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Abstract. Intelligent and autonomous software agents may engage in dialog and
argument with one another, and much recent research has considered protocols, ar-
chitectures and frameworks for this. Just as with human dialogs, such agent dialogs
may be facilitated by the presence of a mediator, able to summarize different posi-
tions, identify common assumptions and inconsistencies, and make appropriate in-
terventions in the dialog. Drawing on the theory of co-ordination artifacts in multi-
agent systems, we propose a formal framework to explicitly represent the functions
of a mediator artifact. We then describe an implementation of this framework using
the TuCSoN coordination infrastructure for MAS, where the mediator artifact is
realized by a tuple centre—a programmable tuple space.
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1. Introduction

Proponents of public policy conversations and decision-making processes usually em-
phasize the need for a human moderator or mediator to be involved in the interaction,
e.g., [3]. The mediator may act to ensure fairness and equality of access by all partici-
pants, may assist participants to clarify their positions and to argue more effectively, and
may even seek to reconcile opposing views. Similarly, the designers of computer-aided
argumentation systems have also provided support for human mediators; for example,
the developers of Zeno define their system as “a mediation system” [5, p. 10]:

“a kind of computer-based discussion forum with particular support for argumentation. In
addition to the generic functions for viewing, browsing and responding to messages, a media-
tion system uses a formal model of argumentation to facilitate retrieval, to show and manage
dependencies between arguments, to provide heuristic information focusing the discussion on
solutions which appear most promising, and to assist human mediators in providing advice
about the rights and obligations of the participants in formally regulated decision making
procedures.”

Just as with human interactions, and for the same reasons, many of the functions provided
by mediators could be useful when software agents engage in argumentation with one
another. Some of these mediator functions require only limited intelligence, for example,
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supporting the storage and sharing of arguments between participants. In earlier work [8],
we presented a conceptual framework for a central co-ordinating entity in an argumenta-
tion dialog, called a Co-Argumentation Artifact (CAA), to provide co-ordination services
to the participating agents, allowing them to share, store and exchange arguments with
one another. Vesting the CAA with its own argumentation capabilities meant that this
entity, like the participants, could undertake reasoning across the arguments it stored. For
example, the CAA could determine whether a particular argument is acceptable (under
a specified semantics of argumentation) with respect to the global knowledge of all the
participants. We reprise the CAA framework in Section 3.1.

It is easy to imagine that the CAA could undertake more sophisticated interventions
in the dialog, resembling complex, automated tasks of a human mediator. To this end, in
this paper we extend our earlier concept of a central co-ordinating artifact to be a dialog
artifact (DA), acting as a mediator between the participating agents. We do this, first,
by articulating, in Section 2, the possible functions of the mediator artifact; for reasons
of space, we do not consider all these functions here. We then present a formalization
of some of these mediator artifact functions in Section 4, drawing on recent work in
the theory of communications artifacts in multi-agent systems [9,16]. We follow this
with a description of a prototype implementation we have undertaken in the TuCSoN
coordination infrastructure, in Section 5. Finally, Section 6 concludes the paper.

2. Functions of the Argumentation System

Our model of a multi-agent argumentation system has two types of entities: intelligent
dialog agents, and a mediator artifact. Dialog participants, of course, need to be able
to generate, evaluate, contest and defend arguments as they interact with one another
through dialog. But the mediator artifact also needs this argumentation functionality if it
is to find common ground between different participants, or to clarify their differences.
For example, if the mediator is to convince two participants that their opposed positions
in fact share common assumptions or that one position implies the other, then the media-
tor artifact may need – in an automated way – to create, present and defend a case to the
participants.

Consequently, we describe two conceptual components required variously by the
entities in our system: an argumentation component, required by all the participating
agents and by the mediator artifact; and a central dialog component, required only by the
mediator artifact. We now list the functions of each component.

2.1. Argumentation Component

The Argumentation component is used both by the participating agents and by the me-
diation artifact. It comprises both a set of arguments, represented in a suitable computa-
tional form, and a collection of algorithms deployed over this argument set. The set of
arguments may naturally differ from one agent to another. The computational model is
composed of several modules, each module providing a specific set of constraints result-
ing from the analysis of the input argument set.

Argument base module contains all argument of the domain



Argumentation consistency check module verifies monotonicity of argument compo-
sition

Contrary module finds predicates that are in contrast
Argument set module makes argument division in sets be based on a given semantic
Prolog meta-interpreter works over argument set

2.2. Central Dialog Artifact

The mediator artifact requires some basic functionality to support the exchange of argu-
ments in a dialog between the participants. This basic functionality includes:

1. Storage of the dialog protocol (e.g. in a library of such protocols)
2. Storage of the specifications of the dialog protocol
3. Storage of the complete history of a dialog as it proceeds
4. The ability to refuse to allow agent utterances which do conform to the current

protocol in use
5. The ability to suggest next moves which are legal according to the current proto-

col in use in a dialog
6. The ability to receive and store confidential information from the participating

agents, such as their preferences in a negotiation. The mediator could then ag-
gregate such information (across multiple agents), and/or seek to identify and
reconcile differences.

Also, the central artifact could act a sophisticated mediator of the discussion, by provid-
ing in an automated way the following services:

1. Seeking to resolve any disputes over the rules of the protocol
2. Providing give rewards or penalties to agents for breaking the protocol rules
3. Having the power to admit or to expel agents to/from the dialog
4. Suggesting a new protocol, when needed.
5. Supporting multiple simultaneous bilateral interactions.
6. Assigning roles, rights and responsibilities to agents at run-time, as, for example,

in an action protocol, assigning the role of winner to a particular agent near the
end of the interaction.

7. Identifying conflicts and inconsistencies between commitments made by agents
in a dialog, for example, if an agent commits to sell a car it is also trying to
purchase.

8. Identifying agent utterances which are not relevant to the current state of the
dialog, and refusing to permit these to be made.

9. Providing automated alerts to inform agents that dialogs on particular topics are
about to start, or to end, or that particular commitments have just been made.

10. Combining different dialogs on the same topic.

More advanced functions of the mediator artifact could also include:

1. Annotation of protocols with their properties, for protocols stored in the proto-
col library, for instance, the possible outcomes of a protocol, its computational
complexity, and so on.

2. Storing the outcomes of past dialogs, for example, the commitments remaining
at the end of the dialog.



3. Tracking agent commitments across multiple dialogs.
4. Using previous dialogs to create an independent assessment of the reputation of

participating agents.
5. Storage of the entire history of past dialogs. These may be required for regulatory

or legal reasons, e.g., in stock market transactions.

In this paper, we present a formalization of the Dialog Artifact which conceptually sup-
ports the basic functionalities listed above.

3. Argumentation and Dialog: Formal Definitions

In our earlier work [8], we introduced an argumentation system and an artifact abstrac-
tion to support the co-ordination functions in a multi-agent dialog. We now extend that
framework by formally defining the components, drawing on the theory of organizations
and roles in multi-agent systems of Omicini and colleagues [9] and the formal language
used to define an agent interaction protocol, in the work of Viroli and colleagues [16].
In our approach we describe a dialog in term of a labeled process algebra, where labels
denote roles, as in [9], and the process algebra specifies the interaction protocol, as in
[16].

We assume that the interaction is between a finite number N of intelligent software
agents, and that each agent has a range of possible utterances (or actions) at each step in
the dialogue (i.e., this is a multi-move protocol). Formally, a multi-agent dialog system
for argumentation is composed of two parts: an argumentation system; and a dialog sys-
tem. The definition of the argumentation system is discussed based on the work in [8],
and builds on various earlier argumentation frameworks.

3.1. Argumentation System

Prakken and Vreeswijk [15] observe that an argumentation system is generally composed
of five elements (although sometimes implicitly): 1) a logical language; 2) an argument
definition; 3) a concept of conflict among arguments; 4) a concept of defeated argument;
5) a concept of argument acceptability. In this section we define an argumentation system
as a reference point for our work. We take inspiration from Dung’s framework [2], and
we also define the structure inside the arguments.

The object language of our system is a first-order language, where Σ contains all
well-formed formulae. The symbol ` denotes classical inference (different styles will be
used like deduction, induction and abduction) ≡ denotes logical equivalence, and ¬ or
non is used for logical negation.

Definition 1 An argument is a triple A = 〈B, I,C〉 where B = {p1, . . . , pn} ⊆ Σ is a set
of beliefs, I ∈ {`d ,`i,`a} is the inference style (respectively, deducion, induction, or
abduction), and C = {c1, . . . ,cn} ⊆ Σ is a set of conclusions, such that:

1. B is consistent
2. B `I C
3. B is minimal, so no subset of B satisfying both 1 and 2 exists



Deductive Inference Inductive Inference
MP ¬A B→A

¬B θ -su B
R where Rθ ⊆ B

MT ¬A B→A
¬B Abductive Inference

MMP B1 B2 B3 (B1∧B2∧B3)→C
C Ab B A→B

A
Table 1. Deductive Inference: (MP) Modus Ponens, (MMP) Multi-Modus Ponens and (MT) Modus Tollens;
Inductive and Abductive Inference: (θ -su) θ -subsumption, (Ab) Abductive

The types of inference we consider for deduction, induction and abduction are shown in
Table 1. Modus Ponens (MP) is a particular case of Multi-Modus Ponens (MMP) with
only one premise. The inference process θ -subsumption derives a general rule R from
specific beliefs B, but is not a legal inference in a strict sense.

For defeat of arguments, the definition is not straightforward because there are differ-
ent type of attack well defined in [15]. Following those definitions, two possible types of
attack are ‘conclusions against conclusions’ – called rebuttals – and ‘conclusions against
beliefs’—called undercuts.

Definition 2 Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 be two distinct arguments, A1 is
an undercut for A2 iff ∃h ∈C1 such that h≡ ¬bi where bi ∈ B2

Definition 3 Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 be two distinct arguments, A1 is
a rebuttal for A2 iff ∃h ∈C1 such that h≡ ¬ci where ci ∈C2

The definitions of acceptability and admissibility used in our framework are those of
Dung in [2]. The following definitions are the basic ones in our argumentation system
and follow from Dung’s framework.

Definition 4 An argument set S is a conflict free set iff there exist no Ai,A j ∈ S such that
Ai attacks A j.

Definition 5 An argument set S defends collectively all its elements if ∀ argument B /∈ S
where B attacks A ∈ S ∃ C ∈ S : C attacks B.

Definition 6 An argument set S is a admissible set iff S is conflict free and S defends
collectively all its elements.

Definition 7 An argument set S is a preferred extension iff S is a maximal set among the
admissible set of A.

An argument is acceptable in the context of preferred semantics if an argument is in
some/all preferred extensions (credulous/sceptical acceptance).

Definition 8 An argument A is credulous acceptable if A ∈ at least one preferred exten-
sion.

Definition 9 An argument A is sceptical acceptable if A ∈ all preferred extensions.

Further details, including an implementation and examples of this argumentation frame-
work, can be found in our earlier paper [8].



3.2. Dialog System

In this section we present a novel formalization of a multi-agent dialog system. Our
intention is to capture the rules which govern legal utterances, and which govern the
effects of utterances on the commitment stores of the dialog. We use a process algebra
approach in the style of [16] to represent the possible paths which a dialog may take, and
to represent explicitly the operations to and from the commitment stores. We proceed by
considering each element of a dialog system in turn: 1) the communication language; 2)
the interaction protocol; and 3) the procol semantics.

Because a dialog is a dialectical exchange of arguments, we assume that arguments
and counter-arguments are represented and expressed in the formal language defined
above in Section 3.1. Agents may exchange arguments, along with facts, with one another
in the form of instantiated parameters in their utterances.

3.2.1. Communication Language

The agents need to share a same communication language CL in order to exchange infor-
mation. The role of CL as a language used for internal knowledge representation and rea-
soning is explained in [13]. We let F denote a set of terms representing facts, and A the
set terms representing all arguments able to be represented in Σ following the definition
of an argument given in Definition 1. Our CL is defined in order to support all six pri-
mary dialogue types as identified by [17]: persuasion, inquiry, negotiation, information
seeking, deliberation and eristic.

Definition 10 Our communication language is a set of locutions Lc. A locution l ∈ Lc is
a term of the form perfname(Arg1, . . . ,Argn) where perfname is a element of the set P of
performatives and Argx is either a fact or an argument.

An agent performing a dialog exploiting using the communication language can ut-
ter a locution composed of facts and arguments. A fact is represented by syntax
fact(Terms) and an argument with argument(B,I,C). The definitions to man-
age attacking and undercutting arguments are provided by the underlying argumentation
system given in Definition 1. In the example 1 an agent wants to communicate the classi-
cal example of argument like All men are mortal, Socrates is a man, Socrates is mortal,
and it uses a Argue locution with an argument parameter.

Example 1 Argue(argument(name,beliefs([human(Socrates)],[clause(mortal(X),
[human(X)])]),infer(MP),conclusions([mortal(Socrates)]))).

Examples of performatives to support an instance of an Information Seeking Dialog
could be: OpenDialog, Ask, Tell, DontTell, Provide, Argue, and so on. Fur-
ther details about this form of dialog and its complete locutions are presented in [1].

3.2.2. Dialog Protocol

In our framework the dialog protocol is a complete description of all possible dialog
paths, from the perspective of an external entity observing the dialog between the agents.
The protocol indicates the possible paths of a dialog, specifies the source and target of
each message, and shows the relationship between utterances and the content of com-
mitment stores. Our approach basically describes the step-by-step behaviour of an ex-



ternal entity acting as a mediator, hence enabling the allowed interactions. Hence, tech-
nically, we find it useful to model a dialog in terms of a process algebra with standard
composition operators (sequence, parallel, iteration), and whose atomic actions represent
either agent utterances, or interactions with the commitment store (writing, reading, or
removing a commitment).

On the one hand, Prakken [14] proposes a general definition of locution where a
move m is denoted by four elements: 1) identifier, 2) speaker (or source), 3) speech act
and 4) intended recipient (or target). Following this model, we provides a definition of a
speech act, as follows:

Definition 11 An action A is defined by the syntax A ::= s : Lc|s[t1, . . . , tn] : Lc where s
indicates the source, and [t1, . . . , tn] indicates the (optional) targets of the message.

On the other, beyond this, we include additional atomic operations K over commitment
stores—many of theme can actually occur into one argumentation artifact. To this end,
the commitment store is viewed as a set of tuples as in [7]: such tuples are manipulated
by the commands of the Linda language [4]—in, rd and out.

Definition 12 A term action K has the syntax K ::= in(C,X)|out(C,X)|rd(C,X), where
C is a term representing the commitment store identifier, and X is a term representing the
commitment.

Specifically, the commands in(C,t), rd(C,t) and out(C,t) respectively con-
sumes, reads and puts a tuple t in the commitment store C. These actions are useful to
manage the private or public commitment store in relation to the dialog execution. In
particular, they can operate, for example, as action-preconditions in order to restrict or
constrain the next action choice, and thus enable only certain future dialog paths. For
instance, if at a given time a sub-dialog is guarded by operation rd(c,commit(a)),
then it is allowed to proceed only if commit(a) occurs in the commitment store.

Definition 13 A protocol P is a composition of action from sets A and K, defined by syn-
tax P ::= 0 |A.P |K.P |P + P |(P ‖ P) | !P where the symbols .,+,‖, ! denote respectively
sequence (action prefix), choice, parallel composition, and infinite replication operators.

For example, an abstract dialog protocol definition is given by D := (s : a1 + s : a2).(s :
a3 + s : a4);s : a5 where agent s is only allowed to execute a sequence of three actions:
the sequence composed of a first action consisting of either action a1 or action a2, then
a second action consisting of either a3 or a4, and then a third action comprising a5. A
protocol specifies a set of actions histories, that the agents might execute. As another
example of a protocol definition, consider D := s : a1 ‖ s : a1 ‖ s : a1 ‖ t : a2 ‖ t : a3 where
agent s can invoke a1 at most three times, agent t can invoke a2 and a3 only once, but in
whichever order.

To illustrate this framework, we present a specification for an Information-Seeking
dialog ( f is seen as a variable over the content of communication:

Example 2 (Information Seeking Dialog) c:OpenDialog.
s:OpenDialog.
!(c:Ask(f).



s:Tell(f).(
rd(perm(c,f)).
s:Provide(f).
s:Argue(perm(c,f),YES,A)
+
s:DontTell(f).
s:Argue(perm(c,f),NO,B).
c:Argue(perm(c,$\phi$),ADD,A). (

s:Argue(perm(c,f),NO,B)
+
s:Accept(A,perm(c,f)).
in(Accept(perm(c,f)))

) ) )

3.3. Operational Semantics

Following Hamblin [6], we assume that each agent is associated to a knowledge base,
accessible to all agents, containing its commitments made in the course of the dialogue.
Commitments are understood as statements which the associated agent must support,
while they remain in the commitment store, if these statements are questioned or attacked
by other agents. We can now use the notion of commitment store and the transition sys-
tem given in Definition 15 to define an operational semantics for the dialog system. This
semantics describes the evolution over time of the dialog state and the states of commit-
ment store (seen as composition of all commitment stores). In essence, the commitment
store is the knowledge repository of the dialog as a whole, and it is expressed in our
framework as a multiset of terms.

Definition 14 A commitment store C is a multiset of terms and it is defined by the syntax
C ::= 0|(C|C)|X where X is a term.

Definition 15 The operational semantics of our dialog system is described by a labelled
transition system 〈S,→, I〉, where S ::= (C)P represents the state of dialog system (pro-
tocol P running with commitment store C), I is the set of interactions (labels) composed
of i ::= τ|a, and→ is a transition relation of the kind→⊆ S× I×S.

As usual, we write s i−→ s′ in place of 〈s, i,s′〉 ∈←, meaning the dialog system moves from
state s to s′ due to interaction i—either an action a, or an internal step τ (an operation
over the commitment store). We introduce a congruence relation ≡, which syntactically
equates similar states:

0+P≡ P P+Q≡ Q+P (P+Q)+R≡ P+(Q+R) !P≡ P|!P

0 ‖ P P ‖ Q≡ Q ‖ P (P ‖ Q) ‖ R≡ P ‖ (Q ‖ R)

We use also notation t{x/y}, to mean term t after applying the most general substitution
between terms x and y—x should be an instance of y, otherwise the substitution notation
does not make sense. Finally, we define operational rules that describe the behavior of
the dialog system as follows:



(C)out(x).P τ→ (C|x)P (K−OUT )
(C|x)rd(y).P τ→ (C|x)P{x/y} (K−RD)
(C|x)in(y).P τ→ (C)P{x/y} (K− IN)
(C)(P+Q) i→ (C′)P′ if (C)P i→ (C′)P′ (OP−SUM)

(C)(P|Q) i→ (C′)(P′|Q) if (C)P i→ (C′)P′ (OP−PAR)

(C)a.P a′→ (C)P{a′/a} (ACT )

Rule (K-OUT) provides the semantic of out operation, expressing that x term is added
to the commitment store C, and process continuation can carry on. Rules (K-RD) and
(K-IN) similarly handle operation rd and in: the use of substitution operator guarantees
that the term x in the commitment store is an instance of the term x to be retrieved. Rules
(OP-SUM) and (OP-PAR) provide the semantics for choice and parallel operators in the
standard way. Finally rule (ACT) expresses that locution a′ is executed that is an instance
of the allowed one a, and accordingly process continuation P can carry on.

4. The Dialog Artifact

As mentioned above, the A&A meta-model for MAS as discussed in [8] views agents
engaged in argumentative communication as making use of an abstraction, called a Co-
Argumentation Artifact, to communicate, to exchange information, data and arguments,
and to record their public commitments. The current work extends this abstraction by
formally defining a Dialog Artifact (DA), able to support and mediate the communication
between agents engaged in a dialog under the system defined in Section 3 above.

We define the Dialog Artifact as a triple DA = 〈DP,CS, IC〉, where: DP is a collection
of specifications of dialog protocols; CS is a collection of commitments stores; and IC
is a collection of specifications of interaction control (IC). We now define each of these
components in turn.

Dialog Protocols

The class DP is a collection of formal specifications of dialog protocols, with each pro-
tocol specified using a labeled process algebra, as in Definition 13. Protocols in DP may
also be annotated with identifiers and with their properties, such as their termination
complexity. When agents engage in dialog using a protocol in the collection DP, they
make utterances according to the permitted sequences defined by the protocol specifica-
tion. Accordingly, the Dialog Artifact is able to verify that utterances proposed by agents
in a dialog are valid under the protocol; the DA is also able to use the specification to
suggest potential legal utterances to participating agents at each point in the dialog.

Commitment Stores

For any particular collection of agents and any particular dialog they undertake, the col-
lection CS specifies a set of stores representing the private and public Commitment Stores
of each participant, together with a central Commitment Store for the dialog as a whole.
The Dialog Artifact can support the dialog by holding these stores. The private Com-
mitment Stores are also held by the DA to record confidential information entrusted to



Type Agent A All Agents Mediator Artifact

Private Commitment Store of Agent A R/W/D - R
Public Commitment Store of Agent A R/W/D R R

Central Commitment Store - R R/W/D
Table 2. Commitment Stores - Read (R), write (W) and delete (D) Permissions

it by the participants, such as their private valuations of some scarce resource (in the
case of Negotiation dialogs) or arguments based on privileged information (in the case
of dialogues over beliefs). Sharing such information with the DA may allow the DA to
reason across these stores in a manner which does not reveal the private information of
individual agents.

We can classify these various types of stores according to the access permissions
(write-, read-, and delete-permissions) holding on each store, as shown in Table 2. The
cells of this table indicate the access permissions pertaining to different types of Commit-
ment Stores (the rows of the table), depending on the agent seeking access (the columns
of the table). The Dialog Artifact may also store other relevant information, such as the
sequence of locutions exchanged in the current dialog, which would be stored in the Cen-
tral Commitment Store. These stores do not have an algebraic structure but a declarative
representation of the contents with a proper classification.

Interaction Control

The third component of the Dialog Artifact, denoted as IC, is a collection of specifica-
tions for the interaction control. We roughly follow the pattern MVC (Model View Con-
trol) where the model is the dialog specification in DP the view is the CS component
with dialog trace and the control is represented by IC specification. The control rule of
the dialog is represented by the label transition system introduced in previous section,
modelling the evolution over time of the agent interaction protocol. Three operators can
be used to control the dialog:

nextI(s) =
{

i : s i→ s′
}

nextS(s) =
{

s′ : ∃i,s i→ s′
}

nextIS =
{

(i,s′) : s i→ s′
}

Operator nextI(s) yields the next admissible interactions i from state s. Operator nextS(s)
yields the states reachable from s in one step. Operator nextIS yields couples (i,s) instead.

The component IC realizes the above three operators in order to identify which po-
tential utterances for any agent at any point in the dialog are legal. The basic primitives
in,rd,out to manage arguments and facts in commitment stores allow the IC to iden-
tify which constraints on the future course of dialogs are created by the existing com-
mitments. For instance, the IC could permit only one utterance in a choice point bas-
ing the decision on state of commitment store. Also, it can work with argument set over
some advanced structures such as conflict free sets and preferred extensions presented in
section 3.1 to determine for instance an argument acceptability.

DA Functionalities

It is straightforward to see that all six basic functionalities of the central dialog ar-
tifact listed in Section 2.2 can be performed by a Dialog Artifact defined as a triple
DA = 〈DP,CS,LI〉 as above. The collection DP provides the functionalities of items 1



and 2, the storage of protocols and their formal specifications; the Central Commitment
Store of the collection CS provides storage for the history of a dialog, item 3; similarly,
the private Commitment Store components of the collection CS provide storage for con-
fidential information communicated from agents to the DA, item 6; the formal specifica-
tion of a protocol in DP (as given by the process algebra formalism we have used above)
permits the DA to identify potential utterances which do not conform to the protocol,
item 4; and, both the formal protocol specifications in the collection DP and the logics
of interaction in IC permit the DA to suggest possible legal next moves, item 5.

5. TuCSoN Implementation

The technological support to build a DA is provided by the TuCSoN coordination in-
frastructure for MAS introduced in [12]. TuCSoN provides MAS with coordination ab-
stractions called tuple centres where agents write, read and consume logic tuples via
simple communication operations (out, rd, in, inp, rdp). As programmable tuple
spaces [11], tuple centers can play the role of agent mediator, where coordination rules
are expressed in terms of logic specification tuplesof the ReSpecT language—an event
driven language over the multi-set of tuples [10]. The tuple center could be considered
such as a general support for artefacts. In order to realize the DA we exploited TuCSoN
a logic tuple centre with programmable behaviour.

Agents utter a locution by means of a out(move(Dialog, AgentID,Locution))
in the tuple space. The automatic actions executed over the commitment store are rep-
resented by the term cs(ID,out(commit(...)))—where out could be replaced
by in or rd operations. The CS class is composed of commit tuples that are put in the
tuple space as facts and arguments express in logic tuple notation.

The dialog is written in terms of tuples dialog(name,AList) where AList is
the list of actions reifying in tuple form the operators choice act(A1)+(act(A2)),
parallel par(A1,A2) and sequence A1,A2. Figure 1 shows a dialog protocol com-
posed by some basic information on dialog state and few steps of the information seeking
dialog protocol. The tuples that form the DP component are: participant (number of
participants), dialog (dialog protocol), dialogstate (actual protocol dialog state),
and currentpar (actual number of participant). In addition, an open dialog session
also uses tuple session(AgentID,infoseek,open) for each dialog participant.

The key idea of the IC implementation is shown in figure 5, where the reactions
implementing the control of dialog interaction are presented. In particular, the code im-
plements the dialog state transition after an agent action, the search of next admissible
move after an agent request, and also makes it possible the automatic interaction with the
commitment store automatically executing cs actions. Such mechanisms make it possi-

dialogsession(infoseek,close)
participant(infoseek,2)
dialog(infoseek,[act(C,opendialog(C,T)),

act(T,opendialog(C,T)),act(C,ask(Arg)+
(act(T,tell(arg1),cs(T,out(commit(arg1)))))])

currentpar(infoseek,0)

Figure 1. Example of Dialog State (DP component)



%reacts from agent next moves request
reaction(rd(nextmoves(Dialog,S)),(
rd_r(dialogstate(Dialog,S)),
out_r(findall(S,Dialog))

)).
reaction(out_r(findall(S,Dialog)),(

in_r(findall(S,Dialog)),
findall(A,transition(S,A,Q),L),%collect all next legal moves
out_r(nextmoves(Dialog,L))

)).

Figure 2. Implementation of nextI operator in ReSpecT

ble for a dialog to be driven automatically by the state of the commitment store. Figure
5 shows the ReSpecT implementation of the nextI operator.

6. Conclusions

In this paper we have proposed a conceptual architecture for a multi-agent dialog system
in which participants are assisted by a mediator, called a Dialog Artifact. The functions
of this mediator are the basic functionalities we have identified as part of a longer list of
potential mediation or moderation functions in agent argumentation dialogs. Our Dialog
Artifact is an extension of our previous concept of a Co-Argumentation Artifact (CAA),
and builds on that earlier work. We also draw on the recent theory of communication ar-
tifacts in MAS to formalize the properties of the Dialog Artifact. Our paper also reported
on a prototype implementation of these ideas we have undertaken in the programmable
Tuple Space framework TuCSoN. In future work, we hope to formalize more of the po-
tential functions of the mediator which we listed above in Section 2. Some of these func-
tions will be straighforward to formalize, for identifying conflicts between commitments
or providing automated alerts to agents concerning upcoming dialogs. Others, however,
such as run-time assignment of rights and responsibilities to dialog participants will be
more challenging.
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transition(cs(Id,A),cs(Id,A),zero).
transition(act(Id,A),act(Id,A),zero).
transition([Act],A,zero):-!,transition(Act,A,zero).
transition([Act,Act2],A,Act2):-!,transition(Act,A,zero).
transition([Act|S],A,S):-transition(Act,A,zero).
transition(S1+S2,A,R1):-transition(S1,A,R1).
transition(S1+S2,A,R2):-transition(S2,A,R2).
%Start reaction
reaction(out(move(Dialog,Id,Act)),(

in_r(dialogstate(Dialog,S)),
out_r(transition(S,act(Id,Act),C,Dialog))

)).
reaction(out_r(transition(S,A,S1,Dialog)),(

transition(S,A,S2), %make the state transition
in_r(transition(S,A,S1,Dialog)),
out_r(dialogstate(Dialog,S2)),
out_r(findall(S2,Dialog))

)).
reaction(out_r(findall(S,Dialog)),(

in_r(findall(S,Dialog)),
findall(cs(Id,Commit),transition(S,cs(Id,Commit),Q),L), %collect all next commits
out_r(nextcsmoves(Dialog,L))

)).
reaction(out_r(nextcsmoves(D,[H|T])),(

in_r(nextcsmoves(D,[H|T])),
out_r(excommit(H)), %call execution commit
out_r(looknext(D,T))

)).
reaction(out_r(looknext(D,[E])),(

in_r(looknext(D,T)),
out_r(nextcsmoves(D,T))

)).
reaction(out_r(looknext(D,T)),(

T==[], in_r(looknext(D,[])),
in_r(nextcsmoves(D,[]))

)).
%Implementation of K-OUT, K-IN and K-RD
reaction(out_r(excommit(cs(Id,out(A)))),(

out_r(A), in_r(excommit(cs(Id,out(A)))),
in_r(dialogstate(Dialog,S)),
out_r(transition(S,cs(Id,Act),C,Dialog))

)).
reaction(out_r(excommit(cs(Id,in(A)))),(

in_r(A), out_r(excommit(cs(Id,in(A)))),
in_r(dialogstate(Dialog,S)),
out_r(transition(S,cs(Id,Act),C,Dialog))

)).
reaction(out_r(excommit(cs(Id,rd(A)))),(

rd_r(A), in_r(excommit(cs(Id,rd(A)))),
in_r(dialogstate(Dialog,S)),
out_r(transition(S,cs(Id,Act),C,Dialog))

)).

Figure 3. Control of Interaction: Checking agent legal locution, Making dialog protocol transition and execut-
ing automatically cs actions are the basic function here implemented in ReSpecT


