is composed of

– pre-conditions (defined by requires keyword); such pre-conditions ensure
that each pointer given in parameter is \valid (i.e. is correctly allocated)
when entering the function f or the interface g;

– a list of data modified by side effects (defined by assigns keyword); for in-
stance assigns a−>y−>v[0..1].x means that the function f does not
modify locations outside the set {a−>y−>v[0].x, a−>y−>v[1].x}; such
property can be established by considering the side effects of g and the
body of f.

Caduceus VCs generator yields predicates valid and diff which have the se-
mantic of \valid and assigns respectively.

This example is quite representative of the class for which it is hard to show
the absence of threats (null pointer dereferencing, out-of-bounds array access,
or more generally dereferencing a pointer that does not point to a regularly
allocated memory block).

For such a program, Caduceus/Why yields two kinds of VCs: some that
establish validity of pointers for each memory access, and some that establish
which the list of side effects given in annotations is a superset of the function’s
side effects. For instance, the instruction g(a−>y) constraints a to be valid and
a−>y to be also valid due to the pre-condition of g.

We apply a Burstall-Bornat method [5,3] which consists in having one ‘array’
variable (later called a memory) for each structure field. This modeling syntacti-
cally encodes the fact that two structure fields cannot be aliased. The important
consequence is that whenever one field is updated, the corresponding array is
the only one which is modified. Hence, we have for free that any other field is
left unchanged. In practice the fields x, v and y yield respectively the memories
mx, mv and my .



A Graph-based Strategy for the Selection of Hypotheses 67

Memories can be accessed only by function acc; acc(m, p) returns the value
stored in the memory m at index p. A fresh memory can be generated by function
upd; upd(m, p, v) duplicates m except at pointer p where it sets the value v.

Let us define the predicate diff(m1, m2, l) wherem1 andm2 are two memories,
and let l be a set of pointers. Intuitively, diff(m1, m2, l) means that differences
between m1 and m2 only concern the set l. It is formalized with

diff(m1, m2, l)⇔
(
∀p . valid(p) ∧ ¬mem(p, l)⇒ acc(m1, p) = acc(m2, p)

)
(2)

where p is a pointer and mem(p, l) means that p is a member of l. Note that
the formula (2) is one of the 80 axioms that compose the memory model of
Caduceus/Why.

The VC generated according to the assigns annotation of function f is

H1

{(
valid(a) ∧ valid(b) ∧ valid(acc(my, a))∧

valid acc range(mv, 2) ∧ separation1 range(mv, 2)

)

⇒

H2

{(

diff(mx, mx 0, singleton(shift(acc(mv, acc(my, a)), 0)))⇒

C







diff(mx, upd(mx 0, shift(acc(mv, acc(my, a), 1)), acc(mx, b)),

range(singleton(acc(mv, acc(my, a))), 0, 1))

)

(3)

where all variables are universally quantified. We have two hypotheses:

H1. The first line corresponds to the pre-condition of function f. The second line
is issued from the definition of structure s: predicate valid acc range(mv, 2)
means that accessing to the memory mv, for each index p that is a valid
pointer, returns an array t s.t. pointers t[0] and t[1] are valid; with the same
notations separation1 range(mv, 2) means that t[0] 6= t[1].

H2. It is issued from the instruction g(a−>y): function singleton has the usual
meaning and shift(t, i) allows to access in the array t to the index i. This hy-
pothesis defines the access of variable mx 0 which is equal to the access in mx

except for the index shift(acc(mv, acc(my, a)), 0) corresponding to assigns

c−>v[0].x where c is replaced by a−>y.

The conclusion C is a diff predicate applied to two memories. The first memory is
the memory before execution of f and the second memory is the memory after ex-
ecution of f. The third parameter range(singleton(acc(mv, acc(my, a))), 0, 1) de-
fines the set of pointers located at the indices 0 and 1 in the array acc(mv, acc(my, a))
in fact this is the representation of a->y->v[0..1]
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Normal form of the VC (3) is











valid(a)∧
valid(b)∧
valid(acc(my, a))∧
valid acc range(mv, 2)∧
separation1 range(mv, 2)∧
diff(mx, mx 0, singleton(shift(acc(mv, acc(my, a)), 0)))











⇒

diff

(
mx, upd(mx 0, shift(acc(mv, acc(my, a), 1)), acc(mx, b)),

range(singleton(acc(mv, acc(my, a))), 0, 1))

)

(4)

Even if this example is quite short, among the SMT-provers Simplify [10],
Yices [13], Ergo [6], haRVey [21] and CVC-lite [2], Simplify and haRVey are the
only ones which succeed in establishing the validity of this VC in a few seconds.

However, an engineer would have deduced from the background theory that
diff and validacc are not directly linked in the present case. Removing the hy-
pothesis concerning valid acc range permits him to obtain the desired result.

The next section shows how dependencies are memorized in the problem of
proving a goal in a SMT solver. This is the starting point of the approach of
removing useless hypotheses.

4 Memorizing Dependency

Dependencies between hypotheses or between an hypothesis and the conclusion
of the goal can be of two levels: predicative level and variable level. In the former
case, two predicates are dependent if there exists a (deductive) path leading from
the first one to the second one. Such a path may be deduced from axioms of the
theory and does not depend on the program. Such a dependency, later denoted
as static, is presented in Sec. 4.1. In the later case, it is obvious that two formulae
are dependent if they have a common set of variables. These variables may either
be program variables or may result from a weakest precondition calculus applied
on the program and its assertions. For that reason such dependency is later
denoted dynamic and is presented in Sec. 4.2.

4.1 Static Dependency

Our goal is to compute an directed graph with weights representing the implica-
tive relation between predicates. Intuitively, in this graph, each vertex represents
a predicate name and an arc from the vertex p to the vertex q means that p may
imply q. What follows details how to compute such a graph of predicates named
GP .

Practically, each vertex of the graph is labelled with a predicate symbol that
appears in one literal except equality or inequality predicates of the theory.
Notice that if a predicate r appears in a negative occurrence (e.g. in a axiom of
the form ¬r), it is nevertheless represented as an vertex labeled with r. Let us
show how the dependency between these predicates are represented as edges.
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First, each axiom is written as a CNF, but in a straightforward way (by oppo-
sition to elaborate CNF [19]): axioms are of short size and their transformation
into CNF do not yield combinatorial explosion. Then, each resulting clause C
(viewed as a set of literals) can be seen as the union of C− and C+ contain-
ing negative literals of C and positive literals of C respectively. Intuitively each
predicate symbol of C− is a premise and each predicate symbol of C+ is a con-
sequence. An edge is then added for each pair in C−×C+ that does not contain
an equality or an inequality.

Let p be a predicate symbol in C− and q be a predicate symbol in C+. We
propose to label each edge from p to q with a weight k such that the lowest the
edge weight k is, the highest is the probability of p to establish q. Such an edge is
labeled with the number card(C)−1. A large clause with many premises, among
of them p, and with many consequents, among of them q, has less chance to be
used in a deduction step leading to q than the clause {¬p, q}. If there exist p

w1−→q

and p
w2−→q, we leave only the edge p

min(w1,w2)
−→ q. Notice that even if equality and

inequality predicates are not represented as edges they are however considered
in the graph of dependency since they are involved in the calculus of weights.

Running example. As a short example, we apply the method on axiom (2).
Its CNF is given by

{{¬diff(M1,M2, L),¬valid(P ),mem(P, L), acc(M1, P ) = acc(M2, P )},
{valid(p0), diff(M1,M2, L)},
{¬mem(p0, L), diff(M1,M2, L)},
{acc(M1, p0) 6= acc(M2, p0), diff(M1,M2, L)}}

(5)

where capitalized variables are universally quantified and p0 is a fresh constant
resulting from the skolemization of p. Figure 3 represents the dependency graph
corresponding to this axiom. It is then an excerpt of the graph representing the
memory model of Caduceus/Why.

diff

mem

3 1

valid

3

Fig. 3. Dependency graph of axiom (2)
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4.2 Dynamic Dependency

Our aim is to compute an undirected graph which represents the relation between
hypotheses as relations between the variables they contain. Let us detail how to
build such a graph of variables named GV .

Vertices are labeled with the variables of the goal and variables resulting
from a flattening process on hypotheses: in some hypothesis H, a functional
term f(t1, . . . , tn) that is a parameter of a predicate, or a function, should be
replaced by a fresh variable x. The hypothesis x = f(t1, . . . , tn) should be added
just before H. Obviously, the flattening task is not applied when the functional
symbol is the parameter of the equality predicate.

Each predicate is then represented by the complete graph composed by all
the vertices corresponding to the predicate variables.

Notice that both flattening and edge computing do not concern the conclusion
of the goal: adding intermediate variables and allowing to incrementally select
deeper and deeper variables is only meaningful for hypotheses. All the variables
of the conclusion have to be selected without any graph traversal.

Running example. The graph representing verification condition (4) is given
in Fig. 4. In such a graph, singleton 2,shift 3, acc 4 and acc 5 are fresh variables
introduced by the flattening-like step applied on the hypothesis

diff(mx, mx 0, singleton(shift(acc(mv, acc(my, a)), 0))).

It leads to five complete graphs corresponding to sets {mx, mx 0, singleton 2},
{singleton 2, shift 3}, {shift 3, acc 4}, {acc 4, acc 5, mv} and {acc5, my, a}.

The approach is similar for acc 1 which is issued from valid(acc(my, a)).

m_v

a

b

m_y

m_x

m_x_0

acc_1

acc_4

acc_5

singleton_2

shift_3

Fig. 4. Dependency graph of verification condition (4)
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5 Selection of Relevant Hypotheses

We are left to select relevant hypotheses. Intuitively, a sub-formula is relevant
with respect to the conclusion of the formula if this formula cannot be established
without the former. More formally, let ϕ =def h1 ∧ . . . ∧ hn ⇒ C be a formula.
The hypothesis h1 is relevant w.r.t. C if h1 ∧ . . . ∧ hn ⇒ C is valid whereas
h2 ∧ . . .∧ hn ⇒ C is not, and similarly for any hi, 1 6 i 6 n. This section shows
how to select relevant predicates (Sec. 5.1), relevant variables (Sec. 5.2) and
explains how to combine these results to select relevant hypotheses (Sec. 5.3).

5.1 Relevant Predicates

As shown in Sec. 2, the conclusion can be reduced to one literal c without loss
of generality. In what follows, we do not distinguish a predicate symbol from its
corresponding node in the graph of predicates GP .

A predicate symbol p is relevant w.r.t. a predicate symbol q if there is a path
from p to q. Intuitively, the weakest the weight of the path is, the highest the
probability of p to establish q is.

A search computes the set of predecessors of positive occurrence of any pred-
icate appearing in the conclusion. Similarly, successors of any predicate wich
appears in a negative occurrence in the conclusion are computed (e.g. if the con-
clusion is ¬q). All these predecessors and successors are stored into the list L

ordered by the path weight. Finally, completeness of the selection is obtained by
adding unreachable predicates into the list tail.

In the following, if i is an index that is positive or null, L[0 . . . i] denotes
the set of predicates symbols of L stored in the i + 1 first places of the list.
Particularly, L[0 . . . 0] is the set of conclusion predicates.

Running example. According to the graph given in Fig. 3, we have :

L[0] = {diff}
L[1] = L[0] ∪ {mem}
...

Notice that valid acc range appears neither in L[0] nor in L[1].

5.2 Relevant Variables

Starting with the variables of the conclusion V0, a breadth-first search algorithm
computes the fix-point V∗ variables that are reachable from V0 in the variable
graph GV .

The sequence
(
Vn
)

n∈N
of reachable variables sets is defined for n ∈ N with







V2n+1 = V2n ∪ {v | ∃v1, v2 . v1 6= v2 ∧ v1 ∈ V2n ∧ v2 ∈ V2n ∧ v 6∈ V2n∧
(v ↔ v1, v↔ v2 are edges of GV )}

V2n+2 = V2n+1 ∪ {v | ∃v′ . v′ ∈ V2n ∧ v 6∈ V2n+1 ∧ (v ↔ v′ is an edge of GV )}
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Practically, the heuristic which consists in first computing the set of new
nodes that are doubly linked before nodes that are simply linked introduces
more granularity in the calculus of reachable variables. Semantically it privileges
variables that are strongly connected with already selected variables, i.e. those
which are closer to the conclusion. Finally, unreachable variables are added to
the fix-point V∗ for completeness reason and let V∞ be the set so obtained.

Running example. The sequence of reachable variable sets of verification con-
dition (4) is

V0 = {mx, mx 0, mv, my, a, b},
V1 = V0 ∪ {acc 1, acc 5, singleton 2},
V2 = V1 ∪ {acc 4},
V

3 = V
2 ∪ {shift 3},

V∗ = V3 and
V∞ = V∗.

5.3 Hypothesis Selection

Suppose given the ordered list of predicates L, the sequence
(
Vn
)

n∈N
of reachable

variables sets and an hypothesis H. Let i be the counter which represents the
level of predicate selection. Similarly, j is the counter corresponding to the level
of variables selection. Let V be the set of variables ofH augmented with variables
resulting from flattening (see Sec. 4.2). Let P be the set of predicates of H.

Different criteria can be used to select an hypothesis H according to its sets
V and P . Possible choices are, in increasing order of selectiveness

1. when V ∩Vj 6= ∅ or P ∩L[0 . . . i] 6= ∅: in the hypothesis, there is at least one
relevant variable or one relevant predicate;

2. when card(V ∩ Vj)/card(Vj) and card(P ∩ L[0 . . . i])/card(L[0 . . . i]) are
greater than a threshold;

3. when both V ⊆ Vj and P ⊆ L[0 . . . i] (i.e. all the hypothesis variables and
hypothesis predicates are relevant).

Our experiments on these criteria have shown that a too weak a criterion
does not accomplish what it is designed for: too many hypotheses are selected
for few iterations, making the prover quickly diverge. In what follows, we only
consider the strongest criterion.

Consider a formula resulting from the selection of hypotheses according to
the strongest criterion. Then, three issues can arise when discharging it into a
prover:

1. The formula is declared to be valid and the procedure ends.
2. The formula is declared to be invalid, maybe because we have omited some

hypotheses; we are then left to increment either i or j, i.e. to enlarge either
the set of selected predicates or the set of selected variables.
However, divergence appears when the generation of new literals by a set
of axioms is a process that falls in a bottomless pit. Such a generation is
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controlled by the presence in the formula of predicates of incriminated ax-
ioms. Given a set of predicates and a set of variables, allowing the use of new
predicates has a more critical impact than allowing the use of new variables.

To conclude, we first increment j, eventually until we reach V∞ before con-
sidering incrementing i. In this later case, j reset to 0.

3. The formula is not decided in less than a given time. If this case occurs
after having iteratively incremented i and j, the approach halts. The user
is left with an unsatisfactory answer. Otherwise, we propose first to reduce
i in order to be in a state where the prover can conclude and to restart the
procedure.

Running example. For L[0], no hypothesis is selected with V0, V1, V2. How-
ever with V3 it yields the VC

diff(mx, mx 0, singleton(shift(acc(mv, acc(my, a)), 0)))⇒
diff(mx, upd(mx 0, shift(acc(mv, acc(my, a), 1)), acc(mx, b)),

range(singleton(acc(mv, acc(my, a))), 0, 1))
(6)

which does not contain the hypothesis with valid acc range which is the expected
result. In addition to Simplify and haRVey that already discharged the original
VC, Ergo and Yices run successfully on VC (6).

6 Experimentations

In previous work, we presented our context of certification of anotated C pro-
grams: we proposed in [16] a separation analysis that allows to greatly simplify
the verification conditions generated by a weakest precondition calculus, and
thus greatly helps proving such pointer programs. We illustrate the improve-
ments both in term of scaling for codes of large size, and in term of simplification
of the reasoning for establishing advanced behaviors.

We have applied this separation analysis on an avionic program that is about
4000 lines of annotated C code, and which aims at analyzing information re-
turned by sensors. This code is critical since it is embedded into a Dassault
Aviation airplane. It is a simple program without explicit memory allocation
but with many structures, as sketched in the running example. Caduceus/Why
yielded about 184000 VCs.

Among of them, 65 were not discharged by any automatic prover with a
timeout of 240 seconds for each VC, on an Intel Xeon 3.20GHz with 2Gb of
Memory. All the VCs not discharged concern the predicate not_assigns and
are not so short since they contain an average of 200 literals, corresponding to
the same number of hypotheses.

Thanks to the method developed along these lines, all the remaining VCs
are automatically discharged in less that 240s, by Simplify notably. In such
experiment, i and j have reached the maximal number 1 and 3 respectively.
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7 Related Work and Conclusion

In this work, we have presented a new strategy to select relevant hypotheses in
formulas issued from program verification. To do so we have combined two sep-
arated dependency analyses based on graph computation and graph traversal.
Moreover, we have given some heuristics to compute the graph with sufficient
granularity. Finally we have shown the pertinence of this approach with a bench-
mark issued from a real industrial code.

Strategies to simplify the prover task have been widely studied since auto-
mated provers exist [25], mainly to propose more efficient deductive systems
[25,24,23].

The work presented here can be compared with the set of support (sos) se-
lection strategy [25,20]. Such an approach starts with asking the user to provide
an initial sos: it is classically the denial of the conclusion and a subset of hy-
potheses. It is then restricted to only apply inferences with at least one clause
in the sos, consequences being added next into the sos.

Our work can also be viewed as an automatic guess of the initial sos guided
by the formula to prove. In this sense, it is close to [18] where initial relevant
clauses are selected according to syntactical criteria, i.e. counting matching rates
between symbols of any clause and symbols of clauses issued from the conclusion.
By considering syntactical filtering on clauses issued from axioms and hypothe-
ses, this later work does not consider the relation between hypotheses, formalized
by axioms of the theory: it provides a reduced forward proof. In the opposite,
by emphasizing sharing static dependency and dynamic dependency, we are not
so far from backward proof search.

By focusing on predicative part of the proof obligation, our objectives are
dual than those developed in [15]: this later work concerns boolean verification
conditions of any boolean structure whereas we treat predicative formula whose
symbols are axiomatized in a quantified theory.

Work presented here does apply a strategy to select relevant axioms of the
theory, even if, most of the time, each proof obligation only requires a tiny
portion of such a big theory. In [22,8], an instance of such a strategy is presented
but it needs a preliminary manual task of classifying axioms. We plan to extend
these works in the direction of automation.

References

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Program-
ming System: An Overview. In Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices (CASSIS’04), volume 3362 of Lecture Notes in Com-
puter Science, pages 49–69. Springer, 2004.

2. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Computer Aided Verification, 16th Interna-
tional Conference, CAV 2004, Lecture Notes in Computer Science. Springer, 2004.
http://verify.stanford.edu/CVCL/.

http://verify.stanford.edu/CVCL/


A Graph-based Strategy for the Selection of Hypotheses 75

3. Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of
Program Construction, pages 102–126, 2000.

4. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. Technical Report NIII-R0309, Dept. of Computer Science, University
of Nijmegen, 2003.

5. Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

6. Sylvain Conchon and Evelyne Contejean. The Ergo automatic theorem prover.
http://ergo.lri.fr/.
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Abstract. We study lemma simplification for geometric resolution, mainly
from a theoretical viewpoint. For this purpose we develop a framework of
proof permutations, which is somewhat similar to the permutions used
in proofs of cut elimination. A side effect of this framework is, that one of
the rules of the original geometric resolution calculus, can be simplified
into simpler rules, which may have an advantage for proof presentation.

Using the framework of proof permutations, we are able to prove the-
oretical results on proof length for three simplification rules that have
been empirically successful in our implementation geo. These rules are
subsumption, functional reduction, and equality splitting.

This work is work-in-progress, because there exist more simplification
principles, for which at this moment we have neither theoretical results,
nor practical experience.

1 Introduction

Geometric resolution is a proof search strategy, which was initiated in [3]. It
works on a normal form called geometric formula, which it tries to refute by
enumerating candidate models.

The variant of geometric resolution studied in this paper was initiated in [6],
and differs from the one in [3] in the following ways:

1. The structure of geometric formulas is more restricted, but it is allowed to
contain equality.

2. Witnesses for quantifiers are enumerated in the same way as in [4], (and
different from [3]), which makes it possible to obtain completeness for first-
order logic with equality.

3. From every failed attempt to construct a model, a lemma is learnt, which
ensures that no similar models will be explored later during proof search.

We now define (our variant) of a geometric formula, then we outline the proof
search algorithm for geometric resolution. It makes use of a resolution-like cal-
culus (the geometric resolution calculus) with which it derives a closing lemma
from every failed attempt to find a model. (Very similar to the way lemmas
are learnt in modern approaches to DPLL, see [7]). The fact that this is always
possible, was proven in [6].
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After that we discuss what effects one can expect from simplification in geometric
resolution, and we compare with simplification for saturation-based calculi ([1]).
The main difference is that in geometric resolution, inferences are controlled by
the model search algorithm, where in saturation-based calculi, they are made
blindly. Because of this, we expect the effect of simplification in geometric reso-
lution to be more predictable.

Definition 1. We assume an infinite set of variables V. A variable atom is
defined by one of the following two forms:

– x1 6≈ x2, with x1, x2 ∈ V and x1 6= x2.
– p(x1, . . . , xn) with n ≥ 0 and the xi ∈ V.

There are no constants and no function symbols in variable atoms. There are also
no positive equalities. Negative of equalities of the form v 6≈ v are disallowed,
because they are trivially false. Geometric formulas are built from variable atoms
as follows:

Definition 2. A geometric formula has form

∀x A1(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x
′
1 ∧ · · · ∧ xq 6≈ x

′
q → Z(x),

where p ≥ 0, q ≥ 0, and the x1, x
′
1, . . . , xq, x

′
q ∈ x ⊆ V.

The right hand side Z(x) must have one of the following three forms:

1. The false constant ⊥.
2. A non-empty disjunction of non-disequality atoms B1(x) ∨ · · · ∨ Br(x) with

r > 0.
3. An existential formula of form ∃y B(x, y) with y ∈ V but y 6∈ x. The variable

y must occur in B(x, y).

A formula of the first type is called lemma. A formula of the second type is called
disjunctive. A formula of the third type is called existential.

The notations can be clarified as follows:

– In ∀x, x denotes an enumeration of x, in arbitrary order, mentioning each
variable of x exactly once. The scope of ∀x is the whole geometric formula.

– In A(x), x denotes a sequence of variables from x. Variables may be re-
peated, and not all variables need to occur.

– Later in this paper, an expression of form Φ(x), Ψ(x) or X(x) will denote
a conjunction of variable atoms, possibly containing disequality and non-
disequality atoms.

It was shown in [6] that every first-order formula can be translated into an equi-
satisfiable set of geometric formulas. The translation is related to the translation
in of [2], and also somewhat related to the translation in [5]. The main difference
with [5] is that we do not introduce functionality axioms. (although we will see
them back as simplification rules later)
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An interpretation can be viewed as a set of ground atoms I. An interpretation
does not contain disequality atoms. Let ρ = ∀x Φ(x)→ Z(x) be a geometric rule.
Let Θ be a substitution that assigns constants occurring in I to the variables in
x. We call the rule ρ applicable in I with substitution Θ if

1. for each disequality atom x1 6≈ x2 ∈ Φ(x), we have x1Θ 6= x2Θ,
2. for each usual atom A(x) ∈ Φ(x), the atom A(x)Θ occurs in I, and
3. Z(x)Θ is false in I under substitution Θ.

(The constant ⊥ is always false. The disjunction B1(x)∨ · · · ∨Br(x) is false
if none of the Bj(x)Θ occurs in I. A formula of the form ∃y B(x, y) is false
if I contains no constant c, s.t. B(xΘ, c) ∈ I )

As an example, ∀x A(x)→ B(x) is not applicable in {A(0), B(0), A(1), B(1)}.
The rule ∀x A(x) → B(x) ∨ C(x) is not applicable in {A(0), B(0), A(1), C(1)}.
It is applicable in {A(0), C(0), A(1)} with substitution {x := 1}.
The rule ∀xy A(x) ∧B(y) ∧ x 6≈ y → ∃z C(x, y, z) is applicable in
{A(0), A(1), B(0), B(1), C(0, 1, 0)} with substitution {x := 1, y := 0}. It is not
applicable with any other substitution.
In geometric resolution, proof search proceeds by a combination of model search
and lemma generation. The algorithm recursively tries to extend an interpreta-
tion I into a model. (i.e. an interpretation in which no rule is applicable) At each
recursive level, the input consists of an interpretation I, and a set of geometric
formulas G. When I cannot be extended into a model, the algorithm returns a
pair (ρ,Θ) s.t. ρ is a lemma which is applicable on I with substitution Θ. In
case the lemma ρ is not already present in G, either I is a model, or there is an
applicable rule ρ′ which is not a lemma. In that case, the algorithm uses ρ′ to
extend I, by which it possibly has to backtrack. When backtracking is complete,
it uses the geometric resolution rules to derive a ρ. It was proven in [6] that this
is always possible, using geometric resolution. We describe the algorithm:

1. Select a rule ρ and a substitution Θ, s.t. ρ is applicable in I with Θ.
2. If no (ρ,Θ) was found, then I is a model. Report I.
3. If ρ is of type 1, then return (ρ,Θ).
4. If ρ is of type 2, then write ρ = ∀x Φ(x)→ B1(x) ∨ · · · ∨Bq(x). Recursively

call the algorithm on each I ∪ {Bj(xΘ)}. If one of the recursive calls results
in a model, then report this model. Otherwise, the recursive calls will collect
a sequence of pairs (ρ1, Θ1), . . . , (ρq, Θq), s.t. each ρj is a lemma applicable
in the interpretation I ∪ {Bj(xΘ)} with Θj . Using disjunction resolution, it
is possible to derive a pair (ρ′, Θ′), s.t. ρ′ is a lemma applicable in I with
substitution Θ′.

5. If ρ is of type 3, then write ρ = ∀x Φ(x) → ∃y B(x, y). Assume that the
constants occurring in I are called c0, . . . , cn−1. Let cn be the next constant
which is not in I. For each i with 1 ≤ i < n, recursively call the model search
algorithm on the interpretation I ∪ {B(xΘ, ci)}. Also call the model search
algorithm on I∪{B(xΘ, cn)}. If one of the recursive calls constructs a model,
then report this model. Otherwise, the recursive calls will collect a sequence
of pairs (ρ1, Θ1), . . . , (ρn, Θn), s.t. each ρi is a lemma which is applicable in
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I ∪ {B(xΘ, ci)} with substitution Θi. Using existential resolution, one can
derive a pair (ρ′, Θ′), s.t. ρ′ is a lemma applicable in I with substitution Θ′.

The most important heuristic of the algorithm is the choice which application
(ρ,Θ) should be expanded. In general, it seems sensible to prefer lemmas over
rules of other types. Between lemmas, geo currently decides by selecting the
smaller lemma. Between rules ∀x Φ(x) → Z(x) of type 2 or type 3, it decides
by selecting the application for which Φ(x)Θ has the smallest set of premises,
viewing this set as a multiset, and considering older atoms smaller than new
atoms. In this way, fairness is guaranteed. However, there is a much variation
possible and the effect of the heuristic on the performance of geo is largely
unexplored.
The main distinction between geometric resolution and saturation-based theo-
rem proving, (e.g. superposition) apart from the different normal form, is the
fact that in geometric resolution, proof search is controlled by the model search
algorithm. The model search algorithm decides which resolution inferences are
made. When it needs a closing lemma, it calls the resolution module with de-
tailed instructions about which inferences should be made. In saturation-based
theorem proving, inferences are made essentially ’in a blind way’. Clauses are se-
lected, and all possible inferences are made. This difference has some important
consequences for the use of redundancy.
First recall that in saturation-based theorem proving a clause d is called re-
dundant when it is implied by a set of clauses c1, . . . , cn, such that (somewhat
informally) c1, . . . , cn come before d in the multiset order. This notion was in-
troduced in [1], and it is able to prove the completeness of most of the existing
simplification rules for superposition theorem proving.
In this paper, we study only a relatively weak version of redundancy in the
geometric setting: A lemma λ is redundant when it is implied by a set of lemmas
λ1, . . . , λn, s.t. each of the lemmas λ1, . . . , λn would be preferred over λ by
the heuristic. This notion would cover λ-subsumption, but also the following
example:
∀xyz S(x, y) ∧ S(x, z) ∧ y 6≈ z → ⊥ and ∀xy A(x) ∧ B(y) ∧ x 6≈ y → ⊥ make
∀xyzt A(x) ∧ S(x, y) ∧ B(y) ∧ S(y, z) ∧ y 6≈ z → ⊥ redundant. If one wants to
obtain stronger notions of redundancy, where the implying clauses do not need
to be lemmas, then one very probably needs to modify the heuristic. This will
be a subject for future study.
Now that we have defined redundancy in our setting, we can discuss the differ-
ences with redundancy in saturation-based theorem proving.

1. Redundancy is much more important for saturation-based theorem proving
than it is for geometric resolution. In saturation-based theorem proving,
redundant clauses can become selected, they will create consequences, which
again may be selected, etc. Therefore, high priority should be given to the
deletion of redundant clauses.
In geometric resolution, redundant lemmas will not be selected by the heuris-
tic. Therefore, they will not be used in the derivation of new lemmas.
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2. For saturation-based theorem proving, forward redundancy checking is more
important than backward redundancy checking. For geometric resolution,
forward redundancy checking is wasted effort: The algorithm will never
create a redundant lemma. If λ1, . . . , λn make λ redundant, then one of
λ1, . . . , λn would have been a closing lemma, and the algorithm would have
reused it.

We have now seen, that whereas the price for tolerating redundant clauses in
saturation-based theorem proving can be exponential, it causes only a small over-
head in geometric resolution. So we could stop here, and make this is pleasant,
short paper.
Unfortunately there is something more to tell, namely about simplification. Sim-
plification is when one derives a consequence λ′ of a lemma λ, s.t. λ′ (possibly
with some other lemmas) makes λ redundant. Although it is not possible that the
model search algorithm derives a redundant lemma, it is possible that it derives
a lemma that can be simplified. If one does not simplify a lemma that could have
been simplified, it will possibly resolve with other lemmas that could have been
simplified, and the effect will add up. For this reason, simplification is important
for geometric resolution. As an example, consider the following simplification
rule, which is an instance of functional reduction. Suppose that the rule system
contains only one positive occurrence of A, which has the form ∃y A(y). Then
in every interpretation constructed by the model search algorithm, there will be
at most one constant c such that A(c) occurs in the model. As a consequence,
in any lemma containing more than one occurrence of A, all these occurrences
can be unified (Because they will be unified anyway in every application of the
lemma) If one does not unify all occurrences of A in a lemma, it may resolve
with another lemma which also contains multiple occurrences of A. In that case,
the resulting lemma will inherit the repeated occurrences of A from both its
parents.
In the rest of this paper, we analyze redundancy-based simplification refinements
of geometric resolution using proof theoretic methods. The reason for this is that
we want to obtain results about proof length.
In saturation-based theorem proving, in general one cannot prove anything about
proof length when redundant clauses are removed. The completeness proof im-
plies that the new proof is smaller under the multiset order, but the length of
the new proof can actually be bigger. One notable exception to this situation is
subsumption. For subsumption, it can be proven that the new proof using the
subsuming clause, is not longer than the proof using the subsumed clause.
Our intuition is that the chances of obtaining results about proof length with
geometric resolution are better. The reason for this is the fact that the derivations
are in some sense more deterministic, because they are governed by the model
search algorithm. At this moment, we only have results for a few equality-based
refinements, but we think that more results are possible. In order to prepare for
proving the results about proof length, we first introduce a modification of the
calculus of [6]. The reason for this is that the calculus of [6] is too much tuned
towards the model search algorithm. (In particular the ∃-resolution rule of [6] is
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too complicated to analyze) We show that the new calculus is as strong as the
old calculus, and that proofs constructed by the model search algorithm are in
a certain normal form, which we call ≈∃-normal form. Note that this change of
the calculus has no influence at all on the model search algorithm, because the
lemmas derived remain the same.
We then study the effect of proof replacements. Suppose that one has a proof π
obtained by a run of the model search algorithm. Let λ be a lemma occurring in
π that was redundant at the moment it was used. If λ is made redundant by a
set of lemmas λ1, . . . , λn, then it is possible to construct a proof π′ which proves
λ from λ1, . . . , λn. We can remove λ from π and replace it by the new proof π′.
In all probability this new proof will not correspond to a run of the model search
algorithm anymore, because of two possible reasons:

1. The new proof is not in ≈∃-normal form.
2. The new proof is in ≈∃-normal form, but is not consistent with the applica-

tion selection heuristic.

We will introduce a set of proof permutations, with which every proof can be
permuted back into ≈∃-normal form. In case a clause was deleted due to redun-
dancy, the proof π[π′] is almost in ≈∃-normal form, except for the path leading
to π′ and π′ itself. We will give examples (functional reduction, nested subsump-
tion) where it can be shown that the permutation back to ≈∃-normal form does
not increase the size of the proof. This means that these refinements can be
applied without restriction.

2 A Modified Calculus for Geometric Resolution

We present the modified calculus that we used for analyzing proof lengths. The
main difference with the calculus of [6] is that we simplified the existential reso-
lution rule and introduced a new rule called equality resolution. Apart from that,
the only difference is that we made instantiation explicit. In practice the instan-
tiations are determined by unification, but for analysis it is more convenient to
have a calculus with explicit instantiation.

Definition 3. The new calculus consists of the following rules:

instantiation: Let

ρ = ∀x Φ(x)→ Z(x)

be a geometric rule. Let Σ be a substitution of form x1 := x2, where x1 ∈ x.
Then

∀(xΣ) Φ(xΣ)→ Z(xΣ)

is an instance of ρ. In case both x1 and x2 occur in Φ(x) or Z(x), and
x1 6= x2, we call the instantiation a proper instantiation. In case x2 does
not occur in Φ(x) or Z(x), we call the result a renaming of ρ.
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merging: Let λ be a lemma of form

∀x Φ(x) ∧A(x) ∧ A(x)→ ⊥.

Then the lemma

∀x Φ(x) ∧ A(x)→ ⊥

is a merging of λ. A(x) can be either a disequality atom, or a usual atom.
disjunction resolution: Let

ρ = ∀x Φ(x)→ B1(x) ∨ · · · ∨Bq(x)

be a disjunctive formula. For 1 ≤ j ≤ q, let each

λj = ∀x Ψj(x) ∧Bj(x)→ ⊥

be a lemma. Then

∀x Φ(x) ∧ Ψ1(x) ∧ · · · ∧ Ψq(x)→ ⊥

is a disjunction resolvent of ρ with λ1, . . . , λq.
existential resolution: Let ρ = ∀x Φ(x) → ∃y B(x, y) be an existential for-

mula. Let λ have form

∀x ∀y Ψ(x) ∧B(x, y)→ ⊥.

We have y 6∈ x. Then

∀x Φ(x) ∧ Ψ(x)→ ⊥

is an existential resolvent of ρ with λ.
(degenerated) existential resolution: Let ρ = ∀x Φ(x) → ∃y B(x, y) be an

existential formula. Let λ have form

∀x ∀y Ψ(x)→ ⊥.

We have y 6∈ x. Then

∀x Φ(x) ∧ Ψ(x)→ ⊥

is a (degenerated) existential resolvent of ρ with λ.
equality resolution: Let ρ = ∀x Φ(x) ∧ x1 6≈ x2 → ⊥ be a lemma. Let Σ be

the substitution x1 := x2. Let λ be a lemma that can be written in the form

λ = ∀(xΣ) Ψ(xΣ)→ ⊥.

Then the lemma

∀x Φ(x) ∧ Ψ(x)→ ⊥

is an equality resolvent of ρ with λ.
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Disjunction resolution is the same as hyperresolution. Equality resolution can be
explained as follows: If Σ is the substitution x1 := x2, then ∀(xΣ)Ψ(xΣ)→ ⊥is
equivalent to ∀x x1 ≈ x2 ∧ Ψ(x) → ⊥. In this formula, the equality can resolve
with the disequality in ρ.

Most cases of degenerated existential resolution can be simulated by instantiating
y to one of the variables of x. In that case, one would obtain ∀x Ψ(x)→ ⊥ which
subsumes the result. We keep the degenerated existential resolution rule because
it is still needed for the case where x is empty, and in the future we may want
to add types to geometric resolution. In that case it may happen that the type
of y is not among the types of x.

Theorem 1. The calculus of Definition 3 is complete. If ρ1, . . . , ρn are geomet-
ric rules, and λ is a lemma, then if ρ1, . . . , ρn |= λ, then λ is provable from
ρ1, . . . , ρn.

For λ = ⊥, completeness follows from the fact that the new calculus can sim-
ulate the old calculus. (This will be proven in the next section) For λ 6= ⊥,
completeness can be proven in a fairly standard way, by enumerating the models
of ρ1, . . . , ρn. Full completeness, (for λ 6= ⊥) is not used in this paper, but it
may be important in future studies of other redundancy rules.

3 ≈∃-Normal Derivations

In this section we show that the calculus of Definition 3 can be used in the
same way as the calculus of [6] for the generation of closing lemmas during
model search. This change of calculus will have no impact on the model search
algorithm and on the lemmas that it generates. 1 The reason for introducing
the new calculus is that its permutations can be understood more easily. There
could also exist an advantage in proof output for external verification, because
the new calculus is more standard.

The difference between the old calculus and the calculus of Definition 3, is the
replacement of the stronger existential resolution rule of [6] by the combination
of a weaker existential resolution rule and equality resolution.

It is not possible to derive the stronger existential resolution rule in the new
calculus, but it can be shown that every lemma obtained by an application of
strong existential resolution can be obtained by a combination of weak existential
resolution and equality resolution.

In [6], existential resolution is always used in the way shown in Figure 1. Figure 2
shows a proof of the same result using (non-generalized) existential resolution
and equality resolution. First, the disequalities in ∀x Φ(x) ∧ B(x, y) ∧ y 6≈ x1 ∧
· · ·∧y 6≈ xn → ⊥ are resolved away one-by-one using equality resolution. On the
result, (non-generalized) existential resolution is applied, and the same result is
obtained.

1 actually, they can sometimes be slightly stronger
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It can be seen from Figure 2 that equality resolution is never applied ’stand
alone’ in proofs that are constructed by the model search procedure. Equality
resolution is only used for resolving away the disequalities in a lemma of form
∀xy Ψ(x) ∧ B(x, y) ∧ y 6≈ x1 ∧ · · · ∧ y 6≈ xn → ⊥ in order ’to prepare it’ for
an existential resolution step in which B(x, y) is resolved away. We call proofs
satisfying this condition ≈∃-normal. Proofs constructed by the model search
algorithm will be always ≈∃-normal.

Fig. 1. Application of General ∃-Resolution

Let π be an existential resolution step

∀x Φ(x) → ∃y B(x, y) ∀x Ψ(x) ∧ B(x, y) ∧ y 6≈ x1 ∧ · · · ∧ y 6≈ xn → ⊥

∀x Φ(x) ∧ Ψ(x) → B1(x, x1) ∨ · · · ∨ Bq(x, xn),

It is used in a proof of form

π ∀x X1(x) ∧ B1(x, x1) → ⊥ · · · ∀x Xn(x) ∧ B1(x, xn) → ⊥

(∨-res)

∀x Φ(x) ∧ Ψ(x) ∧ X1(x) ∧ · · · ∧ Xn(x) → ⊥

4 Redundancy through Proof Permutations

The final goal of the research reported in this paper is to study the effect of
redundancy on proof length, using proof transformations. At present, we have
only hard results for a restricted form of simplifications but we expect that more
results are possible.

We outline the general technique: In case a lemma λ is made redundant by
formulas ρ1, . . . , ρn, we take out every application of λ from the proof, and re-
place it by a proof of ρ1, . . . , ρn |= λ. The resulting proof is still a valid proof, but
very probably it is not in ≈∃-normal form anymore. The proof can be permuted
back into ≈ ∃-normal form, using proof permutations. If the new proof is not too
long, in comparison to the old proof, then efficiency improves when λ is replaced
by ρ1, . . . , ρn.
Since our calculus is similar to resolution, all transformations have essentially
one of the forms that follow below. (Equality resolution is similar to standard
resolution, if one keeps in mind that ∀(xΣ) Φ(xΣ)→ ⊥ with Σ = {x1 := x2} is
equivalent to ∀x x1 ≈ x2 ∧ Φ(x)→ ⊥)
In both of the permutations, application of the first rule is postponed until after
the second rule. The two possibilities depend on where the premise of the second
rule originates from. If it originates from only one of the parents of the first rule,
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Fig. 2. Reconstruction of General ∃-Resolution

For each i with 1 ≤ i ≤ n, let Σi be the substitution {y := xi}.
Then each of the lemmas ∀x Xi(x) ∧B(x, xi) → ⊥ can be written in the form

∀((xy)Σi) Xi((xy)Σi) ∧B((xy)Σi, yΣi) → ⊥,

because no variable in x is modified by Σi, and yΣi = xi. Let π1 be the proof

∀((xy)Σ1) X1((xy)Σ1)∧B((xy)Σ1, yΣ1) → ⊥ ∀xy Ψ(x)∧B(x, y)∧y 6≈ x1∧· · ·∧y 6≈ xn → ⊥

(≈-res)

∀xy X1(x) ∧ Ψ(x) ∧ B(x, y) ∧ B(x, y) ∧ y 6≈ x2 ∧ · · · ∧ y 6≈ xn → ⊥

Similarly, let π2 be the proof

∀((xy)Σ2) X2((xy)Σ2) ∧ B((xy)Σ2, yΣ2) → ⊥ π1

(≈-res)

∀xy X1(x) ∧ X2(x) ∧ Ψ(x) ∧ B(x, y) ∧ B(x, y) ∧ B(x, y) ∧ y 6≈ x3 ∧ · · · ∧ y 6≈ xn → ⊥

Continuing, one eventually reaches πn, which has form

∀((xy)Σn) Xn((xy)Σn) ∧ B((xy)Σn, yΣn) → ⊥ πn−1

(≈-res)

∀xy X1(x) ∧ X2(x) ∧ · · · ∧ Xn(x) ∧ Ψ(x) ∧ B(x, y) ∧ · · · ∧ B(x, y) → ⊥

At this point, one can apply ∃-resolution:
πn

(merging)

∀x Φ(x) → ∃y B(x, y) ∀xy X1(x) ∧ · · · ∧ Xn(x) ∧ Ψ(x) ∧ B(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧ X1(x) ∧ · · · ∧ Xn(x) ∧ Ψ(x) → ⊥
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then the transformation is unproblematic, because the size of the proof does not
increase. If the premise of the second rule originates from both parents of the
first rule, then the size of the proof does increase. We give examples of both
situations:

unproblematic:

A ∨ B ∨ R1 ¬A ∨ R2

(res)

B ∨ R1 ∨ R2 ¬B ∨ R3

(res)

R1 ∨ R2 ∨ R3

permutes into

A ∨ B ∨ R1 ¬B ∨ R3

(res)

A ∨ R1 ∨ R3 ¬A ∨ R2

(res)

R1 ∨ R2 ∨ R3

problematic:

A ∨ B ∨ R1 ¬A ∨ B ∨ R2

(res+merging)

B ∨ R1 ∨ R2 ¬B ∨ R3

(res)

R1 ∨ R2 ∨ R3

permutes into

A ∨ B ∨ R1 ¬B ∨ R3 ¬A ∨ B ∨ R2 ¬B ∨ R3

(res) (res)

A ∨ R1 ∨ R3 ¬A ∨ R2 ∨ R3

(res+merging)

R1 ∨ R2 ∨ R3

As mentioned above, proof permutations can be used to bring a proof back
into ≈∃-normal form, after some lemma λ has been replaced by some formu-
las ρ1, . . . , ρn that make it redundant. They also can be used to make a proof
consistent with the selection heuristic of the search algorithm.

Unfortunately, each time a rule application from the redundancy proof is per-
muted down, it may double the part of π that it permutes through, due to the
problematic permutations.

We conclude that, when designing redundancy strategies, one should look for
strategies that do not cause too much doubling. One of the possible ways to
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do this, is by showing that there exists a low upperbound on one of the copies.
Since the other copy is not bigger than the original proof, the increase in proof
size can be kept small in this way. We end the paper with a few examples, and
explain for each of the examples how this can be done.

– We first study functional reduction. Functional reduction exploits the fact
that some predicate can be shown to be functional in one or more of its
arguments during proof search. Let F be a predicate whose only positive
occurrences are in formulas of form ∀x Φ(x)→ ∃y F (x, y). The model search
algorithm will create an atom F (c, d1) only in case there exists no other atom
of form F (c, d2) in the interpretation. Therefore, in every interpretation I
the last argument of F is a function of the other arguments. This fact can
be used in simplifications. Whenever a lemma contains two atoms of form
F (x, y1) and F (x, y2), the variables y1 and y2 can be unified.
In order to ensure that the simplified clause implies the original clause, we
add so called inductive axioms. The axiom for F is

∀xy1y2 F (x, y1) ∧ F (x, y2) ∧ y1 6≈ y2 → ⊥.

Since F is functional, the inductive axiom will never be applicable. However,
it triggers functional reduction. Consider the formula

∀xyz F (x, y) ∧ F (x, z) ∧B(y, z)→ ⊥,

which can be functionally reduced into

∀xy F (x, y) ∧B(y, y)→ ⊥.

Using the inductive axiom for F, one can can construct the following proof:

∀xyz F (x, y) ∧ F (x, z) ∧ y 6≈ z → ⊥ ∀xz F (x, z) ∧ B(z, z) → ⊥

(≈-res)

∀xyz F (x, y) ∧ F (x, z) ∧ B(y, z) → ⊥

The ≈-resolution has to be permuted down in order to restore ≈∃-normality.
We show that during these permutations, the ≈-resolution disappears. First
the ≈-resolution permutes down to the point where either F (x, y) or F (x, z)
is used in disjunction resolution or exists resolution. At this point, since
functionality holds for F, F (x, y) and F (x, z) have to be merged before they
are resolved away. But then the ≈-resolution will become an instantiation
when it permutes with the merging.
Using the same argument, it can be shown that the ≈-resolution also disap-
pears in case the ≈-resolution is already in ≈∃-normal form.
Note the peculiar way in which the inductive axiom ∀xyz F (x, y)∧F (x, z)∧
y 6≈ z → ⊥ was used in the simplification. If F is indeed functional, the
axiom will never be applicable, and therefore never occur in a proof. The
axiom caused the functional reduction step, but the correctness of the step
does not rely on it. Soundness follows from the fact that functional reduction
is a form of instantiation.
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– Next we consider nested subsumption. Suppose we want to use a ≈ b to
delete s(a) ≈ s(b):

∀xyt S(x, y) ∧ S(x, t) ∧ y 6≈ t → ⊥ ∀xz A(x) ∧ B(z) ∧ x 6≈ z → ⊥

(≈-res)

∀xyzt A(x) ∧ S(x, y) ∧ B(z) ∧ S(z, t) ∧ y 6≈ t → ⊥

The equality resolution step uses the substitution {x := z}. By the same
argument as in the previous case, it can be seen that the ≈-resolution will
disappear when it is permuted downward.

– The following simplification has no counterpart in resolution, because it can
be expressed only with relations. In the presence of

λ1 = ∀xyzt A(x) ∧ S(x, y) ∧B(z) ∧ S(z, t) ∧ y 6≈ t→ ⊥,

the formula

λ2 = ∀xyzt αβγδ A(x) ∧ S(x, y) ∧ C(α) ∧ F (y, α, β)∧

B(z) ∧ S(z, t) ∧D(γ) ∧ F (t, γ, δ)∧ β 6≈ δ → ⊥

can be simplified into

λ3 = ∀xztαβγδA(x) ∧ S(x, t) ∧ C(α) ∧ F (t, α, β)∧

B(z) ∧ S(z, t) ∧D(γ) ∧ F (t, γ, δ)∧ β 6≈ δ → ⊥.

λ2 is an equality resolvent of λ1 and λ3. In case all positive occurrences of the
predicates S,A,B are in existential formulas, the only way in which formula
λ1 can be used is in an equality resolution, followed by an ∃-resolution. It
follows that the path from λ1 towards the ≈-resolution must have length 1.
Therefore the increase in proof length is at most 1.

5 Conclusions and Future Work

First, we have modified the calculus of [6], in such a way that that the resulting
calculus is close to standard resolution. The most notable difference, which is
the equality resolution rule, can be explained from the equivalence

∀(x{x1 := x2}) Φ(x{x1 := x2})→ ⊥ ⇔ ∀x x1 ≈ x2 ∧ Φ(x)→ ⊥.

We intend to change geo to use the new calculus, because we expect that it will
make proof verification easier.

We have introduced a proof theoretical method with which it is possible
to justify some of the successful forms of redundancy in geometric resolution.
With this method, we can rigorously prove that functional reduction and nested
subsumption (the first two cases in the previous section) do not increase proof
length.
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At this moment, we do not have sufficient empirical evidence to be able to tell
whether a more sophisticated form of analysis will be necessary. In particular, it
may be necessary to take reuse of proofs into account. A concrete example where
this could be the case is the last case of previous section, (the one with λ1, λ2, λ3)
It seems likely that also in the case when S occurs positively in disjunctive
formulas, the replacement λ2 ⇒ λ3 would be an improvement. In order to justify
such replacements, one could argue that it is very likely (perhaps provable) that
the system will encounter situations in which λ1 alone is applicable, as well as
situations where λ2 is applicable. The effect of the simplification can be viewed
as replacing λ2 by λ2\λ1. If, whenever λ2\λ1 is applied, λ1 has already been
applied before, then the simplification has caused no loss in logical strength.
At this moment, we first need to collect some more experience with ad hoc
implemented redundancy criteria.
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We give a list of the possible rule permutations. They will not be part of the
final version of the paper.

A Pushing Equality Resolution Towards the Root

An equality resolution step on disequality x1 6≈ x2 can be pushed towards the
root, until it reaches a sequence of disequality steps after which one of x1, x2 is
resolved away in an existential resolution step. When this point is reached, the
result is ≈∃-normal. We list for each of the possible other rules, how the equality
resolution permutes through it.
∨-resolution

∀(xΣ) Ψ(xΣ) ∧ [A1(xΣ)] → ⊥ ∀x X(x) ∧ x1 6≈ x2 ∧ [A1(x)] → ⊥
(≈-res)

∀x Ψ(x) ∧ X(x) ∧ A1(x) ∧ A1(x) → ⊥
(merging)

∀x Ψ(x) ∧ X(x) ∧ A1(x) → ⊥

∀x Φ(x) → A1(x)∨· · ·∨Ap(x)
.
.
. ∀x A2(x)∧Y2(x) → ⊥ · · · ∀x Ap(x)∧Yp(x) → ⊥

(∨-res)

∀x Φ(x) ∧ Ψ(x) ∧ X(x) ∧ Y2(x) ∧ · · · ∧ Yp(x) → ⊥

If ∀(xΣ)Ψ(xΣ)∧[A1(x)]→ ⊥ contains A1, then let π1 the following proof, which
is defined through ρ0, ρ2, . . . , ρp : Define

ρ0 =
∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x)

∀(xΣ) Φ(xΣ) → A1(xΣ) ∨ · · · ∨ Ap(xΣ)
(int)

ρ2 =
∀x A2(x) ∧ Y2(x) → ⊥

∀(xΣ) A2(xΣ) ∧ Y2(xΣ) → ⊥
(inst) · · ·

∀x Ap(x) ∧ Yp(x) → ⊥

∀(xΣ) Ap(xΣ) ∧ Yp(xΣ) → ⊥
(inst)

π =
ρ0 ∀(xΣ) Ψ(xΣ) ∧ A1(xΣ) → ⊥ ρ2 · · · ρp

Φ(xΣ) ∧ Ψ(xΣ) ∧ Y2(xΣ) ∧ · · · ∧ Yp(xΣ) → ⊥
(∨-res)

Otherwise, let π1 be just ∀(xΣ) Ψ(xΣ)→ ⊥.
Similarly, if ∀x X(x) ∧ x1 6≈ x2 ∧ [A1(x)] → ⊥ does contain A1(x), then let

π2 be the following proof:
∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x) ∀x X(x) ∧ x1 6≈ x2 ∧ A1(x) → ⊥

∀x A2(x) ∧ X2(x) → ⊥ · · · ∀x Ap(x) ∧ Xp(x) → ⊥

(∨-res)

∀x Φ(x) ∧ X(x) ∧ x1 6≈ x2 ∧ Y2(x) ∧ · · · ∧ Yp(x) → ⊥

Otherwise let π2 be just ∀x X(x) ∧ x1 6≈ x2 → ⊥.
Finally, we can construct

π1 π2

(≈-res)
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∀x Φ(x) ∧ Ψ(x) ∧ X(x) ∧ Y2(x) ∧ · · · ∧ Yp(x) → ⊥

∃-resolution
Consider the following proof, in which existential resolution is applied on the
result of an equality resolution step.

∀(xΣ)y Ψ(xΣ)∧ [B(xΣ, y)] → ⊥ ∀xy X(x)∧x1 6≈ x2 ∧ [B(x, y)] → ⊥

(≈-res)

∀x Φ(x) → ∃y B(x, y) ∀xy Ψ(x) ∧ X(x) ∧ B(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧ Ψ(x) ∧ X(x) → ⊥

The notation [B(x, y)] means that B(x, y) is optional. One of the premises of the
≈-resolution step must contain B(x, y), because otherwise the next ∃-resolution
step would be not possible. Σ denotes the substitution x1 := x2. We have y 6= x1,
for the reasons mentioned before. For this reason, there is no need to apply Σ
on y.

Write λ1 for the lemma ∀(xΣ)y Ψ(xΣ) ∧ [B(xΣ, y)] → ⊥. If λ1 does contain
B(xΣ, y), then let π1 denote the following proof:

∀x Φ(x) → ∃y B(x, y)

(inst)

∀(xΣ) Φ(xΣ) → ∃y B(xΣ, y) ∀(xΣ)y Ψ(xΣ) ∧ B(xΣ, y) → ⊥

(∃-res)

∀(xΣ) Φ(xΣ) ∧ Ψ(xΣ) → ⊥

Otherwise, let π1 be just λ1. Write λ2 for the other premise ∀xy X(x) ∧ x1 6≈
x2∧ [B(x, y)]→ ⊥. If λ2 does contain B(x, y), then let π2 be the following proof:

∀x Φ(x) → ∃y B(x, y) ∀xy X(x) ∧ x1 6≈ x2 ∧ B(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧ X(x) ∧ x1 6≈ x2 → ⊥

Otherwise, let π2 be just λ2. Finally, we can construct

π1 π2

(≈-res+merging)

∀x Φ(x) ∧ X(x) ∧ Ψ(x) → ⊥

For i = 1 or i = 2, if λi contains B(x, y), (or B(xΣ, y) ), then the conclusion of
πi contains Φ(x). (or Φ(xΣ) ). In both cases, the final result will contain Φ(x).
If both of λ1, λ2 contain B(x, y), then the result will receive two copies of Φ(x),
which have to be merged.

≈-resolution
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Our concern is to arrange applications of ≈-resolution in such a way, that the
resulting proof is ≈ ∃-normal.

∀x Φ(x) ∧ x1 6≈ x2 ∧ x′
1 6≈ x′

2 → ⊥ ∀(xΘ) Ψ(xΘ) ∧ x1Θ 6≈ x2Θ → ⊥
(≈-res)

∀x Φ(x) ∧ Ψ(x) ∧ x1 6≈ x2 ∧ x1 6≈ x2 → ⊥
(merging)

∀x Φ(x) ∧ Ψ(x) ∧ x1 6≈ x2 → ⊥ ∀(xΣ) X(xΣ) → ⊥
(≈-res)

∀x Φ(x) ∧ Ψ(x) ∧ X(x) → ⊥

Θ denotes the substitution x′1 := x′2, and Σ denotes the substitution x1 := x2.
We may assume that the second equality resolution step is already part of a
normal sequence. (which will end with poor x1 being resolved away)

If x1 = x′1, nothing needs to be changed, because the proof is already normal.
If x1 = x′2, then define Θ′ = (x′2 := x′1). The first equality resolution can be
replaced by

First define π1 as the following proof:

∀x Φ(x) ∧ x1 6≈ x2 ∧ x′
1 6≈ x′

2 → ⊥ ∀(xΣ) X(xΣ) → ⊥

(≈-res)

∀x Φ(x) ∧ x′
1 ≈ x′

2 ∧ X(x) → ⊥

Before we can define π2, we need a property of substitution. Obviously, Σ is the
mgu of x1 and x2. Let Σ′ be the substitution x1Θ := x2Θ. Then clearly for the
substitution Θ · Σ′ holds that x1Θ · Σ

′ = x2Θ · Σ
′. Therefore, there exists a

substitution Θ′, s.t. Θ ·Σ′ = Σ ·Θ′.

We define π2 as the proof:

∀(xΣ) X(xΣ) → ⊥

(inst)

∀(xΣΘ′) X(xΣΘ′) → ⊥

=

∀(xΘ) Ψ(xΘ) ∧ x1Θ 6≈ x2Θ → ⊥ ∀(xΘΣ′) X(xΘΣ′) → ⊥

(≈-res)

∀(xΘ) Ψ(xΘ) ∧ X(xΘ) → ⊥

It remains to apply ≈-resolution on the results of π1 and π2.

We know come to the case where the instantiated premise of an equality resolu-
tion step is derived by another equality resolution step:

∀(xΣΘ) Φ(xΣΘ) → ⊥ ∀(xΣ) x′
1 6≈ x′

2 ∧ Ψ(xΣ) → ⊥

(≈-res)

∀(xΣ) Φ(xΣ) ∧ Ψ(xΣ) → ⊥ ∀x X(x) ∧ x1 6≈ x2 → ⊥

(≈-res)

∀x Φ(x) ∧ Ψ(x) ∧ X(x) → ⊥

In this proof, Σ denotes the substitution x1 := x2, and Θ denotes the substi-
tution x′1 := x′2. It can be assumed that x1 6= x′1, because otherwise Θ would
have no effect, and the first equality resolution step could be trivially removed.
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Similarly, if x1 = x′2, we would have either x1 = x2, in which case Σ would be
the empty substitution and it would be possible to remove the last equality res-
olution step, or x1 does not occur in xΣ. In that case, Θ would be renaming on
xΣ, and the upper equality resolution step could be replaced by an instantiation
using Θ−1. We define π1 as the following proof:

∀x X(x) ∧ x1 6≈ x2 → ⊥

(inst)

∀(xΣΘ) Φ(xΣΘ) → ⊥ ∀(xΘ) X(xΘ) ∧ x1Θ 6≈ x2Θ → ⊥

(≈-res)

∀(xΘ) Φ(xΘ) ∧ X(xΘ) → ⊥

In order to show that this proof is correct, we show that

Σ ·Θ = Θ · {x1Θ := x2Θ}.

Since x1 6≈ x′1, we have x1Θ = x1. As a consequence, the domains of the sub-
stitutions Σ, Θ, {x1Θ := x2Θ} consist only of the variables x1 and of x′1. It is
therefore sufficient to compare the behaviour of the substitutions on x1 and x′1.

x1Σ ·Θ = x2Θ, x1Θ · {x1Θ := x2Θ} = x2Θ.

x′1Σ ·Θ = x′1Θ = x′2, x′1Θ · {x1Θ := x2Θ} = x′2{x1Θ := x2Θ} = x′2.

The last step is correct because x1Θ = x1, and x1 6≈ x
′
2.

Next, let π2 be the proof:

∀(xΣ) x′
1 6≈ x′

2 ∧ Ψ(xΣ) → ⊥ ∀x X(x) ∧ x1 6≈ x2 → ⊥

(≈-res)

∀x x′
1 6≈ x′

2 ∧ Ψ(x) ∧ X(x) → ⊥

It remains to apply equality resolution on the results of π1 and π2.
instantiation
Consider the following proof

∀(xΣ) Φ(xΣ) → ⊥ ∀x Ψ(x) ∧ x1 6≈ x2 → ⊥

(≈-res)

∀x Φ(x) ∧ Ψ(x) → ⊥

(inst)

∀(xΘ) Φ(xΘ) ∧ Ψ(xΘ) → ⊥

Σ denotes the substitution {x1 := x2}. Θ is the substitution used in the in-
stantiation. Define Σ′ = {x1Θ := x2Θ}. For the substitution Θ · Σ′ holds that
x1Θ ·Σ

′ = x2Θ ·Σ
′.
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The substitution Σ is clearly the mgu of x1 and x2. Hence there exists a substi-
tution Θ′, s.t. Σ ·Θ′ = Θ ·Σ′, and we can construct the following proof:

∀(xΣ) Ψ(xΣ) → ⊥

(inst)

∀(xΣΘ′) Ψ(xΣΘ′) → ⊥ ∀x Φ(x) ∧ x1 6≈ x2 → ⊥

= (inst)

∀(xΘΣ′) Ψ(xΘΣ′) → ⊥ ∀(xΘ) Φ(xΘ) ∧ x1Θ 6≈ x2Θ → ⊥

(≈-res)

∀(xΘ) Φ(xΘ) ∧ Ψ(xΘ) → ⊥

In case that x1Θ = x2Θ, Σ′ will be the empty substitution, and the equality
resolution step will transform itself into an instantiation step.

SOMETHING about preservance ≈ ∃-normality should be said at the end.
The essential thing is that both π1 and π2 consists of an equality resolution on
x1 = x1Θ.

B Pushing ∨-Resolution Towards the Root

We list the possible other rules, and show how the ∨-resolution step permutes
through it.
∨-resolution

Let π be the following disjunction resolution proof:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x)

∀x A1(x) ∨ [B1(x)] ∧ X1(x) → ⊥ · · · ∀x Ap(x) ∨ [B1(x)] ∧ Xp(x) → ⊥

(∨-res)

∀x Φ(x) ∧ B1(x) ∧ · · · ∧ B1(x) ∧ X1(x) ∧ · · · ∧ Xp(x) → ⊥

(merging)

∀x Φ(x) ∧ B1(x) ∧ X1(x) ∧ · · · ∧ Xp(x) → ⊥

The square brackets are used for indicating the fact that [B1(x)] is optional.
However, at least one of the premises of π must contain B1(x). In the result of
π, the atom B1(x) is resolved away in another disjunction resolution step:

π ∀x B2(x) ∧ Y2(x) → ⊥ · · · ∀x Bq(x) ∧ Yq(x) → ⊥

∀x Ψ(x) → B1(x) ∨ · · · ∨ Bq(x)

∨-res

∀x Ψ(x) ∧ Φ(x) ∧ X1(x) ∧ · · · ∧ Xp(x) ∧ Y2(x) ∧ · · · ∧ Yq(x) → ⊥.

For i with 1 ≤ i ≤ p, define λi = ∀x Ai(x) ∨ [B1(x] ∧Xi(x)→ ⊥. If λi contains
B1(x), then let πi be the following proof:

∀x Ψ(x) → B1(x)∨ · · · ∨Bq(x) λi ∀x B2(x)∧Y2(x) → ⊥ · · · ∀x Bq(x)∧Yq(x) → ⊥
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(∨-res)

∀x Ψ(x) ∧ Ai(x) ∧ Xi(x) ∧ Y2(x) ∧ · · · ∧ Yq(x) → ⊥

In case λi does not contain B1(x), πi is just the proof of λi. On the results of
the πi, the first disjunctive rule can be applied:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x) π1 · · · πp

(∨-res+merging)

∀x Φ(x) ∧ Ψ(x) ∧ X1(x) ∧ · · · ∧ Xp(x) ∧ Y2(x) ∧ · · · ∧ Yq(x) → ⊥

∃-resolution:
Consider a proof, where first a disjunction resolution is applied, and after that
existential resolution:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x)

∀xy A1(x)∧X1(x)[∧B(x, y)] → ⊥ · · · ∀xy Ap(x)∧Xp(x)[∧B(x, y)] → ⊥

(∨-res)

∀xy Φ(x) ∧ X1(x) ∧ · · · ∧ Xp(x) ∧ B(x, y) ∧ · · · ∧ B(x, y) → ⊥

(merging)

∀x Ψ(x) → ∃y B(x, y) ∀xy Φ(x) ∧ X1(x) ∧ · · · ∧ Xp(x) ∧ B(x, y) → ⊥

(∃-res)

∀x Ψ(x) ∧ Φ(x) ∧ X1(x) ∧ · · · ∧ Xp(x) → ⊥.

Again, the notation [B(x, y)] means that B(x, y) is optional. For each i with
1 ≤ i ≤ p, write λi for the lemma ∀xy Ai(x) ∧Xi(x) ∧ [B(x, y)]→ ⊥. For those
λi that do contain B(x, y) let πi be the following proof:

∀x Ψ(x) → ∃y B(x, y) ∀xy Ai(x) ∧ Xi(x) ∧ B(x, y) → ⊥

(∃-res)

∀x Ψ(x) ∧ Ai(x) ∧ Xi(x) → ⊥

For the other λi, let πi be just λi. Using π1, . . . , πp, we can construct the per-
muted proof:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x) π1 · · · πp

(∨-res)

∀x Φ(x) ∧ Ψ(x) ∧ · · · ∧ Ψ(x) ∧ X1(x) ∧ · · · ∧ Xp(x) → ⊥

(merging)

∀x Φ(x) ∧ Ψ(x) ∧ · · · ∧ X1(x) ∧ · · · ∧ Xp(x) → ⊥

≈-resolution:

We first study the case where the disjunction resolution is used for deriving the
instantiated premise of the equality resolution. Consider a proof of the following
form, where the result of a disjunction resolution application is the instianted
premise of an equality resolution application:
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∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x)

∀x A1(x) ∧ Ψ1(x, yΣ) → ⊥ · · · ∀x Ap(x) ∧ Ψp(x, yΣ) → ⊥

(∨-res)

∀x Φ(x) ∧ Ψ1(x, yΣ) ∧ · · · ∧ Ψp(x, yΣ) → ⊥

.

.

. ∀xy X(x, y) ∧ y 6≈ x → ⊥

(≈-res)

∀xy Φ(x) ∧ Ψ1(x, y) ∧ · · · ∧ Ψp(x, y) ∧ X(x, y) → ⊥

In this proof, Σ denotes the substitution y := x. We have x ∈ x, and y 6∈ x.
Because of this, we have (xy)Σ = x, and also xΣ = x.

¿From Figure 2, we know that every equality resolution step instantiating y
belongs to a sequence of equality resolution steps in which y is instantiated, and
that ands in an existential resolution step in which y is resolved away.

We are interested in proofs that have been constructed by the model gen-
eration algorithm, and in which the model generation had the choice between
applying the disjunctive rule, or an existential rule. From this, it follows that
y does not occur in the disjunctive rule, and that therefore the proof can be
written in the form above.

For each i with 1 ≤ i ≤ p, let πi be the following proof:

∀x Ai(x) ∧ Ψi(x, yΣ) → ⊥ ∀xy X(x, y) ∧ y 6≈ x → ⊥

(≈-res)

∀xy Ai(x) ∧ Ψi(x, y) ∧ X(x, y) → ⊥

And the complete proof is:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x) π1 · · · πp

∨-res

∀xy Φ(x) ∧ Ψ1(x, y) ∨ · · · ∨ Ψp(x, y) ∧ X(x, y) ∨ · · · ∨ X(x, y) → ⊥

(merging)

∀xy Φ(x) ∧ Ψ1(x, y) ∧ · · · ∧ Ψp(x, y) ∧ X(x, y) → ⊥

Next we come to the situation where the disjunction resolution derives the
premise with the disequality atom.

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x)

∀xy A1(x)∧Ψ1(x, y)∧ y 6≈ x → ⊥ · · · ∀xy Ap(x)∧ Ψp(x, y)∧ y 6≈ x → ⊥

(∨-res + merging)

∀xy Φ(x) ∧ Ψ1(x, y) ∧ · · · ∧ Ψp(x, y) ∧ y 6≈ x → ⊥

.

.

. ∀x X(x, yΣ) → ⊥

(≈-res)

∀xy Φ(x) ∧ Ψ1(x, y) ∧ · · · ∧ Ψp(x, y) ∧ X(x, y) → ⊥
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As above, Σ denotes the substitution y := x. Also here, the variable y does
not occur in the disjunctive rule, although this fact is not needed for the proof
permutation in the present case. For each i with 1 ≤ i ≤ p, let πi be the following
proof:

∀xy Ai(x) ∧ Ψi(x, y) ∧ y 6≈ x → ⊥ ∀x X(x, yΣ) → ⊥

(≈-res)

∀xy Ai(x) ∧ Ψi(x, y) ∧ X(x, y) → ⊥

The complete, permuted proof is:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x) π1 · · · πp

(∨-res)

∀xy Φ(x) ∧ Ψ1(x, y) ∨ · · · ∨ Ψp(x, y) ∧ X(x, y) ∨ · · · ∨ X(x, y) → ⊥

(merging)

∀xy Φ(x) ∧ Ψ1(x, y) ∧ · · · ∧ Ψp(x, y) ∧ X(x, y) → ⊥

instantiation
Permuting an instance of disjunction resolution through an instantiation is straight-
forward:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x) ∀x A1(x) ∧ Ψ1(x) → ⊥ · · · ∀x Ap(x) ∧ Ψp(x) → ⊥

(∨-res)

∀x Φ(x) ∧ Ψ1(x) ∧ · · · ∧ Ψp(x) → ⊥

(inst)

∀(xΣ) Φ(xΣ) ∧ Ψ1(xΣ) ∧ · · · ∧ Ψp(xΣ) → ⊥

For i with 1 ≤ i ≤ p, let πi be the following instantiation:

∀x Ai(x) ∧ Ψi(x) → ⊥

(inst)

∀(xΣ) Ai(xΣ) ∧ Ψi(xΣ) → ⊥

Then the complete, permuted proof is:

∀x Φ(x) → A1(x) ∨ · · · ∨ Ap(x)

(inst)

∀(xΣ) Φ(xΣ) → A1(xΣ) ∨ · · · ∨ Ap(xΣ) π1 · · · πp

(∨-res)

∀(xΣ) Φ(xΣ) ∧ Ψ1(xΣ) ∧ · · · ∧ Ψp(xΣ) → ⊥
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C Pushing ∃-Resolution Towards the Root

We show how an ∃-resolution step can be moved closer towards the root. In
case the ∃-resolution step has associated ≈-resolution steps, these steps can be
permuted together with the ∃-resolution step. It can be shown that the property
of being an ≈∃-normal sequence is preserved when an ∃-resolution step and its
associated ≈-resolution steps are permuted together.

∨-resolution

∀x Φ(x) → ∃y A(x, y) ∀xy X1(x) ∧ B1(x) ∧ A(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧ X1(x) ∧ B1(x) → ⊥

∀x Ψ(x) → B1(x)∨ · · · ∨Bq(x)
.
.
. ∀x B2(x)∧X2(x) → ⊥ · · · ∀x Bq(x)∧Xq(x) → ⊥

(∨-res)

∀x Ψ(x) ∧ Φ(x) ∧ X1(x) ∧ · · · ∧ Xq(x) → ⊥

can be permuted into

∀x Ψ(x) → B1(x) ∨ · · · ∨ Bq(x) ∀xy X1(x) ∧ B1(x) ∧ A(x, y) → ⊥

∀x B2(x) ∧ X2(x) → ⊥ · · · ∀x Bq(x) ∧ Xq(x)

(∨-res)

∀xy Ψ(x) ∧ X1(x) ∧ · · · ∧ Xq(x) ∧ A(x, y) → ⊥

∀x Φ(x) → ∃y A(x, y)
.
.
.

(∃-res)

∀x Φ(x) ∧ Ψ(x) ∧ X1(x) ∧ · · · ∧ Xq(x) → ⊥

∃-resolution

∀x Φ(x) → ∃y A(x, y) ∀xyz X(x) ∧ A(x, y) ∧ B(x, z) → ⊥

(∃-res)

∀x Ψ(x) → ∃z B(x, z) ∀xz Φ(x) ∧ X(x) ∧ B(x, z) → ⊥

(∃-res)

∀x Ψ(x) ∧ Φ(x) ∧ X(x) → ⊥

can be replaced by:

∀x Ψ(x) → ∃z B(x, z) ∀xyz X(x) ∧ A(x, y) ∧ B(x, z) → ⊥

(∃-res)

∀x Φ(x) → ∃y A(x, y) ∀xy Ψ(x) ∧ X(x) ∧ A(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧ Ψ(x) ∧ X(x) → ⊥

≈-resolution

As with ∨-resolution, we first study the case where the result of the ∃-resolution
is the instantiated premise of the equality resolution step. The general form of
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this situation is as follows:

∀x Φ(x) → ∃y A(x, y) ∀xy Ψ(x, zΣ) ∧ A(x, y) → ⊥

(∃-res)

∀x Φ(x)∧Ψ(x, zΣ) → ⊥ ∀xz z 6≈ x∧X(x, z) → ⊥

(≈-res)

∀xz Φ(x) ∧ Ψ(x, z) ∧ X(x, z) → ⊥

Here Σ denotes the substitution z := x.
∀xy Ψ(x, zΣ) ∧ A(x, y) → ⊥ ∀xz z 6≈ x ∧ X(x, z) → ⊥

(≈-res)

∀x Φ(x) → ∃y A(x, y) ∀xyz Ψ(x, z) ∧ A(x, y) ∧ X(x, z) → ⊥

(∃-res)

∀xz Φ(x) ∧ Ψ(x, z) ∧ X(x, z) → ⊥

Next comes the situation where ∃-resolution is used to derive the premise con-
taining the disequality atom:

∀x Φ(x) → ∃y A(x, y) ∀xyz A(x, y) ∧ Ψ(x, z) ∧ z 6≈ x → ⊥

(∃-res)

∀xz Φ(x) ∧ Ψ(x, z) ∧ z 6≈ x → ⊥ ∀x X(x, zΣ) → ⊥

(≈-res)

∀xz Φ(x) ∧ Ψ(x, z) ∧ X(x, z) → ⊥

∀xyz A(x, y)∧Ψ(x, z)∧z 6≈ x → ⊥ ∀x X(x, zΣ) → ⊥
(≈-res)

∀x Φ(x) → ∃y A(x, y) ∀xyz A(x, y) ∧ Ψ(x, z) ∧ X(x, z) → ⊥
(∃-res)

∀xz Φ(x) ∧ Ψ(x, z) ∧ X(x, z) → ⊥

instantiation
∀x Φ(x) → ∃y A(x, y) ∀xy Ψ(x) ∧ A(x, y) → ⊥

(∃-res)

∀x Φ(x) ∧ Ψ(x) → ⊥

(merging)

∀(xΣ) Φ(xΣ) ∧ Ψ(xΣ) → ⊥

becomes
∀x Φ(x) → ∃y A(x, y) ∀xy Ψ(x) ∧ A(x, y) → ⊥

(merging) (merging)

∀(xΣ) Φ(xΣ) → ∃y A(xΣ, y) ∀((xΣ)y) Ψ(xΣ) ∧ A(xΣ, y) → ⊥

(∃-res)

∀(xΣ) Φ(xΣ) ∧ Ψ(xΣ) → ⊥
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Abstract. Automated theorem provers are used in extended static check-
ing, where they are the performance bottleneck. Extended static checkers
are run typically after incremental changes to the code. We propose to
exploit this usage pattern to improve performance. We present two ap-
proaches of how to do so and a full solution.

1 Introduction

Extended static checking [1] is a technology that makes automated theorem
proving relevant to a wide group of programmers. The architecture of an Ex-
tended Static Checker (ESC) is similar to that of a compiler (see Fig. 1). It
has a front-end that translates high-level code and specifications into a simpler
intermediate representation, and a back-end that formulates first order logic
formulas as queries for a theorem prover. The queries are called verification con-
ditions (VCs). If the ESC is sound then the VC is Unsat only if the code meets
its specifications; if the ESC is complete then the program meets its specifica-
tion only if the VC is Unsat. ESC/Java2 [1] is an ESC that was designed to
be unsound and incomplete (as a tradeoff to make it more usable in practice);
Spec# [2] is an ESC that was designed to be sound.

In this article we shall assume an ideal ESC that is both sound and complete.
Automated first order theorem provers used in extended static checking are
incomplete: They either find a proof that a formula is Unsat or they give an
assignment that probably satisfies the formula. As a result, even if the ESC is
sound and complete, spurious warnings are possible.

Fig. 1. The architecture of an ESC
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The purpose of an ESC is to provide warnings that help programmers to
write high-quality code. In practice it is used much like a compiler. Either the
programmer runs it periodically or the Integrated Development Environment
(IDE) runs it in the background. Because of these usage patterns, performance
is quite important. The bottleneck is the prover. Luckily, the fact that the ESC
is run often can be exploited since it means that the program does not change
much between two runs. Compilers already exploit this by doing incremental
compilation [3]. ESCs do checking in a modular way, method by method. Never-
theless, once the contract of a method is altered all its clients must be rechecked.
In such a scenario the VCs of the clients do not change much.

// blank line // (1)

class Day {
//@ ensures 1 <= \result && \result <= 12;

public abstract int getMonth();

//@ ensures 1970 <= \result;

//@ ensures \result <= 2038; // (2)

public abstract int getYear ();

//@ ensures 1 <= \result && \result <= 31;

public abstract int getDay();

//@ ensures 1 <= \result;

//@ ensures \result <= 366; // (3)

public int dayOfYear() {
int offset = 0;
if (getMonth() > 1) offset += 31;
if (getMonth() > 2) offset += 28;
if (getMonth() > 3) offset += 31;
if (getMonth() > 4) offset += 30;
if (getMonth() > 5) offset += 31;
if (getMonth() > 6) offset += 30;
if (getMonth() > 7) offset += 31;
if (getMonth() > 8) offset += 31;
if (getMonth() > 9) offset += 30;
if (getMonth() > 10) offset += 31;
if (getMonth() > 11) offset += 30;
boolean isLeap = getYear() % 4 == 0 &&

(getYear() % 100 != 0 || getYear() % 400 == 0);
//@ assert offset <= 335; // (4)

if (isLeap && getMonth() > 2) offset++;
return offset + getDay();

}
}

Fig. 2. Typical evolution of annotated Java code
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This paper (1) argues for the importance of using techniques analogous
to incremental compilation in software verification, (2) formalizes the problem
and explores possible solutions (Sect. 2), (3) presents a specific solution that
works exclusively inside an automated theorem prover (Sect. 3), in the process
(4) presents a technique to heuristically determine similarities between formulas,
and (5) gives a mechanically verified proof for the correctness of a part of the
specific solution presented.

2 Discussion and Definitions

The problem in a nutshell is how to do incremental extended static checking.
We shall explore the solution space and then we will see in detail a particular
solution, including some experimental data.

Consider the JML-annotated Java code from Fig. 2 When checking the
method dayOfYear the ESC will assume the implicit empty precondition holds
and will try to prove the postcondition. It will also try to prove all the explicit
and implicit assertions in the body. When the method getMonth is called the
ESC inserts (implicit) assertions for its preconditions followed by assumptions
for its postconditions. Moreover, the ESC will introduce assertions that ensure
the absence of runtime exceptions. For example, the receiver object of a method
call is asserted to be nonnull.

Notice the lines marked by (1), (2), (3), and (4). Adding these lines represents
typical edits that can be done on annotated source code. For example, line
(3) is a newly added postcondition. An incremental VC would only check if
this new assertion holds, provided that the last VC was Unsat. It is somehow
cumbersome to formulate the problem precisely at the source code level. We
can be more precise by descending at the level of an idealized intermediate
representation, a Dynamic Single Assignment (DSA) graph.

Definition 1 (DSA graph) The DSA graph of a method is a directed acyclic
(control flow) graph. Its vertices are 1, 2, . . . and they are labeled respectively by
the first order logic formulas φ1, φ2, . . .. A vertex represents either an assertion
(in which case we say it is black) or an assumption (in which case we say it is
white). We denote the set of vertices that are predecessors of v by in(v) and the
set of successors of v by out(v). The in-degree of v is | in(v)| and the out-degree
is | out(v)|. The nodes with in-degree zero are called initial nodes; the nodes with
out-degree zero are called final nodes.

The assertions model the postconditions of the verified method and the checks
inside its body (such as the check that an index in an array access is in-bounds,
a receiver of a method call is nonnull, the preconditions of a called method hold,
explicit JML assertions, and so on). The assumptions model postconditions of
the called methods and semantics of the Java language (including properties
ensured by the type system).

For this presentation we simply assume that the intermediate representation
is obtained from the source code by some technique, without committing to any
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one in particular. The curious reader can start exploring the subject from other
papers [2,4,5,6].

The VC is generated from the intermediate representation. The particular
algorithm used has a big impact on performance [7,5]. Here we only present a
conceptually simple technique that illustrates well the general form VCs have in
practice.

Definition 2 (behaviors) Vertices have associated preconditions denoted by
α1, α2, . . ., postconditions denoted by β1, β2, . . ., and wrong behaviors denoted
by γ1, γ2, . . . For all i we have

αi =

{

⊤ for initial nodes
∨

vj∈in(vi)
βj for non-initial nodes

(1)

βi = αi ∧ φi (2)

γi =

{

αi ∧ ¬φi for assertions

⊥ for assumptions
(3)

Definition 3 (verification condition) The verification condition is

ψ =
∨

i

γi (4)

The wrong behaviors are something we want to avoid, therefore we ask the prover
if all the wrong behaviors are impossible which is the same as asking if the VC
is Unsat. If it is, then the ESC concludes that all the assertions are valid and
the method is correct. The basic idea behind the more efficient techniques of
generating VCs is to generate factored form.

Old New Simplified

ψ1 = φ1 ∧ ¬φ2 ψ2 = (φ1 ∧ ¬φ2) ∨ (φ1 ∧ φ2 ∧ ¬φ3) ψ′
2 = φ1 ∧ φ2 ∧ ¬φ3

Table 1. Simplification example

The problem can now be stated as follows: Given two similar formulas ψ1

and ψ2, find a formula ψ′
2 that is Unsat if and only if ψ2 is Unsat, provided

that ψ1 is Unsat. An example is given in Table 1. The following equations show
step by step how to compute ψ2 from its corresponding DSA graph.
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α1 = ⊤ β1 = φ1 γ1 = ⊥ (5)

α2 = φ1 β2 = φ1 ∧ φ2 γ2 = φ1 ∧ ¬φ2 (6)

α3 = φ1 ∧ φ2 β3 = φ1 ∧ φ2 ∧ φ3 γ3 = φ1 ∧ φ2 ∧ ¬φ3 (7)

To make the example concrete the reader might wish to plug in φ1 = x > 2 and
φ2 = x > 1 and φ3 = x > 0.

Note that ψ′
2 = φ1 ∧ ¬φ3 is sound too, but we do not want to drop parts of

the formula that are assumptions because they can make the proof easier. The
simplified formula can be obtained in two ways. One is to replace the assertions
that appear in both DSA graphs by assumptions and generate the VC for the
modified DSA graph; the other is to work directly on the formulas ψ1 and ψ2.
In this paper we will explore in greater detail the latter.

In both approaches, a solution has to solve two subproblems. First, we must
find a correspondence between parts of the two DSA graphs (or formulas). Sec-
ond, we must simplify one of the DSA graphs (or formulas). The methods we
present in the next section for finding a correspondence between parts of the
formulas can be partially reused for finding a correspondence between parts of
the DSA graphs. Simplifying a formula is harder than changing assertions into
assumptions, but on the other hand it is independent of the particular interme-
diate representation used.

3 Pruning First Order Formulas

One subproblem is to find a correspondence between parts of ψ1 and parts of ψ2.
We substitute (some) uninterpreted constants in ψ1 by uninterpreted constants
that appear in ψ2. We also normalize the formulas with respect to commutative
operators (Fig. 3). We also use hash-consing [8,9] so later terms are simply
compared by reference equality.

Note that if ψ1 is Unsat, then any substitution that renames uninterpreted
constants leaves it Unsat. The only assumption we make in solving the second
subproblem is that ψ1 is Unsat, so there is no ‘right’ or ‘wrong’ correspondence
between old and new constants. It is true, however, that for different substitu-
tions of constants we will end up with different results ψ′

2, some bigger and some
smaller. Also we need to remember not to rename interpreted constants (such
as 1 and 42).

Assuming that all constants that are ‘the same’ have the same name in ψ1

as in ψ2 would not allow us to prune the VC (to ⊥) when the programmer only
renamed a variable. (Variables in the program appear as uninterpreted constants
in the VC.) Even worse, the ESC encodes extra information in identifiers [10]
that changes, for example, when a new line is added to the source Java file.
Despite these variations, a human that sees both ψ1 and ψ2 is generally able to
say which sub-term corresponds to which sub-term. So there are good chances
to find a heuristic that works well!
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class Term
public Name : string
public Children : list [Term]

def SortTerm(t)
def CompareTerms(a, b)

def nc = a.Name.CompareTo(b.Name)
if (nc != 0) nc
else LexicographicCompare(a.Children, b.Children , CompareTerms)

def children = t.Children .Map(SortTerm)
if (IsCommutative(t)) Term(t.Name, t.Children.Sort(CompareTerms))
else Term(t.Name, children)

def oldVC = SortTerm(oldVC)
def newVC = SortTerm(newVC)

Fig. 3. Normalizing queries

We only consider renaming of uninterpreted constants because of the partic-
ular algorithm used to build VCs. If some of the function symbols would also
need to be renamed, the algorithm can be easily extended by the standard tech-
nique of introducing a special function symbol apply, and replacing f(t1, . . . , tn)
with apply(f, t1, . . . , tn).

The heuristic we use to find a good substitution assigns a similarity value to
each pair of (old, new) constants and then finds a maximum bipartite matching
(using the Hungarian method [11]) between the old and the new constants. A
complete bipartite graph is constructed from the set V1 of uninterpreted con-
stants that appear in ψ1 and the set V2 of uninterpreted constants that appear
in ψ2. Each pair (i, j) ∈ V1 × V2 has an associated weight, which in this case is
the similarity of the two constants. A matching is a subset M ⊂ V1 × V2 such
that for all pairs (i, j) ∈M and (i′, j′) ∈M we have i = i′ if and only if j = j′.
The weight of the matching is the sum of the weights of all its elements. The
similarity has two components: One is the length of the longest common subse-
quence [12] of the two identifiers; the other, more important, is how many times
the constants appear in similar positions in the two VCs.

To measure similarity of position we use path strings [13]. A path string is a
sequence of function symbols interleaved with the positions, on a path from the
root of the term to a particular occurrence of a sub-term. For example f.2.g.1
is a path string for the occurrence of b in f(a, g(b, c)), and f.2.g.2 is a path
string for c. We construct a stripped path string by treating logical connectives
as function symbols, the entire formula as a term, and skipping positions for
commutative symbols. For example ∧.∨.f.2.g.1 is the stripped path string for b
in (f(a, g(b))∨ g(c)) ∧ g(d). The environment of a constant c in a formula ψ is
the multiset of the stripped path strings for all occurrences of c in ψ. Let E1 be
the environment of x in ψ1 and E2 be the environment of y in ψ2. The similarity
of x and y is 2|E1 ⊓E2| − |(|E1| − |E2|)|, where ⊓ is multiset intersection. Other
measures, that take environments into account, are also possible.
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def Prune(p1 : list [ list [Term]], p2 : Term)
def p1 = Flatten(p1)
// |p1| is a DNF form, assumed to be UNSAT

match (p2.Name)
| "and" =>

mutable common = []
foreach (x in p1) foreach (y in x) common = y :: common
def p1 = p1.Map(x => x.Filter(y => !common.Contains(y)))
def p2 = p2.Children. Filter (y => !common.Contains(y))
if (p1.Contains ([])) Term("false", [])
else Term("and", common + p2.Map(x => Prune(p1, x)))

| "or" =>
Term("or", p2.Children.Map(x => Prune(p1, x)))

| =>
if (p1. Exists (x => Implies(p2, Term("and", x)))) Term ("false", [])
else p2

def prunedVC = Prune([[oldVC]], newVC)

Fig. 4. Pruning the VC

The algorithms are presented as Nemerle-like pseudocode [14]. Some obvi-
ous optimizations are omitted3 to improve readability. We also omit textbook
algorithms. The algorithm for normalizing queries with respect to commuta-
tive operators is given in Fig. 3. It recursively sorts arguments of commutative
operators using lexicographic ordering.

The second subproblem, simplification of formulas, is solved by the pruning
algorithm in Fig. 4. The function Prune returns a formula equisatisfiable to p2
under the assumption that all elements of p1 are Unsat. Elements of p1 are
conjunctions represented as lists.

The function Implies explores the structure of two formulas and returns true

only if the first is stronger than the second. The last branch is clearly correct:
If p2 is stronger than a conjunct known to be Unsat then it is also Unsat. In
the case that p2 is a disjunction we can treat its children independently. The
case when p2 is a conjunction is more interesting. To understand why it works
consider a small example.

ψ1 = (φ1 ∧ φ2) ∨ (φ3 ∧ φ4) (8)

ψ2 = φ2 ∧ φ4 ∧ (φ1 ∨ φ3) (9)

ψ′
2 = φ2 ∧ φ4 ∧⊥ = ⊥ (10)

We write P(ψ1, ψ2) = ψ′
2 for the result of pruning ψ2 under the assumption

that ψ1 in Unsat. The common part of ψ1 and ψ2, as computed in the variable
common in Fig. 4, is φ2 ∧ φ4. Pruning φ1 ∨ φ3 knowing that φ1 ∨ φ3 is Unsat

results in ⊥. The formulas that appear in both ψ1 and ψ2 can always be factored.

3 See http://nemerle.org/svn.fx7/branches/fx8/Pruner.n for all details.

http://nemerle.org/svn.fx7/branches/fx8/Pruner.n
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(φ1 ∧ φ2) ∨ (φ3 ∧ φ4) (11)

⇐(φ1 ∧ φ2 ∧ φ4) ∨ (φ3 ∧ φ2 ∧ φ4) (12)

⇔φ2 ∧ φ4 ∧ (φ1 ∨ φ3) (13)

Hence, we can always reduce the problem to the form

ψ1 = φ′1 ∧ φ
′
2 (14)

ψ2 = φ′1 ∧ φ
′
3 (15)

ψ′
2 = φ′1 ∧ P(φ′2, φ

′
3) (16)

where φ′1 is the common part and φ′2 is what we assume to be Unsat while
pruning φ′3 (see also Fig. 4). In this example φ′1 = φ2 ∧ φ4 and φ′2 = φ′3 =
φ1 ∨ φ3. It is easy to see that the above is correct, by doing a case analysis
on whether φ′1(x) holds for some vector x. The formalization4 in Coq [15] of
a simplified version of the pruning function emphasizes the main points of the
proof. The formulas abstract theories by arbitrary predicates over the domain
of uninterpreted constants.

Inductive Formula : Type :=
| FPred : (Dom −> Prop) −> Formula
| FAnd : Formula −> Formula −> Formula
| FOr: Formula −> Formula −> Formula.

Fixpoint Eval (f : Formula) (x : Dom) {struct f} : Prop :=
match f with

| FPred p => p x
| FAnd fa fb => Eval fa x /\ Eval fb x
| FOr fa fb => Eval fa x \/ Eval fb x

end.

The simplified version of the algorithm whose proof we check mechanically is

Fixpoint Prune (p1 p2 : Formula) {struct p2} : Formula :=
match p1, p2 with

| FAnd a b, FAnd aa c => if eq a aa then FAnd a (Prune b c) else p2
| , FOr a b => FOr (Prune p1 a) (Prune p1 b)
| , => if eq p1 p2 then FPred PFalse else p2

end.

This function has two important invariants.

Lemma PruneInvA : forall p1 p2 : Formula, forall x : Dom,
(˜ Eval p1 x −> Eval p2 x −> Eval (Prune p1 p2) x).

Lemma PruneInvB : forall p1 p2 : Formula, forall x : Dom,
(˜ Eval p1 x −> Eval (Prune p1 p2) x −> Eval p2 x).

4 Available at http://radu.ucd.ie/hp/papers/ev.html

http://radu.ucd.ie/hp/papers/ev.html
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These are proved by double induction on the structure of p1 and p2. We use one
extra fact.

Lemma UnsatImp : forall a b : Formula,
( forall x : Dom, Eval a x −> Eval b x) −> Unsat b −> Unsat a.

At this point we can prove that the algorithm is sound and complete.

Lemma PruneSound : forall p1 p2 : Formula,
Unsat p1 −> Unsat (Prune p1 p2) −> Unsat p2.

Lemma PruneComplete : forall p1 p2 : Formula,
Unsat p1 −> Unsat p2 −> Unsat (Prune p1 p2).

Theorem PruneCorrect : forall p1 p2 : Formula,
Unsat p1 −> (Unsat p2 <−> Unsat (Prune p1 p2)).

The algorithm in Fig. 4 is more efficient since it exploits the associativity
and commutativity of the ∧ and ∨ operators. The worst case time complexity is
O(mn), and arises when the formula known to be Unsat and the formula to be
simplified have, respectively, the form

ψ1 =
∨

(φ1, . . . , φm−1) (17)

ψ2 = ∧ . . .∧
︸ ︷︷ ︸

n times

φm (18)

where ∧ and ∨ are written as nary operators. Unfortunately, the average case
that appears in practice is hard to describe. Experimental data from 20 cases
suggests that the running time grows linearly with the size of the formulas. But
we need more data before we can make a definite statement (see Sect. 5 for
details).

4 Case Study

In this section, we explain how the common way of editing programs affects the
DSA and therefore also the VC and how pruning exploits the changes.

Let us again consider the program from Fig. 2. We used ESC/Java2 to gener-
ate VCs for a version without any of the lines marked (1), (2), (3), and (4). This
was the base case. Next we ran it on a method with only line (1) added, only
line (2) added and so forth. Finally we ran the pruning algorithm with the old
formula being the base case and the new formula being being VC for a method
with an added line. Table 2 lists three times for each such formula. The first is
the time it takes to prove the formula using Simplify [16]; the second is the time
it takes to prune the formula; the third is the time it takes to prove the pruned
formula. The reader can note that the running times of Simplify on the original
formulas vary rather nondeterministically. In particular, one would expect the
base case and the one with an added empty line to have the same running time,
but they do not. The reason for this is a “butterfly effect” in the prover, where
for example a slight change in the selection of a literal for a case split can cause
large changes in the final shape of the proof search tree.
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Marker Description Original Pruning Pruned

base case 20.91s
(1) empty line 17.59s 2.23s 0.01s
(2) irrelevant postcondition 16.91s 2.31s 0.06s
(3) additional postcondition 21.65s 2.19s 19.34s
(4) assertion in the middle 22.81s 2.16s 7.67s

Table 2. Case study results

The first edit operation (marked by (1)) is adding an empty line somewhere,
or in general changing the locations of symbols. As ESCs often use location in-
formation for encoding symbol names, the uninterpreted constants in the second
VC are different than in the first one. Our algorithm generates a query that is
just ⊥.

The second edit strengthens the postcondition of a method getYear used in
the verified dayOfYear method. Here, we are able to prune almost everything,
i.e. the resulting query is propositionally Unsat.

The third edit adds a postcondition to the verified method. We can imagine
that the DSA graph gets one more black node at the end, so this is the only
thing that should be verified now. In this case we do prune parts of the formula,
it however fails to speed up checking.

Finally the last edit adds an assertion near the end of the method. Here the
heuristics work well and the time is reduced considerably.

The dayOfYear method (Fig. 2) is an example of a case where the VC is rel-
atively small (around 60 kilobytes), but hard to prove. This is due to the large
number of possible paths in the method. There are other reasons methods can
be hard to prove: methods can be more complicated, the specifications can be
complicated, the modelling of the language can be more accurate (for example
in multi-threading programs). All those scenarios are good for our pruning algo-
rithm as it runs in polynomial time and can potentially save a lot of proving time.
The bad case is when the formula is large, but not that hard to prove. In par-
ticular it sometimes happen that most of the time is spent just reading/writing
the formula and doing basic preprocessing, like skolemization.

5 Related and Future Work

The work presented here parallels the work done in the compiler community un-
der the name incremental compilation. In the context of software verification by
theorem proving the term incremental verification is taken—it refers to the pro-
cess of proving stronger assertions using weaker ones as lemmas [17]. Hence, we
use the distinct term edit and verify for the related idea of proving only what has
not been proven before, and doing so automatically. In the context of interactive
theorem proving the term proof reuse is used for a similar technique [18].
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A Program Verification Environment (PVE) is the same for an ESC, as an
Integrated Development Environment (IDE) is for a compiler. It provides an easy
to use interface to the tool. As incremental compilation is very useful in IDEs,
we expect Edit and Verify to be even more useful in PVEs. This is because
static verification consumes much more resources than compilation. There is
much research on software verification using PVEs, there is also vast amount of
interest from the industry in PVEs.

One of the goals of the Mobius research project [19] is to produce a PVE for
Java. Penelope [20] is an early PVE that processes a subset of Ada. Its designers
chose to rely on interactive theorem proving. The KeY Tool [21] is a modern
PVE for Java that uses the same approach but differs in the mechanisms and
theory of verification condition generation. Spec# [2] is a modern PVE for C#

that uses automated theorem proving. ESC/Java2 [1,22] is an ESC for JML-
annotated [23] Java code. It produces VCs in the Simplify [16] format and in the
SMT format [24] for other automated theorem provers. It also generates VCs for
the Coq interactive theorem prover [15].

Whether an ESC is considered a PVE or not depends chiefly on how well
integrated it is with the editor. ESC/Java2 is integrated into Eclipse using a
plugin. Spec# is more tightly integrated into Visual Studio using a plugin. Work
on incremental compilation [3] suggests that an even tighter integration leads to
important performance benefits.

There are two improvements that we will try in the near future. One is
to prune the DSA graph. The other is to modify Fx7 [25] to produce a formula
weaker than the query but still Unsat, and use that to prune subsequent queries.
Another idea that is worth exploring is to integrate pruning more tightly not
with the ESC but instead with the proving process. For example, we could save
the relevance of specific axioms in the old proof, so they can be prioritized while
searching for a proof of the new query.

To assess the effectiveness of these improvements we need a better bench-
mark. The amount of JML-annotated Java is still modest. Moreover, code from
the version control history is not appropriate because the commit cycle is typ-
ically much longer that the duration between two invocations of ESC/Java2.
Therefore we need to collect such data ourselves and this is a time consum-
ing effort. Such a benchmark would hopefully nicely complement the existing
(very useful) Boogie benchmarks and SMT-COMP benchmarks [24]. A theo-
retical analysis seems to require a good model for the type of queries that are
produced as verification conditions.

An idea very similar to the one explored in this paper did lead to interest-
ing results in model checking [26], the so called extreme model checking. Model
checking is sometimes used together with unit testing and therefore it is run of-
ten on code with minor modifications. Therefore, it is natural to take advantage
of the results of previous runs.
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6 Conclusion

We described the typical usage pattern of automated theorem proving in ex-
tended static checking and two approaches that exploit it to improve perfor-
mance. We gave a detailed solution that processes first order formulas. The im-
plementation is a part of the Fx7 theorem prover [25]. It was tested on queries
generated by ESC/Java2, without requiring any modifications to the latter. The
other approach, working on the intermediate representation of the extended
static checker, promises to be more efficient but requires a tighter integration of
the prover with the checker.

The first part of the solution is a heuristic that, given two formulas, finds
which sub-terms of one formula correspond to which sub-terms of the other.
This heuristic may prove to be a useful technique in solving related problems
since it performs well and there is ample room for tuning. The second part of
the solution is a formula pruning algorithm. This algorithm is proven correct,
and part of the proof is mechanically verified. Its efficiency is reasonable because
of the use of hash-consing and because formulas are normalized with respect to
commutative operators. The pruned formulas are clearly easier to prove.
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