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Preface

This thesis is predominantly my own work and the sources from which material

is drawn are identified within. This is a brief summary of these.

Chapters 1 and 2 contain introductory material and a literature survey draw-

ing from the works of several different authors. Furthermore Chapter 2 contains

definitions used throughout this thesis, some of which are taken from Weitz [55].

Chapter 3 is based on a paper [47] published in MFCS 2007. The bibliograph-

ical details of the paper are:

• Kasper Pedersen. Dobrushin conditions for systematic scan with block dy-

namics. In Luděk Kučera and Antońın Kučera, editors, MFCS, volume 4708

of Lecture Notes in Computer Science, pages 264–275. Springer, Berlin,

2007.

Chapter 3 furthermore contains two proofs of theorems by Weitz which are out-

lined in Weitz [55].

Chapter 4 is based on a paper [48] submitted for publication. The biblio-

graphical details of the paper are:

• Kasper Pedersen. On systematic scan for sampling H-colourings of the

path. arXiv:0706.3794 (submitted), 2007.

Chapter 5 is based on a paper [38] submitted for publication. The paper is

joint work with Markus Jalseniuis and both authors made equal contributions to

the preparation of that paper. The bibliographical details of the paper are:

• Markus Jalsenius and Kasper Pedersen. A systematic scan for 7-colourings

of the grid. arXiv:0704.1625 (submitted), 2007.





Abstract

In this thesis we study the mixing time of systematic scan Markov chains on

finite spin systems. A systematic scan Markov chain is a Markov chain which

updates the sites in a deterministic order and this type of Markov chain is often

seen as intuitively appealing in terms of implementation to scientists conducting

experimental work. Until recently systematic scan Markov chains have largely

resisted analysis and a gap in the parameters that imply rapid mixing has de-

veloped between systematic scan Markov chains and the more frequently studied

random update Markov chains. We reduce this gap in this thesis by improving the

parameters for which systematic scan mixes when applied to several well-known

spin systems.

The main contribution of this thesis is the introduction of a new technique

for proving rapid mixing of systematic scan Markov chains. It is known that,

in a single-site setting, the mixing time of systematic scan can be bounded in

terms of the influence that sites have on each other. We generalise this technique

for bounding the mixing time of systematic scan to block dynamics, a setting in

which a (constant size) set of sites are updated simultaneously. In particular we

introduce a parameter corresponding to the maximum influence on any site and

show that if this parameter is sufficiently small, then the corresponding systematic

scan Markov chain mixes rapidly.

We present several applications of this new proof technique. In particular

we show that systematic scan mixes rapidly on spin systems corresponding to

proper q-colourings of (1) general graphs, (2) trees, and (3) the grid for improved

parameters than were previously known. We also obtain rapid mixing of sys-

tematic scan Markov chains for sampling H-colourings of the n-vertex path for a

restricted family of H using this technique. The H-colouring result is extended

to general graphs H by placing more restrictions on the scan and using path cou-

pling, a well-established technique for bounding mixing times of Markov chains.

Path coupling is also used to prove rapid mixing of a single-site systematic scan

for sampling proper q-colourings of bipartite graphs.
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Chapter 1

Introduction

This thesis is concerned with the study of finite spin systems. A finite spin sys-

tem is composed of a set of sites and a set of spins, both of which are finite.

The sites are vertices of an underlying graph whose edges specify the intercon-

nection between the sites. The underlying graph is assumed to be connected. A

configuration of the spin system is an assignment of a spin to each site. If there

are n sites and q available spins then this gives rise to qn possible configurations,

however some configurations may be illegal depending on the specification of the

spin system. The specification of the system determines how spins interact with

each other at a local level, such that different local configurations on a subset

of the graph may have different relative likelihoods. In particular, for spin sys-

tems with so-called hard-constraints the specification states which pairs of spins

are permitted to be assigned to adjacent sites and which pairs of spins are not.

This interaction between sites specifies a well-defined probability distribution π

(known as the Boltzmann distribution) on the set of all configurations of a spin

system. Configurations with positive measure in π are said to be legal.

Many models, often originating from the field of statistical physics, fall under

the general category of spin systems. As a simple, but important, example con-

sider a spin system in which no two adjacent sites are permitted to be assigned

the same spin. This spin system corresponds to the q-state anti-ferromagnetic

Potts model at zero temperature, a frequently studied model in statistical me-

chanics. This spin system is also well-known in the field of theoretical computer

science where a legal configuration of the system is commonly known as a proper

q-colouring of the underlying graph. Several of the results presented in this thesis

will be for this spin system, and when discussing proper q-colourings it is natural

to refer to the spins as colours.

Another well-known example of a spin system is the independent sets model.

1



2 1: Introduction

In the independent sets model each site is either “occupied” or “unoccupied” and

in a legal configuration no two adjacent sites are allowed to be occupied. It is usual

to assign a positive weight λ to each occupied site, and in this weighted setting

the spin system is known as the hard-core lattice gas model. This spin system has

been used as a model of gas in the field of statistical physics (Georgii [30] cited in

Weitz [54]) and has also been used in the modeling of communication networks

by Kelly [42].

A natural formalisation of spin systems with hard constraints is the H-colouring

model. An H-colouring of a graph G is a homomorphism from G to some fixed

graph H. The vertices of H correspond to spins and the edges of H specify which

spins are allowed to be adjacent in an H-colouring of G. The H-colouring model

is a natural generalisation of the proper colouring model since if H is the q-clique

then an H-colouring of a graph is a proper colouring. H-colouring problems have

attracted much interest from computer scientists and combinatorialists alike and

much progress has been made. In fact, Hell and Nešetřil [37] gave a complete char-

acterisation of graphs H for which the decision problem of determining whether

a given graph has an H-colouring for a specific H is NP-complete. They showed

that if H has a loop or is bipartite then the problem is in P, and that the problem

is NP-complete for any other fixed H. A complete dichotomy is also known for the

problem of counting the number of H-colourings of a given graph. This counting

problem is of natural interest to combinatorialists, and we will be interested in

studying problems closely related to counting in this thesis. This dichotomy is

due to Dyer and Greenhill [24] who showed that if H has at least one nontrivial

component then the counting problem is complete for the complexity class #P.

Otherwise it is in P. A trivial component is a connected component which is either

a complete graph with all loops present, or a complete bipartite graph with no

loops present. The complexity class #P was introduced by Valiant [52] in 1979

and it contains enumeration problems. For a more detailed description of this

complexity class see Jerrum [40]. Dyer and Greenhill furthermore showed that

the same dichotomy holds even when the underlying graph is of bounded degree.

This is an interesting observation since in many physical applications the under-

lying graph tends to be of low degree. Interestingly the above characterisation

for the decision problem does not hold for bounded degree graphs as was shown

by Galluccio, Hell and Nešetřil [29]. Despite the hardness of exactly counting the

number of H-colourings of a graph, it remains possible to approximately count

the number of H-colourings as we will discuss subsequently.

For a given spin system it is of interest to sample from the probability distri-
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bution π, especially when π is uniform over the set of legal configurations Ω of

the spin system. In statistical physics this interest is due to the connection that

π has with various equilibrium properties of a spin system. In theoretical com-

puter science much of the reason for interest in the sampling problem is the, now

well-established, connection between (nearly) uniform sampling and approximate

counting established by Jerrum, Valiant and Vazirani [41]. They showed that the

(nearly) uniform sampling problem and the approximate counting problems are

equally hard for a subclass of counting problems which satisfy a property called

self-reducibility. This subclass contains many interesting instances of counting

problems, notably proper q-colourings. Specifically, the problem of uniform sam-

pling reduces to the problem of approximately counting the number of elements

in Ω and vice versa for all self-reducible counting problems. For an exposition

account of these developments see for example the book by Jerrum [40] or the sur-

vey paper by Dyer and Greenhill [23]. Both of these publications focus on some

of the most well-studied models in computer science, such as proper q-colourings

and independent sets, and many papers concerned with studying techniques for

sampling proper colourings or independent sets have been motivated by this ex-

plicit connection between sampling and counting. The first counting-to-sampling

reduction applicable to general H-colourings was due to Dyer, Goldberg and Jer-

rum [17] although currently no completely general sampling-to-counting reduction

is known. Hence, if there exists a polynomial time (in the number of sites of the

underlying graph) algorithm for sampling from the (near) uniform distribution

of H-colourings of a graph then there also exists a polynomial time algorithm

for approximately counting the number of H-colourings of that graph. With this

result in mind we will focus on the problem of sampling from π for a given spin

system.

Given a spin system, the problem of sampling from π is a challenging task.

Goldberg, Kelk and Paterson [32] studied the complexity of this sampling prob-

lem for H-colourings in the case when π is uniform over Ω and showed that

if H has no nontrivial components then the sampling problem is intractable in

a complexity-theoretic sense. That is, they prove that there is unlikely to be

any algorithm that can efficiently obtain a sample from π (this is known as a

Polynomial Almost Uniform Sampler) by reducing the problem of approximately

counting independent sets in bipartite graphs, which in turn is complete with

respect to approximation preserving reductions for a logically-defined subclass of

#P (see Dyer, Goldberg, Greenhill and Jerrum [15] for results about this com-

plexity class), to the problem of sampling from the (near) uniform distribution of
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H-colourings. This does, however, not rule out the possibility of sampling from

the uniform distribution of general H-colourings of more restricted graphs G.

As the task of sampling from π is computationally difficult it is often the

case that the only feasible method of carrying out this task is by simulating

some suitable random dynamics converging to π. Ensuring that such a dynamics

converges to π is generally straightforward, but obtaining good upper bounds on

the number of steps required for the dynamics to become sufficiently close to π

is a much more difficult problem. One of the most common type of dynamics

used is a Markov chain. A Markov chain is a stochastic process whose states

(in our case) are the set of configurations of the given spin system with positive

measure in π. By construction of the Markov chain it is generally straightforward

to ensure that it converges to π, however providing good upper bounds on the rate

of convergence, known as the mixing time of the Markov chain, is a much more

difficult task. For this sampling method to be feasible we need to ensure that the

Markov chain converges to π in a polynomial number of steps. Due to a lack of

theoretical convergence results, scientists conducting experiments by simulating

such dynamics are at times forced to “guess” (using some heuristic methods)

the number of steps required for their dynamics to be sufficiently close to the

desired distribution. Cowles and Carlin [9] give a comprehensive review of some

diagnostic tools used to empirically determine these convergence rates and include

some examples from applications in the field of bio-statistics. One immediate

problem, which is pointed out by Cowles and Carlin, with many convergence

diagnostics is that they might prematurely claim convergence of the dynamics

and another is that by continuously monitoring the dynamics one may implicitly

introduce a conditioning that can in turn create a bias in the sampling procedure

(see Cowles, Roberts and Rosenthal [10]). The negative effect these and other

issues have on the effectiveness of practical applications can be greatly reduced

using more sophisticated diagnostic tools, however the existence of good analytical

bounds on the convergence rates would eliminate the need for such techniques to

be employed in the first place. By establishing rigorous bounds on the mixing

time of these Markov chains, computer scientists can provide underpinnings for

this type of experimental work and also allow a more structured approach to be

taken.

Analysing the mixing time of Markov chains for sampling from π for various

spin systems is a well-studied area in theoretical computer science and as a result

of this interest there is a substantial body of literature concerned with inventing

Markov chains for sampling from π and providing upper bounds on their mixing
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times. We now briefly survey some of the contributions made. When the spin

system corresponds to proper q-colourings of a graph with maximum vertex-

degree ∆ and π is uniform over the set of proper colourings then Jerrum [39], and

independently Salas and Sokal [50], showed that a simple Markov chain mixes

in O(n log n) updates when q > 2∆. This Markov chain makes transitions by

selecting a site v and a colour1 c uniformly at random, and then recolouring site

v to c if doing so results in a proper q-colouring of the graph. By considering a

more complicated Markov chain Vigoda [53] was able to weaken the restriction

on q to q > (11/6)∆ being sufficient for proving mixing in O(n log n) updates.

This remains the least number of colours required for rapid mixing of a Markov

chain for uniformly sampling q-colourings of general graphs, however the number

of colours can be further reduced for restricted families of graphs. For example, in

the important case when the underlying graph is the grid then Goldberg, Martin

and Paterson [33] gave a hand-proof that q = 7 colours are sufficient for mixing

in O(n log n) updates by establishing a condition called “strong spatial mixing”

which in turn implies rapid mixing (see Dyer, Sinclair, Vigoda and Weitz [26]).

Achlioptas, Molloy, Moore and van Bussel [1] further showed that q = 6 colours

are sufficient for a Markov chain for proper colourings of the grid to mix in

O(n log n) updates using a computer-assisted proof. As a final example for proper

q-colourings Martinelli, Sinclair and Weitz [46] showed that q = ∆+2 colours are

sufficient for O(n log n) mixing when the underlying graph is a tree, improving a

related result by Kenyon, Mossel and Peres [43].

When the spin system corresponds to independent set configurations with pa-

rameter λ then the condition λ < 2
∆−2

is sufficient for O(n log n) mixing as shown

by Dyer and Greenhill [25] and independently Luby and Vigoda [45] (although

the latter result is restricted to triangle-free graphs). When ∆ ≤ 4 these results

include the λ = 1 case which is of special interest to computer scientists since it

corresponds to sampling from the uniform distribution on independent sets of the

graph. Weitz [56] has recently given a completely different algorithm, namely a

deterministic algorithm with polynomial running time, which improves the con-

dition on λ to λ < (∆−1)∆−1/(∆−2)∆. This notably includes the λ = 1 case for

∆ = 5. An interesting aspect of work carried out on the independent sets model

is that, as well as the aforementioned positive results regarding the mixing times

of various Markov chains, a number of negative results are known as we will now

discuss. When ∆ ≥ 6 and λ = 1 then Dyer, Frieze and Jerrum [14] have shown

1Recall that we use the term colour rather than spin when discussing spin systems corre-
sponding to proper colourings.
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that there exists a bipartite graph G0 such that any so-called cautious Markov

chain on independent set configurations of G0 has (at least) exponential mixing

time (in the number of sites of G0). A Markov chain is said to be cautious if it is

only allowed to change the state of a constant fraction of sites at the time. This

negative result was generalised to H-colourings by Cooper, Dyer and Frieze [8].

Their result applies to graphs H that are either bipartite or have at least one

loop present, and is not a complete graph with all loops present (observe that for

such an H the decision problem is in P and the counting problem is in #P as

discussed above). In particular this result guarantees the existence of a ∆-regular

graph G0 (with ∆ depending on H) such that any cautious Markov chain on the

set of H-colourings of G0, and with uniform stationary distribution, has a mixing

time that is at least exponential in the number of sites of G0.

While much is understood about the mixing times of Markov chains for sam-

pling from π, the types of Markov chains frequently studied by computer scientists

do not always correspond to the types of dynamics used in experimental work.

Most of the Markov chains previously studied make transitions by randomly se-

lecting a set of sites (often just a single site) and updating the spins assigned to

those sites according to some well-defined distribution induced by π. We call this

type of chain a random update Markov chain and point out that all the positive

results described above are for random update Markov chains. The mixing time

of a random update Markov chain is measured in the number of updates required

in order for the Markov chain to mix. An alternative to random update Markov

chains is to construct a Markov chain that cycles through and updates the sites

(or subsets of sites) in a deterministic order. We call this a systematic scan

Markov chain (or systematic scan for short). The mixing time of a systematic

scan Markov chain is measured in the number of scans of the graph required to

mix and throughout this thesis it holds that one scan of the graph takes O(n)

updates. It is important to note that systematic scan remains a random process

since the method used to update the colour assigned to the selected set of sites

is a randomised procedure drawing from some well-defined distribution induced

by π. Systematic scan may be more intuitively appealing that random update

Markov chains in terms of implementation, however until recently this type of

dynamics has largely resisted analysis when applied to spins systems with hard

constraints. Dynamics that make deterministic choices about about the order in

which sites are updated have however been used in practical applications. In a

study of the effect the rules for selecting sites for update has on the convergence

rates Fishman [27] outlined five plans for selecting the update order, three of
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which were deterministic rules, as well as giving some practical comparisons. A

practical comparison is also given by Roberts and Sahu [49] for the problem of

sampling from a Gaussian distribution with applications in image analysis. They

showed that for two classes of sampling problems a deterministic strategy is bet-

ter than a random update strategy. However they also gave examples of instances

from outside those classes where random update performs better. An example

that is more combinatorial in nature and as such is closer to the applications we

will consider in this thesis is Diaconis and Ram [11] who studied systematic scan

in the context of generating random elements of a finite group and successfully

bounded the number of scans required to mix. This thesis is concerned with

studying the problem of sampling from π for any given spin system by simulating

systematic scan Markov chains, and especially with bounding the mixing times

of these chains.

Only few results providing bounds on the mixing time of systematic scan

Markov chains for sampling from π exist in the literature and almost all of them

focus on proper q-colourings of bounded degree graphs. For general graphs, sys-

tematic scan is known to mix in O(log n) scans whenever q > 2∆ where ∆ is

the maximum vertex-degree of the graph. This result is obtained by studying

the influences that the sites have on each other and is due to Dyer, Goldberg

and Jerrum [18]. This approach also gives a mixing time of O(n2) scans in the

q = 2∆ case. In Chapter 3 we improve the mixing time of systematic scan for

general graphs in the q = 2∆ case to O(log n) scans. If the underlying graph

is bipartite then a systematic scan mixes in O(log n) scans whenever q > f(∆)

where f(∆) → β∆ as ∆ →∞ and β ≈ 1.76. This result is obtained by a careful

construction of the metric used in the path coupling construction and is due to

Bordewich, Dyer and Karpinski [4]. When considering tree graphs, it is known

that systematic scan mixes in O(log n) scans whenever q > ∆ + 2
√

∆− 1 and in

O(n2 log n) scans whenever q = ∆ + 2
√

∆− 1 is an integer; see e.g. Hayes [36]

or Dyer, Goldberg and Jerrum [19]. In Chapter 3 we will further reduce the

number of colours required to prove rapid mixing for systematic scan on trees.

Furthermore, Dyer, Goldberg and Jerrum [20] have shown that a systematic scan

for proper 3-colourings of the n-vertex path mixes in Θ(n2 log n) scans when con-

sidering a systematic scan that updates one site at the time using the Metropolis

update rule. In the same paper it is also proved that systematic scan for general

H-colourings of the n-vertex path mixes in O(n5) scans for any fixed H and that

a random update Markov chain for H-colourings of the n-vertex path mixes in

O(n5) updates. The authors suggest, however, that both of these bounds are un-
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likely to be tight and we will improve them to O(log n) and O(n log n) respectively

in Chapter 4.

A comparison between the known results for systematic scan and random

update Markov chains clearly reveals a gap between the parameters that imply

mixing in the two cases. When analysing the mixing time of random update

Markov chains one often only needs to study the effect of updating one randomly

selected site starting from two configurations that are identical except on the spin

assigned to a single site. This relatively simple situation is in contrast to the task

faced when analysing a systematic scan Markov chain in which case one needs

to study the effect of one entire scan of the graph and hence keep track of all

intermediate configurations of the chain. Analytically this is clearly a much more

difficult task. It is worth observing at this point that there is one spin system for

which systematic scan is known to mix faster than any random update Markov

chain. This is the relatively uninteresting case when considering q-colourings of

a graph with no edges. In this case it is known (see Dyer, Goldberg, Greenhill,

Jerrum and Mitzenmacher [16] for a simple proof of this fact) that Ω(n log n) is a

lower bound on the number of updates any random update Markov chain needs

to make before mixing, whereas a systematic scan clearly mixes in just one scan

which corresponds to n updates. In this thesis we reduce the gap between the

parameters that imply mixing of systematic scan and random update Markov

chains by weakening the conditions required for mixing of systematic scan for

several spin systems. We achieve this by introducing a new technique, based on

Dobrushin uniqueness, for proving rapid mixing of systematic scan for general

spin systems and applying this technique to specific spin systems such as proper

colourings of general graphs. We will also use path coupling on some restricted

families of graphs to improve the conditions for rapid mixing of systematic scan.

When analysing the mixing time of Markov chains it can be useful to consider

chains that make use of block dynamics. A block dynamics Markov chain is

permitted to change the spin at more than one site during each step of the

process, provided that the number of sites that are being updated at each step is

not “too large” in an appropriate sense. One reason for studying block dynamics

rather than single-site dynamics is that in some cases single-site chains do not

yield to analysis whilst block dynamics do, as we shall see. Block dynamics is not

a new concept and it was used in the mid 1980s by Dobrushin and Shlosman [13]

in their study of conditions that imply uniqueness of the Gibbs measure of a

spin system, a topic closely related to studying the mixing time of Markov chains

(see for example Weitz’s PhD thesis [54]). Roberts and Sahu [49] also considered
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the concept of block updates in their (more practical) comparisons of various

update strategies for sampling from Gaussian distributions and concluded that

making use of block updates could often increase the convergence rate of such an

algorithms, however they also gave examples of block dynamics that converged

slower than their single-site counterparts. More recently, block dynamics has

been used by Weitz [55] when, in a generalisation of the work of Dobrushin and

Shlosman, studying the relationship between various influence parameters (also

in the context of Gibbs measures) within spin systems and using the influence

parameters to establish conditions that imply mixing. Dyer et al. [26] have also

used a block dynamics in the context of analysing the mixing time of a Markov

chain for proper colourings of the square lattice. Both of these papers consider a

random update Markov chain, however several of the ideas and techniques carry

over to the analysis of systematic scan as we shall see. We explore the analysis

of systematic scan Markov chains making use of block dynamics in this thesis.

In particular we give a new condition based on bounding the influence on a

site that implies O(log n) mixing of systematic scan Markov chains using block

dynamics on finite spin systems. Applications of this condition give rapid mixing

of systematic scan for proper q-colourings of (1) general graphs, (2) trees, and

(3) the grid for improved parameters than were previously known. We also apply

the condition to H-colourings of the n-vertex path and obtain rapid mixing of

systematic scan for a restricted family of graphs. We extend the H-colouring

result to general graphs H by placing more restrictions on the scan and using

a well-established technique for bounding mixing times of Markov chains called

path coupling [5].

While using block dynamics in order to facilitate a better analysis of sys-

tematic scan Markov chains is very much a central theme in this thesis we also

consider a few single-site dynamics. One of these chains is a chain for sampling

proper q-colourings of a tree and another is for sampling proper q-colourings of

general bipartite graphs. Both of these results have since been matched or im-

proved by new research in the field, although the single-site systematic scan for

sampling proper q-colourings of a bipartite graph that we present remains the

only single-site systematic scan Markov chain that mixes in O(log n) scans when

q = 2∆ in the ∆ = 3 and ∆ = 4 cases. Note that the grid, which is of significant

importance, is included in this result.
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1.1 Summary of Results

We now give a brief description of the results to be presented in this thesis.

A Dobrushin Condition for Rapid Mixing of Systematic

Scan with Block Dynamics

It is known that, in a single-site setting, the mixing time of systematic scan can

be bounded in terms of the influences sites have on each other (see for example

Dyer et al. [18]). Some known theorems are of the form: “If the influence on a

site is small then a systematic scan Markov chain mixes in O(log n) scans.” This

is similar to a condition proved by Dobrushin [12] (although not in the context of

studying the mixing time of Markov chains or systematic scan) and we refer to

a condition of this form as a Dobrushin condition. We generalise this technique

for bounding the mixing time of systematic scan to block dynamics, a setting

in which a (constant size) set of sites are updated simultaneously. In particular

we define an influence parameter α, corresponding to the maximum influence on

any site, and show that if α < 1 then the corresponding systematic scan Markov

chain mixes rapidly. In fact the condition will apply regardless of the specific

scan order as we will discuss in more details in due course. As applications of

this proof technique we prove O(log n) mixing of systematic scan (for any scan

order) for proper q-colourings of a general graph with maximum vertex-degree ∆

when q ≥ 2∆ by considering a chain making heat-bath updates of both endpoints

of a single edge at the time. We also apply the method to reduce the number of

colours required in order to obtain mixing in O(H) scans for systematic scan on

trees, with height H, using some suitable heat-bath block updates.

Sampling H-colourings of the Path

We then considerably widen the setting to general H-colourings but at the ex-

pense of restricting the underlying graph of the spin system to the path. We show

that systematic scan for sampling from the uniform distribution on H-colourings

of the n-vertex path mixes in O(log n) scans for any fixed H using some suitable

block updates. This is a significant improvement over the previous bound on

the mixing time which was O(n5) scans due to Dyer et al. [20]. Note, however,

that the Markov chain in Dyer et al. [20] is a single-site chain, whereas our chain

uses block dynamics. It is of special interest to observe that we can use block

updates to obtain a mixing time that is faster than a known lower bound for
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3-colourings of the path that applies to single-site chains. Furthermore we use

the influence parameter α to show that for a slightly more restricted family of

H (where any two vertices are connected by a 2-edge path) systematic scan also

mixes in O(log n) scans for any scan order. Finally, for completeness, we show

that a random update Markov chain mixes in O(n log n) updates for any fixed

H, improving the previous bound on the mixing time which was O(n5) updates.

Sampling 7-colourings of the Grid

An important problem is to sample from the uniform distribution of proper q-

colourings of the grid using as few colours as possible. We consider the q = 7 case

using systematic scan. The systematic scan Markov chain that we present cycles

through subsets consisting of 2×2 sub-grids and updates the colours assigned to

the sites using the heat-bath update rule. We give a computer-assisted proof

that this systematic scan Markov chain mixes in O(log n) scans, where n is the

size of the rectangular sub-grid. This is the first time that the mixing time of a

systematic scan Markov chain for proper colourings of the grid has been shown

to mix with less than 8 colours. We also give partial results that underline the

challenges of proving rapid mixing of a systematic scan Markov chain for sampling

6-colourings of the grid by considering the possibilities of updating 2×3 and 3×3

sub-grids.

Single-site Systematic Scan for Bipartite Graphs

It remains of natural interest to study Markov chains that make single-site up-

dates. We consider a systematic scan Markov chain that scans each colour class

of bipartite graph in turn and show, using path coupling, that it mixes in O(log n)

scans whenever q ≥ 2∆. This result has since been improved by Bordewich et

al. [4] for ∆ ≥ 9 and matched for 5 ≤ ∆ < 9. It remains, however, the only

single-site systematic scan that mixes in O(log n) scans whenever q = 2∆ and

∆ ∈ {3, 4}.

1.2 Plan of Thesis and Biographical Notes

In Chapter 2 we give precise definitions of spin systems and the mixing time of

Markov chains. We go on to define the notation required state our conditions for

mixing as well as stating our results and placing them in the context of known

results in the field. Chapter 3 contains the proof of our condition for rapid mixing
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of systematic scan with block dynamics as well as two immediate applications to

spin systems corresponding to proper colourings of general graphs and trees. The

material from Chapter 3 is published in Pedersen [47]. In Chapter 4 we study

the mixing time of systematic scan for sampling from the uniform distribution

of H-colourings of the n-vertex path. The material from Chapter 4 has been

submitted for publication in Pedersen [48]. Chapter 5 is concerned with sampling

from the uniform distribution of 7-colourings of the square grid. The material

from Chapter 5 has been submitted for publication in Jalsenius and Pedersen [38]

and is joint work with Markus Jalsenius. Both authors made equal contributions

to the preparation of that paper. Chapter 6 is concerned with analysing the

mixing time of a single-site systematic scan for sampling proper colourings of

bipartite graphs. The material from Chapter 6 is unpublished.



Chapter 2

Preliminaries

In this chapter we set the basis for the work presented in this thesis. We give

a formal definition of a spin system as well as introducing examples of specific

spin systems that we will study in more detail. We go on to introduce important

concepts relating to Markov chains and their mixing times, one of the main topics

of this thesis. We then formally introduce the concepts of block dynamics and

influence parameters. We conclude this chapter by stating the results to be proved

in this thesis.

2.1 Spin Systems

Let C = {1, . . . , q} be the set of spins and V = {1, . . . , n} be the set of sites.

The sites are vertices of a connected graph G = (V,E) which is the underlying

graph of the spin system. Both of the sets C and V will be finite throughout

this thesis. We say that a pair of sites i, j ∈ V are adjacent in the spin system

if (i, j) ∈ E. A configuration of the spin system is an assignment of a spin to

each site. We let Ω+ = CV be the set of all configurations of a spin system. If

x ∈ Ω+ is a configuration and j ∈ V is a site then xj denotes the spin assigned

to site j in configuration x. Adjacent sites interact locally making some sub-

configurations more likely than others. In particular, the locality requirement is

that the spin assigned to a site j may only depend on the spins assigned at sites

adjacent to j. This interaction gives rise to a well-defined probability distribution

π on the set of all configurations. Let Ω = {x ∈ Ω+ | π(x) > 0} ⊆ Ω+ be the

set of configurations with positive measure in π. We refer to Ω as the set of legal

configurations.

Example 1. The spin system we will consider in most of our applications is

13
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the q-state anti-ferromagnetic Potts model. This spin system has a set of q

distinct spins and interactions between adjacent sites is antiferromagnetic, i.e.,

configurations in which adjacent sites are assigned unequal spins are favored. In

particular the probability that the spin system is in a given configuration x ∈ Ω+

is given by

π(x) ∝ exp


−β

∑

(i,j)∈E

1xi=xj




where 0 ≤ β ≤ ∞ is the inverse temperature and 1xi=xj
= 1 if and only if

xi = xj. A case of special interest is the zero-temperature case (i.e., β = ∞)

which introduces hard constraints, meaning that no configuration in which any

pair of adjacent sites are assigned the same spin has positive measure in π. In

theoretical computer science this spin system has been well-studied, as a legal

configuration corresponds to a proper q-colouring of the underlying graph. A

proper colouring of a graph is an assignment of a colour (spin) to each vertex

(site) such that no to adjacent vertices are assigned the same colour. We also note

that in the zero-temperature case π is uniform over the set of proper colourings

and zero elsewhere.

Example 2. Another famous example is the hard core model (independent sets)

which, in statistical physics, has been used as a model of lattice gasses [30]. This

spin system consists of two spins C = {0, 1} and we say that a site is “occupied”

if it is assigned spin 1 and “unoccupied” if it is assigned spin 0. The specification

of the system states that no occupied site may be adjacent to another occupied

site. In the computer science literature, a configuration for which this condition

holds is called an independent set of the underlying graph. If Ω ⊆ Ω+ is the set

of independent sets of the underlying graph for the given spin system then the

measure of a given independent set x ∈ Ω is given by

π(x) ∝ λ
∑

i∈V xi

where λ > 0 is the activity parameter (sometimes called the fugacity). For all

remaining configurations x ∈ Ω+ \ Ω it holds that π(x) = 0. Observe that the

sum
∑

i∈V xi is the number of sites in the independent set so if λ is big then

independent sets with many occupied sits are favoured. Of particular interest to

computer scientists is the λ = 1 case where π is uniform over all independent sets

i.e., each independent set is equally probable in π.

Example 3. A natural generalisation of both of the two previous examples is
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Figure 2.1. The graph describing the independent sets model. Sites assigned
colour 0 are “unoccupied’ and sites assigned 1 are “occupied”.

Figure 2.2. The graph describing the Beach model.

the H-colouring model. An H-colouring of a graph G is a homomorphism from

G to some fixed graph H. The vertices of H correspond to spins and the edges of

H specify which spins are allowed to be adjacent in an H-colouring of a graph. If

H is the q-clique then an H-colouring of a graph is a proper colouring. Similarly

H-colourings using the graph H from Figure 2.1 correspond to independent set

configurations of a graph. Other well-known examples of H-colouring problems

include the Beach model introduced by Burton and Steif [7] and the q-particle

Widom-Rowlinson due to Widom and Rowlinson [57]. The graph corresponding

to the Beach model is shown in Figure 2.2. The Beach model was originally intro-

duced as an example of a physical system, with underlying graph Zd, which ex-

hibits more than a single measure of maximal entropy when d > 1. The q-particle

Widom-Rowlinson model is a model of gas consisting of q types of particles that

are not allowed to be adjacent to each other. The graph corresponding to the

q = 4 case is shown in Figure 2.3 where the center vertex represents empty sites

and each remaining vertex represents a particle.

Figure 2.3. The graph describing the 4-particle Widom-Rowlinson model.
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2.2 Markov Chains and Mixing Time

We are interested in sampling from the probability distribution π, a task that can

be carried out by simulating a suitable (finite) Markov chain. A Markov chain M
with state space S is a sequence of random variables X0, X1, . . . where Xt ∈ S
for each t ≥ 0 and which satisfies the following equality

Pr(Xt+1 = y | Xt = xt, . . . X0 = x0) = Pr(Xt+1 = y | Xt = xt)

for all t ≥ 0 and x0, x1, . . . xt ∈ S. We consider the case when S is finite. For the

subsequent discussion we do not assume that S = Ω although this is our eventual

purpose.

The transitions of a Markov chain are defined by a transition matrix P . In

particular, P has the property that P (x, y) = Pr(Xt+1 = y | Xt = x) for all pairs

of states (x, y) ∈ S×S. The transition matrix denotes the transition probabilities

for a single step of the Markov chain. The t-step transition probabilities P t of M
are inductively defined by P t(x, y) =

∑
x′∈S P t−1(x, x′)P (x′, y) for t > 0 where

we let P 0(x, y) = 1x=y. Hence P t(x, y) is the probability that the Markov chain

moves from state x to state y in exactly t transitions. We let P t(x, ·) be the

distribution of the state that the chain is in after making t transitions starting

from state X0 = x.

We are interested in the convergence properties of Markov chains. A stationary

distribution of a Markov chain is a probability distribution µ on S satisfying

µ(y) =
∑
x∈S

µ(x)P (x, y)

for each y ∈ S. Informally, we can say that once a Markov chain reaches its

stationary distribution no transition can change the distribution of the state that

the chain is in. A Markov chain that satisfies the following two properties

• irreducibility : for all pairs of states x, y ∈ S there exists a positive integer

t such that P t(x, y) > 0; and

• aperiodicity : for all states x ∈ S it holds that gcd{t : P t(x, y) > 0} = 1

is said to be ergodic. It is a well-known result from classical Markov chain theory

(see for example Aldous [2]) that an ergodic Markov chain has a unique stationary

distribution. An ergodic Markov chain hence eventually “forgets” its initial state



2.2: Markov Chains and Mixing Time 17

and converges to its stationary distribution regardless of which state its starts

from.

Given a spin system we can use an ergodic Markov chain to obtain a sample

from π as follows. We construct an ergodic Markov chain M with state space Ω

(the set of all legal configurations of the given spin system) such that its (unique)

stationary distribution is π. Note that the set of states now corresponds to

the set of legal configurations. We simulate M until the distribution on states is

sufficiently close to π in an appropriate sense. Once the distribution on the states

of M is sufficiently close to π we stop the simulation and return the current state

of M as the sample. This type of algorithm is known as a Markov chain Monte

Carlo algorithm.

Example 4. Arguably the simplest Markov chain is the heat-bath Glauber dy-

namics. We consider the spin system corresponding to proper q-colourings of a

graph G = (V, E) with maximum vertex-degree ∆. Let Ω be the set of all proper

q-colourings of G. Recall from Example 1 that π is uniform over Ω in this case.

We let Ω be the state space of the heat-bath Glauber dynamics and a transition

from a configuration x ∈ Ω to x′ ∈ Ω is made according to the following three

step process

1. Select a site i ∈ V uniformly at random.

2. Select a colour c ∈ Ci uniformly at random where Ci = C \{xj : (i, j) ∈ E}
is the set of all colours that are not assigned to neighbours of site i.

3. Set x′i = c and x′j = xj for each j 6= i.

The heat-bath Glauber dynamics is known to be ergodic provided that q ≥ ∆+2

(Jerrum [39]) and furthermore π is the stationary distribution, which can be

verified by observing that π is invariant with respect to the transition matrix P

of the heat-bath Glauber dynamics. Since P (x, y) = P (y, x) we have

π(x)P (x, y) = π(y)P (y, x) (2.1)

and hence ∑
x

π(x)P (x, y) =
∑

x

π(y)P (y, x) = π(y)

for any configuration y ∈ Ω. Equation (2.1) is known as detailed balance and

holds for so-called time reversible Markov chains. Since the heat-bath Glauber

dynamics is ergodic it hence eventually converges to π regardless of its initial

state.
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As illustrated by the above example it is generally straight-forward to ensure,

via the construction of the chain, that a Markov chain is ergodic with the desired

stationary distribution. An important question that remains is how long we need

to simulate a Markov chain for before reaching a distribution that is sufficiently

close to stationary. In particular, for the Markov chain Monte Carlo method to be

effective we need to ensure that the Markov chain converges in a number of steps

that is polynomial in the size of the underlying graph. We call the number of

transitions required to become sufficiently close to the stationary distribution of

a Markov chain its mixing time. Recall that we denote the stationary distribution

of M by µ. Formally the mixing time of M from an initial state x ∈ S is defined,

as a function of the deviation ε from stationarity, by

Mixx(M, ε) = min{t > 0 : dTV(P t(x, ·), µ) ≤ ε}

where

dTV(θ1, θ2) =
1

2

∑
i

|θ1(i)− θ2(i)| = max
A⊆S

|θ1(A)− θ2(A)|

is the total variation distance between two distributions θ1 and θ2 on S. The

mixing time Mix(M, ε) of M is then obtained my maximising over all possible

initial states

Mix(M, ε) = max
x∈S

Mixx(M, ε).

We say that M is rapidly mixing if the mixing time of M is polynomial in n and

log(ε−1) and our goal is to establish rapid mixing of Markov chains for sampling

from π. We will mainly be concerned with providing good upper bounds on the

mixing time of Markov chains and we now go on to describe a classical method

for establishing such bounds.

2.3 Coupling and Path Coupling

A classical method for bounding the mixing time of a Markov chain is the coupling

method. A coupling of two distributions θ1 and θ2 is a joint distribution whose

marginal distributions are θ1 and θ2. We will discuss the precise requirements

in more detail subsequently. Coupling is a general probabilistic technique and it

can be applied to the study of the mixing time of Markov chains by considering

two copies of the same Markov chain, M. Let the state space of M be S and

its transition matrix be P . We denote the two copies of M by X = X0, X1, . . .

and Y = Y0, Y1, . . . . Viewed individually X and Y both behave exactly as M,
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but when viewed as a coupled process their moves may be correlated. The aim of

the coupling is to bring copy X and copy Y together as quickly as possible; note

that if Xt = Yt then it is straightforward to arrange that Xt′ = Yt′ for t′ ≥ t.

In order to construct a coupling for M we need to define a coupling Ψ(x, y) of

the distributions P (x, ·) and P (y, ·) for each pair (x, y) ∈ S ×S. In particular in

order for the marginal distributions of Ψ(x, y) to be P (x, ·) and P (y, ·) we require

that

P (x, x′) =
∑

y′∈S
Pr(σ,τ)∈Ψ(x,y)(σ = x′, τ = y′) ∀x′ ∈ S

and

P (y, y′) =
∑

x′∈S
Pr(σ,τ)∈Ψ(x,y)(σ = x′, τ = y′) ∀y′ ∈ S

where we write (σ, τ) ∈ Ψ(x, y) when the pair of states (σ, τ) is drawn from

Ψ(x, y). Since the coupling Ψ(x, y) is defined for all pairs of states (x, y) ∈ S ×S
it is the transition matrix of a Markov chain with state space S ×S. This type of

coupling, which is the transition matrix of a Markov chain, is called Markovian.

The following lemma, known as the coupling lemma, bounds the mixing time of

a Markov chain using coupling (see for example Aldous [2]).

Lemma 5 (Coupling Lemma). Let (Xt, Yt) be a coupling for a Markov chain M
on S. Suppose that t(ε) : (0, 1) → N satisfies

Pr(Xt(ε) 6= Yt(ε)) ≤ ε

for all pairs of initial states X0 = x, Y0 = y ∈ S and ε > 0. Then the mixing

time of M satisfies

Mix(M, ε) ≤ t(ε).

Proof. Let P be the transition matrix of M and P t(x, ·) the t-step distribution

of M starting from state X0 = x. For any ε ∈ (0, 1) and some corresponding

t = t(ε) we have

dTV(P t(x, ·), P t(y, ·)) = max
A⊆S

|Pr(Xt ∈ A)− Pr(Yt ∈ A)|
≤ max

A⊆S
|Pr(Xt ∈ A, Yt 6∈ A)|

≤ Pr(Xt 6= Yt)

≤ ε

for any pair of states x, y ∈ S. Now suppose that Y0 has distribution µ, then

dTV(P t(x, ·), µ) ≤ ε for any initial state X0 = x ∈ S.
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The following lemma is useful for establishing the mixing time of a Markov

chain (see for example Dyer and Greenhill [22]).

Lemma 6. Let Φ be an integer valued metric defined on S×S which takes values

in {0, . . . , D}. Let (Xt, Yt) be a coupling for a Markov chain M on S. Suppose

that there exists a constant 0 < β ≤ 1 such that E [Φ(Xt+1, Yt+1)] ≤ βΦ(Xt, Yt)

for all pairs (Xt, Yt) ∈ S × S. If β < 1 then the mixing time of M satisfies

Mix(M, ε) ≤ log(Dε−1)

1− β
.

Furthermore if β = 1 and there exists a constant α > 0 such that

Pr(Φ(Xt+1, Yt+1) 6= Φ(Xt, Yt)) ≥ α

for all t then the mixing time of M satisfies

Mix(M, ε) ≤
⌈

eD2

α

⌉
dlog(ε−1)e.

Proof. The proof is based on Dyer and Greenhill [22]. Using the fact that Φ is

non-negative and only takes integer values we have

Pr(Xt 6= Yt) ≤ E [Φ(Xt, Yt)]

by Markov’s inequality. Furthermore,

E [Φ(Xt, Yt)] ≤ βtΦ(X0, Y0) ≤ βtD

which can be verified by induction on t. Hence if β < 1 then the coupling lemma

(Lemma 5) gives

Mix(M, ε) ≤ log(Dε−1)

log(β−1)
≤ log(Dε−1)

1− β

since 1 − β ≤ | log(β)| = log(β−1) for 0 < β < 1 which can be verified by

considering the series expansion of log(1− x) where x = 1− β.

Dyer and Greenhill also give a proof of the β = 1 case, however as we will not

make use of that case in this thesis we omit the proof.

A difficulty arising in bounding the mixing time of a Markov chain using

coupling is that one needs to specify the coupling for all possible pairs of states.

Path coupling, introduced by Bubley and Dyer [5] is a method of reducing the
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number of states for which the coupling needs to be specified. The key idea of

path coupling is to specify a suitable set of adjacent pairs of states that connects

the state space and then define a coupling for all pairs of adjacent states. The

path coupling machinery then extends the coupling to all pairs of states in the

state space. In particular, we need to define a relation S ⊆ S ×S which connects

the state space and which has the property that for all (Xt, Yt) ∈ S × S there

exists a path

Xt = Z0, Z1, . . . , Zl = Yt

such that (Zi, Zi+1) ∈ S for 0 ≤ i < l. Furthermore, for a metric Φ defined on all

pairs in S × S we require that

l−1∑
i=0

Φ(Zi, Zi+1) = Φ(Xt, Yt).

for the given path between Xt and Yt. A coupling defined on pairs in S can then

be extended to a coupling defined for each pair in S × S by inductively coupling

and conditioning on the previous choice along the path of configurations in S.

Theorem 7 (Bubley, Dyer [5]). Let M be a Markov chain with state space S. Let

Φ be an integer valued metric defined on S ×S which takes values in {0, . . . , D}.
Let S ⊆ S × S be a relation with transitive closure S × S such that for all

(Xt, Yt) ∈ S × S there exists a path

Xt = Z0, Z1, . . . , Zl = Yt

such that (Zi, Zi+1) ∈ S for 0 ≤ i < l and also

l−1∑
i=0

Φ(Zi, Zi+1) = Φ(Xt, Yt)

Suppose that (X,Y ) 7→ (X ′, Y ′) is a coupling of a Markov chain M defined for

all pairs (X, Y ) ∈ S. Then this coupling can be extended to a coupling (Xt, Yt) 7→
(Xt+1, Yt+1) defined for all pairs (Xt, Yt) ∈ S × S such that if there exists a

constant 0 < β ≤ 1 such that E [Φ(X ′, Y ′)] ≤ βΦ(X, Y ) for all pairs (X, Y ) ∈ S

then

E [Φ(Xt+1, Yt+1) ≤ βΦ(Xt, Yt)] .

Proof. This proof is based on the account of path coupling in Dyer and Green-

hill [23]. We extend the existing coupling along the given path to all pairs
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(Xt, Yt) ∈ S × S as follows. We obtain a new path Z ′
0, Z

′
1, . . . , Z

′
l by first se-

lecting Z ′
0 from the distribution P (Z0, ·) where P is the transition matrix of

M. We then select Z ′
1 according to the distribution induced by the transition

(Z0, Z1) 7→ (Z ′
0, Z

′
1) in the coupled process conditioned on the choice of Z ′

0. Con-

tinue to select the states from the distribution induced by the given transition in

the coupled process, conditioned on the previous choice. Then let Xt+1 = Z ′
0 and

Yt+1 = Z ′
l .

Then using the triangle inequality for metrics and linearity of expectation we

have

E [Φ(Xt+1, Yt+1] ≤ E

[
l−1∑
i=0

Φ(Z ′
i, Z

′
i+1)

]

=
l−1∑
i=0

E
[
Φ(Z ′

i, Z
′
i+1)

]

≤ β

l−1∑
i=0

Φ(Zi, Zi+1)

= βΦ(Xt, Yt)

which completes the proof.

In order to take maximum advantage of the path coupling method we need

to make the set S as small as possible whilst continuing to satisfy the conditions

of Theorem 7. This leads to a trade off between the simplicity of the metric and

the relation S. It is often the case that one can define an ergodic Markov chain

M on S with the desired stationary distribution µ but that it is convenient for

technical reasons (such as being able to use a simple metric in a path coupling

construction) to extend M to a Markov chain Mext with state space S+ ⊇ S
when bounding its mixing time. The state space S+ of the extended chain is

required to be finite which is generally straightforward to ensure. The extended

chain Mext acts just like the original chain M when the starting state of both

chains is in S and Mext will never make a move from a state in S to a state

in S+ \ S. Hence all states in S+ \ S are transient states with zero measure in

the stationary distribution µext of Mext. Intuitively, if Mext is rapidly mixing

then the original chain M is also rapidly mixing with at most the same mixing

time. Using this kind of extended chain is a standard technique, however for

completeness we present a proof that the mixing time of the extended chain is an

upper bound on the mixing time of the original chain.
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Lemma 8. Let M be an ergodic Markov chain on the state space S and let

µ be the unique stationary distribution of M. Let P be the transition matrix

of M. Then let the Markov chain Mext be an extension of M to the (finite)

state space S+. In particular, the transition matrix Pext of Mext is given by

Pext(x, y) = P (x, y) for all pairs of states (x, y) ∈ S × S. Furthermore let

lim
t→∞

P t
ext(x, y) = 0 (2.2)

for any states x ∈ S+ and y ∈ S+ \ S. Let µext be the probability distribution on

S+ given by

µext(x) =





µ(x) if x ∈ S
0 if x ∈ S+ \ S.

Then µext is the unique stationary distribution of Mext and furthermore the mix-

ing time of M satisfies

Mix(M, ε) ≤ Mix(Mext, ε).

Proof. We begin by showing that µext is a stationary distribution of Mext. For

any state y ∈ S+

∑

x∈S+

µext(x)Pext(x, y) =
∑
x∈S

µ(x)Pext(x, y)

=





µ(y) if y ∈ S
0 if y ∈ S+ \ S

since µ is a stationary distribution of M and Pext(x, y) = 0 whenever x ∈ S and

y ∈ S+ \ S.

Now suppose that µ′ is a stationary distribution of Mext. First for any y ∈
S+ \ S we have

µ′(y) = lim
t→∞

∑

x∈S+

µ′(x)P t
ext(x, y) =

∑

x∈S+

µ′(x) lim
t→∞

P t
ext(x, y) = 0 (2.3)

since S+ is finite and using the limit from (2.2). Now suppose that y ∈ S. Then

using (2.3)

µ′(y) =
∑
x∈S

µ′(x)Pext(x, y) +
∑

x∈S+\S
µ′(y)Pext(x, y) =

∑
x∈S

µ′(x)P (x, y)
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and hence µ′(y) = µ(y) = µext(y) for each y ∈ S since µ is the unique stationary

distribution of M. Hence, µext is the unique stationary distribution of Mext.

Thus if the initial state of Mext is in S then the chain behaves exactly as M
and thus converges to µext. Otherwise the initial state of the chain is in S+ \ S
and it eventually makes a transition to a state in S after which it will converge

to µext as discussed above.

In order to relate the mixing times of the two chains we need to establish the

following fact

P t
ext(x, y) =





P t(x, y) if y ∈ S
0 if y ∈ S+ \ S

(2.4)

for every x ∈ S. We establish (2.4) by strong induction on t. The base case is

t = 1. When t = 1 then the y ∈ S case follows directly from the definition of Pext

and the case when y ∈ S+\S follows since
∑

x′∈S Pext(x, x′) =
∑

x′∈S P (x, x′) = 1

and thus Pext(x, y) = 0 for any y 6∈ S.

Now suppose that (2.4) holds for t− 1. Then

P t
ext(x, y) =

∑

x′∈S+

P t−1
ext (x, x′)Pext(x

′, y)

=
∑

x′∈S
P t−1

ext (x, x′)Pext(x
′, y) +

∑

x′∈S+\S
P t−1

ext (x, x′)Pext(x
′, y)

=





∑
x′∈S P t−1(x, x′)P (x′, y) if y ∈ S

0 if y ∈ S+ \ S

where the last equality uses the induction hypothesis. Note in particular that

Pext(x
′, y) = 0 when x′ ∈ S and y ∈ S+ \ S and also that P t−1

ext (x, x′) = 0

whenever x′ ∈ S+ \ S.
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Hence using (2.4) we have

Mix(M, ε) = max
x∈S

min{t > 0 : dTV(P t(x, ·), µ) ≤ ε}

= max
x∈S

min

{
t > 0 :

1

2

∑

x′∈S

∣∣P t(x, x′)− µ(x′)
∣∣ ≤ ε

}

= max
x∈S

min

{
t > 0 :

1

2

∑

x′∈S

∣∣P t
ext(x, x′)− µext(x

′)
∣∣ ≤ ε

}

≤ max
x∈S+

min

{
t > 0 :

1

2

∑

x′∈S+

∣∣P t
ext(x, x′)− µext(x

′)
∣∣ ≤ ε

}

= Mix(Mext, ε)

where the inequality uses the fact that S ⊆ S+.

Remark. Although the requirements of (2.2) may seem limiting, this condition

is generally straightforward to arrange in practice. In particular, (2.2) holds

whenever all the states in S+ \ S are transient (see Corollary 6.2.5 in Grimmett

and Stirzaker [35]).

When working with Markov chains whose state space is the set of legal con-

figurations, Ω, of a spin system it is often desirable to use Hamming distance

as the metric and let S be the set of configurations that only differ on the spin

assigned to a single site. The Hamming distance between two configurations x

and y, denoted by Ham(x, y), is the number of sites that are assigned different

spins in x and y. However, for some spin systems it is the case that this choice

of metric and definition of S fails to satisfy the conditions of Theorem 7. This

is only a minor technical difficulty which is easily solved by extending the state

space of the Markov chain in question to Ω+ as discussed above.

From now on and throughout this thesis we let S =
⋃

j∈V Sj where Sj ⊆
Ω+×Ω+ is the set of pairs of configurations that differ only on the spin assigned

to site j. Hence S = {(x, y) ∈ Ω+ × Ω+ : Ham(x, y) = 1} is the set of all pairs

of configurations that only differ on the spin assigned to a single site. For ease of

reference we state the following corollary of Theorem 7 and Lemmas 6 and 8.

Corollary 9. Let M be a Markov chain with state space Ω. Suppose that

(x, y) 7→ (x′, y′) is a coupling of M defined for all pairs (x, y) ∈ S and that

E [Ham(x′, y′)] = (1 − γ)Ham(x, y) for some 0 < γ < 1. Then Mix(M, ε) ≤
log(nε−1)/γ.
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2.4 Block Dynamics and Influence Parameters

It is sometimes convenient to consider a Markov chain that updates a set of sites

simultaneously during each step rather than just one site. One reason for this

is that single-site update Markov chains may in some cases not yield to analysis

while a block dynamics may. We will give examples of this phenomena in due

course. Furthermore, the analysis of block dynamics is relevant to the study of

single-site update Markov chains since it is known that their mixing times are

similar, provided that the blocks used are of constant size. In particular, it is

possible to obtain a bound on the mixing time of a single-site chain from an

existing bound on the mixing time of a block dynamics chain by using some

Markov chain comparison techniques, although at the expense of a polynomial

factor in the mixing time. For details of the comparison method used to relate the

mixing times of these chains consult the survey paper by Dyer, Goldberg, Jerrum

and Martin [21]. We now formalise our notion for block dynamics and give some

definitions required to specify our conditions for rapid mixing of systematic scan

Markov chains that use block dynamics. We will make frequent use of these

definitions throughout the thesis. The notation for block dynamics is partly

based on notation in Weitz [55] and we also draw from definitions in Dyer et

al. [18] in order to define our influence parameters.

We consider a finite collection of m blocks Θ = {Θ1, . . . , Θm} such that each

block Θk ⊆ V and Θ covers V . We say that Θ covers V if
⋃m

k=1 Θk = V . One

site may be contained in several blocks and the size of each block is not required

to be the same; we do however require that the size of each block is bounded

independently of n. This requirement is in order to ensure that a step of the chain

can be efficiently implemented. For any block Θk and a pair of configurations

x, y ∈ Ω+ we write “x = y on Θk” if xi = yi for each i ∈ Θk and similarly “x = y

off Θk” if xi = yi for each i ∈ V \Θk. We will sometimes saw that x and y “agree”

off Θk if x = y off Θk. We also let ∂Θk = {i ∈ V \ Θk | ∃j ∈ Θk : (i, j) ∈ E}
denote the set of sites adjacent to but not included in Θk; we will refer to ∂Θk as

the boundary of Θk.

With each block Θk, we associate a transition matrix P [k] on state space Ω+.

For ease of reference we say that P [k] is a valid update rule if it satisfies the

following two properties:

1. If P [k](x, y) > 0 then x = y off Θk, and also

2. π is invariant with respect to P [k].
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We will always make sure to satisfy these two properties by construction of the

update rules. Property 1 ensures that an application of P [k] moves the state of

the system from from one configuration to another by only updating the sites

contained in the block Θk and Property 2 ensures that any dynamics composed

solely of transitions defined by P [k] converges to π. While the requirements of

Property 1 are clear we take a moment to discuss what we mean in Property 2.

Consider the following two step process in which some configuration x is initially

drawn from π and then a configuration y is drawn from P [k](x, ·) where P [k](x, ·) is

the distribution on configurations resulting from applying P [k] to a configuration

x. We say that π is invariant with respect to P [k] (i.e. y has distribution π) if

for each configuration σ ∈ Ω+ we have Pr(x = σ) = Pr(y = σ). That is the

distribution on configurations generated by the two-step process is the same as if

only the first step was executed. In terms of our dynamics this means that once

the distribution of the dynamics reaches π, π will continue be the distribution of

the dynamics even after applying P [k] to the state of the dynamics. Our main

result (Theorem 14) holds for any choice of update rule P [k] provided that it

satisfies these two properties.

The distribution P [k](x, ·), which specifies how the dynamics updates block

Θk, clearly depends on the specific update rule implemented as P [k]. In order

to make this idea more clear we give some concrete examples of possible update

rules.

Example 10. One of the most natural choices for P [k] is the heat-bath update

rule. Consider the spin system corresponding to proper q-colourings of a graph,

and recall that π is the uniform distribution on the set of all proper colourings.

The transition matrix P [k] for a heat-bath move makes the following transition

from a given configuration x. Let ΩΘk
(x) ⊆ Ω+ be the set of configurations that

agree with x off Θk and where no edge containing a site in Θk is monochromatic.

An edge is said to be monochromatic if each endpoint is assigned the same colour.

If ΩΘk
(x) is not empty then P [k] makes a transition to a uniformly chosen config-

uration in ΩΘk
(x). Otherwise P [k] leaves the configuration unchanged. The two

required properties of P [k] hold for heat-bath updates since (1) only the assign-

ment of the spin to the sites in Θk are changed and (2) the new configuration is

drawn from an appropriate distribution induced by π. Hence an update rule that

performs heat-bath updates is a valid update rule.

Example 11. Another well-known choice for P [k] is the Metropolis update rule.

Again consider the spin system corresponding to proper q-colourings of a graph.
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In this case P [k] makes the following transition from a given configuration x. A

configuration x′ is chosen uniformly at random from the set of all configurations

that agree with x off Θk. If no edge containing a site in Θk is monochromatic

in the configuration x′, then the new configuration is x′. Otherwise the new

configuration is x.

Recall that throughout this thesis we distinguish between two types of Markov

chains namely random update Markov chains and systematic scan Markov chains.

We now give a definition for each type of Markov chain in the block setting.

Definition 12. Given a set of blocks Θ = {Θ1, . . . , Θm) with associated valid

update rules P [1], . . . , P [m], a systematic scan Markov chain is a Markov chain

M→ with state space Ω+ and transition matrix P→ =
∏m

k=1 P [k].

Definition 13. Given a set of blocks Θ = {Θ1, . . . , Θm) with associated valid

update rules P [1], . . . , P [m], a random update Markov chain is a Markov chain

MRU with state space Ω+ and transition matrix PRU = (1/m)
∑m

k=1 P [k].

Observe that π is a stationary distribution of bothM→ andMRU as discussed

above and if the chains are ergodic then π is unique. It is also worth pointing out

that the definition of M→ holds for any order on the set of blocks. We will refer

to one application of P→ (that is updating each block once) as one scan of M→.

One scan takes
∑

k |Θk| updates and it is generally straightforward to ensure, via

the construction of the set of blocks, that this sum is of order O(n).

It is well-known that the mixing time of a Markov chain can be bounded

by studying the influence that the sites have on each other. This technique

arises in both path coupling and Dobrushin’s uniqueness criterion. Recently

Weitz [55] generalised two conditions namely “the influence on a site is small”

(originally attributed to Dobrushin [12]) and “the influence of a site is small”

(originally Dobrushin and Shlosman [13]) and showed that both imply mixing of

a corresponding random update Markov chain. We call a condition of the form

“if the influence on a site is small then the corresponding dynamics converges to

π quickly” a Dobrushin condition since Dobrushin was originally concerned with

establishing conditions that hold when the influence on as site is small. In the

context of single-site systematic scan, Dyer et al. [18] have pointed out that the

condition “the influence on a site is small” implies rapid mixing. Our condition

is a generalisation of this condition to block dynamics.

We will now formalise the notion of influence sites have on each other. Recall

that for each site j ∈ V we let Sj denote the set of pairs (x, y) ∈ Ω+ × Ω+ of
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configurations that only differ on the spin assigned to site j, that is xi = yi for all

i 6= j. For any pair of configurations (x, y) ∈ Ω+ × Ω+ let Ψk(x, y) be a coupling

of the distributions P [k](x, ·) and P [k](y, ·) which we will refer to as “updating

block Θk”. Recall that a coupling Ψk(x, y) of P [k](x, ·) and P [k](y, ·) is a joint

distribution on Ω+×Ω+ whose marginal distributions are P [k](x, ·) and P [k](y, ·)
and that we write (x′, y′) ∈ Ψk(x, y) when the pair of configurations (x′, y′) is

drawn from Ψk(x, y). We define the influence of site i on site j under block Θk

as

ρk
i,j = max

(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j)}. (2.5)

The influence of i on j under Θk is hence the maximum probability that two

coupled Markov chains differ on the spin assigned to site j following an update

of block Θk starting from two configurations that only differ on the spin assigned

to site i. Using this definition of the influence of i on j it is natural to say that

the total influence on site j when updating block Θk is
∑

i ρ
k
i,j. To make the

condition more general we assign a positive weight wi to each site i ∈ V . The

maximum (weighted) influence on a site, the influence parameter we will denote

by α, is then

α = max
k

max
j∈Θk

∑
i∈V

ρk
i,j

wi

wj

. (2.6)

We point out that the weights are purely a proof construct and can be omitted

using uniform weights. We also observe at this point that our definition of ρk
i,j is

not the standard definition of ρ used in the literature (see for example Simon [51]

or Dyer et al. [18]) since the coupling Ψk(x, y) is explicitly included. In the block

setting it is, however, necessary to include the coupling directly in the definition

of ρ as we will discuss in Chapter 3.

2.5 Statement of Results

We now go on to formally state the results we will present in this thesis as well

as to discuss their relation to previous work in the field.

2.5.1 A Dobrushin Condition for Rapid Mixing of Sys-

tematic Scan with Block Dynamics

Chapter 3 will be concerned with the development of a new method of proving

rapid mixing of systematic scan Markov chains using block dynamics. Our main

theorem is concerned with using the influence parameter α (defined in (2.6)) to
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bound the mixing time of systematic scan. Informally, we will show that if the

weighted influence on any site of the underlying graph is sufficiently small then

systematic scan mixes rapidly regardless of the scan order. In particular, the

systematic scan Markov chain M→ mixes in O(log n) scans of the graph.

Theorem 14. Consider any spin system with underlying graph G = (V, E).

Let Θ = {Θ1, . . . , Θm} be any set of blocks covering V . For each block Θk

let P [k] be a valid update rule associated with block Θk. M→ is the system-

atic scan Markov chain which updates the blocks in the order Θ1, . . . , Θm. If

α = maxk maxj∈Θk

∑
i∈V ρk

i,jwi/wj < 1 then M→ is ergodic and its mixing time

is at most

Mix(M→, ε) ≤ log(nγε−1)

1− α

scans of the graph where

γ =
maxi∈V wi

minj∈V wj

is the maximum ratio between the weights.

Remark. The fact that Theorem 14 holds regardless of the order of the blocks

follows from the observation that the value of the parameter α is a maximum and

hence does not depend on the order in which the blocks are updated.

This result is a generalisation of a similar condition for single-site dynamics by

Dyer et al. [18] as we will discuss in more detail in Chapter 3. Even though we will

mainly be concerned with applying Theorem 14 to spin systems corresponding to

proper colourings of graphs we point out that it applies to any spin system.

Chapter 3 also contains two applications of Theorem 14 to spin systems corre-

sponding to proper q-colourings of graphs, both of which improve the parameters

for which systematic scan mixes. In these applications we restrict the state space

of the systematic scan Markov chains to the set of proper colourings, Ω, of the

underlying graph. First we allow the underlying graph to be any finite graph

with maximum vertex-degree ∆. Previously, the least number of colours for

which systematic scan was known to mix in O(log n) scans was q > 2∆ and when

q = 2∆ the best known bound on the mixing time was O(n2 log n) scans, both

due to Dyer et al. [18]. For completeness we pause to mention that the minimum

number of colours required for rapid mixing (in O(n log n) updates) of a random

update Markov chain is q > (11/6)∆ due to Vigoda [53]. We consider the follow-

ing Markov chain, edge scan denoted Medge, updating each endpoint of an edge

during each update. Let Θ = {Θ1, . . . , Θm} be a set of m edges in G such that

Θ covers V . In order for the scan to be as efficient as possible it is advantageous



2.5: Statement of Results 31

to make m as small as possible and it can always be ensured that m = O(n).

Note that it is P [k] is the transition matrix for performing a heat-bath move on

the endpoints of the edge Θk and it was shown in Example 10 that this choice

for P [k] is a valid update rule.

Definition 15. Let Medge be the systematic scan Markov chain with state space

Ω and transition matrix
∏m

k=1 P [k].

We prove the following theorem, which improves the mixing time of systematic

scan by a factor of n2 for proper colourings of general graphs when q = 2∆ and

matches the existing bound when q > 2∆.

Theorem 16. Let G be a graph with maximum vertex-degree ∆. Consider the

systematic scan Markov chain Medge on Ω. If q ≥ 2∆ then the mixing time of

Medge is

Mix(Medge, ε) ≤ ∆2 log(nε−1)

scans. If m = O(n) then this corresponds to O(n log n) block updates.

Next we restrict the class of graphs to trees. It is known that a single-site

systematic scan mixes in O(log n) scans when q > ∆+2
√

∆− 1 and in O(n2 log n)

scans when q = ∆+2
√

∆− 1 is an integer; see e.g. Hayes [36] or Dyer et al. [19].

We present a proof of the first of these claims using our condition, although in

our case the mixing time will be O(H) where H is the height of the tree (the

maximum number of edges between the root and a leaf). We point out that our

proof preceded both of the cited results. We define the systematic scan Markov

chain tree scan, denoted Mtree, as follows. For each site k ∈ V we let Θk = {k},
so this is a single-site Markov chain. P [k] is the transition matrix for performing

a heat-bath move on block Θk so P [k] is a valid update rule.

Definition 17. Let Mtree be the systematic scan Markov chain with state space

Ω and transition matrix
∏n

k=1 P [k].

We prove the following theorem.

Theorem 18. Let G be a tree with maximum vertex degree ∆ ≥ 3 and height H.

Consider the systematic scan Markov chain Mtree on Ω. If q ≥ ∆+2
√

∆− 1 + δ

for δ > 0 then the mixing time of Mtree is

Mix(Mtree, ε) ≤ max

(
2(∆− 1 + δ)

δ
, 4

)(
H log

(
q −∆

2(∆− 1)

)
+ log(nε−1)

)

scans of the tree. Since log n ≤ H ≤ n, this corresponds to O(nH) updates.
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Table 2.1. Optimising the number of colours using blocks
∆ h f(∆) d∆ + 2

√
∆− 1e

3 15 5 6
4 3 7 8
5 12 8 9
6 3 10 11
7 7 11 12
8 13 12 14
9 85 13 15
10 5 15 16
20 21 27 29
30 117 38 41
40 50 49 53
50 150 60 64
60 51 71 76
100 45 115 120

For completeness we mention that the mixing time of a random update Markov

chain for proper colourings on a tree mixes in O(n log n) updates when q ≥ ∆+2, a

result due to Martinelli et al. [46], improving a related result by Kenyon et al. [43].

We will use a systematic scan with block updates to reduce the number of

colours required for mixing of systematic scan for proper colourings of trees.

We construct a set of m blocks, where the height h of each block is defined in

Table 2.1. Let a block Θk contain a site r along with all sites below r in the tree

that are at most h − 1 edges away from r. The set of blocks Θ must cover the

sites of the tree and no block has height less than h. Note that m = O(n). As

before P [k] is the transition matrix for performing a heat-bath move on block Θk

which is a valid update rule.

Definition 19. Let MBlockTree be the systematic scan Markov chain with state

space Ω and transition matrix
∏m

k=1 P [k] where m is the number of blocks.

We prove the following theorem which improves the number of colours required

for rapid mixing of systematic scan for the stated values of ∆.

Theorem 20. Let G be a tree with maximum vertex-degree ∆ and height H.

Consider the systematic scan Markov chain MBlockTree on Ω. If q ≥ f(∆) where

f(∆) is specified in Table 2.1 for small ∆ then the mixing time of MBlockTree is

Mix(MBlockTree, ε) = O(H + log(ε−1))

scans of the tree. This corresponds to O(nH) block updates by the construction
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of the set of blocks.

2.5.2 Sampling H-colourings of the Path

In Chapter 4 we broaden the type of spin system we consider to general H-

colourings, although at the expense of limiting the underlying graph of the spin

system to the path. When discussing H-colourings it is again natural to refer

to elements of C as colours rather than spins. An H-colouring of a graph G

is a homomorphism from the graph of interest G to some fixed graph H. The

vertices of H correspond to colours and the edges of H specify which colours are

allowed to be adjacent in an H-colouring of G. If H = (C, EH) is any fixed graph

then an H-colouring of a graph G = (V, E) is a function h : V → C such that

(h(v), h(u)) ∈ EH for all edges (v, u) ∈ E of G. We will only consider the case

when G is the n-vertex path.

We study Markov chains that perform heat-bath moves on a constant number

of sites at the time. Like in our other applications we would normally let Ω (the

set of all H-colourings of G) be the state space of our Markov chains, however, if

H is bipartite then we encounter a minor technical difficulty because the Markov

chain may not be ergodic. We overcome this ergodicity issue by partitioning the

state space as follows. If C1 and C2 are the colour classes of H then Ω1 = {x ∈
Ω : x1 ∈ C1} is the set of H-colourings of the n-vertex path where the first site of

the path is assigned a colour from C1. We let V1 denote the set of odd-numbered

sites of the path and V2 the set of even-numbered sites. Observe that for each H-

colouring in Ω1 it holds that each site in V1 is assigned a colour from C1 and each

site in V2 is assigned a colour from C2. Similarly Ω2 = {x ∈ Ω : x1 ∈ C2} is the

set of H-colourings where the first site is assigned a colour from C2. Intuitively,

Ω1 and Ω2 are the two connected components of Ω and we will show (Lemma 63)

that the constructed Markov chains are ergodic on both Ω1 and Ω2. To see that

Ω1∪Ω2 contain all H-colourings of the n-vertex path it is enough to observe that

if x ∈ Ω then any pair of adjacent sites of the n-vertex path must be assigned

colours from opposite colour classes of H in x. We let Ω∼ be the relevant state

space of the Markov chains in order to ensure ergodicity. In particular, if H is

non-bipartite then Ω∼ = Ω. Otherwise H is bipartite and we let Ω∼ be one of Ω1

and Ω2. This is the same partition used by Dyer et al. in [20]. See also Cooper

et al. [8] for a discussion of a similar issue.

We are now ready to define our systematic scan Markov chains for sampling H-

colourings of the n-vertex path and state our results. Let l1 = d∆2
H log(∆2

H +1)e+
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1 where ∆H is the maximum vertex-degree of H. Then let Θ = {Θ1, . . . , Θm1}
be any set of m1 = dn/l1e blocks such that each block consists of exactly l1

consecutive sites and Θ covers V . For each block Θk we define P [k] to be the

transition matrix on the state space Ω∼ for performing a heat-bath move on Θk.

As before observe that P [k] is a valid update rule as shown in Example 10.

Definition 21. Let MAnyOrder be the systematic scan Markov chain with state

space Ω∼ and transition matrix
∏m1

k=1 P [k].

It is worth pointing out that the following result holds for any order of the

blocks, as is the case for all results obtained by Dobrushin uniqueness.

Theorem 22. Let H be a fixed connected graph with maximum vertex-degree ∆H

and consider the systematic scan Markov chain MAnyOrder on the state space Ω∼.

Suppose that H is a graph in which every two sites are connected by a 2-edge path.

Then the mixing time of MAnyOrder is

Mix(MAnyOrder, ε) ≤ ∆2
H(∆2

H + 1) log(nε−1)

scans of the n-vertex path. This corresponds to O(n log n) block updates by the

construction of the set of blocks.

Remark. Note that each H for which Theorem 22 is valid is non-bipartite so

Ω∼ = Ω.

Remark. Several well known H-colouring problems satisfy the condition of The-

orem 22, for example Widom-Rowlinson configurations, independent set configu-

rations and proper q-colourings for q ≥ 3. The fact that an H corresponding to

3-colourings satisfies the condition of the theorem is particularly interesting since

a lower bound of Ω(n2 log n) scans for single-site systematic scan on the path is

proved in Dyer at al. [20]. This means that using a simple single-site coupling

cannot be sufficient to establishing Theorem 22 for any family of H including

3-colourings and hence we have to use block updates.

While many natural H-colouring problems belong to the family covered by

Theorem 22, others (e.g. Beach configurations) are not included. We go on to

show that systematic scan mixes in O(log n) scans for any fixed graph H by

placing more strict restrictions on the construction of the blocks and the order of

the scan. Let s = 4q + 1, β = dlog(2sqs + 1)eqs and l2 = 2βs. For any integer n

consider the following set of m2 + 1 = b2n/l2c blocks Θ = {Θ0, . . . , Θm2} where

Θk = {kβs + 1, . . . , min((k + 2)βs, n)}.
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We observe that Θ covers V by construction of the set of blocks. Furthermore

note that the size of Θm2 is at least βs and that the size of every other block is

exactly l2.

Definition 23. Let MFixedOrder be the systematic scan Markov chain, with state

space Ω∼, which performs a heat-bath move on each block in the order Θ0, . . . , Θm2.

We will use path coupling [5] to prove the following theorem, which improves

the mixing time from the corresponding result in Dyer et al. [20] from O(n5) scans

to O(log n) scans.

Theorem 24. Let H be any fixed connected graph and consider the system-

atic scan Markov chain MFixedOrder on the state space Ω∼. The mixing time

of MFixedOrder is

Mix(MFixedOrder, ε) ≤ (4sqs + 2) log(nε−1)

scans of the n-vertex path. This corresponds to O(n log n) block updates by the

construction of the set of blocks.

Remark. It is worth remarking at this point that Theorem 24 eclipses Theo-

rem 22 in the sense that it shows the existence of a systematic scan for a broader

family of H than Theorem 22 but with the same (asymptotic) mixing time. The

result stated as Theorem 22 however remains interesting in its own right since

it applies to any order of the scan. Following the proof of Theorem 22 we will

discuss (Observation 60) the obstacles one encounters when attempting to extend

Theorem 22 to a larger family of H using the same method of proof.

For completeness we conclude Chapter 4 by considering a random update

Markov chain for sampling H-colourings of the n-vertex path. Let γ = 2qs + 1,

where s = 4q + 1 as before, and define the following set of n + sγ − 1 blocks,

which is constructed such that each site is contained in exactly sγ blocks

Θk =




{k, . . . , min(k + sγ − 1, n)} when k ∈ {1, . . . , n}
{1, . . . , n + sγ − k} when k ∈ {n + 1, . . . , n + sγ − 1}.

Definition 25. Let MRND be the random update Markov chain, with state space

Ω∼, which at each step selects a block uniformly at random and performs a heat-

bath move on it.



36 2: Preliminaries

We will use path coupling [5] to prove the following theorem, which improves

the mixing time from the corresponding result in Dyer et al. [20] from O(n5)

updates to O(n log n) updates.

Theorem 26. Let H be any fixed connected graph and consider the random update

Markov chain MRND on the state space Ω∼. The mixing time of MRND is

Mix(MRND, ε) ≤ (n + 2sqs + s− 1) log(nε−1)

s

block updates.

2.5.3 Sampling 7-colourings of the Grid

In Chapter 5 we present a systematic scan Markov chain for sampling from the

uniform distribution of proper 7-colourings of the square grid. We let the under-

lying graph G = (V,E) be be a finite piece of the infinite square grid. In this

section Ω is the set of all proper 7-colourings of G. Let Θ = {Θ1, . . . , Θm} be

a set of m blocks such that each block Θk ⊆ V is a 2×2 sub-grid and Θ covers

V . As before it is advantageous to make m as small as possible in order for the

scan to be efficient. For each block Θk we let P [k] be the transition matrix for

performing a heat-bath move on Θk. Hence P [k] is a valid update rule.

Definition 27. Let Mgrid be the systematic scan Markov chain with state space

Ω and transition matrix Pgrid =
∏m

k=1 P [k].

We will prove the following theorem and point out that this is the first proof

of rapid mixing of systematic scan for 7-colourings on the grid as it improves the

8-colouring result which is included in Theorem 16. The proof of this theorem is

computer-assisted.

Theorem 28. Let G be a finite and rectangular piece of the infinite square lattice.

Consider the systematic scan Markov chain Mgrid on Ω. The mixing time of

Mgrid is

Mix(Mgrid, ε) ≤ 63 log(nε−1)

scans of the grid. This corresponds to O(n log n) block updates since each block

is of size 4.

As before we wish to compare the systematic scan results to known results for

random update Markov chains. In the random update case, Achlioptas et al. [1]

gave a computer-assisted proof of mixing in O(n log n) updates when q = 6 by
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considering blocks consisting of 2×3 sub-grids. More recently Goldberg et al. [33]

gave a hand-proof of mixing in O(n log n) updates when q ≥ 7 by establishing

strong spatial mixing which in turn implies the stated bound on the mixing time.

Previously Salas and Sokal [50] gave a computer-assisted proof of the q = 7 case, a

result which was also implied by another computer-assisted result due to Bubley,

Dyer and Greenhill [6] that applies to 4-regular triangle-free graphs. Finally it

is worth pointing out that, in the special case when q = 3, two complementary

results of Luby, Randall and Sinclair [44] and Goldberg, Martin and Paterson [34]

give rapid mixing of a random update chain.

2.5.4 Single-site Systematic Scan for Bipartite Graphs

In Chapter 6 we study a single-site systematic scan Markov chain for sampling

from the uniform distribution of proper q-colourings of bipartite graphs. We let

G = (V,E) be any bipartite graph with maximum vertex-degree ∆. The colour

classes of G are denoted by L(V ) and R(V ). We let Ω be the set of proper q-

colourings of G. We study a Markov chain MLR, called left-right scan, that first

updates each site in L(V ) using a Metropolis move (see Example 11) and then

updates each site in R(V ) also using Metropolis.

Definition 29. Let MLR be the systematic scan Markov chain which state space

Ω which makes the following transitions:

1. for each i ∈ L(V ) make a Metropolis move on site i

2. for each i ∈ R(V ) make a Metropolis move on site i.

We assign weights to each site such that wi = ωl = q3−4 for each site i ∈ L(V )

and wi = ωr = 2ωl − 4 for each site i ∈ R(V ). For technical reasons we only

consider the case when ∆ ≥ 3, but note that tight bounds are given in Dyer et

al. [20] for the ∆ = 2 case.

Theorem 30. Let G be any bipartite graph with maximum vertex-degree ∆ ≥ 3.

Consider the systematic scan Markov chain MLR on the state space Ω. Let γ =

ωr

(
1 + 1

q3

)
− ∆ωl

q
− ∆ωr

q
− ∆2ωr

q2 where ωl = q3 − 4 and ωr = 2ωl − 4. If q ≥ 2∆

then γ > 0 and the mixing time of MLR is

Mix(MLR, ε) ≤ ωr log(nωrε
−1)

γ

scans.
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We have previously pointed out that Theorem 30 has since been improved

by a result of Bordewich et al. [4] since been improved by a result of Bordewich

et al. [4] since been improved by a result of Bordewich et al. [4] when ∆ ≥ 9

and matched when 5 ≤ ∆ < 9. Theorem 30 remains, however, the only single-

site systematic scan that mixes in O(log n) scans when q = 2∆ and ∆ = 3 or

∆ = 4. It is particularly important to note that the ∆ = 4 case is included in

this result, since this class of graphs contains the grid which is considered an

important problem.

Remark. Note that the result from Theorem 16 also matches the result of The-

orem 30 as well as holding for general bounded degree graphs. Theorem 30

remains interesting in its own right since it bounds the mixing time of a single-

site systematic scan where as Theorem 16 uses a block dynamics. It is possible

to obtain rapid mixing of a single-site chain from the result in Theorem 16 by

using a comparison technique as previously discussed, however, at the expense of

a polynomial factor loss in the mixing time.



Chapter 3

A Dobrushin Condition for

Systematic Scan with Block

Dynamics

In this chapter we study the mixing time of systematic scan Markov chains on

finite spin systems in a general setting. It is known that, for single-site Markov

chains, the mixing time of systematic scan can be bounded in terms of the in-

fluences sites have on each other. We generalise this technique for bounding the

mixing time of systematic scan to block updates, a setting in which a (constant

size) set of sites are updated simultaneously. In particular we introduce a param-

eter α, corresponding to the maximum influence on any site in the system, and

show that if α < 1 then the corresponding systematic scan Markov chain mixes

in O(log n) scans.

As applications of this method we prove rapid mixing of two systematic scan

Markov chains on proper q-colourings of a graph for any scan order. The first

systematic scan that we consider performs heat-bath updates on edges of a general

graph with maximum vertex-degree ∆ and mixes in O(log n) scans when q ≥ 2∆.

The second systematic scan performs heat-bath updates on some suitable block

when the graph is a tree with height H. The number of colours required for O(H)

mixing of this chain is lower than previous bounds.

We conclude the chapter with a discussion of the influence parameter α and

how it relates to the corresponding parameters for the “influence on a site” in

Weitz [55] and Dyer et al. [18]. In particular we will show that the condition in

Weitz [55], which is for a random update Markov chain, does not imply mixing

of systematic scan. We also show that the condition in Dyer et al. [18], for a

single-site systematic scan, is a special case of our condition namely α < 1.

39
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3.1 Preliminaries

When analysing the mixing time of Markov chains it can be useful, and sometimes

necessary, to consider chains that make use of block updates. A block update is

a move of the chain that may change the spin assigned to more one site during

each step of the process, as long as the number of sites that are being updated

is constant. Block updates as a proof technique was used in the mid 1980s by

Dobrushin and Shlosman [13] in their study of conditions that imply uniqueness of

the Gibbs measure of a spin system, a topic closely related to studying the mixing

time of Markov chains. Recently Weitz [55] used block updates in a generalisation

of the work of Dobrushin and Shlosman, studying the relationship between two

key influence parameters within spin systems and using the influence parameters

to establish conditions that imply mixing. We will bound the mixing time of

a systematic scan Markov chain by studying one of these influence parameters,

although in a slightly different form. We will show that if “the influence on a site

is small” in an appropriate sense then we can obtain rapid mixing of a systematic

scan Markov chain. We call this a Dobrushin condition as it is similar to the

types of conditions originally considered by Dobrushin [12].

We begin by reminding the reader of some terms and definitions from Chap-

ter 2. First, recall from Definition 12 that M→ is a systematic scan Markov chain

with state space Ω+ and transition matrix P→ =
∏m

k=1 P [k] where P [k] is any valid

update rule. Also recall from (2.5) that the influence of a site i on a site j under a

block Θk, denoted by ρk
i,j, is the maximum probability that two coupled Markov

chains differ at the spin of site j following an update of Θk starting from two

configurations that only differ at the spin on site i. That is

ρk
i,j = max

(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j)}.

The total (weighted) influence on any site in the graph site defined by

α = max
k

max
j∈Θk

∑
i

wi

wj

ρk
i,j

where wi is a positive weight assigned to each site of the spin system. We will

use these definitions to prove Theorem 14 namely the following.

Theorem 14. Consider any spin system with underlying graph G = (V, E).

Let Θ = {Θ1, . . . , Θm} be any set of blocks covering V . For each block Θk

let P [k] be a valid update rule associated with block Θk. M→ is the system-
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atic scan Markov chain which updates the blocks in the order Θ1, . . . , Θm. If

α = maxk maxj∈Θk

∑
i∈V ρk

i,jwi/wj < 1 then M→ is ergodic and its mixing time

is at most

Mix(M→, ε) ≤ log(nγε−1)

1− α

scans of the graph where

γ =
maxi∈V wi

minj∈V wj

is the maximum ratio between the weights.

As previously stated we will apply Theorem 14 to two spin systems corre-

sponding to proper q-colourings of graphs in order to improve the parameters

for which systematic scan mixes. In both applications we restrict the state

space of the Markov chains to the set of proper colourings, Ω, of the underly-

ing graph. Firstly we allow the underlying graph to be any finite graph with

maximum vertex-degree ∆. Recall from Definition 15 that Medge is a systematic

scan Markov chain that updates each endpoint of an edge during each move. In

particular recall that Θ = {Θ1, . . . , Θm} is any set of m edges in G such that Θ

covers V and that P [k] is the transition matrix for performing a heat-bath move

on the endpoints of the edge Θk. The transition matrix of Medge is
∏m

k=1 P [k].

We prove Theorem 16 which, we remind the reader, improves the mixing time of

systematic scan by a factor of n2 for proper colourings of general graphs when

q = 2∆ and matches an existing bound when q > 2∆.

Theorem 16. Let G be a graph with maximum vertex-degree ∆. Consider the

systematic scan Markov chain Medge on Ω. If q ≥ 2∆ then the mixing time of

Medge is

Mix(Medge, ε) ≤ ∆2 log(nε−1)

scans. If m = O(n) then this corresponds to O(n log n) block updates.

Next we restrict the class of graphs to trees. Recall from Definition 17 that

Mtree is the (single-site) systematic scan Markov chain with state space Ω and

transition matrix
∏n

k=1 P [k] where P [k] is the transition matrix for performing

a heat-bath move on block Θk = {k} for each k ∈ V . We prove Theorem 18

and remind the reader that this theorem matches existing bounds as discussed

previously.

Theorem 18. Let G be a tree with maximum vertex degree ∆ ≥ 3 and height H.

Consider the systematic scan Markov chain Mtree on Ω. If q ≥ ∆+2
√

∆− 1 + δ
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Table 3.1. Optimising the number of colours using blocks
∆ h ξ f(∆) d∆ + 2

√
∆− 1e

3 15 4
7

5 6
4 3 5

11
7 8

5 12 5
11

8 9
6 3 1

2
10 11

7 7 10
23

11 12
8 13 1

3
12 14

9 85 5
19

13 15
10 5 5

19
15 16

20 21 3
20

27 29
30 117 3

20
38 41

40 50 57
500

49 53
50 150 101

1000
60 64

60 51 19
200

71 76
100 45 7

100
115 120

for δ > 0 then the mixing time of Mtree is

Mix(Mtree, ε) ≤ max

(
2(∆− 1 + δ)

δ
, 4

)(
H log

(
q −∆

2(∆− 1)

)
+ log(nε−1)

)

scans of the tree. Since log n ≤ H ≤ n, this corresponds to O(nH) updates.

The number of colours required for rapid mixing of systematic scan for sam-

pling proper colourings of trees can be reduced for individual values of ∆ by using

some suitable block updates. Recall from Definition 19 that MBlockTree is the sys-

tematic scan Markov chain with state space Ω and transition matrix
∏m

k=1 P [k]

where P [k] is the transition matrix for performing a heat-bath move on block Θk.

The blocks are constructed as follows. We construct the following set of blocks

where the height h of the blocks is defined in Table 2.1 (repeated in Table 3.1).

Let a block Θk contain a site r along with all sites below r in the tree that are at

most h− 1 edges away from r. The values for h are given in Table 2.1 (repeated

in Table 3.1). The set of blocks Θ is constructed such that it covers the sites

of the tree and no block has height less than h. We prove Theorem 20 which

improves the number of colours required for rapid mixing of systematic scan for

the stated values of ∆.

Theorem 20. Let G be a tree with maximum vertex-degree ∆ and height H.

Consider the systematic scan Markov chain MBlockTree on Ω. If q ≥ f(∆) where

f(∆) is specified in Table 2.1 (repeated in Table 3.1) for small ∆ then the mixing
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time of MBlockTree is

Mix(MBlockTree, ε) = O(H + log(ε−1))

scans of the tree. This corresponds to O(nH) block updates by the construction

of the set of blocks.

3.2 Bounding the Mixing Time of Systematic

Scan

This section contains the proof of Theorem 14. The proof follows the struc-

ture of the proof from the single-site setting in Dyer et al. [18], which follows

Föllmer’s [28] account of Dobrushin’s proof presented in Simon’s book [51].

We will make use of the following definitions. For any function f : Ω+ →
R≥0 let δi(f) = max(x,y)∈Si

|f(x) − f(y)| and ∆(f) =
∑

i∈V wiδi(f). Also for

any transition matrix P define (Pf) as the function from Ω+ to R≥0 given by

(Pf)(x) =
∑

x′ P (x, x′)f(x′). Finally let 1i6∈Θk
be the indicator function given by

1i6∈Θk
=





1 if i 6∈ Θk

0 otherwise.

We can think of δi(f) as the deviation from constancy of f at site i and

∆(f) as the aggregated deviation from constancy of f . Now, Pf is a function

where (Pf)(x) gives the expected value of f after making a transition starting

from x. Intuitively, if t transitions are sufficient for mixing then P tf is a very

smooth function. An application of P [k] fixes the non-constancy of f at the sites

within Θk although possibly at the cost of increasing the non-constancy at sites

on the boundary of Θk. Our aim is then to show that one application of P→
will on aggregate make f smoother i.e., decrease ∆(f). We will establish the

following lemma, which corresponds to Corollary 12 in Dyer et al. [18], from

which Section 3.3 of [18] implies Theorem 14.

Lemma 31. If α < 1 then

∆(P→f) ≤ α∆(f).

We begin by bounding the effect on f from one application of P [k]. The fol-

lowing lemma is a block-move generalisation of Proposition V.1.7 from Simon [51]
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and Lemma 10 from Dyer et al. [18].

Lemma 32. δi(P
[k]f) ≤ 1i6∈Θk

δi(f) +
∑

j∈Θk
ρk

i,jδj(f)

Proof. Take E(x′,y′)∈Ψk(x,y)) [f(x′)] to be the the expected value of f(x′) when a

pair of configurations (x′, y′) are drawn from Ψk(x, y). Since Ψk(x, y) is a coupling

of the distributions P [k](x, ·) and P [k](y, ·), the distribution P [k](x, ·) and the first

component of Ψk(x, y) are the same and hence

E(x′,y′)∈Ψk(x,y) [f(x′)] = Ex′∈P [k](x,·) [f(x′)] (3.1)

and the same fact holds for the distribution P [k](y, ·) so

E(x′,y′)∈Ψk(x,y) [f(y′)] = Ey′∈P [k](y,·) [f(y′)] . (3.2)

Using (3.1), (3.2) and linearity of expectation we have

δi(P
[k]f) = max

(x,y)∈Si

∣∣(P [k]f)(x)− (P [k]f)(y)
∣∣

= max
(x,y)∈Si

∣∣∣∣∣
∑

x′
P [k](x, x′)f(x′)−

∑

y′
P [k](y, y′)f(y′)

∣∣∣∣∣

= max
(x,y)∈Si

∣∣Ex′∈P [k](x,·) [f(x′)]− Ey′∈P [k](y,·) [f(y′)]
∣∣

= max
(x,y)∈Si

∣∣E(x′,y′)∈Ψk(x,y)) [f(x′)]− E(x′,y′)∈Ψk(x,y) [f(y′)]
∣∣

= max
(x,y)∈Si

∣∣E(x′,y′)∈Ψk(x,y) [f(x′)− f(y′)]
∣∣

≤ max
(x,y)∈Si

E(x′,y′)∈Ψk(x,y) [|f(x′)− f(y′)|]

≤ max
(x,y)∈Si

E(x′,y′)∈Ψk(x,y)

[∑
j∈V

∣∣f(x′1 . . . x′jy
′
j+1 . . . y′n)− f(x′1 . . . x′j−1y

′
j . . . y′n)

∣∣
]

= max
(x,y)∈Si

∑
j∈V

E(x′,y′)∈Ψk(x,y)

[∣∣f(x′1 . . . x′jy
′
j+1 . . . y′n)− f(x′1 . . . x′j−1y

′
j . . . y′n)

∣∣] .

Notice that x = x′ off Θk and y = y′ off Θk.

We need to bound the expectation

E(x′,y′)∈Ψk(x,y)

[∣∣f(x′1 . . . x′jy
′
j+1 . . . y′n)− f(x′1 . . . x′j−1y

′
j . . . y′n)

∣∣]

for each site j ∈ V . First suppose that j ∈ Θk. By definition of ρk
i,j the coupling
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will yield x′j 6= y′j with probability at most ρk
i,j and so

E(x′,y′)∈Ψk(x,y)

[∣∣f(x′1 . . . x′jy
′
j+1 . . . y′n)− f(x′1 . . . x′j−1y

′
j . . . y′n)

∣∣]

≤ ρk
i,j max(σ,τ)∈Sj

{|f(σ)− f(τ)|} = ρk
i,jδj(f).

Otherwise j 6∈ Θk and we observe that xj = x′j since x = x′ off Θk and similarly

yj = y′j since y = y′ of Θk. Since (x, y) ∈ Si we can only have x′j 6= y′j when i = j

and hence

E(x′,y′)∈Ψk(x,y)

[∣∣f(x′1 . . . x′jy
′
j+1 . . . y′n)− f(x′1 . . . x′j−1y

′
j . . . y′n)

∣∣] ≤ 1i=jδj(f).

Adding up the expectations up we get the statement of the lemma.

We will use Lemma 32 in conjunction with an inductive proof similar to

(V.1.16) in Simon [51] in order to establish the following lemma. It is impor-

tant to note at this point that the result in Simon is presented for single-site

heat-bath updates, whereas the following lemma applies to any block dynamics

(satisfying the stated assumptions) and weighted sites. This lemma is also a block

generalisation of Lemma 11 in Dyer et al. [18].

Lemma 33. For any k ∈ {1, . . . , m} let Γ(k) =
⋃k

l=1 Θl. If α < 1 then

∆(P [1] · · ·P [k]f) ≤ α
∑

i∈Γ(k)

wiδi(f) +
∑

i∈V \Γ(k)

wiδi(f).

Proof. Induction on k. Taking k = 0 as the base case, we get the definition of ∆.

Assume the statement holds for k − 1.

∆(P [1] · · ·P [k]f) ≤ α
∑

i∈Γ(k−1)

wiδi(P
[k]f) +

∑

i∈V \Γ(k−1)

wiδi(P
[k]f)

≤ α
∑

i∈Γ(k−1)

1i6∈Θk
wiδi(f) + α

∑

i∈Γ(k−1)

∑
j∈Θk

wiρ
k
i,jδj(f)

+
∑

i∈V \Γ(k−1)

1i6∈Θk
wiδi(f) +

∑

i∈V \Γ(k−1)

∑
j∈Θk

wiρ
k
i,jδj(f)

by Lemma 32.
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Simplifying and using α < 1

∆(P [1] · · ·P [k]f) ≤ α
∑

i∈Γ(k−1)\Θk

wiδi(f) +
∑

i∈Γ(k−1)

∑
j∈Θk

wiρ
k
i,jδj(f)

+
∑

i∈V \Γ(k)

wiδi(f) +
∑

i∈V \Γ(k−1)

∑
j∈Θk

wiρ
k
i,jδj(f)

= α
∑

i∈Γ(k−1)\Θk

wiδi(f) +
∑

i∈V \Γ(k)

wiδi(f)

+
∑
j∈Θk

δj(f)


 ∑

i∈Γ(k−1)

wiρ
k
i,j +

∑

i∈V \Γ(k−1)

wiρ
k
i,j




= α
∑

i∈Γ(k−1)\Θk

wiδi(f) +
∑

i∈V \Γ(k)

wiδi(f) +
∑
j∈Θk

δj(f)
∑
i∈V

wiρ
k
i,j

≤ α
∑

i∈Γ(k−1)\Θk

wiδi(f) +
∑

i∈V \Γ(k)

wiδi(f) +
∑
j∈Θk

δj(f) max
l

∑
i∈V

wiρ
l
i,j

≤ α
∑

i∈Γ(k−1)\Θk

wiδi(f) +
∑

i∈V \Γ(k)

wiδi(f) + α
∑
j∈Θk

wjδj(f)

= α
∑

i∈Γ(k)

wiδi(f) +
∑

i∈V \Γ(k)

wiδi(f)

by definition of α.

Lemma 31 is now a simple consequence of Lemma 33 since

∆(P→f) = ∆(P [1] · · ·P [m]f) ≤ α
∑
i∈V

wiδi(f) = α∆(f)

and Theorem 14 follows as discussed above. For completeness we do however give

a proof of Theorem 14. The following lemma is required for technical reasons in

that proof.

Lemma 34. maxω∈Ω+ f(ω)−minω∈Ω+ f(ω) ≤ ∆(f)/ minj∈V wj.

Proof. Let x, y ∈ Ω+ be such that maxω∈Ω+ f(ω) = f(x) and minω∈Ω+ f(ω) =

f(y). For each i ∈ {1, . . . , n} let Θi = {i}. Construct a path of colourings
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x = z0, . . . , zn = y where zi = zi−1 off Θi and zi
i = yi for all i ∈ {1, . . . , n}. Then

max
ω∈Ω+

f(ω)− min
ω∈Ω+

f(ω) = f(x)− f(y)

=
n−1∑
i=0

f(zi)− f(zi+1)

≤
n∑

i=1

δi(f)

≤ 1

minj∈V wj

n∑
i=1

wiδi(f)

=
∆(f)

minj∈V wj

by definition of δ and ∆.

We are now in position to establish a proof of Theorem 14.

Theorem 14. Consider any spin system with underlying graph G = (V,E).

Let Θ = {Θ1, . . . , Θm} be any set of blocks covering V . For each block Θk

let P [k] be a valid update rule associated with block Θk. M→ is the system-

atic scan Markov chain which updates the blocks in the order Θ1, . . . , Θm. If

α = maxk maxj∈Θk

∑
i∈V ρk

i,jwi/wj < 1 then M→ is ergodic and its mixing time

is at most

Mix(M→, ε) ≤ log(nγε−1)

1− α

scans of the graph where

γ =
maxi∈V wi

minj∈V wj

is the maximum ratio between the weights.

Proof. For a test function f , let ft(x) =
∑

ω∈Ω+ P t
→(x, ω)f(ω) with the intention

ft = P [1] · · ·P [m]ft−1.

We use a lemma from Aldous and Fill [3] to deduce

max
x∈Ω+

dTV(P t
→(x, ·), π) ≤ max

x,y∈Ω+
dTV(P t

→(x, ·), P t
→(y, ·))

= max
x,y∈Ω+

max
A⊆Ω+

|P t
→(x, A)− P t

→(y, A)|

using the definition of total variation distance. Letting f be the indicator variable
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for being in some subset A of Ω+ we have

P t
→(x,A)− P t

→(y, A) =
∑

ω∈Ω+

P t
→(x, ω)f(ω)−

∑

ω∈Ω+

P t
→(y, ω)f(ω)

≤ max
ω∈Ω+

ft(ω)− min
ω∈Ω+

ft(ω)

≤ ∆(ft)

minj∈V wj

by Lemma 34. Applying Lemma 31 t times gives

∆(ft)

minj∈V wj

≤ αt∆(f0)

minj∈V wj

≤ αtn maxi∈V wi

minj∈V wj

which is at most ε for t ≥ log(nγε−1)
1−α

.

3.3 Application: Edge Scan on an Arbitrary Graph

In this section we prove Theorem 16. That is, we present a general version of a

systematic scan on edges and use Theorem 14 to prove that it mixes in O(log n)

scans whenever q ≥ 2∆. We use uniform weights for the sites and so omit all

weights throughout this section. Recall that Medge is the systematic scan Markov

chain with transition matrix
∏m

k=1 P [k] where Θ = {Θ1, . . . , Θm} is an ordered

set of edges in G that covers V and P [k] is the transition matrix for performing

a heat-bath move on the endpoints of the edge Θk.

In order to apply Theorem 14 we extend the chain to the state space Ω+ such

that the extended chain is identical to Medge on configurations in Ω. Further-

more, the extended chain never makes a transition from a configuration in Ω to

a configuration outside Ω. Observe that for any given configuration it is possible

to update the endpoints of any edge in G in such a way that both endpoints of

that edge are coloured properly. Hence the configurations in Ω+ \Ω are transient

states of the extended chain and an upper bound on the mixing time of the ex-

tended chain is also an upper bound on the mixing time of Medge by Lemma 8.

As previously discussed, extending the state space of the chain in this way is a

standard technique.

We need to construct a coupling Ψk(x, y) of the distributions P [k](x, ·) and

P [k](y, ·) for each pair of configurations (x, y) ∈ Si that differ only at the colour

assigned to site i. Assume without loss of generality that xi = 1 and yi = 2 and

also let j and j′ be the endpoints of the edge Θk. Recall from Example 10 that,
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since the dynamics uses heat-bath updates, P [k](x, ·) is the uniform distribution

on configurations that agree with x off Θk and where no edge containing j or j′

is monochromatic. For ease of notation we let D1 = P [k](x, ·) and D2 = P [k](y, ·).
We go on to make the following definitions for l ∈ {1, 2} and s ∈ Θk. Dl(s) is

the distribution of the colour assigned to site s induced by Dl, and [Dl | s = c]

is the uniform distribution on the set of colourings of the sites in Θk where site

s is assigned colour c. We also let dl denote the number of configurations with

positive measure in Dl and dl,s=c be the number of configurations that assign

colour c to site s and have positive measure in Dl.

Definition 35. For c1, c2 ∈ C we say that the choice c1c2 is “valid” for Dl if

there is a configuration with positive measure in Dl in which site j is coloured c1

and site j′ is coloured c2. Similarly a colour c ∈ C is “valid” on a site s in Dl if

there exists a valid choice for Dl where site s is coloured c.

3.3.1 Overview of the Coupling

We begin the construction of the coupling Ψk(x, y) by giving an overview of the

cases we will need to consider and show that they are mutually exclusive and

exhaustive of all configurations. It is important to note that, by definition of ρk
i,j,

the coupling we define may depend on the initial configurations x and y in the

sense that if two pairs of configurations (x1, y1) and (x2, y2) can be distinguished

then the couplings Ψk(x1, y1) and Ψk(x2, y2) may be defined differently.

We consider two simple cases in the coupling construction. First, if i 6∈ ∂Θk

then Ψk(x, y) is the identity coupling where the same choice is made in both

distributions. Hence, for i 6∈ ∂Θk and j ∈ Θk we have ρk
i,j = 0. In particular,

observe that this case includes the situation when i ∈ Θk.

Now suppose that i is adjacent to at least one site in Θk, that is i ∈ ∂Θk.

In order to construct a sufficiently good coupling we consider the following five

sub-cases, which by construction are exhaustive of all possible configurations and

mutually exclusive. In the diagrams that relate to these cases a dotted line

between a site j ∈ Θk and a colour 1, say, denotes that no site adjacent to j on

the boundary of Θk (other than possibly i) is coloured 1. A full line denotes that

some site adjacent to j on the boundary of Θk (other than possibly i) is coloured

1. The full details of each case of the coupling will be given in Section 3.3.2 along

with bounds on ρk
i,j and ρk

i,j′ where j and j′ are the sites included in Θk.

1. Exactly one site in Θk is adjacent to i. Let this site be labeled j and let

the other site in Θk be labeled j′. This is shown in Figure 3.1.
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Θk

i = 1/2

j j′

Figure 3.1. Case 1. Exactly one site in Θk is adjacent to i. Let this site
be labeled j and let the other site in Θk be labeled j′.

Θk

i = 1/2

j j′
1

2

1

2

Figure 3.2. Case 2. Both sites in Θk are adjacent to i and no other sites
in ∂Θk are coloured 1 or 2. The labeling of the sites in Θk is arbitrary.

2. Both sites in Θk are adjacent to i and no other sites in ∂Θk are coloured 1 or

2. The labeling of the sites in Θk is arbitrary. This is shown in Figure 3.2.

3. Both sites in Θk are adjacent to i. One of the sites in Θk is adjacent to at

least one site, other than i, coloured 1 (or 2). Let this site be labeled j′.

The other site in Θk is labeled j and it is not adjacent to any site, other

than i, coloured 1 or 2. This is shown in Figure 3.3.

4. Both sites in Θk are adjacent to i. One of the sites in Θk is adjacent to

at least one site, other than i, coloured 1 and no sites that are coloured 2.

Let this site be labeled j′. The other site in Θk, labeled j, is adjacent to at

least one site other than i coloured 2 and no sites coloured 1. This is shown

in Figure 3.4.

5. Both sites in Θk are adjacent to i and at least one site, other than i coloured

1 (or 2). The labeling of the sites in Θk is arbitrary. This is shown in

Θk

i = 1/2

1

2

1

j j′

Figure 3.3. Case 3. Both sites in Θk are adjacent to i. One of the sites
in Θk is adjacent to at least one site, other than i, coloured 1 (or 2). Let
this site be labeled j′. The other site in Θk is labeled j and it is not
adjacent to any site, other than i, coloured 1 or 2.
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Θk

i = 1/2

j j′
2

1

1

2

Figure 3.4. Case 4. Both sites in Θk are adjacent to i. One of the sites
in Θk is adjacent to at least one site, other than i, coloured 1 and no sites
that are coloured 2. Let this site be labeled j′. The other site in Θk,
labeled j, is adjacent to at least one site other than i coloured 2 and no
sites coloured 1.

Θk

i = 1/2

j j′1 1

Figure 3.5. Case 5. Both sites in Θk are adjacent to i and at least one
site, other than i coloured 1 (or 2). The labeling of the sites in Θk is
arbitrary.

Figure 3.5.

3.3.2 Details of Coupling and Proof of Mixing

We will now give the full details of each case of the coupling and establish the

required bounds on the influence of site i on sites j and j′. The following lemma

is required to establish the coupling for all the stated cases.

Lemma 36. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E. Then for each pair of colours c1, c2 ∈ C \ {1, 2} the choice c1c2 is valid for D1

if and only if c1c2 is valid for D2.

Proof. We start with the if direction. Suppose c1c2 is valid in D2 then no site

adjacent to j has colour c1 in D2 and since c1 6= 1 no site adjacent to j has colour

c1 in D1. Also no site adjacent to j′ has colour c2 in D2 hence no site adjacent to

j′ has colour c2 in D1 since c2 6= 1. Since c1c2 is valid in D2 c1 6= c2 and so c1c2

is valid in D1.

The only if direction is similar. Suppose c1c2 is valid in D1 then no site

adjacent to j has colour c1 in D1 and since c1 6= 2 no site adjacent to j has colour

c1 in D2. Also no site adjacent to j′ has colour c2 in D1 hence no site adjacent

to j′ has colour c2 in D2 again since c2 6= 2. Since c1c2 is valid in D1 c1 6= c2 and

so c1c2 is valid in D2.
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Θk

i = 1/2

j j′

Figure 3.6. Case 1 (repeat of Figure 3.1). Exactly one site in Θk is adjacent
to i. Let this site be labeled j and let the other site in Θk be labeled j′.

Details of case 1. (Repeated in Figure 3.6.) We construct a coupling

Ψk(x, y) of the distributions D1 and D2 using the following two step process. Let

ψj be a coupling of D1(j) and D2(j) which greedily maximises the probability

of assigning the same colour to site j in each distribution. Then, for each pair

of colours (c, c′) drawn from ψj, Ψk(x, y) is a coupling, minimising Hamming

distance, of the conditional distributions D1 | j = c and D2 | j = c′.

Remark. The reason for defining the coupling Ψk(x, y) recursively is that this

particular coupling construction lets us upper bound the probability of a discrep-

ancy at site j in a pair of configurations drawn from the coupling Ψk(x, y) by

assuming that j′ is assigned the worst case colour. This is due to Lemma 13

of Goldberg et al. [33]. For completeness we state a special case of this lemma,

which is sufficient for our needs, although we point out that the original lemma

is stated for a more general case.

Lemma (Special case of Lemma 13 in Goldberg et al. [33]). Let Ψk(x, y) be the

above coupling. For any (σ, τ) ∈ Si, let µj be a coupling, minimising Hamming

distance at j, of the distributions obtained by performing a heat-bath move on site

j starting from configuration σ and τ respectively. Then for any (x, y) ∈ Si

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j) ≤ max

(σ,τ)∈Si

Pr(σ′,τ ′)∈µj
(σ′j 6= τ ′j).

Lemma 37. Let j and j′ be the endpoints of an edge Θk. If (i, j) ∈ E and

(i, j′) 6∈ E then

ρk
i,j ≤

1

q −∆
and ρk

i,j′ ≤
1

(q −∆)2
.

Proof. Assume without loss of generality that d1 ≥ d2, i.e that there are at least

as many valid choices for D1 as for D2. Since the only site in Θk that is adjacent to

site i is j, Lemma 13 of Goldberg et al. [33] lets us upper bound the probability

of a discrepancy at site j in a pair of configurations drawn from the coupling

Ψk(x, y) by assuming that j′ is assigned the worst case colour. Observe that site
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j has at most ∆− 1 neighbours (excluding j′) and each of them could invalidate

one colour choice for site j in both distributions. If j′ is assigned a (worst case)

colour not already adjacent to j then site j is adjacent to at most ∆ sites each

assigned a different colour. This leaves at least q −∆ valid colours for j in D1.

Since 1 is not valid for j in D1, Lemma 36 implies that colour 2 is the only valid

choice for j in D1 which would cause a discrepancy at site j since the first step

of the coupling is greedy. This establishes the stated bound on ρk
i,j

ρk
i,j = max

(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j)} ≤

1

q −∆
.

Now from the definition of the coupling it follows easily that if the same

colour, c, is assigned to site j in each distribution during the first step of the

coupling then the colour assigned to site j′ in the second step will be the same

in each distribution since the conditional distributions D1 | j = c and D2 | j = c

are the same. If different colours are assigned to j in each distribution then

the second step of the coupling is simply the case of colouring one site adjacent

to exactly one discrepancy. The argument from above says that at most one

colour assigned to j′ in D1 will cause a discrepancy at site j′ in the coupling

and also that there are at least q −∆ valid choices for j′ in D1. Hence we have

max(x,y)∈Si
{Pr(x′,y′)∈Ψk(x,y)(x

′
j′ 6= y′j′ | x′j = c, y′j = c′)} ≤ 1

q−∆
and so

ρk
i,j′ = max

(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x
′
j′ 6= y′j′)}

= max
(x,y)∈Si

{ ∑

c,c′
c6=c′

Pr(x′,y′)∈Ψk(x,y)(x
′
j′ 6= y′j′ | x′j = c, y′j = c′)

× Pr(x′,y′)∈Ψk(x,y)(x
′
j = c, y′j = c′)

}

≤ 1

q −∆
max

(x,y)∈Si





∑

c,c′
c 6=c′

Pr(x′,y′)∈Ψk(x,y)(x
′
j = c, y′j = c′)





≤ 1

(q −∆)2

using the bound from ρk
i,j which completes the proof.

The following lemmas are required to define the coupling and bound the in-

fluence of a site i ∈ ∂Θk on sites j and j′ when i is adjacent to both sites j and
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j′.

Lemma 38. Let j and j′ be the endpoints of an edge and suppose that (i, j) ∈ E

and (i, j′) ∈ E. If 1 is valid for j in D2 and 2 is valid for j in D1 then the choice

2c2 is valid in D1 if and only if 1c2 is valid in D2.

Proof. Suppose that 2c2 is valid in D1 then c2 ∈ C \ {1, 2} since i is adjacent to

j′ (and xi = 1). Since 1 is valid for j in D2 it follows that 1c2 is valid in D2 since

the only colour adjacent to j′ in D2 that is (possibly) not adjacent to j′ in D1 is

2, but c2 6= 2.

For the reverse direction suppose that 1c2 is valid in D2. Then c2 ∈ C \ {1, 2}
since i is adjacent to j′. Since 2 is valid for j in D1 it follows that 2c2 is valid in

D1 since the only colour adjacent to j′ in D1 that is (possibly) not adjacent to j′

in D2 is 1, but c2 6= 1.

Lemma 39. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E and (i, j′) ∈ E. If 1 is valid for j′ in D2 and 2 is valid for j′ in D1 then the

choice c12 is valid in D1 if and only if c11 is valid in D2.

Proof. Suppose that c12 is valid in D1 then c1 ∈ C \ {1, 2} since i is adjacent to

j′. Since 1 is valid for j′ in D2 c11 is valid in D2 since the only colour adjacent

to j in D2 that is (possibly) not adjacent to j in D1 is 2, but c1 6= 2.

Also, suppose that c11 is valid in D2 then c1 ∈ C \ {1, 2} since i is adjacent

to j′. Since 2 is valid for j′ in D1 c12 is valid in D1 since the only colour adjacent

to j in D1 that is (possibly) not adjacent to j in D2 is 1, but c1 6= 1.

Lemma 40. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E and (i, j′) ∈ E.

(i) Suppose that 1 is valid for j in D2. For all c ∈ C where c is valid for j in

D2, if 1 is valid for j′ in D2 then

d2,j=1 ≤ d2,j=c ≤ d2,j=1 + 1

else

d2,j=1 − 1 ≤ d2,j=c ≤ d2,j=1.

(ii) Suppose that 2 is valid for j in D1. For all c ∈ C where c is valid for j in

D1, if 2 is valid for j′ in D1 then

d1,j=2 ≤ d1,j=c ≤ d1,j=2 + 1
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Θk

i = 1/2

j j′
1

2

1

2

Figure 3.7. Case 2 (repeat of Figure 3.2). Both sites in Θk are adjacent to i
and no other sites in ∂Θk are coloured 1 or 2. The labeling of the sites in Θk is
arbitrary.

else

d1,j=2 − 1 ≤ d1,j=c ≤ d1,j=2.

Proof. Part (i). Consider some valid colour c other than 1 for j in D2. For each

valid choice 1c2 for D2 the choice cc2 is also valid for D2 except when c = c2. If

1 is valid for j′ in D2 then the choice c1 is also valid for D2.

Now consider some invalid choice 1c2 for D2 where c2 6= 1. Since 1c2 is not

valid for D2 it follows that c2 is not valid for j′ in D2 and hence no more choices

can be valid for D2, which guarantees the upper bounds.

Part (ii) is similar. Consider some valid colour c other than 2 for j in D1. For

each valid choice 2c2 for D1 the choice cc2 is also valid for D1 except when c = c2.

If 2 is valid for j′ in D1 then the choice c2 is also valid for D1.

Finally consider some invalid choice 2c2 for D1 where c2 6= 2. Since 2c2 is not

valid for D1 it follows that c2 is not valid for j′ in D1 and hence no more choices

can be valid for D1, which guarantees the upper bounds.

We are now ready to define the coupling for the remaining cases.

Details of case 2. (Repeated in Figure 3.7.) We construct the Ψk(x, y) of

the distributions D1 and D2 as follows. For each valid choice of the form c1c2 for

D1 where c1 6= 2 and c2 6= 2 Lemma 36 guarantees that c1c2 is valid for D2 so we

let

Pr(x′,y′)∈Ψk(x,y)(x
′ = y′ = c1c2) =

1

d1

.

For each valid choice of the form 2c2 in D1 the choice 1c2 is valid in D2 by

Lemma 38 so we let

Pr(x′,y′)∈Ψk(x,y)(x
′ = 2c2, y

′ = 1c2) =
1

d1

. (3.3)

Lemma 38 also guarantees that there are no remaining valid choices for D2 of the

form 1c2. Finally for each valid choice c12 for D1 the choice c11 is valid in D2 by
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Lemma 39 so let

Pr(x′,y′)∈Ψk(x,y)(x
′ = c12, y

′ = c11) =
1

d1

(3.4)

which completes the coupling since d1 = d2 and all the probability in both D1

and D2 has hence been used.

Lemma 41. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E and (i, j′) ∈ E. If 2 is valid for both j and j′ in D1 and 1 is valid for both j

and j′ in D2 then

ρk
i,j ≤

1

q −∆ + 1
and ρk

i,j′ ≤
1

q −∆
.

Proof. This is case 2 of the coupling. Note from Lemma 38 that d1,j=2 = d2,j=1

so for ease of reference let d = d1,j=2 = d2,j=1 and let d′ = d1,j′=2 = d2,j′=1 (using

Lemma 39). Also let s =
∑

c d2,j=c − d− d′ which is the number of valid choices

for D2 other than choices of the form 1c2 and c11. Note that the number of valid

choices for D1 is d1 = s + d + d′.

As there are no restrictions on colours assigned to the sites in ∂Θk \ {i} each

of the neighbours of j could be assigned a different colour, and the same is true

for the neighbours of j′. Hence we get the following lower-bounds on d and d′:

q −∆ ≤ d and q −∆ ≤ d′.

To lower bound bound s observe that s =
∑

c d2,j=c − d − d′ =
∑

c 6=1 d2,j=c − d′.

Let J ⊆ C \ {1} be the set of colours, excluding 1, that are valid for j in D2. By

definition of d′, at least d′ colours other than 1 must be valid for site j in D2 so

the size of J is at least d′. Since 1 is valid for j′ in D2 we use the lower bound on

d2,j=c from Lemma 40 (i) and hence

s =
∑
c∈J

d2,j=c − d′

≥ d′ min
c∈J

{d2,j=c} − d′

≥ d′d− d′.

From the coupling, j will be assigned a different colour in each distribution when-

ever a choice of the form 2c2 is made for D1. From (3.3) this happens with prob-

ability d
d1

= d
d+d′+s

since d is the number of valid choices for D1 of the form 2c2.

Similarly from (3.4), j′ will become a discrepancy in the coupling whenever a

choice of the form c12 is made for D1, which happens with probability d′
d+d′+s

.
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Θk

i = 1/2

1

2

1

j j′

Figure 3.8. Case 3 (repeat of Figure 3.3). Both sites in Θk are adjacent to i.
One of the sites in Θk is adjacent to at least one site, other than i, coloured 1
(or 2). Let this site be labeled j′. The other site in Θk is labeled j and it is not
adjacent to any site, other than i, coloured 1 or 2.

Hence

ρk
i,j ≤

d

d + d′ + s
and ρk

i,j′ ≤
d′

d + d′ + s
.

Starting with ρk
i,j

ρk
i,j ≤

d

d + d′ + s
≤ d

d + dd′
≤ 1

d′ + 1
≤ 1

q −∆ + 1

using the lower bounds of s and d′. Similarly using the lower bounds of s and d

ρk
i,j′ ≤

d′

d + d′ + s
≤ d′

d + dd′
≤ 1

d
≤ 1

q −∆

which implies the statement of the lemma.

Details of case 3. (Repeated in Figure 3.8.) We construct the coupling

Ψk(x, y) of D1 and D2 using the following two step process. Let Ψj be a coupling of

D1(j
′) and D2(j

′) which greedily maximises the probability of assigning the same

colour to site j′ in each distribution. Then for each pair of colours (c, c′) drawn

from Ψj we complete Ψk(x, y) by letting it be the coupling, greedily minimising

Hamming distance, of the conditional distributions D1 | j′ = c and D2 | j′ = c′ .

Lemma 42. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E and (i, j′) ∈ E. Suppose that 2 is valid for j in D1, 1 is valid for j in D2 and

1 is not valid for j′ in D2. Then

ρk
i,j′ ≤

1

q −∆ + 1
and ρk

i,j ≤
1

q −∆
.

Proof. This is case 3 of the coupling. Note from Lemma 38 that d1,j=2 = d2,j=1

and let s =
∑

c d2,j=c − d2,j=1 =
∑

c 6=1 d2,j=c denote the number of valid choices

for D2 other than choices of the form 1c2. The number of valid choices for D1 is

then d1 = s + d1,j=2 + d1,j′=2.
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Since 1 is not valid for j′ in D2 at least one site other than i on the boundary

of Θk must be coloured 1 in D1 and in particular this site is adjacent to j′ (we

say that some site v on the boundary of Θk is coloured c in D1 if there exists

a configuration with positive measure in D1 in which site v is coloured c). As

there are no restrictions on the neighbourhood of j each neighbour of j may be

assigned a different colour in D1. Hence we get the following lower bounds on

d1,j=2 and d1,j′=2

q −∆ + 1 ≤ d1,j=2 and q −∆ ≤ d1,j′=2. (3.5)

Next we need to establish a lower bound on s. Let J be the set of colours,

excluding 1, that are valid for j in D2 with the intention that s =
∑

c∈J d2,j=c.

Now observe that there are exactly d1,j′=2 colours c ∈ J for which d2,j=c > 0 and

hence

s =
∑
c∈J

d2,j=c ≥ d1,j′=2 min
c′∈J

{d2,j=c′}.

We then use Lemma 40 (i), since 1 is not valid for j′ in D2, to obtain the bound

d2,j=1 − 1 ≤ d2,j=c′ for c′ ∈ J which gives the following lower bound on s

s ≥ d1,j′=2 min
c′∈J

{d2,j=c′} ≥ d1,j′=2 (d2,j=1 − 1) = d1,j′=2 (d1,j=2 − 1) (3.6)

since d2,j=1 = d1,j=2 by Lemma 38 as we have previously noted.

We are now ready to bound the influence of i on j and j′. We consider ρk
i,j′

first. Suppose that a choice of the form c1c2 is valid for D2, in which case c1 6= 2

and c2 6∈ {1, 2} by the conditions of case 3 of the coupling. Firstly if c1 6= 1 then

c1c2 is also valid for D1 by Lemma 36. If c1 = 1 then the choice 2c2 is valid for D1

by Lemma 38 and hence d1 ≥ d2. Note in particular that if a choice c1c2 where

c2 6= 2 is valid for D1 then it is also valid for D2. Therefore, a different colour

will only be assigned to site j′ in each distribution if j′ is coloured 2 in D1 during

the first step of the coupling since the Hamming distance at site j′ is minimised

greedily. There are d1,j′=2 colourings assigning 2 to j′ in D1 and hence

ρk
i,j′ ≤

d1,j′=2

d1,j=2 + d1,j′=2 + s
≤ d1,j′=2

d1,j=2 (1 + d1,j′=2)
<

1

d1,j=2

≤ 1

q −∆ + 1

where the second inequality uses the lower bound on s from (3.6) and the final

inequality uses the lower bound on d1,j=2 from (3.5).

Now consider ρk
i,j. Suppose that (c′1, c

′
2) is the pair of colours drawn for site

j′ in the first step of the coupling. The second step of Ψk(x, y) then couples



3.3: Application: Edge Scan on an Arbitrary Graph 59

i = 1/2

2

1

j j′ = 2/c′
2

Figure 3.9. The pair of configurations after the colour of site j′ has been
assigned during the first step of the coupling.

the conditional distributions D1 | j′ = c′1 and D2 | j′ = c′2 greedily to minimise

Hamming distance. First suppose that c′1 6= c′2. It was pointed out in the analysis

above that if c′1 6= c′2 then c′1 = 2 and the resulting configuration is shown in

Figure 3.9. We make the following observations about the resulting conditional

distributions D1 | j′ = 2 and D2 | j′ = c′2.

• The colour 2 is not valid for j in either D1 | j′ = 2 or D2 | j′ = c′2.

• The colour 1 is not valid for j in distribution D1 | j′ = 2 but could be valid

for j in distribution D2 | j′ = c′2.

• The colour c′2 could be valid for j in distribution D1 | j′ = 2 but is not valid

for j in distribution D2 | j′ = c′2.

• For each c ∈ C\{1, 2, c′2} the colour c is valid for j in distribution D1 | j′ = 2

if and only if c is valid for j in distribution D2 | j′ = c′2.

These observations show that this case is a single-site disagreement sub prob-

lem. Furthermore there must be at least (q − 3) − (∆ − 2) = q −∆ − 1 colours

that are valid for j in both conditional distributions since j has at most ∆ − 2

neighbours other than i and j′. Finally, there is at most one colour which is

valid for j in one distribution but not in the other and since the coupling greedily

maximises Hamming distance this implies

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′j′ 6= y′j′) ≤

1

q −∆
.

Now suppose that the same colour c, say, is drawn for site j′ in both distribu-

tions during the first step of the coupling. Then the only site adjacent to i that

is coloured differently in the conditional distributions D1 | j′ = c and D2 | j′ = c

is site i, so using a similar reasoning to above we find

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′j′ = y′j′) ≤

1

q −∆
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Θk

i = 1/2

j j′
2

1

1

2

Figure 3.10. Case 4 (repeat of Figure 3.4). Both sites in Θk are adjacent to
i. One of the sites in Θk is adjacent to at least one site, other than i, coloured
1 and no sites that are coloured 2. Let this site be labeled j′. The other site
in Θk, labeled j, is adjacent to at least one site other than i coloured 2 and no
sites coloured 1.

and thus

ρk
i,j = max

(x,y)∈Si

{
Pr(x′,y′)∈Ψk(x,y)(x

′
j 6= y′j)

}

= max
(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′j′ 6= y′j′)Pr(x′,y′)∈Ψk(x,y)(x

′
j′ 6= y′j′)

+ Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′j′ = y′j′)Pr(x′,y′)∈Ψk(x,y)(x

′
j′ = y′j′)}

≤ max
(x,y)∈Si

{
1

q −∆
Pr(x′,y′)∈Ψk(x,y)(x

′
j′ 6= y′j′) +

1

q −∆
Pr(x′,y′)∈Ψk(x,y)(x

′
j′ = y′j′)

}

=
1

q −∆
max

(x,y)∈Si

{
Pr(x′,y′)∈Ψk(x,y)(x

′
j′ 6= y′j′) + Pr(x′,y′)∈Ψk(x,y)(x

′
j′ = y′j′)

}

=
1

q −∆

which completes the proof.

Details of case 4. (Repeated in Figure 3.10.) We assume without loss of

generality that d1 ≥ d2 and construct the coupling Ψk(x, y) of D1 and D2 as

follows. For each valid choice of the form c1c2 for D1 where c1 6= 1 and c2 6= 2

Lemma 36 guarantees that c1c2 is also valid for D2 so we construct Ψk(x, y) such

that

Pr(x′,y′)∈Ψk(x,y)(x
′ = y′ = c1c2) =

1

d1

.

This leaves the set Z1 = {c12 | c12 valid in D1} of valid choices for D1 and

Z2 = {1c2 | 1c2 valid in D2} ⊆ D2 for D2. Observe that z1 ≥ z2 where z1 and z2

denote the size of Z1 and Z2 respectively. Let Z1(t) denote the t-th element of

Z1 and similarly for Z2. Then for 1 ≤ t ≤ z2 let

Pr(x′,y′)∈Ψk(x,y)(x
′ = Z1(t), y

′ = Z2(t)) =
1

d1
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and for each pair z2 + 1 ≤ t ≤ z1 and h ∈ D2 let

Pr(x′,y′)∈Ψk(x,y)(x
′ = Z1(t), y

′ = h) =
1

d1d2

.

It is straightforward to verify that each valid colouring has the correct weight in

Ψk(x, y) so this completes the coupling.

Lemma 43. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E and (i, j′) ∈ E. If 1 is valid for j in D2, 1 is not valid for j′ in D2, 2 is valid

for j′ in D1, and 2 is not valid for j in D1 then

ρk
i,j ≤ ρk

i,j′ ≤
1

q −∆
.

Proof. This is case 4 of the coupling. Let s =
∑

c d2,j=c − d2,j=1 be the number

of valid choices for D2 other than choices of the form 1c2. Observe that d1 =

s + d1,j′=2 and note that d1,j′=2 ≥ d2,j=1 since we have assumed d1 ≥ d2 in the

construction of the coupling. At least one neighbour of j′, other than i, on the

boundary of Θk is coloured 1 in D1 and we get the following lower-bound on

d2,j=1 since all other neighbours of j′ may be assigned a different colour

q −∆ + 1 ≤ d2,j=1.

We obtain a lower bound on s using an argument similar to the one in the proof

of Lemma 42. Let J be the set of colours, excluding 1, that are valid for j in

D2 with the intention that s =
∑

c∈J d2,j=c. Now observe that there are exactly

d1,j′=2 colours c ∈ J for which d2,j=c > 0 and hence

s =
∑
c∈J

d2,j=c ≥ d1,j′=2 min
c′∈J

{d2,j=c′}.

We then use Lemma 40 (i), since 1 is not valid for j′ in D2, to obtain the bound

d2,j=1 − 1 ≤ d2,j=c′ for c′ ∈ J which gives the following lower bound on s

s ≥ d1,j′=2 min
c′∈J

{d2,j=c′} ≥ d1,j′=2 (d2,j=1 − 1) .

We now go on to bound the influence of site i on sites j and j′. Since 2 is not

valid for j in D1 the first d2,j=1 choices of the form c12 for D1 are matched with

some choice of the form 1c1 for D2 with probability 1/d1 resulting in a different

colour being assigned to both sites j and j′ in each distribution. Each of the

d1,j′=2 − d2,j=1 remaining valid choices for D1 is matched with each valid choice
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Θk

i = 1/2

j j′1 1

Figure 3.11. Case 5 (repeat of Figure 3.5). Both sites in Θk are adjacent to
i and at least one site, other than i coloured 1 (or 2). The labeling of the sites
in Θk is arbitrary.

for D2 with probability 1
d1d2

resulting in a disagreement at j′ (since 2 is not valid

for j′ in D2) and potentially also at j so ρk
i,j ≤ ρk

i,j′ . Hence the probability of

making a choice of the form c12 for D1

Pr(x′,y′)∈Ψk(x,y)(x
′
j′ = 2) =

d1,j′=2

d1

is an upper bound on the disagreement probabilities at both sites j and j′. Using

the lower bounds on s and d2,j=1 we have

ρk
i,j ≤ ρk

i,j′ ≤
d1,j′=2

d1

=
d1,j′=2

d1,j′=2 + s
≤ d1,j′=2

d1,j′=2 + (d2,j=1 − 1)d1,j′=2

≤ 1

q −∆

which completes the proof.

Details of case 5. (Repeated in Figure 3.11.) First observe that 1 is not

valid for neither j nor j′ so d1 = d2 +d1,j=2 +d1,j′=2 ≥ d2 by Lemma 36, since any

choice valid for D2 does not assign colour 2 to any site in Θk. Let Z1 and Z2 be

the sets of colourings valid for D1 and D2 respectively. We define the following

mutually exclusive subsets of Z1. Zj = {2c2 | 2c2 ∈ Z1}, Zj′ = {c12 | c12 ∈ Z1}
and Z = Z1 \ (Zj ∪ Zj′) = Z2. By construction, the union of these three subsets

is Z1 and note that the size of Zj is d1,j=2, the size of Zj′ is d1,j′=2 and the size of

Z is d2.

First we consider choices from Z for D1. For each choice h ∈ Z we have

h ∈ Z2 by construction of Z and so we use the identity coupling and let

Pr(x′,y′)∈Ψk(x,y)(x
′ = y′ = h) =

1

d1

.

We let the remainder of the coupling minimise Hamming distance. First consider

the choices for D1 in Zj. We construct Ψk(x, y) such that it minimises Hamming

distance and assigns probability 1/d1 to each choice for D1 in Zj whilst ensuring
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that for each choice g ∈ Z2 for D2

∑

h∈Zj

Pr(x′,y′)∈Ψk(x,y)(x
′ = h, y′ = g) =

d1,j=2

d1d2

.

Similarly we assign probability 1/d1 to each choice for D1 in Zj′ whilst also

requiring that for each choice g ∈ Z2 for D2

∑

h∈Zj′

Pr(x′,y′)∈Ψk(x,y)(x
′ = h, y′ = g) =

d1,j′=2

d1d2

.

To see that this ensures that the coupling is fair observe that each choice

h ∈ Z1 receives weight 1/d1 and each choice g ∈ Z2 weight

1

d1

+
d1,j=2

d1d2

+
d1,j′=2

d1d2

=
d2 + d1,j=2 + d1,j′=2

d1d2

=
1

d2

since d2 + d1,j=2 + d1,j′=2 = d1.

Remark. Note that a coupling satisfying these requirements always exists. We

will not give the detailed construction of Ψk(x, y) here, but in the subsequent

proof we will consider three cases. In the first two cases any coupling minimis-

ing Hamming distance will be sufficient to establish the required bounds on the

influence of i on j. In the final case we will need a detailed construction of the

coupling and so will provide it together with the proof for ease of reference.

Lemma 44. Let j and j′ be the endpoints of an edge Θk and suppose that (i, j) ∈
E and (i, j′) ∈ E. If 1 is not valid for j in D2 and 1 is not valid for j′ in D2 then

ρk
i,j ≤

1

q −∆ + 1
+

1

(q −∆ + 1)2
and ρk

i,j′ ≤
1

q −∆ + 1
+

1

(q −∆ + 1)2
.

Proof. This is case 5 of the coupling. We consider three separate cases. Firstly

suppose that 2 is not valid for either j or j′ in D1. Then the only valid choices

for D1 are of the form c1c2 where c1, c2 ∈ C \ {1, 2} and each such choice is also

valid in D2 as observed in the construction of the coupling. The same colouring

is selected for each distribution and hence

ρk
i,j = 0 and ρk

i,j′ = 0.

Next suppose that exactly one site in Θk, j′ say, is adjacent to some site

coloured 2 in D1. As in the previous case, each choice that is valid in both D1
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and D2 is matched using the identity matching and does not cause a discrepancy

at any site. However if a choice of the form 2c is made for D1 then site j will be

coloured differently in each colouring drawn from Ψk(x, y) and the colour at site

j′ may also be different so ρk
i,j′ ≤ ρk

i,j. Since all choices of the form c2 are not

valid for D1, making a choice of the form 2c for D1 is the only way to create a

disagreement at any site in the coupling and so

ρk
i,j′ ≤ ρk

i,j ≤
d1,j=2

d1

since d1,j=2 is the number of valid choices for D1 of the form 2c. We need to

establish a lower bound of d1 and observe that, for c valid for j in D1, d1,j=2−1 ≤
d1,j=c by Lemma 40 (ii) since 2 is not valid for j′ in D1. Let v be the number of

colours that are valid for site j in D1. Then v is lower bounded by q−∆ + 2 ≤ v

since at least two of the sites (including i) adjacent to j on the boundary of Θk

are coloured 1 in D1. Also, since at least one site (other than j and i) adjacent to

j′ is coloured 1 and another is coloured 2 in D1, we have q−∆+2 ≤ d1,j=2. Using

the lower bounds on v and d1,j=c we have, letting J denote the set of colours other

than 2 that are valid for j in D1,

d1 =
∑

c

d1,j=c = d1,j=2 +
∑
c∈J

d1,j=c

≥ d1,j=2 +
∑
c∈J

(d1,j=2 − 1)

≥ (v − 1)(d1,j=2 − 1) + d1,j=2

≥ (q −∆ + 2)d1,j=2 − (q −∆ + 1)

and hence using the lower bound on d1,j=2

1

ρk
i,j

≥ (q −∆ + 2)d1,j=2 − (q −∆ + 1)

d1,j=2

≥ q −∆ + 2− q −∆ + 1

q −∆ + 2
> q −∆ + 1

which gives the bounds required by the statement of the lemma.

Finally consider the case when the colour 2 is valid for both j and j′ in D1.

In this case we will provide details of the construction of Ψk(x, y) when required.

We begin by establishing some required bounds. Since 1 is not valid for j′ in D2

at least two neighbours of j′ (including i) must be coloured 1 in D1 and the same

applies to the neighbourhood of j, so we get the following lower bounds on d1,j=2

and d1,j′=2

q −∆ + 1 ≤ d1,j=2 and q −∆ + 1 ≤ d1,j′=2. (3.7)
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We also require bounds on d2,j=c and d2,j′=c for other colours c. Suppose that

the choice cc′ is valid in D2 then, since c, c′ ∈ C \ {1, 2}, cc′ is also valid for

D1 by Lemma 36. Furthermore, the choice c2 is valid in D1 (but not D2) so

d1,j=c − 1 = d2,j=c. Lemma 40 (ii) guarantees that d1,j=2 ≤ d1,j=c ≤ d1,j=2 + 1 so

d1,j=2 − 1 ≤ d2,j=c ≤ d1,j=2 (3.8)

for any c valid for j in D1. A symmetric argument gives

d1,j′=2 − 1 ≤ d2,j′=c ≤ d1,j′=c (3.9)

for any colour c valid for j′ in D2. Observe that exactly d1,j′=2 colours must be

valid for site j in D2 so using the stated bounds on d2,j=c we have the following

bounds on d2

d1,j′=2(d1,j=2 − 1) ≤ d2 ≤ d1,j′=2d1,j=2. (3.10)

We bound the probability of disagreements at sites j and j′ from choices made

for D1. From the coupling we again note that if a choice c1c2 where c1 6= 2 and

c2 6= 2 is made for D1 then there will be no disagreements at any site in Θk.

Consider making a valid choice of the form 2c for D1. Firstly, such a choice

for D1 will cause site j to be coloured differently in any pair of colourings drawn

from the coupling since 2 is not valid for j in D2. We construct Ψk(x, y) such

that the choice 2c for D1 is matched with a choice of the form c′c for D2 as long

as such a choice that has not exceeded it aggregated probability exists. Let J

denote the set of choices of the form c′c that are valid for D2 and note that the

size of J is d2,j′=c. The total aggregated weight of all choices of the form c′c for

D2 is

∑
g∈J

∑

h∈Zj

Pr(x′,y′)∈Ψk(x,y)(x
′ = h, y′ = g) =

∑
g∈J

d1,j=2

d1d2

=
d2,j′=cd1,j=2

d1d2

so as long as
1

d1

≤ d2,j′=cd1,j=2

d1d2

there is enough probability available in Z2 to match all the weight of the choice 2c

for D1 with a choice of the form c′c for D2 and hence assigning the same colour,

c, to site j′ in any pair of colourings drawn from the coupling. If there is not

enough unassigned weight available in Z2 then the coupling will match as much

probability as possible,
d2,j′=cd1,j=2

d1d2
, with choices of the form c′c for Z2 but the
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remaining probability will be matched with choices not assigning colour c to site

j′ in Z2. Hence we obtain the following probabilities conditioned on making a

choice of the form 2c for D1.

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′ = 2c) = 1

and

Pr(x′,y′)∈Ψk(x,y)(x
′
j′ 6= y′j′ | x′ = 2c) ≤ max

(
0, 1− d2,j′=cd1,j=2

d2

)

≤ max

(
0, 1− (d1,j′=2 − 1)d1,j=2

d1,j=2d1,j′=2

)

≤ 1

d1,j′=2

using the bounds on d2 and d1,j′=c from (3.10) and (3.9). Lastly observe that

there are d1,j=2 valid choices for D1 of the form 2c so

∑
c

Pr(x′,y′)∈Ψk(x,y)(x
′ = 2c) =

d1,j=2

d1

=
d1,j=2

d1,j=2 + d1,j′=2 + d2

.

The case when making a choice of the form c2 for D1 is symmetric to the case

just considered and yields the following conditional probabilities

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′ = c2) ≤ 1

d1,j=2

Pr(x′,y′)∈Ψk(x,y)(x
′
j′ 6= y′j′ | x′ = c2) = 1

and ∑
c

Pr(x′,y′)∈Ψk(x,y)(x
′ = c2) =

d1,j′=2

d1,j=2 + d1,j′=2 + d2

.
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Using the derived bounds on the conditional probabilities we find

ρk
i,j = max

(x,y)∈Si

{
Pr(x′,y′)∈Ψk(x,y)(x

′
j 6= y′j)

}

= max
(x,y)∈Si

{ ∑
c

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′ = 2c)Pr(x′,y′)∈Ψk(x,y)(x

′ = 2c)

+
∑

c

Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j | x′ = c2)Pr(x′,y′)∈Ψk(x,y)(x

′ = c2)

}

≤ max
(x,y)∈Si

{∑
c

[
Pr(x′,y′)∈Ψk(x,y)(x

′ = 2c) + Pr(x′,y′)∈Ψk(x,y)(x
′ = c2)

1

d1,j=2

]}

≤ max
(x,y)∈Si

{
d1,j=2

d1,j=2 + d1,j′=2 + d2

+
d1,j′=2

d1,j=2(d1,j=2 + d1,j′=2 + d2)

}
.

Now using the lower bound on d2 from (3.10) we have

ρk
i,j ≤ max

(x,y)∈Si

{
d1,j=2

d1,j=2(1 + d1,j′=2)
+

d1,j′=2

(d1,j=2)2(1 + d1,j′=2)

}

< max
(x,y)∈Si

{
1

1 + d1,j′=2

+
1

(d1,j=2)2

}

≤ 1

q −∆ + 2
+

1

(q −∆ + 1)2

from the lower bounds on d1,j=2 and d1,j′=2 from (3.7). By symmetry we also

have

ρk
i,j′ ≤

1

q −∆ + 2
+

1

(q −∆ + 1)2

which completes the proof.

This completes the cases of the coupling and we combine the obtained bounds

on ρk
i,j and ρk

i,j′ in the following corollary of Lemmas 41, 42, 43 and 44 which we

use in establishing the mixing time of Medge.

Corollary 45. Let j and j′ be the endpoints of an edge Θk. If (i, j) ∈ E and

(i, j′) ∈ E then

ρk
i,j ≤

1

q −∆
+

1

(q −∆)2
and ρk

i,j′ ≤
1

q −∆
+

1

(q −∆)2
.

Remark. Note that the bound in Corollary 45 is never tight. This bound could

be improved, however this would only allow us to beat the 2∆ bound for special

graphs since the bounds in Lemma 37 are tight.

We are now ready to present a proof of Theorem 16.
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Theorem 16. Let G be a graph with maximum vertex-degree ∆. Consider the

systematic scan Markov chain Medge on Ω. If q ≥ 2∆ then the mixing time of

Medge is

Mix(Medge, ε) ≤ ∆2 log(nε−1)

scans. If m = O(n) then this corresponds to O(n log n) block updates.

Proof. Let j and j′ be the endpoints of an edge represented by a (worst case) block

Θk. Let αj =
∑

i ρ
k
i,j be the influence on site j and αj′ =

∑
i ρ

k
i,j′ the influence on

j′. Then α = max(αj, αj′). Suppose that Θk is adjacent to t triangles, that is there

are t sites i1, . . . , it such that (i, j) ∈ E and (i, j′) ∈ E for each i ∈ {i1, . . . , it}.
Note that 0 ≤ t ≤ ∆− 1. There are at most ∆− 1− t sites adjacent to j that are

not adjacent to j′ and at most ∆− 1− t sites adjacent to j′ that are not adjacent

to j. From Lemma 37 a site adjacent only to j will emit an influence of at most
1

q−∆
on site j and Lemma 37 also guarantees that a site only adjacent to j′ can

emit an influence at most 1
(q−∆)2

on site j. Corollary 45 says that a site adjacent

to both j and j′ can emit an influence of at most 1
q−∆

+ 1
(q−∆)2

on site j and hence

αj ≤ t

(
1

q −∆
+

1

(q −∆)2

)
+ (∆− 1− t)

(
1

q −∆

)
+ (∆− 1− t)

(
1

(q −∆)2

)

=
∆− 1

q −∆
+

∆− 1

(q −∆)2

and similarly by considering the influence on site j′ we find that

αj′ ≤ ∆− 1

q −∆
+

∆− 1

(q −∆)2
.

Then using our assumption that q ≥ 2∆ we have

α = max(αj, αj′) ≤ ∆− 1

q −∆
+

∆− 1

(q −∆)2
≤ ∆− 1

∆
+

∆− 1

∆2
=

∆2 − 1

∆2
= 1− 1

∆2

and we obtain the stated bound on the mixing time by applying Theorem 14.

3.4 Application: Colouring a Tree

In this section we study our two systematic scan Markov chains for sampling from

the uniform distribution of proper q-colourings of a tree.
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3.4.1 A Single-site Systematic Scan

We begin with the single-site chain. Recall the definition of the systematic scan

Markov chainMtree where Θk is the “block” containing only site k for each k ∈ V .

P [k] is the transition matrix for performing a heat-bath move on block Θk and

the transition matrix of Mtree is
∏n

k=1 P [k]. We will prove Theorem 18, namely

that Mtree mixes in O(log n) scans whenever q > ∆ + 2
√

∆− 1. We will use

Theorem 14 to bound the mixing time and assign a weight wi =
(

q−∆
2(∆−1)

)di

= ωdi

to each site i ∈ V where di is the distance (number of edges) from i to the root.

As usual we extend the state space of the chains to Ω+ in order to use Theorem 14

in the analysis and remind the reader that an upper bound on the mixing time

of the extended chain is also an upper bound on the mixing time of the original

chain by Lemma 8.

We define the coupling Ψj(x, y) on pairs of colourings (x, y) ∈ Si by updating

block Θj (i.e. site j) using a heat-bath move. Assume without loss of generality

that xi = 1 and yi = 2 and let Z1 be the set of colours that are valid for j when

site i is coloured 1 and similarly Z2 the set of colours valid for site j when i is

coloured 2. We denote by z1 and z2 the sizes of Z1 and Z2 respectively. Firstly if

(i, j) 6∈ E then Z1 = Z2 and we use the identity coupling where the same colour

is assigned to j in each copy.

Now suppose that i and j are adjacent in G. Without loss of generality we can

assume that z1 ≥ z2. Every colour c ∈ Z1 ∩Z2 is valid for j in both distributions

so for each c ∈ Z1 ∩ Z2 we let

Pr(x′,y′)∈Ψj(x,y)(x
′
j = y′j = c) =

1

z1

.

If Z1 6= Z2 then Z1 \ Z2 = {2} since every other colour is either valid in both

distributions or in none and since z1 ≥ z2 there is at most one colour in the set

Z2 \ Z1. Firstly if Z2 \ Z1 = {1} then we let

Pr(x′,y′)∈Ψj(x,y)(x
′
j = 2, y′j = 1) =

1

z1

which completes the coupling since z1 = z2. Otherwise Z2 \ Z1 = ∅ and for each

c ∈ Z2 we let

Pr(x′,y′)∈Ψj(x,y)(x
′
j = 2, y′j = c) =

1

z1z2

which completes the coupling.

The following lemma upper bounds the probability of disagreement at site j
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in the coupling.

Lemma 46. Suppose (x, y) ∈ Si. Then

ρj
i,j ≤





1
q−∆

if (i, j) ∈ E

0 otherwise.

Proof. It is trivial to see that if i and j are not adjacent then j will not become

a disagreement since the same colour is used in both copies. Now consider the

coupling when i and j are adjacent. From the definition of the coupling the

probability of assigning a different colour to site j in each copy is at most

Pr(x′,y′)∈Ψj(x,y)(x
′
j 6= y′j) ≤

1

z1

.

This bound is only tight when 2 ∈ Z1 which means that no neighbours of j (other

than i) can be assigned colour 2. Site j has at most ∆− 1 neighbours other than

i, each of which potentially being assigned a different colour so there are at least

z1 ≥ q − (∆ − 1) − 1 = q − ∆ colours in Z1 and the statement of the lemma

follows.

We now use Lemma 46 to prove Theorem 18.

Theorem 18. Let G be a tree with maximum vertex degree ∆ ≥ 3 and height H.

Consider the systematic scan Markov chain Mtree on Ω. If q ≥ ∆+2
√

∆− 1 + δ

for δ > 0 then the mixing time of Mtree is

Mix(Mtree, ε) ≤ max

(
2(∆− 1 + δ)

δ
, 4

)(
H log

(
q −∆

2(∆− 1)

)
+ log(nε−1)

)

scans of the tree. Since log n ≤ H ≤ n, this corresponds to O(nH) updates.

Proof. We consider the influence on every site in the tree. First consider the root

of the tree r. The root (which has weight 1) has at most ∆ neighbours each of

which has weight q−∆
2(∆−1)

. Thus, using Lemma 46, the influence on the root αroot

is at most

αroot =
∑

i∈adj(r)

ρr
i,r

wi

wr

≤ ∆

q −∆

q −∆

2(∆− 1)
=

∆

2(∆− 1)
≤ 3

4

since ∆ ≥ 3.

Then consider a leaf l which has distance d to the root. A leaf has exactly

one neighbour, which has distance d− 1 to the root. Thus, using Lemma 46, the
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influence on a leaf αleaf is at most

αleaf =
∑

i∈adj(l)

ρl
i,l

wi

wl

≤ 1

q −∆

ωd−1

ωd
=

1

q −∆

2(∆− 1)

q −∆
<

2(∆− 1)

4(∆− 1)
=

1

2

since q > ∆ + 2
√

∆− 1.

Finally consider the influence on a general site j in the tree with distance d to

the root. Site j has one parent and at most ∆− 1 downward neighbours. Thus,

using the bounds from Lemma 46, the influence αj on a general site is at most

αj ≤ 1

q −∆

ωd−1

ωd
+

∆− 1

q −∆

ωd+1

ωd

=
1

q −∆

2(∆− 1)

q −∆
+

∆− 1

q −∆

q −∆

2(∆− 1)
≤ 1

2

(
∆− 1

∆− 1 + δ
+ 1

)

since q ≥ ∆ + 2
√

∆− 1 + δ. Rewriting the fraction we find

αj ≤ 1

2

(
1− δ

∆− 1 + δ
+ 1

)
= 1− δ

2(∆− 1 + δ)

and so

α = max(αroot, αleaf, αj) ≤ max

(
1− δ

2(∆− 1 + δ)
,
3

4

)
.

Finally observe that 0 ≤ di ≤ H and so

maxi wi

mini wi

≤
(

q −∆

2(∆− 1)

)H

which, using Theorem 14, completes the proof.

Remark. Note that when ∆ > 4
ε2 then ∆ + 2

√
∆− 1 < (1 + ε)∆ for ε > 0.

3.4.2 A Systematic Scan with Block Dynamics

We now go on to consider a systematic scan using block updates, in particular

we will will present a proof of Theorem 20 which improves the least number of

colours required for mixing of systematic scan on a tree for individual values of

∆. Recall the definition of the systematic scan MBlockTree where the set of blocks

Θ is defined as follows. Let the block Θk contain a site r along with all sites below

r in the tree that are at most h − 1 edges away from r. We call h the height of

the blocks and h is defined for each ∆ in Table 2.1 (repeated in Table 3.1). The

set of blocks Θ covers the sites of the tree and we construct Θ such that no block
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has height less than h. P [k] is the transition matrix for performing a heat-bath

move on block Θk and hence P [k](x, ·) is the uniform distribution on the set of

configurations that agree with x off Θk and where no edge incident to a site in Θk

is monochromatic (see Example 10). The transition matrix of the Markov chain

MBlockTree is
∏m

k=1 P [k] where m is the number of blocks.

We will use standard terminology when discussing the structure of the tree.

In particular will say that a site i is a descendant of a site j (or j is a predecessor

of i) if j is on the simple path from the root of the tree to i. We will call a site

j a child of a site i (or i is the parent of j) if i and j are adjacent and j is a

descendant of i. Finally Nk(j) = {i ∈ ∂Θk | i is a descendant of j} is the set of

descendants of j on the boundary of Θk.

The following lemma will provide upper bounds on the probability of disagree-

ment at any site in the block.

Lemma 47. Let (x, y) ∈ Si and suppose that i is adjacent to exactly one site in

a block Θk. Then there exists a coupling ψ of D1 = P [k](x, ·) and D2 = P [k](y, ·)
in which

Pr(x′,y′)∈ψ(x′j 6= y′j) ≤
1

(q −∆)d(i,j)

for all j ∈ Θk where d(i, j) is the edge distance from i to j.

Proof. We construct a coupling ψ of D1 and D2 based on the recursive coupling

defined in Goldberg et al. [33]. The following definitions are based on Figure 3.12.

Let R ⊆ V be a set of sites. Also let (X, X ′) be a pair of colourings of the sites

on the boundary of R (recall that the boundary of R is the set of sites that

are not included in R but are adjacent to some site in R) which use the same

colour for every site, except for one site u which is coloured l in X and l′ in X ′.

We then say that A(R, (X, X ′), u, (l, l′)) is a boundary pair. For a boundary pair

A(R, (X,X ′), u, (l, l′)) we let v ∈ R be the site in R that is adjacent to u. We think

of v as the root of R and note that we may need to turn the original tree “upside

down” in order to achieve this, however the meaning should be clear. We then

label the children (in R) of v as v1, . . . , vd and let T = {R1, . . . , Rd} be the set of

d subtrees of R that do not contain site v, that is for Rk ∈ T, 1 ≤ k ≤ d we define

Rk = {j ∈ R | j = vk or j is a descendant of vk}. Finally let D and D′ be the

uniform distributions on colourings of R consistent with the boundary colourings

X and X ′ respectively and let D(v) (respectively D′(v)) be the distribution on

the color at site v induced by D (respectively D′). Then ΨR is the recursive

coupling of D and D′ summarised as follows.
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u

v

R

. . .

. . .

RdR1 R2

v1 v2 vd

Figure 3.12. The region defined in a boundary pair and the construction of
the subtrees.

1. If l = l′ then the distributions D and D′ are the same and we use the identity

coupling, in which the same colouring is used in both copies. Otherwise we

couple D(v) and D′(v) greedily to maximise the probability of assigning the

same colour to site v in both distributions. If R consists of just one site

then this completes the coupling.

2. Suppose that the pair of colours (c, c′) were drawn for v in the coupling from

step 1. For each subtree R′ ∈ {R1, . . . Rd} we have a well defined boundary

pair A(R′, (XR′ , X
′
R′), v, (c, c′)) where XR′ is the boundary colouring X re-

stricted to the sites on the boundary of R′. For each pair of colours (c, c′)

and R′ ∈ T we recursively construct a coupling ΨR′(c, c
′) of the distributions

induced by the boundary pair A(R′, (XR′ , X
′
R′), v, (c, c′)).

Initially we let the boundary pair be A(R = Θk, (X = x, Y = y), u = i, (l =

xi, l
′ = yi)) and our coupling ψ of D1 and D2 is thus the recursive coupling ΨΘk

constructed above.

We prove the statement of the lemma by induction on d(i, j). The base case

is d(i, j) = 1. Applying Lemma 13 from Goldberg et al. [33] we can upper

bound the probability of x′j 6= y′j where (x′, y′) is drawn from ψ by assigning

the worst possible colouring to neighbours of j in Θk. Site j has at most ∆ − 1
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neighbours (other than i) so there are at least q − ∆ colours available for j in

both distributions. There is also at most one colour which is valid for j in x but

not in y (and vice versa) so

Pr(x′,y′)∈ψ(x′j 6= y′j) ≤
1

q −∆
.

Now let R′ be the subtree of Θk containing site j and let v be the site in Θk

adjacent to i. Assume that for d(v, j) = d(i, j)− 1

Pr(x′,y′)∈ΨR′ (c,c′)(x
′
j 6= y′j) ≤

1

(q −∆)d(v,j)
.

Now for (x, y) ∈ Si

Pr(x′,y′)∈ψ(x′j 6= y′j) = Pr(x′,y′)∈ΨΘk
(x′j 6= y′j)

=
∑

c,c′
c 6=c′

Pr(x′,y′)∈ΨR
(x′v = c, y′v = c′)Pr(x′,y′)∈ΨR′ (c,c′)(x

′
j 6= y′j)

≤ 1

(q −∆)d(i,j)−1

∑

c,c′
c 6=c′

Pr(x′,y′)∈ΨR
(x′v = c, y′v = c′)

≤ 1

(q −∆)d(i,j)

where the first inequality is the inductive hypothesis and the last is a consequence

of the base case.

We will now use the coupling from Lemma 47 to define the coupling Ψk(x, y)

of the distributions P [k](x, ·) and P [k](y, ·) for (x, y) ∈ Si. If i ∈ ∂Θk then it is

adjacent to exactly one site in Θk and we use the coupling from Lemma 47. If

i 6∈ ∂Θk then the distributions P [k](x, ·) and P [k](y, ·) are the same since we are

using heat-bath updates and so we can use the identity coupling. We summarise

the bounds on ρk
i,j in the following corollary of Lemma 47.

Corollary 48. Let d(i, j) denote the number of edges between i and j. Then for

j ∈ Θk

ρk
i,j ≤





1
(q−∆)d(i,j) if i ∈ ∂Θk

0 otherwise.

We are now ready to present a proof of Theorem 20.

Theorem 20. Let G be a tree with maximum vertex-degree ∆ and height H.

Consider the systematic scan Markov chain MBlockTree on Ω. If q ≥ f(∆) where
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f(∆) is specified in Table 2.1 (repeated in Table 3.1 on page 42) for small ∆ then

the mixing time of MBlockTree is

Mix(MBlockTree, ε) = O(H + log(ε−1))

scans of the tree. This corresponds to O(nH) block updates by the construction

of the set of blocks.

Proof. We will use Theorem 14 and assign a weight to each site i such that

wi = ξdi where di is the edge distance from i to the root and ξ is defined in

Table 3.1 for each ∆. For a block Θk and j ∈ Θk we let

αk,j =

∑
i wiρ

k
i,j

wj

denote the total weighted influence on site j when updating block Θk. For each

block Θk and each site j ∈ Θk we will upper bound αk,j and hence obtain an

upper bound on α = maxk maxj∈Θk
αk,j. Note from Corollary 48 that ρk

i,j = 0

when i ∈ Θk so we only need to bound ρk
i,j for i ∈ ∂Θk.

We first consider a block Θk that does not contain the root. The following

labels refer to Figure 3.13 in which a solid line is an edge and a dotted line denotes

the existence of a simple path between two sites. Let p ∈ ∂Θk be the predecessor

of all sites in Θk and dr − 1 be the distance from p to the root of the tree i.e.,

wp = ξdr−1. The site r ∈ Θk is a child of p. Now consider a site j ∈ Θk which

has distance d to r, hence wj = ξd+dr and d(j, p) = d + 1. From Corollary 48 it

then follows that the weighted influence of p on j when updating Θk is at most

ρk
p,j

wp

wj

≤ 1

(q −∆)d(j,p)

ξdr−1

ξdr+d
=

1

(q −∆)d+1

1

ξd+1
.

Now consider some site u ∈ Nk(j) which is on the boundary of Θk. Since

u ∈ Nk(j) it has weight wu = ξdr+h and so d(j, u) = h − d. Hence Corollary 48

says that the weighted influence of u on j is at most

ρk
u,j

wu

wj

≤ 1

(q −∆)d(j,u)

ξdr+h

ξdr+d
=

1

(q −∆)h−d
ξh−d.

Every site in Θk has at most ∆− 1 children so the number of sites in Nk(j) is at

most |Nk(j)| ≤ (∆ − 1)h−d and so, summing over all sites u ∈ Nk(j), the total
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p

r

v

v′ j′

j

b u

Level: dr + h − 1

Level: dr + d

Level: dr + d − l + 1

Level: dr

Level: dr − 1

Level: dr + h

Level: dr + d − l

Θk

Figure 3.13. A block in the tree. A solid line indicates an edge and a dotted
line the existence of a path.
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weighted influence on j from sites in Nk(j) when updating Θk is at most

∑

u∈Nk(j)

ρk
u,j

wu

wj

≤
∑

u∈Nk(j)

1

(q −∆)h−d
ξh−d ≤ (∆− 1)h−d

(q −∆)h−d
ξh−d.

The influence on j from sites in ∂Θk \ (Nk(j) ∪ {p}) will now be considered.

These are the sites on the boundary of Θk that are neither descendants or pre-

decessors of j. For each site v between j and p, we will bound the influence on

site j from sites b ∈ Nk(v) that contain v on the simple path between b and j.

We call this the influence on j via v. Referring to Figure 3.13 let v ∈ Θk be a

predecessor of j such that d(j, v) = l and observe that v is on level dr + d − l

in the tree and also that 1 ≤ l ≤ d since v is between p and j in the tree. If v

is not the parent of j (that is l 6= 1) then let j′ be the child of v which is also

a predecessor of j, that is j′ is on the simple path from v to j. If l = 1 we let

j′ = j. Also let v′ be any child of v other than j′ and observe that v′ and j′ are

both on level dr + d − l + 1. Now let b ∈ Nk(v
′) be a descendant of v′ and note

as before that wb = ξdr+h. The distance between b and v′ is

d(v′, b) = dr + h− (dr + d− l + 1) = h− d + l − 1

and so the number of descendants of v′ is at most |Nk(v
′)| ≤ (∆−1)h−d+l−1 since

each site has at most ∆ − 1 children. Site v has at most ∆ − 2 children other

than j′ so the number of sites on the boundary of Θk that are descendants of v

but not j′ is at most

|Nk(v) \Nk(j
′)| ≤ (∆− 2)|Nk(v

′)| ≤ (∆− 2)(∆− 1)h−d+l−1.

Finally the only simple path from b to j goes via v and the number of edges on

this path is

d(j, b) = d(j, v) + d(v, v′) + d(v′, b) = l + 1 + (h− d + l − 1) = h− d + 2l

so, using Corollary 48, the weighted influence of b on site j when updating block

Θk is at most

ρk
b,j

wb

wj

≤ ξdr+h

ξdr+d

1

(q −∆)d(j,b)
≤ ξh−d

(q −∆)h−d+2l

and summing over all descendants of v (other than descendants of j′) on the
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boundary of Θk we find that the influence on j via site v is at most

∑

b∈Nk(v)\Nk(j′)

ρk
b,j

wb

wj

≤
∑

b∈Nk(v)\Nk(j′)

ξh−d

(q −∆)h−d+2l
≤ ξh−d (∆− 2)(∆− 1)h−d+l−1

(q −∆)h−d+2l
.

(3.11)

Summing (3.11) over 1 ≤ l ≤ d gives an upper bound on the the total weighted

influence of sites in ∂Θk \ (Nk(j) ∪ {p}) on site j when updating Θk

∑

b∈∂Θk\(Nk(j)∪{p})
ρk

b,j

wb

wj

≤ ξh−d

d∑

l=1

(∆− 2)(∆− 1)h−d+l−1

(q −∆)h−d+2l

and adding the derived influences we find that the influence on site j (on level

dr + d) when updating Θk is at most

αk,j =
ρk

p,jwp

wj

+
∑

u∈Nk(j)

ρk
u,jwu

wj

+
∑

b∈∂Θk\(Nk(j)∪{p})

ρk
b,jwb

wj

≤ 1

(q −∆)d+1

1

ξd+1
+

(∆− 1)h−d

(q −∆)h−d
ξh−d + ξh−d

d∑

l=1

(∆− 2)(∆− 1)h−d+l−1

(q −∆)h−d+2l
.

Now consider the block containing the root of the tree, r. Let this be block

Θ0 and note that wr = 1. The only difference between Θ0 and any other block is

that r may have ∆ children. There are at most ∆(∆− 1)h−1 descendants of r in

∂Θ0, each of which has weight ξh so, using Corollary 48, the weighted influence

on the root is at most

α0,r =
∑

b∈N0(r)

ρ0
b,r

wb

wr

≤ ∆(∆− 1)h−1

(q −∆)h
ξh.

Now consider a site j on level d 6= 0 in block Θ0. As in the general case

considered above there is an influence of at most

∑

b∈N0(j)

ρ0
b,jwb

wj

≤ (∆− 1)h−d

(q −∆)h−d
ξh−d

on j from the sites in N0(j). Now consider the influence on site j from ∂Θ0\N0(j).

We first consider the influence on j via r, which is shown in Figure 3.14. Site r

has at most ∆− 1 children other than the site j′ which is the child of r that is on

the path from r to j. Each child of r has at most (∆− 1)h−1 descendants in ∂Θ0

and each such descendant has distance h + d to j. Hence, from Corollary 48, the
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r

j′

j

b Level: h

Level: d

Level: 0

Level: 1

Θ0

Figure 3.14. The influence on site j via the root. A line denotes an edge and
a dotted line the existence of a simple path.

influence on j via the root is at most

∑

b∈N0(r)\N0(j′)

ρ0
b,jwb

wj

≤
∑

b∈N0(r)\N0(j′)

ξh

ξd

1

(q −∆)d(b,j)
≤ (∆− 1)h

(q −∆)h+d
ξh−d.

Finally consider then influence on j from the remaining sites, which are in the

set R = ∂Θ0 \ (N0(j)∪ (N0(r) \N0(j
′))). Again consider a site v 6= r ∈ Θ0 where

v is a predecessor of j and d(j, v) = l. In this case we have 1 ≤ l ≤ d − 1 since

l = d is the root which has already been considered. This is the same situation as

arose in the general case considered above (see Figure 3.13) so (3.11) is an upper

bound on the influence on j via v and so summing (3.11) over 1 ≤ l ≤ d− 1 and

adding the other influences on j we obtain an upper bound on the total weighted

influence on site j when updating block Θ0

α0,j =
∑

b∈N0(j)

ρ0
b,jwb

wj

+
∑

b∈N0(r)\N0(j′)

ρ0
b,jwb

wj

+
∑

b∈R

ρ0
b,jwb

wj

≤ (∆− 1)h−d

(q −∆)h−d
ξh−d +

(∆− 1)h

(q −∆)h+d
ξh−d + ξh−d

d−1∑

l=1

(∆− 2)(∆− 1)h−d+l−1

(q −∆)h−d+2l
.

We require α < 1 which we obtain by satisfying the system of inequalities
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given by setting

αk,j < 1 (3.12)

for all blocks Θk and sites j ∈ Θk. In particular we need to find an assignment

to ξ and h that satisfies (3.12) given ∆ and q. Table 3.1 shows the least number

of colours f(∆) required for mixing for small ∆ along with a weight, ξ, that

satisfies the system of equations and the required height of the blocks, h. These

values were verified by checking the resulting 2h inequalities for each ∆ using

Mathematica; the source of the program is available at http://www.csc.liv.

ac.uk/~kasper/tree_scan/. The least number of colours required for mixing in

the single-site setting is also included in the table for comparison.

Finally observe that 0 ≤ di ≤ H and so

maxi wi

mini wi

≤
(

1

ξ

)H

which, by Theorem 14, yields a mixing time of

O(log(nξ−Hε−1)) = O(H log ξ−1 + log n + log ε−1)

= O(H + log ε−1)

since log n ≤ H ≤ n. This completes the proof.

3.5 A Comparison of Influence Parameters

We conclude this chapter with a discussion of our choice of influence parameter

α denoting the maximum influence on any site in the graph. As we will be

comparing the condition α < 1 to the corresponding, but unweighted, conditions

in Dyer et al. [18] and Weitz [55] we will let wi = 1 for each site and omit the

weights from now on. Recall our definitions of ρk
i,j and α

ρk
i,j = max

(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j)} and α = max

k
max
j∈Θk

∑
i∈V

ρk
i,j

where Ψk(x, y) is a coupling of the distributions P [k](x, ·) and P [k](y, ·). We have

previously stated that this is not the standard way to define the influence of i

on j since the coupling is directly included in the definition of ρk
i,j. It is worth

pointing out, however, that the corresponding definition in Weitz [55], which is

also for block dynamics, also makes explicit use of the coupling. In the single-site
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setting (Dyer et al. [18]) the influence of i on j, which we will denote ρ̂i,j, is

defined by

ρ̂i,j = max
(x,y)∈Si

dTV(µj(x), µj(y))

where µj(x) is the distribution on spins at site j induced by P [j](x, ·). The cor-

responding condition is α̂ = maxj

∑
i∈V ρ̂i,j < 1. We will show (Lemma 49) that

ρ̂i,j is a special case of ρj
i,j when Θj = {j} and Ψj(x, y) is a coupling minimising

the Hamming distance at site j. This will prove our claim that our condition

α < 1 is a generalisation of the single-site condition α̂ < 1.

Before demonstrating this fact we will discuss the need to include the coupling

in the definition of ρ in the block setting. Consider a pair of distinct sites j ∈ Θk

and j′ ∈ Θk and a pair of configurations (x, y) ∈ Si. When updating block Θk the

dynamics needs to draw a pair of new configurations (x′, y′) from the distributions

P [k](x, ·) and P [k](y, ·) as previously specified. Hence the interaction between j

and j′ has to be according to these distributions and so it is not possible to

consider the influence of i on j and the influence of i on j′ separately. In the

context of our definition of ρk
i,j this means that the influence of i on j and the

influence of i on j′ have to be defined using the same coupling. This is to say

that the coupling Ψk(x, y) can only depend on the block Θk and the initial pair

of configurations x and y, which in turn specify which site is labeled i. It is

important to note that the coupling can not depend on j, since otherwise having

a small influence on a site would not imply rapid mixing of systematic scan

(or indeed random update). The reason why we need to make this distinction

when working with block dynamics but not the single-site dynamics is that in

the single-site setting ρ̂i,j is the influence of site i on j when updating site j and

hence whichever coupling is used must implicitly depend on j. Since the coupling

can depend on j in the single-site case it is natural to use the “optimal” coupling,

which minimises the probability of having a discrepancy at site j. By definition

of total variation distance, the probability of having a discrepancy at site j under

the optimal coupling is dTV(µj(x), µj(y)) = ρ̂i,j (see e.g. Aldous [2]). We will

now show that ρ̂i,j is a special case of ρj
i,j in the way described above.

Lemma 49. Suppose that for each site j ∈ V we have a block Θj = {j} and that

Θ = {Θ1, . . . , Θn}. Also suppose that for each pair (x, y) ∈ Si of configurations

Ψj(x, y) is a coupling of P [j](x, ·) and P [j](y, ·) in which, for each c ∈ C,

Pr(x′,y′)∈Ψj(x,y)(x
′
j = y′j = c) = min(Prµj(x)(c), Prµj(y)(c))
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where Prµj(x)(c) is the probability of drawing colour c from distribution µj(x).

Then ρj
i,j = ρ̂i,j.

Proof. To see that the coupling Ψj(x, y) always exists it is sufficient to ob-

serve that Prx′∈P [j](x,·)(x
′
j = c) = Prµj(x)(c) and similarly Pry′∈P [j](y,·)(y

′
j = c) =

Prµj(y)(c) since j is the only site in Θj. The following sequence of equalities

establish the proof.

ρj
i,j = max

(x,y)∈Si

{
Pr(x′,y′)∈Ψj(x,y)(x

′
j 6= y′j)

}

= max
(x,y)∈Si

{
1−

∑
c∈C

(Pr(x′,y′)∈Ψj(x,y)(x
′
j = y′j = c))

}

= max
(x,y)∈Si

{
1−

∑
c∈C

min(Prµj(x)(c), Prµj(y)(c))

}

= max
(x,y)∈Si

{∑
c∈C

Prµj(x)(c)−min(Prµj(x)(c), Prµj(y)(c))

}

= max
(x,y)∈Si

{ ∑

c∈C+

Prµj(x)(c)− Prµj(y)(c)

}

= max
(x,y)∈Si

{
1

2

∑
c∈C

|Prµj(x)(c)− Prµj(y)(c)|
}

= max
(x,y)∈Si

dTV(µj(x), µj(y))

= ρ̂i,j

where C+ = {c | Prµj(x)(c) ≥ Prµj(y)(c)}.

We have previously pointed out that using influence parameters to bound the

mixing time of Markov chains is a technique that has been used in recent times. In

the context of systematic scan, Dyer et al. [18] have pointed out that the condition

“the influence on a site is small” implies rapid mixing of systematic scan in the

single-site setting. In particular they use the parameter αDGJ = maxj∈V

∑
i∈V ρ̂i,j

which denotes the influence on a site, and observe that if the condition αDGJ < 1

is satisfied then any systematic scan Markov chain mixes in O(log n) scans for

the given spin system. Our condition, namely α < 1, is then a generalisation of

the condition αDGJ < 1 to block dynamics. It is straightforward to verify that

if each block contains exactly one site and the coupling minimises the Hamming

distance then α = αDGJ by Lemma 49. Hence the single-site case is a special case

of our condition.
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Dyer et al. [18] also considered the parameter α′DGJ = maxi∈V

∑
j∈V ρ̂i,j de-

noting the influence of a site. This parameter comes from Föllmer’s [28] account

of Dobrushin’s proof presented by Simon [51]. The condition α′DGJ < 1 is similar

in nature to the condition used in path coupling and implies rapid mixing of a

random update Markov chain. They go on to show that if α′DGJ < 1 then it is pos-

sible to find a set of weights assigned to each site that ensures that αDGJ < 1 (in

a weighted setting similar to ours) and hence that systematic scan mixes rapidly.

They call their approach matrix balancing since in the single-site case it is conve-

nient to represent the influences that sites have on each other by an n×n matrix,

which we call R, in which Ri,j = ρ̂i,j. The parameter αDGJ then corresponds to

the largest column sum of R and α′DGJ is the largest row sum of R. This result

has since been improved by Hayes [36] who showed that it is sufficient to bound

the second largest eigenvalue (known as the operator norm) of R below one for

the same conclusions to hold. This result has in turn been further generalised by

Dyer et al. [19] who show that if one can bound any matrix norm below one then

both the random update and systematic scan Markov chains are rapidly mixing.

We now return to our discussion of block dynamics and Weitz’s conditions

for rapid mixing. We can use the definition of ρk
i,j to translate Weitz’s conditions

into notation that is easily comparable with our influence parameter α. Weitz’s

parameter α′W, which represents the influence of a site, is defined as

α′W = max
i∈V

m∑

k=1

∑
j∈Θk

ρk
i,j

b(i)

where B(j) is the set of block indices that contain site j and b(j) the size of this

set. Weitz’s parameter representing the influence on a site, which we denote by

αW, is defined as

αW = max
j∈V

∑

k∈B(j)

∑
i∈V

ρk
i,j

b(j)
.

Remark. Weitz’s parameters are actually slightly more general than we have

presented them here. In particular Weitz [55] states his conditions for general

metrics whereas we have implicitly used Hamming distance. Using Hamming

distance is also how the corresponding condition is defined in Dyer et al. [18] and

Simon [51] for the single-site case.

Weitz [55] proves that each of the conditions α′W < 1 and αW < 1 imply

spatial mixing (and hence that the Gibbs measure is unique which is what he

is concerned with). For completeness we present proofs that these conditions
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also imply rapid mixing of a random update Markov chain; these proofs of rapid

mixing are based on a proof outline in Weitz [55]. Recall that, for any set of

m blocks Θ, MRU is the random update Markov chain with transition matrix

(1/m)
∑m

k=1 P [k].

Theorem 50 (Weitz [55]). Suppose α′W = 1 − γ for some 0 < γ < 1. Then the

mixing time of MRU is

Mix(MRU, ε) ≤ m log(nε−1)

mini b(i)γ
.

Proof. We prove the claim using path coupling. Consider a pair of configurations

(x, y) ∈ Si that differ only on the colour at site i. Let (x′, y′) be the pair of

configurations obtained from one step of the coupling starting at (x, y). We will

prove that if α′W = 1− γ then

E [Ham(x′, y′)] ≤ 1− mini b(i)γ

m

which implies the statement of the theorem by Corollary 9.

Denote by A(i) the set of blocks indices that are adjacent to (but do not

include) site i and ai the size of this set, note that A(i)∩B(i) = ∅. Suppose that

a block Θk has been selected for update. There are three cases:

• k ∈ A(i). In this case site i is unchanged and each site j ∈ Θk becomes a

disagreement with probability at most ρk
i,j. This gives an expected Ham-

ming distance (conditioned on selecting block Θk) of 1 +
∑

j∈Θk
ρk

i,j using

linearity of expectation.

• k ∈ B(i). In this case i is updated and remains a disagreement with prob-

ability at most ρk
i,i. Again each site j 6= i ∈ Θk becomes a disagreement

with probability at most ρk
i,j. Using linearity of expectation this gives an

expected Hamming distance of
∑

j∈Θk
ρk

i,j after updating Θk.

• k 6∈ A(i) ∪ B(i). In this case i is unchanged so the (expected) Hamming

distance after updating Θk is 1.

Each block is updated with probability 1/m so using the expectations from the
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three cases we have

E [Ham(x′, y′)] ≤ 1

m

∑

k∈A(i)

(
1 +

∑
j∈Θk

ρk
i,j

)
+

1

m

∑

k∈B(i)

(∑
j∈Θk

ρk
i,j

)
+

1

m

∑

k 6∈A(i)∪B(i)

1

=
1

m


a(i) +

∑

k∈A(i)

∑
j∈Θk

ρk
i,j +

∑

k∈B(i)

∑
j∈Θk

ρk
i,j + m− a(i)− b(i)




≤ 1

m

(
m− b(i) +

∑

k

∑
j∈Θk

ρk
i,j

)
.

Now for all i note that
∑

k

∑
j∈Θk

ρk
i,j ≤ b(i)− b(i)γ (since α′W = 1− γ) so

max
i

E [Ham(x′, y′)] ≤ max
i

1

m
(m− b(i)γ) ≤ 1− mini b(i)γ

m

which completes the proof.

It is straightforward to obtain mixing of a random update Markov chain using

path coupling and the condition αW < 1.

Theorem 51 (Weitz [55]). Suppose that αW = 1− γ for some 0 < γ < 1. Then

the mixing time of MRU is

Mix(MRU, ε) ≤ m log(nε−1)

minj b(j)γ
.

We prove Theorem 51 using (a block generalisation of) the method and no-

tation from Section 7 of Dyer et al. [18]. First we use path coupling to specify a

coupling ψk(x, y) on block Θk of two configurations differing at arbitrarily many

sites. Consider pairs of configurations (x, y) that agree on Θk∪∂Θk, that is x = y

on Θk∪∂Θk. In this case ψk(x, y) is obtained by choosing the same configuration

for Θk in both copies.

Now consider coupled chains Xt, Yt and let the path coupling be given by

choosing the same block Θk in both chains and coupling the choice of spins

maximally as follows. Let Pt = (Xt = Z0, . . . , Z` = Yt on Θk ∪ ∂Θk) be a

sequence of configurations such that Ham(Zr−1, Zr) = 1 for 1 ≤ r ≤ `. (To ease

the notation we do not include as notation that both the states of the path as well

as the path length ` depend on t.) Now observe that the couplings ψk(Zr−1, Zr)

for 1 ≤ r ≤ ` are well defined in the sense that we have bounds on the resulting

variation distance in the form of our definition of ρ. The coupling ψk(Z`, Yt) is

defined above.
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We then construct the couping ψk(Xt, Yt) as follows. Initially choose a configu-

ration W0 from P [k](Xt, ·) which is the equivalent of taking one step of the Markov

chain starting at state Xt. Then inductively (for a step r) choose a configuration

Wr from the coupling ψk(Zr−1, Zr) conditioned on configuration Wr−1. The final

step is choosing a configuration W`+1 from the coupling ψk(Z`, Yt) conditioned on

W`. This is a standard path coupling construction.

Now, the initial states X0, Y0 have shortest path P0 and the length of P0 is

Ham(X0, Y0). Consider the evolution of this path at time t to Pt with length

` ≥ Ham(Xt, Yt). We do not optimise the path length at each time step, rather

just allow the path to evolve. For any edge (Zr−1, Zr) in Pt say that it is in Si

if (Zr−1, Zr) ∈ Si and let νt
i be the number of edges of Pt in Si. We prove the

following lemma which is an analogue of Lemma 3.3 of Weitz [55].

Lemma 52.

E
[
νt+1

j

] ≤
(

1− b(j)

m

)
E

[
νt

j

]
+

∑

k∈B(j)

∑
i

ρk
i,j

m
max

i
E

[
νt

i

]

Proof. Suppose Θk be the block selected for update. There are two cases. First

suppose that j 6∈ Θk. In this case site j does not get updated in either copy of

the chain and so for every existing edge in Sj an edge in Sj persists and no new

edges in Sj appear. There are m− b(j) such blocks. Second suppose that j ∈ Θk.

In this case each edge in Sj persists with at most probability ρk
j,j and for each

edge in Si (for i 6= j) a new edge in Sj is appears with probability at most ρk
i,j.

Hence adding up the edges in Sj we have

E
[
νt+1

j

] ≤
(

1− b(j)

m

)
E

[
νt

j

]
+

∑

k∈B(j)

∑
i

ρk
i,j

m
E

[
νt

i

]

≤
(

1− b(j)

m

)
E

[
νt

j

]
+

∑

k∈B(j)

∑
i

ρk
i,j

m
max

i
E

[
νt

i

]
.

We can now use Lemma 52 to prove Theorem 51.

Proof of Theorem 51. We need to bound maxj E
[
νt+1

j

]
. Using

∑
k∈B(j)

∑
i ρ

k
i,j ≤
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b(j)− b(j)γ for all j and Lemma 52 we have

max
j

E
[
νt+1

j

] ≤ max
j




(
1− b(j)

m

)
E

[
νt

j

]
+

∑

k∈B(j)

∑
i

ρk
i,j

m
max

i
E

[
νt

i

]



≤ max
j




(
1− b(j)

m

)
max

i
E

[
νt

i

]
+

∑

k∈B(j)

∑
i

ρk
i,j

m
max

i
E

[
νt

i

]



≤ max
i

E
[
νt

i

]
max

j

(
1 +

∑
k∈B(j)

∑
i ρ

k
i,j − b(j)

m

)

≤ max
i

E
[
νt

i

]
max

j

(
1− γb(j)

m

)

= max
i

E
[
νt

i

] (
1− minj b(j)γ

m

)
.

Initially maxi E [ν0
i ] ≤ 1 for all i since the we use the shortest path between states

X0 and Y0, so after t updates maxi E [νt
i ] ≤

(
1− minj b(j)γ

m

)t

which can be verified

by induction on t. Finally ` =
∑n

i=1 νt
i and so E [`] ≤ n maxi E [νt

i ]. Using this

bound

dTV(Xt, Yt) ≤ Pr(Xt 6= Yt) ≤ E [Ham(Xt, Yt)] ≤ E [`]

≤ n max
i

E
[
νt

i

] ≤ n

(
1− minj b(j)γ

m

)t

and the statement of the theorem follows.

Whilst Weitz’s results are not concerned with systematic scan they remain of

interest to us since they make use of block dynamics. It is not, however, possible

(at least in a general setting) to use Weitz’s condition in order to obtain rapid

mixing of systematic scan with block dynamics. An inspection of the definitions

of α and αW reveals that αW ≤ α and we now exhibit a spin system for which

αW < 1 and α = 1 but systematic scan does not mix rapidly. It is sufficient to

show that a specific systematic scan Markov chain does not mix for the given

spin system since it is in the nature of the Dobrushin condition that any mixing

result holds for any scan order.

Observation 53. There exists a spin system for which αW < 1 and α = 1 but

systematic scan does not mix.

Consider the following spin system. Let G be the n-vertex cycle and label the

sites 0, . . . , n− 1 and C be the set of q spins. Then Θi (which has an associated
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transition matrix P [i]) is the block containing site i and i + 1 mod n and it is

updated as follows:

1. The spin at site i is copied to site i + 1;

2. a spin is assigned to site i uniformly at random from the set of all spins.

The stationary distribution, π, of the spin system is the uniform distribution

on all configurations of G. Clearly P [i] satisfies property (1) of the update rule,

namely that only sites within the block may change during the update. To see

that π is invariant under each P [i] observe that site i+1 takes the spin of site i in

the original configuration and site i receives a spin drawn uniformly at random.

This ensures that each site has probability 1/q of having each spin and that they

are independent.

We define the ρ values for this spin system by using the following coupling.

Consider a block Θj for update. The spin at site j + 1 is deterministic in both

copies, and each copy selects the same colour for site j when drawing uniformly

at random from C. First suppose that site j is the discrepancy between two

configurations. Then, since the spin at j is copied to site j + 1, the spin of site

j + 1 becomes a disagreement in the coupling and hence ρj
j,j+1 = 1. The spin at

j is drawn uniformly at random from C in both copies and coupled perfectly so

ρj
j,j = 0. Now suppose that the two configurations differ at a site i 6= j. Then

ρj
i,j+1 = 0 since both configurations have the same colour for site j, and ρj

i,j = 0

since the spins at site j are coupled perfectly. Using the values of ρ we deduce

that

αW = max
j

∑

k∈B(j)

∑
i

ρk
i,j

b(j)
=

1

2

(
ρj−1

j−1,j +
∑

i6=j−1

ρj−1
i,j +

∑
i

ρj
i,j

)
=

1

2

and α = maxk maxj∈Θk

∑
i ρ

k
i,j = 1.

Let M→ be the systematic scan Markov chain that updates the blocks in

the order Θ0, Θ1, . . . , Θn−1. For each block Θi note that if a configuration y is

obtained from updating block Θi starting from x then yi+1 = xi. Hence when

performing the systematic scan, the spin of site 0 in the original configuration

moves around the ring ending at site n − 1 before the update of block Θn−1

moves it on to site 0. Hence if configuration x′ is obtained from one complete

scan starting from a configuration x we have x′0 = x0 and the systematic scan

Markov chain does not mix since site 0 will always be assigned the same spin

after each complete scan.
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Observation 54. The spin system from Observation 53 also gives

α′W = max
i

∑

k

∑
j∈Θk

ρk
i,j

b(i)
= 1/2.

Hence, since the given systematic scan does not mix, it is not possible to find any

set of weights that gives α < 1.

Remark. It is worth remarking that our observations above do not rule out

the possibility of a condition of the form maxk maxi

∑
j∈Θk

ρk
i,j < 1 implies that

α < 1 and hence that systematic scan mixes. It would however require finding a

general method for simultaneously balancing all k influence matrices which seems

a difficult task. Furthermore, in the single-site case much of the reason for the

interest in matrix balancing is the similarity between the condition α′DGJ < 1 and

the path coupling condition, where as in the block case we have shown that the

condition α′W < 1 (which is similar to path coupling) does not in general imply

rapid mixing of systematic scan.



Chapter 4

Sampling H-colourings of the

n-vertex Path

In this chapter we bound the mixing times of systematic scan Markov chains for

general H-colourings although at the expense of restricting the class of graphs

to paths. We will show that a systematic scan for sampling H-colourings of

the n-vertex path mixes in O(log n) scans for any fixed H which is a signifi-

cant improvement over the previous bound on the mixing time which was O(n5)

scans. Furthermore we show that for a slightly more restricted family of H (where

any two vertices are connected by a 2-edge path) systematic scan also mixes in

O(log n) scans for any scan order using a Dobrushin condition. For completeness

we make a small digression to show that a random update Markov chain mixes in

O(n log n) updates for any fixed H, improving the previous bound on the mixing

time from O(n5) updates.

4.1 Preliminaries

Many combinatorial problems are of interest to computer scientists both in their

own right and due to their natural applications to statistical physics. Such prob-

lems can often be studied by considering homomorphisms from the graph of inter-

est G to some fixed graph H. This is known as an H-colouring of G. The vertices

of H correspond to colours and the edges of H specify which colours are allowed

to be adjacent in an H-colouring of a graph. Let H = (C, EH) by any fixed graph.

Formally an H-colouring of a graph G = (V, E) is a function h : V → C such that

(h(v), h(u)) ∈ EH for all edges (v, u) ∈ E of G. Examples of H-colouring prob-

lems are proper q-colourings, independent set configurations, Widom-Rowlinson

configurations and the Beach model (see Chapter 2 for details).

90
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Consider a fixed (and connected) graph H = (C,EH) with maximum vertex-

degree ∆H . Let C = {1, . . . , q} be referred to as the set of colours. Also let

V = {1, . . . , n} be the set of sites of the n-vertex path and in particular let V1

be the set of sites with odd indices and V2 the set of sites with even indices. We

formally say that an H-colouring of the n-vertex path is a function h from V to

C such that (h(i), h(i + 1)) ∈ EH for all i ∈ V \ {n}. Let Ω+ be the set of all

configurations (all possible assignments of colours to the sites) of the n-vertex

path and Ω be the set of all H-colourings of the n-vertex path for the given

H. Recall that π is the uniform distribution on Ω. Also recall from previous

notation that if x ∈ Ω+ is a configuration and j ∈ V is a site then xj denotes

the colour assigned to j in configuration x. Furthermore, for any set Λ ⊆ V let

xΛ =
⋃

v∈Λ{xv} be the set of colours assigned to sites in Λ. For colours c, d ∈ C

and an integer l let D
(l)
c,d be the uniform distribution on H-colourings of the region

of consecutive sites L = {v1, . . . , vl} ⊂ V consistent with site v1 being adjacent

to a site i ∈ V \ L assigned colour c and site vl being adjacent to a site in V \ L

assigned colour d. Also let D
(l)
c,d(vj) be the distribution on the colour assigned to

site vj induced by D
(l)
c,d. Observe that for s < l

[
D

(l)
c,d | v1 = c1, . . . , vs = cs

]
= D

(l−s)
cs,d

where D
(l)
c,d | v1 = c1, . . . , vs = cs is the uniform distribution on H-colourings of

L conditioned on site v1 being assigned colour c1, v2 colour c2 and so on until vs

being assigned colour cs.

We remind the reader that due to a potential technical difficulty with ensuring

the ergodicity of the defined Markov chains we let Ω∼ be the state space of the

Markov chains in this chapter. Recall that if H is non-bipartite then Ω∼ = Ω.

Otherwise H is bipartite and we let Ω∼ be one of Ω1 and Ω2 where Ω1 = {x ∈
Ω : x1 ∈ C1} is the set of H-colourings of the n-vertex path where the first site of

the path is assigned a colour from C1 and similarly Ω2 = {x ∈ Ω : x1 ∈ C2}. The

sets C1 and C2 are the colour classes of H. We will show (Lemma 63) that the

constructed Markov chains are ergodic on either Ω1 or Ω2 in the bipartite case.

Now recall the definitions of the Markov chains we will study in this chapter.

Let l1 = d∆2
H log(∆2

H + 1)e + 1 and let Θ = {Θ1, . . . , Θm1} be any set of m1 =

dn/l1e blocks such that each block consists of exactly l1 consecutive sites and Θ

covers V . If P [k] is the transition matrix for performing a heat-bath move on

block Θk then MAnyOrder is the systematic scan Markov chain with state space

Ω∼ and transition matrix
∏m1

k=1 P [k]. The following bound on the mixing time of
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MAnyOrder holds for any order of the blocks, as is the case for all results obtained

by Dobrushin uniqueness.

Theorem 22. Let H be a fixed connected graph with maximum vertex-degree ∆H

and consider the systematic scan Markov chain MAnyOrder on the state space Ω∼.

Suppose that H is a graph in which every two sites are connected by a 2-edge path.

Then the mixing time of MAnyOrder is

Mix(MAnyOrder, ε) ≤ ∆2
H(∆2

H + 1) log(nε−1)

scans of the n-vertex path. This corresponds to O(n log n) block updates by the

construction of the set of blocks.

Remark. We again point out that several well known H-colouring problems

satisfy the condition of Theorem 22, for example Widom-Rowlinson configura-

tions, independent set configurations and proper q-colourings for q ≥ 3. The fact

that an H corresponding to 3-colourings satisfies the condition of the theorem

is particularly interesting since a lower bound of Ω(n2 log n) scans for single site

systematic scan on the path is proved in Dyer at al. [20]. This means that using

a simple single site coupling cannot be sufficient to establishing Theorem 22 for

any family of H including 3-colourings and hence we have to use block updates.

We go on to show that systematic scan mixes in O(log n) scans for any fixed

graph H by placing more strict restrictions on the construction of the blocks and

the order of the scan. Let s = 4q + 1, β = dlog(2sqs + 1)eqs and l2 = 2βs. For

any integer n consider the following set of m2 +1 = b2n/l2c blocks {Θ0, . . . , Θm2}
where

Θk = {kβs + 1, . . . , min((k + 2)βs, n)}.

We observe that the set of blocks covers V by construction. Furthermore note

that the size of Θm2 is at least βs and that the size of every other block is exactly

l2. Recall that MFixedOrder is the systematic scan Markov chain, with state space

Ω∼, which performs a heat-bath move on each block in the order Θ0, . . . , Θm2 .

The following theorem improves the mixing time from the corresponding result

in Dyer et al. [20] from O(n5) scans to O(log n) scans.

Theorem 24. Let H be any fixed connected graph and consider the system-

atic scan Markov chain MFixedOrder on the state space Ω∼. The mixing time

of MFixedOrder is

Mix(MFixedOrder, ε) ≤ (4sqs + 2) log(nε−1)
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scans of the n-vertex path. This corresponds to O(n log n) block updates by the

construction of the set of blocks.

Remark. We repeat our earlier remark that although Theorem 24 eclipses The-

orem 22 in the sense that it shows the existence of a systematic scan for a broader

family of H than Theorem 22 but with the same (asymptotic) mixing time, The-

orem 22 remains interesting in its own right since it applies to any order of the

scan. Following the proof of Theorem 22 we will discuss (Observation 60) the ob-

stacles one encounters when attempting to extend Theorem 22 to a larger family

of H using the same method of proof.

We conclude this chapter by bounding the mixing time of a random update

Markov chain for sampling H-colourings of the n-vertex path. Let γ = 2qs + 1

and define the following set of n + sγ − 1 blocks, which is constructed such that

each site is contained in exactly sγ blocks

Θk =




{k, . . . , min(k + sγ − 1, n)} when k ∈ {1, . . . , n}
{1, . . . , n + sγ − k} when k ∈ {n + 1, . . . , n + sγ − 1}.

Recall that MRND is the random update Markov chain, with state space Ω∼,

which at each step selects a block uniformly at random and performs a heat-

bath move on it. The following theorem improves the mixing time from the

corresponding result in Dyer et al. [20] from O(n5) updates to O(n log n) updates

(although as previously remarked the Markov chain presented by Dyer et al. is a

single-site chain).

Theorem 26. Let H be any fixed connected graph and consider the random up-

date Markov chain MRND on the state space Ω∼. The mixing time of MRND

is

Mix(MRND, ε) ≤ (n + 2sqs + s− 1) log(nε−1)

s

block updates.

For technical reasons we extend the state space of the Markov chains as follows.

Let Ω+
1 be the set of configurations where each site in V1 is assigned a colour from

C1 and each site in V2 is assigned a colour from C2 (recall that C1 and C2 are the

colour classes of H). Similarly, Ω+
2 is the set of configurations where each site in

V1 is assigned a colour from C2 and each site in V2 is assigned a colour from C1.

Formally

Ω+
1 = {x ∈ Ω+ : xV1 ⊆ C1, xV2 ⊆ C2}
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and

Ω+
2 = {x ∈ Ω+ : xV1 ⊆ C2, xV2 ⊆ C1}.

We then extend the state space of the Markov chains to Ω+
∼ where Ω+

∼ = Ω+ if H

is not bipartite and Ω+
∼ is one of Ω+

1 or Ω+
2 when H is bipartite. The extended

Markov chains make the same transitions as the original Markov chains on con-

figurations in Ω∼ and hence the extended chains do not make transitions from

configurations in Ω∼ to configurations outside Ω∼. The stationary distributions

of the extended chains are uniform over the configurations in Ω∼ and zero else-

where. This approach is standard and the mixing times of the original chains are

bounded above by the mixing time of corresponding chain on the extended state

space as shown in Lemma 8. For each site j ∈ V , let S∼j denote the set of pairs

(x, y) ∈ Ω+
∼ × Ω+

∼ of configurations that only differ on the colour assigned to site

j, that is xi = yi for all i 6= j. Also let S∼ =
⋃

j∈V S∼j be the set of all such pairs

of configurations. For completeness we show that S∼ connects the state space Ω+
∼

which is required in path coupling applications.

Lemma 55. The transitive closure of S∼ is the whole of Ω+
∼ × Ω+

∼.

Proof. Recall that S∼ =
⋃

i∈V S∼j where S∼j ⊆ Ω+
∼×Ω+

∼ is the set of pairs (x, y) ∈
Ω+
∼ × Ω+

∼ of configurations that differ only on the colour assigned to site j. To

establish the lemma it is sufficient, for any pair of configurations (x, y) ∈ Ω+
∼×Ω+

∼,

to construct a path x = z0, z1, . . . , zn = y such that (zj−1, zj) ∈ S∼j for each

j ∈ {1, . . . , n}. We define zj for j ∈ {1, . . . , n} as follows

zj
i =





yi for 1 ≤ i ≤ j

xi for j < i ≤ n.

Informally, configuration zj agrees with configuration y from site 1 to j and with

configuration x from site j + 1 to n.

By definition of the configurations z0, . . . , zn it follows that zj−1 and zj only

differ on the colour assigned to site j for each j ∈ {1, . . . , n}. Hence we only need

to check that zj ∈ Ω+
∼ for each j. If H is non-bipartite then Ω+

∼ = Ω+ so zj ∈ Ω+
∼

for each j ∈ {1, . . . , n}. If H is bipartite then Ω+
∼ is one of Ω+

1 or Ω+
2 . Suppose

without loss of generality that Ω+
∼ = Ω+

1 . Then for each j ∈ {1, . . . n} it holds by

definition of Ω+
1 that the colours xj and yj must be from the same colour class of

H and hence have zj ∈ Ω+
1 .



4.2: H-colourings of the Path for a Restricted Family of H 95

4.2 H-colourings of the Path for a Restricted

Family of H

This section contains the proof of Theorem 22, namely that MAnyOrder mixes in

O(log n) scans when H is a graph in which any two colours are connected via a

2-edge path. Observe that each H for which Theorem 22 is valid is non-bipartite

so we let Ω∼ = Ω and as a result S∼j = Sj throughout this section. Recall

that ∆H denotes the maximum vertex-degree of some fixed graph H and that

l1 = d∆2
H log(∆2

H + 1)e+ 1. The systematic scan Markov chain MAnyOrder on Ω∼
has transition matrix

∏m1

k=1 P [k] where P [k] is the transition matrix for performing

a heat-bath move on block Θk from a set of m1 = dn/l1e size l1 blocks covering

the n-vertex path. We will bound the mixing time of MAnyOrder by bounding the

influence on a site and begin by establishing some lemmas required to construct

the coupling needed in the proof of Theorem 22.

Lemma 56. Suppose that for any c1, c2 ∈ C there is a 2-edge path in H from

c1 to c2. Then for any c1, c2, d ∈ C and integer s′ ≥ 2 there exists a coupling

ψ(D
(s′)
c1,d, D

(s′)
c2,d) of D

(s′)
c1,d and D

(s′)
c2,d such that

(i) Pr
(x′,y′)∈ψ(D

(s′)
c1,d,D

(s′)
c2,d)

(x′v1
6= y′v1

) ≤ 1− 1
∆2

H
and

(ii) Pr
(x′,y′)∈ψ(D

(2)
c1,d,D

(2)
c2,d)

(x′v2
6= y′v2

) ≤ 1− 1
∆2

H
.

Proof. By the condition of the lemma there exists some c′ ∈ C adjacent to both

c1 and c2 in H. We prove the statement by considering two cases on s′.

First suppose that s′ = 2. By the condition of the lemma there is some colour

d′ adjacent to both c′ and d in H. There are at most ∆2
H valid H-colourings of the

sites v1, v2 in either of the distributions D
(2)
c1,d and D

(2)
c2,d, and hence the colouring

h, which assigns c′ to v1 and d′ to v2, has weight at least 1/∆2
H in both. We

construct a coupling ψ(D
(2)
c1,d, D

(2)
c2,d) such that

Pr
(x′,y′)∈ψ(D

(2)
c1,d,D

(2)
c2,d)

(x′ = y′ = h) ≥ 1

∆2
H

.

The rest of the coupling is arbitrary. This gives the following bounds on the

disagreement probabilities at v1 and v2

Pr
(x′,y′)∈ψ(D

(2)
c1,d,D

(2)
c2,d)

(x′v1
= y′v1

) ≥ Pr
(x′,y′)∈ψ(D

(2)
c1,d,D

(2)
c2,d)

(x′v1
= y′v1

= c′) ≥ 1

∆2
H
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which establishes (i) for s′ = 2 and

Pr
(x′,y′)∈ψ(D

(2)
c1,d,D

(2)
c2,d)

(x′v2
= y′v2

) ≥ Pr
(x′,y′)∈ψ(D

(2)
c1,d,D

(2)
c2,d)

(x′v2
= y′v2

= d′) ≥ 1

∆2
H

which establishes (ii).

Now suppose s′ > 2. Let adj(c) denote the set of colours adjacent to c in

H and nk the number of H-colourings on the sites v4, . . . , vs′ consistent with v3

being assigned colour k ∈ C and vs′ being adjacent to a site (outside the block)

coloured d. Also let pc,k be the number of H-colourings of v1, v2, v3 assigning

colour c to v1 and k to v3 without regard to other sites. Finally let zi be the

number of H-colourings with positive measure in D
(s′)
ci,d

and assume without loss

of generality that z1 ≥ z2.

There are at most ∆H colours available for each site in the block which gives

pc,k ≤ ∆H for any c, k ∈ C and hence

z1 =
∑

c∈adj(c1)

∑

k∈C

pc,knk ≤ ∆H

∑

c∈adj(c1)

∑

k∈C

nk ≤ ∆2
H

∑

k∈C

nk.

Now let H(c′) be the set of all H-colourings with positive measure in D
(s′)
c1,d that

assign colour c′ to site v1. Let h(c′) denote the size of this set. Now pc,k ≥ 1 for

any c, k ∈ C since there is a 2-edge path in H between any two colours and hence

h(c′) =
∑

k∈C

pc′,knk ≥
∑

k∈C

nk.

Observe that, for any h ∈ H(c′), h is at least as likely in D
(s′)
c2,d as in D

(s′)
c1,d since

we have assumed z1 ≥ z2 without loss of generality. We construct a coupling

ψ(D
(s′)
c1,d, D

(s′)
c2,d) of D

(s′)
c1,d and D

(s′)
c2,d in which for each h ∈ H(c′)

Pr
(x′,y′)∈ψ(D

(s′)
c1,d,D

(s′)
c2,d)

(x′ = y′ = h) ≥ 1

z1

.

The rest of the coupling is arbitrary. Hence

Pr
(x′,y′)∈ψ(D

(s′)
c1,d,D

(s′)
c2,d)

(x′v1
= y′v1

) ≥
∑

h∈H(c′)

Pr
(x′,y′)∈ψ(D

(s′)
c1,d,D

(s′)
c2,d)

(x′ = y′ = h)

≥ h(c′)
z1

≥ 1

∆2
H
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using the bounds on z1 and h(c′). This completes the proof.

We then use Lemma 56 to bound the disagreement probabilities at each site of

of the block when a pair of configurations are drawn from a recursively constructed

coupling.

Lemma 57. Suppose that for any c1, c2 ∈ C there is a 2-edge path in H from

c1 to c2. Then for all c1, c2, d ∈ C and integers l′ ≥ 2 there exists a coupling

Ψ(D
(l′)
c1,d, D

(l′)
c2,d) of D

(l′)
c1,d and D

(l′)
c2,d in which for j ∈ {1, . . . , l′ − 1}

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

) ≤
(

1− 1

∆2
H

)j

and

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vl
6= y′vl

) ≤
(

1− 1

∆2
H

)l′−1

.

Proof. We recursively construct a coupling Ψ(D
(l′)
c1,d, D

(l′)
c2,d) of D

(l′)
c1,d and D

(l′)
c2,d using

the method set out in Goldberg et al. [33] as follows. Firstly l′ = 2 is the base

case and we use the coupling from Lemma 56. For l′ ≥ 3 we construct a coupling

using the following two step process.

1. Couple D
(l′)
c1,d(v1) and D

(l′)
c2,d(v1) greedily to maximise the probability of as-

signing the same colour to site v1 in both distributions.

2. If the same colour c was chosen for v1 in both distributions in step 1 then

the set of valid H-colourings of the remaining sites are the same in both

distributions. Hence the conditional distributions D
(l′)
c1,d | v1 = c and D

(l′)
c2,d |

v1 = c are the same and the rest of the coupling is trivial. Otherwise, for all

pairs (c′1, c
′
2) of distinct colours recursively couple

[
D

(l′)
c1,d | v1 = c′1

]
= D

(l′−1)

c′1,d

and
[
D

(l′)
c2,d | v1 = c′2

]
= D

(l′−1)

c′2,d which is a sub problem of size l′ − 1.

This completes the coupling construction.

Now for j ∈ {1, . . . , l′ − 1} we prove by induction that

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

) ≤
(

1− 1

∆2
H

)j

. (4.1)

The base case, j = 1, follows from Lemma 56 since we couple the colour at site

v1 greedily to maximise the probability of agreement at v1 in the first step of the
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recursive coupling. Now suppose that (4.1) is true for j − 1 then

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

)

=
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj−1
= c′1, y

′
vj−1

= c′2)

× Pr
(x′,y′)∈Ψ(D

(l′)
c1,d|vj−1=c′1,D

(l′)
c2,d|vj−1=c′2)

(x′vj
6= y′vj

)

=
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj−1
= c′1, y

′
vj−1

= c′2)

× Pr
(x′,y′)∈Ψ(D

(l′−j+1)

c′1,d
,D

(l′−j+1)

c′2,d
)
(x′v1

6= y′v1
)

≤
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj−1
= c′1, y

′
vj−1

= c′2)
(

1− 1

∆2
H

)

≤
(

1− 1

∆2
H

)j

where the first inequality uses Lemma 56 and the second is the inductive hypoth-

esis.

The j = l′ case is similar.

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vl
6= y′vl

)

=
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vl′−2
= c′1, y

′
vl′−2

= c′2)

× Pr
(x′,y′)∈Ψ(D

(l′)
c1,d|vl′−2=c′1,D

(l′)
c2,d|vl′−2=c′2)

(x′vl′
6= y′vl′

)

=
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vl′−2
= c′1 ∧ y′vl′−2

= c′2)

× Pr
(x′,y′)∈Ψ(D

(2)

c′1,d
,D

(2)

c′2,d
)
(x′v2

6= y′v2
)

≤
(

1− 1

∆2
H

)l′−2 (
1− 1

∆2
H

)
=

(
1− 1

∆2
H

)l′−1

where the inequality uses Lemma 56 and (4.1).

We can then use the coupling constructed in Lemma 57 to construct a coupling

Ψk(x, y) of the distributions P [k](x, ·) and P [k](y, ·) for each pair of configurations

(x, y) ∈ Si. We summarise the disagreement probabilities in this coupling in the

following corollary (of Lemma 57).

Corollary 58. For any sites i, j ∈ V let d(i, j) denote the edge distance between

them and suppose that for any c, d ∈ C there exists a 2-edge path in H from c to
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d. Then

ρk
i,j ≤





(
1− 1

∆2
H

)d(i,j)

if i is on the boundary of Θk and d(i, j) < l1(
1− 1

∆2
H

)l1−1

if i is on the boundary of Θk and d(i, j) = l1

0 otherwise.

Proof. For each block Θk we need to specify a coupling Ψk(x, y) of the distribu-

tions P [k](x, ·) and P [k](y, ·) for each pair of configurations (x, y) ∈ Si and each

i ∈ V . Trivially if i ∈ Θk then the set of H-colourings with positive measure in

each distribution is the same and the same H-colouring can be chosen for each

distribution. The same holds when i is not on the boundary of Θk.

Suppose that i is on the boundary of Θk. Let the other site on the boundary

of Θk be coloured d in both x and y and hence P [k](x, ·) = D
(l1)
xi,d

and P [k](y, ·) =

D
(l1)
yi,d

. We then let Ψk(x, y) = Ψ(D
(l1)
xi,d

, D
(l1)
yi,d

) which is the coupling constructed in

Lemma 57 and gives the stated bounds on the disagreement probabilities.

Remark. It is important to note that, given distinct sites i and i′ both on the

boundary of Θk, we may use a different coupling for ρk
i,j and ρk

i′,j. This is the case

since, by definition of ρ, the coupling may depend on both the block and the two

initial configurations x and y (which in turn determine i). Since x and y only

differ on the colour assigned to site i, the coupling is defined to start from the

site in Θk immediately adjacent to i, and thus we can use a different coupling for

ρk
i,j and ρk

i′,j.

The following technical lemma is required in the proof of Theorem 22.

Lemma 59. For any 0 ≤ p ≤ 1 and j, l ∈ N where l ≥ 2j

pj + pl−j+1 ≥ pj+1 + pl−(j+1)+1.

Proof.

pj + pl−j+1 − pj+1 − pl−j = pj(1− p)− pl−j(1− p)

= (pj − pl−j)(1− p)

= pj(1− pl−2j)(1− p) ≥ 0

since 0 ≤ p ≤ 1 where the last equality uses the fact l ≥ 2j.

We are now ready to prove Theorem 22.
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i i′j

dj l1 − dj + 1

Figure 4.1. A block Θk of length l1.

Theorem 22. Let H be a fixed connected graph with maximum vertex-degree ∆H

and consider the systematic scan Markov chain MAnyOrder on the state space Ω∼.

Suppose that H is a graph in which every two sites are connected by a 2-edge path.

Then the mixing time of MAnyOrder is

Mix(MAnyOrder, ε) ≤ ∆2
H(∆2

H + 1) log(nε−1)

scans of the n-vertex path. This corresponds to O(n log n) block updates by the

construction of the set of blocks.

Proof. We will show that α < 1 and then use Theorem 14 to obtain the stated

bound on the mixing time. Consider some site j ∈ Θk and let dj denote the

number of edges between j and the nearest site i 6∈ Θk on the boundary of Θk.

Then the distance to the other site, i′, on the boundary of Θk is l1 − dj + 1 as

shown in Figure 4.1. Notice that dj ≤ dl1/2e. By Corollary 58 we have

ρk
i,j ≤

(
1− 1

∆2
H

)dj

and ρk
i′,j ≤ 1dj≥2

(
1− 1

∆2
H

)l1−dj+1

+ 1dj=1

(
1− 1

∆2
H

)l1−1

.

Now let

αj,k = ρk
i,j +ρk

i′,j ≤
(

1− 1

∆2
H

)dj

+1dj≥2

(
1− 1

∆2
H

)l1−dj+1

+1dj=1

(
1− 1

∆2
H

)l1−1

be the influence on site j. Then

α = max
k

max
j∈Θk

αj,k ≤ max

{
max

d l1
2 e≥dj≥2

{(
1− 1

∆2
H

)dj

+

(
1− 1

∆2
H

)l1−dj+1
}

,

(
1− 1

∆2
H

)
+

(
1− 1

∆2
H

)l1−1
}

.

Since dj ≤ dl1/2e the conditions of Lemma 59 are satisfied for 2 ≤ dj ≤ dl1/2e−1.

In particular taking dj = dl1/2e − 1, which satisfies the requirements, gives

(
1− 1

∆2
H

)dl1/2e−1

+

(
1− 1

∆2
H

)l1−dl1/2e+2

≥
(

1− 1

∆2
H

)dl1/2e
+

(
1− 1

∆2
H

)l1−dl1/2e+1
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and hence

max
d l1

2 e≥dj≥2

{(
1− 1

∆2
H

)dj

+

(
1− 1

∆2
H

)l1−dj+1
}
≤

(
1− 1

∆2
H

)2

+

(
1− 1

∆2
H

)l1−1

≤
(

1− 1

∆2
H

)
+

(
1− 1

∆2
H

)l1−1

which gives

α ≤
(

1− 1

∆2
H

)
+

(
1− 1

∆2
H

)l1−1

= 1− 1

∆2
H

+

(
1− 1

∆2
H

)d∆2
H log(∆2

H+1)e

< 1− 1

∆2
H

+
1

∆2
H + 1

= 1− 1

∆2
H(∆2

H + 1)

by substituting the definition of l1 and using the fact (1− 1/x)x < e−1 for x > 0.

The statement of the theorem now follows by Theorem 14.

We now take a moment to show that we are unable to use Theorem 14 to prove

rapid mixing for systematic scan on H-colourings of the n-vertex path for any

H that does not have a 2-edge path between all pairs of colours. This motivates

the use of path coupling (at the expense of enforcing a specific scan order) in the

subsequent section.

Observation 60. Let H = (C, EH) be some fixed and connected graph in which

there is no 2-edge path from c1 to c2 for some distinct c1, c2 ∈ C. Then for any

set of m blocks with associated transition matrices P [1] . . . P [m] and any coupling

Ψk(x, y) for 1 ≤ k ≤ m and (x, y) ∈ S∼i we have α ≥ 1 in the unweighted setting.

Proof. Recall that S∼i ⊆ Ω+
∼ × Ω+

∼ where Ω+
∼ is the set of all configurations (ex-

cept when H is bipartite in which case Ω+
∼ is one of Ω+

1 and Ω+
2 as described

earlier). Note in particular that any given configuration in Ω+
∼ need not be an H-

colouring of the n-vertex path. Also recall that ρk
i,j is the maximum probability

of disagreement at j when drawing from a coupling starting from two configura-

tions (x, y) ∈ S∼i . Let x be any proper H-colouring with xi = c1 and y be the

configuration with yj = xj for j 6= i and yi = c2 (If H is bipartite then c2 is

from the same colour class of H as c1). Note that y is not a proper H-colouring

as both edges (yi−1, yi) 6∈ EH and (yi, yi+1) 6∈ EH , otherwise the 2-edge paths
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(xi, xi+1 = yi+1, yi) and (xi, xi−1 = yi−1, yi) would exist in H. However, x and y

are both configurations in Ω+
∼ and they only differ at the colour of site i so (x, y)

is a valid pair in S∼i .

Now assume that α < 1. Fix some block Θk = {i + 1, . . . , i + l} of length l

and let P [k] be the transition matrix associated with Θk. Also let Ψk(x, y) be any

coupling of P [k](x, ·) and P [k](y, ·). Since α < 1 it must hold that ρk
i,j < 1 for each

j ∈ Θk. In particular ρk
i,i+1 = Pr(x′,y′)∈Ψk(x,y)(x

′
i+1 6= y′i+1) < 1 and so (letting

adj(c) denote the set of colours adjacent to c in H) the set adj(c1)∩ adj(c2) must

be non-empty since there is a positive probability of assigning the same colour

to site i + 1 in both distributions. However take any d ∈ adj(c1) ∩ adj(c2), then

(c1, d, c2) is a 2-edge path from c1 to c2 in H contradicting the restriction imposed

on H and hence α ≥ 1.

Remark. It remains to be seen if adding weights will allow a proof in the Do-

brushin setting for classes of H not containing 2-edge paths between all colours.

However, this can be done using path coupling as we will show in Section 4.3.

4.3 H-colourings of the Path for any H

Recall that MFixedOrder is the systematic scan on Ω∼ defined as follows. Let

s = 4q+1, β = dlog(2sqs+1)eqs and l2 = 2βs. ThenMFixedOrder is the systematic

scan which performs a heat-bath move on each of the m2 + 1 = b2n/l2c blocks in

the order Θ0, . . . , Θm2 where

Θk = {kβs + 1, . . . , min((k + 2)βs, n)}.

Note that the size of Θm2 is at least βs and that every other block is of size l2.

We will prove Theorem 24 which bounds the mixing time of MFixedOrder. Our

method of proof will be path coupling [5] and we begin by establishing some

lemmas required to define the coupling we will use in the proof of Theorem 24.

The constructions used in the following two lemmas are similar to the ones from

Lemma 27 in Dyer et al. [20].

Lemma 61. If H is not bipartite then for all c1, c2 ∈ C there is an s-edge path

in H from c1 to c2.

Proof. Let c ∈ C be some site on an odd-length cycle in H and let d1 be the

shortest edge-distance from c1 to c and d2 the shortest edge-distance from c to

c2. We construct the path as follows. Go from c1 to c using d1 edges. If d1 + d2



4.3: H-colourings of the Path for any H 103

is even then go around the cycle using an odd number q′ ≤ q of edges. Go from

c to c2 in d2 edges and observe that the constructed path is of odd length. Also

the length of the path is at most

d1 + d2 + q′ < 3q.

Finally go back and forth on the last edge on the path to make the total length

s.

Lemma 62. If H is bipartite with colour classes C1 and C2 then for all c1 ∈ C1

and c2 ∈ C2 there is an s-edge path in H from c1 to c2.

Proof. Go from c1 to c2 in at most q−1 edges and note that the number of edges

is odd. Then go back and forth on the last edge to make the total path length

equal to s.

For completeness we present a proof that MFixedOrder is ergodic on Ω∼.

Lemma 63. The Markov chain MFixedOrder is ergodic on Ω∼.

Proof. Let PFixedOrder be the transition matrix of MFixedOrder. We need to show

that MFixedOrder satisfies the following properties

• irreducible: P t
FixedOrder(x, y) > 0 for each pair (x, y) ∈ Ω∼ × Ω∼ and some

integer t > 0

• aperiodic: gcd{t : P t
FixedOrder(x, x) > 0} = 1 for each x ∈ Ω∼.

In an application of PFixedOrder a heat-bath move is made on each block in the order

Θ0, . . . , Θm. A heat-bath move on any block starting from an H-colouring has a

positive probability of self-loop which ensures aperiodicity of the chain. To see

that MFixedOrder is irreducible consider any pair of H-colourings (x, y) ∈ Ω∼×Ω∼.

We exhibit a sequence of H-colourings x = σ0, . . . , σm2+1 = y such that σk
j = σk+1

j

for each 0 ≤ k ≤ m2 and j ∈ V \ Θk. Using this sequence we observe that

PFixedOrder(x, y) > 0 since, for each 0 ≤ k ≤ m2, performing a heat-bath move

on block Θk to σk ∈ Ω∼ results in the H-colouring σk+1 ∈ Ω∼ with positive

probability. Recall that Θk = {kβs + 1, . . . , min((k + 2)βs, n)}. Then let σk be

given by

σk
i =





yi if 1 ≤ i ≤ min((k + 2)βs− s + 1, n)

xi if (k + 2)βs + 1 ≤ i ≤ n

p(i− (k + 2)βs + s− 1) if (k + 2)βs− s + 1 < i ≤ min((k + 2)βs, n)
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where p(j) is the j-th in the sequence of colours on the s-edge path in H between

p(0) = y(k+2)βs−s+1 and p(s) = x(k+2)βs+1 given by Lemmas 61 and 62 (since p(0)

and p(s) are in opposite colour classes of H in the bipartite case) respectively.

The following lemma is an analogue of Lemma 13 in Goldberg et al. [33].

Lemma 64. For any c1, c2, d ∈ C and positive integer s′ ≥ s such that both D
(s′)
c1,d

and D
(s′)
c2,d are non-empty there exists a coupling ψ(D

(s′)
c1,d, D

(s′)
c2,d) of D

(s′)
c1,d and D

(s′)
c2,d

such that

Pr
(x′,y′)∈ψ(D

(s′)
c1,d,D

(s′)
c2,d)

(x′vs
6= y′vs

) ≤ 1− 1

qs
.

Proof. For ease of notation let D1 denote D
(s′)
c1,d and D2 denote D

(s′)
c2,d. For s′ > s,

let nk be the number of H-colourings on vs+1, . . . , vs′ consistent with vs being

assigned colour k ∈ C and vs′ adjacent to a site (not in L) coloured d. If both

s′ = s and k is adjacent to d in H then nk = 1. If s′ = s but k is not adjacent to

d in H then nk = 0. The following definitions are for i ∈ {1, 2}. Let li(k) be the

number of H-colourings on v1, . . . , vs assigning colour k to site vs and consistent

with v1 being adjacent to a site (not in L) coloured ci. We also let Zi be the set

of H-colourings on L with positive measure in Di and zi be the size of this set.

Note that Di is the uniform distribution on Zi so for each x ∈ Zi PrDi
(x) = 1/zi.

For each k ∈ C let Zi(k) ⊆ Zi be the set of H-colourings with positive measure

in Di that assign colour k to site vs and let zi(k) be the size of this set. Note

that li(k)nk = zi(k) and
∑

k zi(k) = zi. Let C∗
i = {k ∈ C | zi(k) > 0} be the set

of valid colours for vs in Di and let C∗ = C∗
1 ∪ C∗

2 .

We define a coupling ψ of D1 and D2 as follows. Assume without loss

of generality that z1 ≥ z2. We create the following mutually exclusive sub-

sets of Zi. For each k ∈ C∗ let f(k) = min(z1(k), z2(k)) and let F1(k) =

{σ(k)(1), . . . , σ(k)(f(k))} ⊆ Z1(k) be any subset of H-colourings in Z1 assign-

ing the colour k to site vs. Also let F2(k) = {τ (k)(1), . . . , τ (k)(f(k))} ⊆ Z2(k) and

observe that F1(k) and F2(k) are of the same size. We then construct ψ such that

for each k ∈ C∗ and j ∈ {1, . . . , f(k)}

Pr(x′,y′)∈ψ(x′ = σ(k)(j), y′ = τ (k)(j)) =
1

z1

.

The rest of the coupling is arbitrary. For example let Ri = Zi \
(⋃

k∈C∗ Fi(k)
)

be

the set of (valid) H-colourings not selected in any of the above subsets of Zi and

the size of Ri be ri, observing that r1 ≥ r2. Let R′
1 = {σ(1), . . . , σ(r2)} ⊆ R1 and
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enumerate R2 such that R2 = {τ(1), . . . , τ(r2)}. Then for 1 ≤ j ≤ r2 let

Pr(x′,y′)∈ψ(x′ = σ(j), y′ = τ(j)) =
1

z1

.

Finish off the coupling by, for each pair (σ ∈ R1 \ R′
1, τ ∈ Z2) of H-colourings,

letting

Pr(x′,y′)∈ψ(x′ = σ, y′ = τ) =
1

z1z2

.

From the construction we can verify that the weight of each colouring x ∈ Z1 in

the coupling is 1/z1 and the weight of each colouring y ∈ Z2 is

1

z1

+
z1 − z2

z1z2

=
1

z2

since the size of R1\R′
1 is z1−z2. This completes the construction of the coupling.

We will require the following bounds on li(k) for each k ∈ C∗

1 ≤ li(k) ≤ qs. (4.2)

There are at most q colours available for each site in the block and hence at most

qs valid H-colourings of v1, . . . , vs which gives the upper bound. We establish the

lower bound by showing the existence of an s-edge path in H from both c1 and

c2 to any k ∈ C∗. Suppose that H is non-bipartite, then Lemma 61 guarantees

the existence of an s-edge path in H between any two colours in H, satisfying

our requirement.

Now suppose that H is bipartite with colour classes C1 and C2. Without loss

of generality suppose that c1 ∈ C1. Since both D1 and D2 are non-empty there

exists a (2s′+2)-edge path in H from c1 to c2 (via d) so c2 ∈ C1. Let k ∈ C∗ then

k ∈ C2 since there is an s-edge path in H from c1 to k and s is odd. Lemma 62

implies the existence of an s-edge path between each c ∈ C1 and each k ∈ C2

which establishes (4.2).
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Using (4.2) to see that nk ≤ f(k) ≤ qsnk for each k ∈ C∗ we have

Pr(x′,y′)∈ψ(x′vs
= y′vs

) =
∑

k∈C∗
Pr(x′,y′)∈ψ(x′vs

= y′vs
= k)

≥
∑

k∈C∗

f(k)

z1

≥
∑

k∈C∗

nk∑
k′∈C∗ l1(k′)nk′

≥
∑

k∈C∗

nk

qs
∑

k′∈C∗ nk′

=
1

qs

which completes the proof.

Lemma 65. For any c1, c2, d ∈ C and any positive integer l′ ≤ l2 such that both

D
(l′)
c1,d and D

(l′)
c2,d are non-empty there exists a coupling Ψ of D

(l′)
c1,d and D

(l′)
c2,d in

which for 1 ≤ j ≤ l′

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

) ≤
(

1− 1

qs

)b j
sc

.

Proof. We construct a coupling Ψ(D
(l′)
c1,d, D

(l′)
c2,d) of D

(l′)
c1,d and D

(l′)
c2,d using the fol-

lowing two step process, based on the recursive coupling in Goldberg et al. [33].

1. If l′ < s then couple the distributions any valid way which completes the

coupling. Otherwise, couple D
(l′)
c1,d(vs) and D

(l′)
c2,d(vs) greedily to maximise

the probability of assigning the same colour to site vs in both distributions.

Then, independently in each distribution, colour the sites v1, . . . , vs−1 con-

sistent with the uniform distribution on H-colourings. Note that it is pos-

sible to do this since we obtained the colour for site vs in each distribution

from the induced distribution on that site. If l′ = s this completes the

coupling.

2. If the same colour is assigned to vs then the remaining sites can be coloured

the same way in both distributions since the conditional distributions are

the same. Otherwise, for all pairs (c′1, c
′
2) of distinct colours the coupling

is completed by recursively constructing a coupling of
[
D

(l′)
c1,d | vs = c′1

]
=

D
(l′−s)

c′1,d and
[
D

(l′)
c2,d | vs = c′2

]
= D

(l′−s)

c′2,d .

This completes the coupling construction and we will prove by strong induction
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that for j ∈ {1, . . . , l′}

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

) ≤
(

1− 1

qs

)b j
sc

. (4.3)

Firstly the cases 1 ≤ j ≤ s − 1 are established by observing that bj/sc = 0

and the probability of disagreement at any site is at most 1. The case j = s is

established in Lemma 64. Now for s < j ≤ l′, suppose that (4.3) holds for all

positive integers less than j. Let S− = {s, 2s, . . . } and define the quantities j−
and aj by j− = max{x ∈ S− | x < j} = ajs observing that 1 ≤ j − j− ≤ s. Now

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

)

=
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj−
= c′1, y

′
vj−

= c′2)

× Pr
(x′,y′)∈Ψ(D

(l′)
c1,d|vj−=c′1,D

(l′)
c2,d|vj−=c′2)

(x′vj
6= y′vj

)

=
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj−
= c′1, y

′
vj−

= c′2)

× Pr
(x′,y′)∈Ψ(D

(l′−j−)

c′1,d
,D

(l′−j−)

c′2,d
)
(x′vj−j−

6= y′vj−j−
).

Observe that for any pair (c′1, c
′
2) of colours, if the probabilities of assigning c′1 to

vj− in D
(l′)
c1,d and c′2 to vj− in D

(l′)
c2,d are both non-zero then the distributions D

(l′−j−)

c′1,d

and D
(l′−j−)

c′2,d are both non-empty and hence, using Lemma 64 for l′ − j− ≥ s and

upper-bounding probability of disagreement by one otherwise, we get

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj
6= y′vj

)

≤
∑

c′1,c′2

Pr
(x′,y′)∈Ψ(D

(l′)
c1,d,D

(l′)
c2,d)

(x′vj−
= c′1, y

′
vj−

= c′2)
(
1j−j−=s(1− 1/qs) + 1j−j− 6=s

)

≤





(
1− 1

qs

)⌊
j−
s

⌋
+1

if j − j− = s
(
1− 1

qs

)⌊
j−
s

⌋

if j − j− 6= s

(4.4)

where last inequality is the inductive hypothesis since j− < j.

First consider the case j − j− 6= s in which we have j− + b = j for some

1 ≤ b ≤ s− 1. Then

⌊
j− − 1

s

⌋
=

⌊
ajs− 1

s

⌋
= aj − 1 < aj =

⌊ajs

s

⌋
=

⌊
j−
s

⌋
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and so for 1 ≤ b ≤ s− 1 ⌊
j− + b

s

⌋
=

⌊
j−
s

⌋

which implies that ⌊
j−
s

⌋
=

⌊
j

s

⌋
. (4.5)

Now suppose j − j− = s which substituting for j− gives

⌊
j−
s

⌋
=

⌊
j − s

s

⌋
=

⌊
j

s

⌋
− 1. (4.6)

Substituting (4.5) and (4.6) in (4.4) completes the proof.

We are now ready to define the coupling of the distributions of configurations

obtained from one complete scan of the Markov chainMFixedOrder. The coupling is

defined for pairs (x, y) ∈ S∼i . We will let (x′, y′) denote the pair of configurations

after one complete scan of MFixedOrder starting from (x, y) and let (xk, yk) be the

pair of configurations obtained by updating blocks Θ0, . . . , Θk−1 starting from

(x, y) = (x0, y0). Observe that (x′, y′) is obtained by updating block Θm2 from

the pair (xm2 , ym2).

The coupling for updating block Θk is defined as follows. Let i and i′ be the

sites on the boundary of Θk. The order of the scan will ensure that at most one

of the boundaries is a disagreement in (xk, yk), so we only need to define the

coupling for boundaries disagreeing on at most one end of Θk; suppose without

loss of generality that xk
i′ = yk

i′ = d for some d ∈ C. Firstly, if xk
i = yk

i then the set

of valid configurations arising from updating Θk is the same in both distributions

and we use the identity coupling.

Otherwise xk
i 6= yk

i . Suppose that k 6= m2. If H is not bipartite then Lemma 61

implies the existence of an l2-edge path between both xk
i and d and between yk

i

and d. If H is bipartite then xk
i and yk

i are in the same colour class but d is in

the opposite colour class of H since l2 is even. Lemma 62 implies the existence

of an l2-edge path between both xk
i and d and between yk

i and d. Hence both

distributions D
(l2)

xk
i ,d

and D
(l2)

yk
i ,d

are non-empty and we obtain (xk+1, yk+1) from

Ψ(D
(l2)

xk
i ,d

, D
(l2)

yk
i ,d

) which is the coupling constructed in Lemma 65. Note that if

k = m2 (i.e. the block is the last block which may not be of size l2) then both

distributions remain (trivially) non-empty. For ease of reference we state the

following corollary of Lemma 65.

Corollary 66. For any two sites v, u ∈ V let d(v, u) denote the edge distance

between them. For any block Θk let i and i′ be the sites on the boundary of Θk
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and suppose that xk
i′ = yk

i′ = d for some d ∈ C. Obtain (xk+1, yk+1) from the

above coupling. Then for any j ∈ Θk

Pr(xk+1
j 6= yk+1

j ) ≤




(
1− 1

qs

)b d(i,j)
s c

if xk
i 6= yk

i

0 otherwise.

Lemma 67. For any positive integers s, k, x

sk∑
j=1

(
1− 1

x

)b j
sc

< sx.

Proof.

sk∑
j=1

(
1− 1

x

)b j
sc

= (s−1)+s

k−1∑
j=1

(
1− 1

x

)j

+

(
1− 1

x

)k

< s
∑
j≥0

(
1− 1

x

)j

< sx.

The following lemma implies Theorem 24 by Corollary 9 (path coupling).

Lemma 68. Suppose that (x, y) ∈ S∼i and obtain (x′, y′) by one complete scan of

MFixedOrder. Then

E [Ham(x′, y′)] < 1− 1

4sqs + 2
.

Proof. First suppose that i is not on the boundary of any block and that Θb is

the first block containing i. In this case Corollary 66 gives us Pr(xb+1
i 6= yb+1

i ) = 0

and so Ham(x′, y′) = 0.

Now suppose that i is on the boundary of some block Θa. Recall the definition

of a block

Θk = {kβs + 1, . . . , min(kβs + 2βs, n)}.

If i is also contained in a block Θa′ with a′ < a then Corollary 66 gives Pr(xa′+1
i 6=

ya′+1
i ) = 0 and hence Ham(x′, y′) = 0.

If site i is not updated before Θa then i = (a+2)βs+1 as shown in Figure 4.2

and the disagreement percolates through the sites in Θa during the update of Θa.

Using Corollary 66 we have for j ∈ Θa

Pr(xa+1
j 6= ya+1

j ) ≤
(

1− 1

qs

)b i−j
s c

(4.7)

in particular, the sites in Θa\Θa+1 = {aβs+1, . . . (a+1)βs} will not get updated
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i

Θa

aβs + 1 (a + 2)βs

Figure 4.2. Site i is on the boundary of Θa and is not contained in any block
Θa′ with a′ < a.

again during the scan and hence for j ∈ Θa \Θa+1

Pr(x′j 6= y′j) ≤
(

1− 1

qs

)b (a+2)βs+1−j
s c

. (4.8)

Now consider the update of any block Θk from the pair of configurations

(xk, yk) where k > a. There cannot be a disagreement at site (k + 2)βs + 1 since

that site has not been updated (and it was not the initial disagreement) so the

only site on the boundary of Θk that could be a disagreement in (xk, yk) is kβs.

Hence from Corollary 66, for j ∈ {kβs + 1, . . . , min((k + 2)βs, n)}

Pr(xk+1
j 6= yk+1

j | xk
kβs 6= yk

kβs) ≤
(

1− 1

qs

)b j−kβs
s c

. (4.9)

We show by induction on k that for a + 1 ≤ k ≤ m2

Pr(xk
kβs 6= yk

kβs) ≤
(

1− 1

qs

)β(k−a)

. (4.10)

The base case, k = a+1 follows from (4.7) since j = kβs = (a+1)βs = aβs+βs ∈
Θa. Now suppose that (4.10) is true for k − 1. Then

Pr(xk
kβs 6= yk

kβs) = Pr(xk
kβs 6= yk

kβs | xk−1
(k−1)βs 6= yk−1

(k−1)βs) Pr(xk−1
(k−1)βs 6= yk−1

(k−1)βs)

≤
(

1− 1

qs

)b kβs−(k−1)βs
s c(

1− 1

qs

)β(k−a−1)

=

(
1− 1

qs

)β (
1− 1

qs

)β(k−a−1)

=

(
1− 1

qs

)β(k−a)

using the inductive hypothesis and (4.9).

Now for each site j ≥ (a + 1)βs + 1, that is site j is updated at least once

following block Θa, write j = kjβs + bj with 1 ≤ bj ≤ βs where kj denotes is the
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index of the block in which j is last updated.

Pr(x′j 6= y′j) = Pr(x
kj+1
j 6= y

kj+1
j )

≤ Pr(x
kj+1
j 6= y

kj+1
j | xkj

βkjs 6= y
kj

βkjs) Pr(x
kj

βkjs 6= y
kj

βkjs).

We can then apply (4.9) to the first component of the product since j ∈ {kjβs +

1, . . . , min(kjβs + 2βs, n)} and (4.10) to the second since a + 1 ≤ kj ≤ m2 to get

Pr(x′j 6= y′j) ≤
(

1− 1

qs

)⌊
bj
s

⌋ (
1− 1

qs

)β(kj−a)

.

Then, using linearity of expectation and (4.8), we have

E [Ham(x′, y′)] =
∑

j

Pr(x′j 6= y′j)

=
∑

j∈Θa\Θa+1

Pr(x′j 6= y′j) +
∑

j∈⋃
k≥a+1 Θk

Pr(x′j 6= y′j)

≤
(a+1)βs∑

j=asβ+1

(
1− 1

qs

)b (a+2)βs+1−j
s c

+

m2∑

kj=a+1

βs∑

bj=1

(
1− 1

qs

)⌊
bj
s

⌋ (
1− 1

qs

)β(kj−a)

=

βs∑
r=1

(
1− 1

qs

)bβs+r
s c

+

m2∑

kj=a+1

(
1− 1

qs

)β(kj−a) βs∑

bj=1

(
1− 1

qs

)⌊
bj
s

⌋

<

(
1− 1

qs

)β βs∑
r=1

(
1− 1

qs

)b r
sc

+
∑
t≥1

((
1− 1

qs

)β
)t βs∑

bj=1

(
1− 1

qs

)⌊
bj
s

⌋

<

(
1− 1

qs

)β

sqs +

(
1− 1

qs

)β

sqs

1−
(
1− 1

qs

)β

where the last inequality uses Lemma 67 and the sum of a geometric progression.

Substituting the definition of β and using the fact (1− 1/x)x < e−1 for x > 0 we
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get

E [Ham(x′, y′)] <

(
1− 1

qs

)dlog(2sqs+1)eqs

sqs +

(
1− 1

qs

)dlog(2sqs+1)eqs

sqs

1−
(
1− 1

qs

)dlog(2sqs+1)eqs

<
sqs

edlog(2sqs+1)e +
sqs

edlog(2sqs+1)e(1− e−dlog(2sqs+1)e)

=
sqs

edlog(2sqs+1)e +
sqs

edlog(2sqs+1)e − 1

≤ sqs

2sqs + 1
+

sqs

2sqs

= 1− 1

4sqs + 2

which completes the proof.

4.4 H-colourings of the Path with a Random

Update Markov Chain

Recall that the random update Markov chain MRND on Ω∼ is defined as follows.

We again let s = 4q +1 and define γ = 2qs +1. We then define a set of n+ sγ−1

blocks of size at most sγ as follows

Θk =




{k, . . . , min(k + sγ − 1, n)} when k ∈ {1, . . . , n}
{1, . . . , n + sγ − k} when k ∈ {n + 1, . . . , n + sγ − 1}.

By construction of the set of blocks each site is adjacent to at most two blocks

and furthermore each site is contained in exactly sγ blocks. One step of MRND

consists of selecting a block uniformly at random and performing a heat-bath

update on it. We will prove (using path coupling) Theorem 26 namely that

MRND mixes in O(n log n) updates for any H.

We begin by defining the required coupling. For a pair of configurations

(x, y) ∈ S∼i we obtain the pair (x′, y′) by one step of MRND. That is we select

a block uniformly at random and perform a heat bath move on that block. We

can again use Lemma 65 from Section 4.3 to construct the required coupling for

updating block Θk since the definition of s is the same in both Markov chains.

If i is not on the boundary of Θk then the sets of valid H-colourings of Θk are

the same in both distributions and we use the identity coupling. If i is on the

boundary of Θk then we let the other site on the boundary be coloured d in
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both x and y. We then obtain (x′, y′) from Ψ(D
(sγ)
xi,d

, D
(sγ)
yi,d

) which is the coupling

constructed in Lemma 65. The disagreement probabilities are summarised in the

following corollary of Lemma 65.

Corollary 69. For any two sites v, u ∈ V let d(v, u) denote the edge distance

between them. Suppose that a block Θk has been selected to be updated. For any

pair (x, y) ∈ S∼i obtain (x′, y′) from the above coupling. Then for any j ∈ Θk

Pr(x′j 6= y′j) ≤




(
1− 1

qs

)b d(i,j)
s c

if i is on the boundary of Θk

0 otherwise.

The following lemma implies Theorem 26 by Corollary 9 (path coupling).

Lemma 70. Suppose that (x, y) ∈ S∼i and obtain (x′, y′) by one step of MRND.

Then

E [Ham(x′, y′)] < 1− s

n + 2sqs + s− 1
.

Proof. There are sγ blocks containing site i and if such a block is selected then

Ham(x′, y′) = 0. There are at most 2 blocks adjacent to site i and if such a

block is selected then the discrepancy percolates in the block according to the

probabilities stated in Corollary 69. This leaves n+sγ−1−sγ−2 = n−3 blocks

that leave the Hamming distance unchanged. Hence, using Lemma 67, we have

E [Ham(x′, y′)] ≤ 2

n + sγ − 1

(
1 +

γs∑
j=1

(
1− 1

qs

)b j
sc)

+
n− 3

n + sγ − 1

<
n− 1

n + sγ − 1
+

2sqs

n + sγ − 1

=
2sqs + n− 1

2sqs + n− 1 + s
= 1− s

2sqs + n− 1 + s

by substituting the definition of γ.



Chapter 5

Sampling 7-colourings of the Grid

In this chapter we will be concerned with sampling from the uniform distribution

on the set of proper 7-colourings of a finite-size rectangular grid using a systematic

scan Markov chain. Recall from a previous chapter that proper q-colourings of the

grid correspond to the zero-temperature anti-ferromagnetic q-state Potts model

on the square lattice, a model of significant importance in statistical physics. The

systematic scan Markov chain that we present cycles through blocks consisting

of 2×2 sub-grids and performs heat-bath updates on them. We give a computer-

assisted proof that this systematic scan Markov chain mixes in O(log n) scans,

where n is the size of the rectangular sub-grid. We make use of a heuristic to

compute required couplings for the updates of the 2×2 sub-grids. This is the first

time the mixing time of a systematic scan Markov chain on the grid has been

shown to mix for less than 8 colours, a result which is implied by Theorem 16.

Finally we also give partial results that underline the challenges of proving rapid

mixing of a systematic scan Markov chain for sampling 6-colourings of the grid

by considering 2×3 and 3×3 sub-grids. We give lower bounds on the appropriate

influence parameter that imply that the proof technique we employ does not

imply rapid mixing of systematic scan for 6-colourings of the grid when using

2×2, 2×3 and 3×3 sub-grids.

5.1 Preliminaries

We present a computer-assisted proof that a systematic scan Markov chain mixes

rapidly when considering 7-colourings of the grid. We will bound the influence on

a site, which we have previously shown implies rapid mixing of systematic scan, by

using a heuristic to mechanically construct sufficiently good couplings of proper

colourings of a 2×2 sub-grid. We will hence use a heuristic based computation

114
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in order to establish a rigorous result about the mixing time of a systematic scan

Markov chain. Throughout this chapter we let the weights assigned to the sites

of the underlying graph be uniform and hence omit them.

Let G = (V, E) be a finite rectangular grid with toroidal boundary conditions.

Working on the torus is common practice as it avoids treating several technicali-

ties regarding the sites on the boundary of a finite grid as special cases and hence

lets us present the proof in a more “clean” way. We point out however that these

technicalities are straightforward to deal with. Let Ω be the set of all proper

7-colourings of G and π be the uniform distribution on Ω. Recall that if x ∈ Ω+

is a configuration and j ∈ V is a site then xj denotes the colour assigned to site j

in configuration x. Furthermore, for a subset of sites Λ ⊆ V and a configuration

x ∈ Ω+ we let xΛ denote the colouring of the sites in Λ under x. Recall the

definition of the Markov chain Mgrid. Let Θ = {Θ1, . . . , Θm} be a set of m blocks

such that each block Θk ⊆ V is a 2×2 sub-grid that covers V . For each block Θk,

P [k] is the transition matrix for performing a heat-bath move on Θk. Then Mgrid

is the systematic scan Markov chain with state space Ω and transition matrix

Pgrid =
∏m

k=1 P [k]. We will prove Theorem 28 which is the following bound on the

mixing time of Mgrid.

Theorem 28. Let G be a finite and rectangular piece of the infinite square lattice.

Consider the systematic scan Markov chain Mgrid on Ω. The mixing time of

Mgrid is

Mix(Mgrid, ε) ≤ 63 log(nε−1)

scans of the grid. This corresponds to O(n log n) block updates since each block

is of size 4.

As usual we extend the state space of the chain to Ω+ in order to make use

of Theorem 14 in the analysis. Lemma 8 implies that the derived bound on the

mixing time of the extended chain is also an upper bound on the mixing time of

Mgrid. Recall from Chapter 2 that ∂Θk is the boundary of Θk, namely the set of

sites adjacent to, but not included in, Θk. Note from our previous definitions that

x∂Θk
denotes the colouring of the boundary of Θk under a configuration x ∈ Ω+.

We will refer to x∂Θk
as a boundary colouring. Finally we say that a 7-colouring

of the 2×2 sub-grid Θk agrees with a boundary colouring x∂Θk
if (1) no adjacent

sites in Θk are assigned the same colour and (2) each site j ∈ Θk is assigned a

colour that is different to the colours of all boundary sites adjacent to j.
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5.2 Bounding the Mixing Time of Systematic

Scan

This section contains a proof of Theorem 28 although the proof of a crucial lemma,

which requires computer-assistance, is deferred to Section 5.3. We will bound the

mixing time of Mgrid by bounding the maximum influence on a site, which as

usual we denote by α. If α is sufficiently small then Theorem 14 implies that

Mgrid mixes in O(log n) scans regardless of the order of the blocks.

In order to upper bound α we are required to upper bound the probability of

a discrepancy at each site j ∈ Θk under a coupling Ψk(x, y) of the distributions

P [k](x, ·) and P [k](y, ·) for any pair of configurations (x, y) ∈ Si that only differ

at the colour of site i. Our main task is hence to specify a coupling Ψk(x, y) of

P [k](x, ·) and P [k](y, ·) for each pair of configurations (x, y) ∈ Si and upper bound

the probability of assigning a different colour to each site in a pair of colourings

drawn from that coupling.

Consider any block Θk and any pair of colourings (x, y) ∈ Si that differ

only on the colour assigned to some site i. Observe that the distribution on

valid configurations for Θk induced by P [k](x, ·) only depends on the boundary

colouring x∂Θk
. If i 6∈ ∂Θk then the distributions on the configurations for Θk

induced by P [k](x, ·) and P [k](y, ·) respectively, are the same and we let Ψk(x, y)

be the coupling in which any pair of configurations drawn from Ψk(x, y) agree on

Θk. That is, if the pair (x′, y′) of configurations are drawn from Ψk(x, y) then

x′ = x off Θk, y′ = y off Θk and x′ = y′ on Θk. This gives ρk
i,j = 0 for any i 6∈ ∂Θk

and j ∈ Θk.

We now need to construct Ψk(x, y) for the case when i ∈ ∂Θk. For ease of

reference we let pj(Ψk(x, y)) = Pr(x′,y′)∈Ψk(x,y)(x
′
j 6= y′j) denote the probability of

a disagreement at site j in a pair of configurations drawn from Ψk(x, y). Note

that ρk
i,j = max(x,y)∈Si

{pj(Ψk(x, y))}. For each j ∈ Θk we need pj(Ψk(x, y)) to be

sufficiently small in order to avoid ρk
i,j being too big. If the ρk

i,j-values are too big

the parameter α will be too big (that is greater than one) and we cannot make

use of Theorem 14 to show rapid mixing. Constructing Ψk(x, y) by hand such

that pj(Ψk(x, y)) is sufficiently small is a difficult task. It is, however, straight

forward to mechanically determine which configurations have positive measure in

the distributions P [k](x, ·) and P [k](y, ·) for a given pair of boundary colourings

x∂Θk
and y∂Θk

. It is important to observe from the definition of ρk
i,j that Ψk(x, y)

is a function of x and y (and hence also of i), but that the coupling construction

cannot depend on site j (see Section 3.5 of Chapter 3 for a more detailed discussion
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Figure 5.1. General labeling of the sites in a 2×2-block Θk and the sites ∂Θk

on the boundary of the block.

of this). By considering each case separately we can hence “tune” the coupling

to work best for each individual case, which is a main difference from the hand-

proofs of the previous chapters where we generally needed to consider a worst-

case scenario in the coupling construction. From the distributions P [k](x, ·) and

P [k](y, ·) we can hence use some suitable heuristic to construct a coupling that is

good enough for our purposes. We hence need to construct a specific coupling for

each individual pair of configurations differing only at the colour assigned to a

single site, which is done via the following lemma whose proof requires computer-

assistance and is deferred to Section 5.3.

Lemma 71. Let v1, . . . , v4 be the four sites in a 2×2-block and z1, . . . , z8 be the

boundary sites of the block. Let the labeling be as in Figure 5.1. Let Z and Z ′ be

any two 7-colourings (not necessarily proper) of the boundary sites such that Z

and Z ′ agree on each site except on z1. Let πZ and πZ′ be the uniform distributions

on proper 7-colourings of the block that agree with Z and Z ′, respectively. For

i = 1, . . . , 4 let pvi
(Ψ) denote the probability that the colour of site vi differs in

a pair of colourings drawn from a coupling Ψ of πZ and πZ′. Then there exists

a coupling Ψ such that pv1(Ψ) < 0.283, pv2(Ψ) < 0.079, pv3(Ψ) < 0.051 and

pv4(Ψ) < 0.079.

We use the coupling Ψ from Lemma 71 to construct Ψk(x, y) in the ∂Θk case

as follows. The colouring of Θk is drawn from the coupling Ψ of πZ and πZ′

where Z is the boundary colouring obtained from x∂Θk
and Z ′ is obtained from

y∂Θk
. The colour of the remaining sites, V \Θk, are unchanged. That is, if the

pair (x′, y′) of configurations are drawn from Ψk(x, y) then x′ = x off Θk, y′ = y

off Θk and the colourings of Θk in x′ and y′ are drawn from the coupling Ψ in

Lemma 71 (see the proof for details on how to construct Ψ). It is straightforward

to verify that this is indeed a coupling of P [k](x, ·) and P [k](y, ·). Note that due to

the symmetry of the 2×2-block, with respect to rotation and mirroring, we can

always label the sites of Θk and ∂Θk such that label z1 in Figure 5.1 represents

site i on the boundary. Hence we can make use of Lemma 71 to compute upper

bounds on the parameters ρk
i,j. We summarise the ρk

i,j-values in the following
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Figure 5.2. A 2×2-block Θk showing all eight positions of a site i ∈ ∂Θk on
the boundary of the block in relation to a site j ∈ Θk in the block.

Corollary of Lemma 71. Due to the symmetry of the block we can assume that

site j ∈ Θk in the corollary is located in the bottom left corner, as Figure 5.2

shows.

Corollary 72. Let Θk be any 2×2-block, let j ∈ Θk be any site in the block and

let i ∈ ∂Θk be a site on the boundary of the block. Then

ρk
i,j <





0.283, if i and j are positioned as in Figure 5.2(a) or (b),

0.079, if i and j are positioned as in Figure 5.2(c) or (h),

0.051, if i and j are positioned as in Figure 5.2(e) or (f),

0.079, if i and j are positioned as in Figure 5.2(d) or (g).

If i /∈ ∂Θk is not on the boundary of the block then ρk
i,j = 0.

Remark. Lemma 71 is stated such that, in the proof, we only need to consider

boundary colourings which is an advantage in the representation of the computer-

assisted proof. Corollary 72 provides the link between the boundary colourings

of Lemma 71 and the set of all configurations. This link is required for the proof

of Theorem 28.

Theorem 28. Let G be a finite and rectangular piece of the infinite square lattice.

Consider the systematic scan Markov chain Mgrid on Ω. The mixing time of

Mgrid is

Mix(Mgrid, ε) ≤ 63 log(nε−1)

scans of the grid. This corresponds to O(n log n) block updates since each block

is of size 4.
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Proof. Let αk,j =
∑

i ρ
k
i,j be the influence on j under Θk. We need to show

that αk,j < 1 for each block Θk and site j ∈ Θk in order to ensure that α =

maxk maxj∈Θk
αk,j < 1. Fix any block Θk and any site j ∈ Θk. A site i ∈ ∂Θk on

the boundary of the block can occupy eight different positions on the boundary

in relation to j as showed in Figure 5.2(a)–(h). Thus, using the bounds from

Corollary 72 we have

αk,j =
∑

i

ρk
i,j < 2(0.283 + 0.079 + 0.051 + 0.079) = 0.984.

Then α = maxk maxj∈Θk
αk,j < maxk 0.984 = 0.984 < 1 and we obtain the stated

bound on the mixing time of Mgrid by Theorem 14.

Of course we have yet to establish a proof of Lemma 71, which is what the

subsequent section will be concerned with. Our computational proof uses some

ideas described by Goldberg et al. [33] which have been further explored by Gold-

berg, Jalsenius, Martin and Paterson [31]. In particular, we will be focusing on

minimising the probability of assigning different colours to site v1 in the couplings

constructed by our programs. We will however be required to construct a cou-

pling on the 2×2 sub-grid, rather than establishing bounds on the disagreement

probability of a site adjacent to the initial discrepancy and then extending this

to a coupling on the whole block recursively. Our approach is similar to the one

Achlioptas et al. [1] take, however we do not have the option of constructing an

“optimal” coupling using a suitable linear program (even when feasible) since our

probabilities will be maximised over all boundary colourings. The crucial differ-

ence between the approaches is that Achlioptas et al. [1] are using path coupling

as a proof technique which requires them to bound the expected Hamming dis-

tance between a pair of colourings dawn from a coupling. This in turn enables

them to specify an “optimal” coupling which minimises Hamming distance for a

given boundary colouring. We are, however, required to bound the influence of i

on j for each boundary colouring and sum over the maximum of these influences.

The reason for this is the inherit maximisation over boundary colourings in the

definition of ρk
i,j.

Remark. It is worth mentioning that providing bounds on the expected Ham-

ming distance is similar to showing that the influence of a site is small. Recall

that this condition is known to imply rapid mixing of a random update Markov

chain (see for example Weitz [55]). In a single-site setting the condition “the

influence of a site is small” also implies rapid mixing of systematic scan (Dyer
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et al. [18]) however in a block setting it is not sufficient to give rapid mixing of

systematic scan as we discussed in Section 3.5 of Chapter 3 which is why we need

to bound the influence on a site.

5.3 Constructing the Coupling by Machine

In order to prove Lemma 71 we will construct a coupling Ψ of πZ and πZ′ for all

pairs of boundary colourings Z and Z ′ that are identical on all sites except for site

z1. Recall that πZ and πZ′ are the uniform distributions on proper 7-colourings

of the block that agree with Z and Z ′ respectively. For each coupling constructed

we verify that the probabilities pvi
(Ψ), i = 1, . . . , 4, are within the bounds of the

lemma. The method is well suited to be carried out with computer-assistance

and we have implemented a C-program to do so. For details of the program see

http://www.csc.liv.ac.uk/~kasper/grid_scan/. Before stating the proof of

Lemma 71 we will discuss how a coupling can be represented by an edge-weighted

complete bipartite graph. We make use of this representation of Ψ in the proof

of the lemma.

5.3.1 Representing a Coupling as a Bipartite Graph

Let U be a set of objects and let W be a set of |U | pairs (s, ωs) such that s ∈ U

and ωs ≥ 0 is a non-negative value representing the weight of s. Each element

s ∈ U is contained exactly once in W . If the value ωs is an integer (which it is in

our case) it can be regarded as the multiplicity of s in a multiset. The set W is

referred to as a weighted set of U . Let πU,W be the distribution on U such that

the probability of s is proportional to ωs, where (s, ωs) ∈ W . More precisely, the

probability of s in πU,W is PrπU,W
(s) = ωs/

∑
(t,ωt)∈W ωt. For example, let W be

a weighted set of U and let U ′ ⊆ U be a subset of U . Assume the weight ωs = 0

if s ∈ U\U ′ and ωs = k if s ∈ U ′, where k > 0 is a positive constant. Then πU,W

is the uniform distribution on U ′.

The reason for introducing the notion of a weighted set is that it can be used

when specifying a coupling of two distributions. Let U be a set and let W and W ′

be two weighted sets of U such that the sum of the weights in W equals the sum

of the weights in W ′. Let ωtotal denote this sum. That is, ωtotal =
∑

(s,ωs)∈W ωs =∑
(s′,ω′

s′ )∈W ′ ω′s′ . The two weighted sets W and W ′ define two distributions πU,W

and πU,W ′ on U . We want to specify a coupling Ψ of πU,W and πU,W ′ . Let K|U |,|U |
be an edge-weighted complete bipartite graph with vertex sets W and W ′. That
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is, for each pair (s, ωs) ∈ W there is an edge to every pair (s′, ω′s′) ∈ W ′. Every

edge e of K|U |,|U | has a weight ωe ≥ 0 such that the following condition holds. Let

(s, ωs) be any pair in W ∪W ′ and let E be the set of all |U | edges incident to

(s, ωs). Then
∑

e∈E ωe = ωs. It follows that the sum of the edge weights of all |U |2
edges in K|U |,|U | is ωtotal. The idea is that K|U |,|U | represents a coupling Ψ of πU,W

and πU,W ′ . In order to draw a pair of elements from Ψ we randomly select an edge

e in K|U |,|U | proportional to its weight. The endpoints of e represent the elements

in U drawn from πU,W and πU,W ′ . More precisely, the probability of choosing

edge e in K|U |,|U | with weight ωe is ωe/ωtotal. If edge e = ((s, ωs), (s
′, ω′s′)) is

chosen it means that we have drawn s from πU,W and s′ from πU,W ′ , the marginal

distributions of Ψ.

The bipartite graph representation of a coupling will be used when we con-

struct couplings of colourings of 2×2-blocks in the proof of Lemma 71.

5.3.2 Proof of Lemma 71

Lemma 71. Let v1, . . . , v4 be the four sites in a 2×2-block and z1, . . . , z8 be the

boundary sites of the block. Let the labeling be as in Figure 5.1. Let Z and Z ′ be

any two 7-colourings (not necessarily proper) of the boundary sites such that Z

and Z ′ agree on each site except on z1. Let πZ and πZ′ be the uniform distributions

on proper 7-colourings of the block that agree with Z and Z ′, respectively. For

i = 1, . . . , 4 let pvi
(Ψ) denote the probability that the colour of site vi differs in

a pair of colourings drawn from a coupling Ψ of πZ and πZ′. Then there exists

a coupling Ψ such that pv1(Ψ) < 0.283, pv2(Ψ) < 0.079, pv3(Ψ) < 0.051 and

pv4(Ψ) < 0.079.

Proof. Fix two boundary colourings Z and Z ′ that differ on site z1. Let c be

the colour of site z1 in Z and let c′ 6= c be the colour of z1 in Z ′. Let QZ and

QZ′ be the two sets of proper 7-colourings of the block that agree with Z and

Z ′, respectively. Let Q be the set of all proper 7-colourings of the block without

taking a boundary colouring into account. Let WZ and WZ′ be two weighted sets

of Q. The weights are assigned as follows.

• For the pair (x, ωx) ∈ WZ let the weight ωx = |QZ′ | if x ∈ QZ , otherwise

let ωx = 0.

• For the pair (x, ωx) ∈ WZ′ let the weight ωx = |QZ | if x ∈ QZ′ , otherwise

let ωx = 0.
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It follows from the assignment of the weights that the distribution πQ,WZ
is the

uniform distribution on QZ . That is, πQ,WZ
= πZ . Similarly, πQ,WZ′ is the uniform

distribution πZ′ on QZ′ . Note that the sum of the weights is |QZ ||QZ′| in both WZ

and WZ′ . Then a coupling Ψ of πQ,WZ
and πQ,WZ′ can be specified with an edge-

weighted complete bipartite graph K = K|Q|,|Q|. For a given valid assignment to

the weights of the edges of K, making K represent a coupling Ψ, we can compute

the probability of assigning different colours to a site vi within the block in two

configurations drawn from Ψ. Let EK be the set of all edges e = ((x, ωx), (x
′, ω′x′))

in K such that x and x′ differ on site vi. Then pvi
(Ψ) =

∑
e∈EK

ωe/|QZ ||QZ′ |.
In order to obtain sufficiently small upper bounds on pvi

(Ψ) for the four sites

v1, . . . , v4 in the block we would like to assign weights to the edges of K such

that much weight is assigned to edges between colourings that agree on many

sites in the block. In general it is not clear exactly how to assign weights to the

edges. For instance, if we assign too much weight to edges between colourings

that are identical on site v2 we might not be able to assign as much weight as we

would like to on edges between colourings that are identical on site v4. Thus, the

probability of assigning different colours to site v4 would increase. Intuitively a

good strategy would be to assign as much weight as possible to edges between

colourings that are identical on the whole block. This implies that we try to

assign as much weight as possible to edges between colourings that are identical

on site v1, the site adjacent to the discrepancy site z1 on the boundary. If site v1

is assigned different colours it should be a good idea to assign as much weight as

possible to edges between colourings that are identical on the whole block apart

from site v1. This idea leads to a heuristic in which the assignment of the edge

weights is divided into three phases. The exact procedure is described as follows.

In phase one we match identical colourings. For all colourings x ∈ Q of the

block the edge e = ((x, ωx), (x, ω′x)) in K will be given weight ωe = min(ωx, ω
′
x).

That is, we maximise the probability of drawing the same colouring x from both

πQ,WZ
and πQ,WZ′ .

For the following two phases we define an ordering of the colourings in Q. We

order the colourings lexicographically with respect to the site order v3, v2, v4, v1.

That is, if the seven colours are 1, . . . , 7 the colouring of v3, v2, v4, v1 will start

with 1, 1, 1, 1, respectively. The next colouring will be 1, 1, 1, 2, and so on. This

ordering of colourings in Q carries over to an ordering of the pairs in WZ and

WZ′ . That is, we order the pairs (x, ωx) in WZ with respect to the lexicographical

ordering of x. Similarly we order the pairs in WZ′ . This ordering of the pairs will

be important in the next two phases. It provides some control of how colourings
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are being paired up in terms of the assignment of the weights on edges between

pairs. Edges will be considered with respect to this ordering because choosing an

arbitrary ordering of the edges would not necessarily result in probabilities pvi
(Ψ)

that would be within the bounds of the lemma.

In the second phase we ignore the colour of site v1 and match colourings that

are identical on all of the remaining three sites v2, v3 and v4. More precisely, for

each pair (x, ωx) ∈ WZ , considered in the ordering explained above, we consider

the edges e = ((x, ωx), (x
′, ω′x′)) where x ∈ Q and x′ ∈ Q are identical on all

sites but v1. The edges are considered in the ordering of the second component

(x′, ω′x′) ∈ WZ′ . We assign as much weight as possible to e such that the total

weight on edges incident to (x, ωx) ∈ WZ does not exceed ωx and such that the

total weight on edges incident to (x′, ω′x′) ∈ WZ′ does not exceed ω′x′ . Note that

in the lexicographical ordering of the colourings, site v1 is the least significant site

and therefore the ordering provides some level of control of pairing up colourings

that are similar on the remaining three sites. It turns out that the resulting

coupling is sufficiently good for proving the lemma.

In the third and last phase we assign the remaining weights on the edges. As in

phase two, for each pair (x, ωx) ∈ WZ we consider the edges e = ((x, ωx), (x
′, ω′x′)).

The pairs and edges are considered in accordance with the ordering explained

above. The difference between the second and third phase is that now we do not

have any restrictions on the colourings x and x′. We assign as much weight as

possible to e such that the total weight on edges incident to (x, ωx) ∈ WZ does

not exceed ωx and such that the total weight on edges incident to (x′, ω′x′) ∈ WZ′

does not exceed ω′x′ . After phase three we have assigned all weights to the edges

of K and hence K represents a coupling Ψ of πZ and πZ′ .

From K we compute the probabilities pv1(Ψ), pv2(Ψ), pv3(Ψ) and pv4(Ψ) as

described above. We have written a C-program which loops through all (non-

symmetric) colourings Z and Z ′ of the boundary of the block and constructs

the bipartite graph K as described above. For each boundary the probabilities

pv1(Ψ), pv2(Ψ), pv3(Ψ) and pv4(Ψ) are successfully verified to be within the bounds

of the lemma. For details on the C-program, see http://www.csc.liv.ac.uk/

~kasper/grid_scan/.

5.4 Partial Results for 6-colourings of the Grid

As we have seen, a systematic scan on the grid using 2×2-blocks and seven colours

mixes rapidly. An immediate question is whether we can do better and show rapid
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mixing with six colours which is possible in the random update case. This matter

will be discussed in this section and we will show that, even with bigger block

sizes (up to 3×3), it is not possible to show rapid mixing using the technique of

this paper. More precisely, we will establish lower bounds on the parameter α

for 2×2-blocks, 2×3-blocks and 3×3-blocks. All three lower bounds are greater

than one and hence we cannot make use of Theorem 14 to show rapid mixing.

5.4.1 Establishing Lower Bounds for 2×2 Blocks

We start by examining the 2×2-block again but this time with six colours.

Lemma 71 provides upper bounds (under any colourings of the boundary) on

the probabilities of having discrepancies at each of the four sites of the block

when two 7-colourings are drawn from the specified coupling. For six colours we

will show lower bounds on these probabilities under any coupling and a specified

pair of boundary colourings. Once again, let v1, . . . , v4 be the four sites in a 2×2-

block and let z1, . . . , z8 be the boundary sites of the block and let the labeling

be as in Figure 5.1. Let Z and Z ′ be any two 6-colourings of the boundary sites

that assign the same colour to each site except for z1. Let πZ and πZ′ be the

uniform distributions on the sets of proper 6-colourings of the block that agree

with Z and Z ′, respectively. Let Ψmin
vk

(Z, Z ′) be a coupling of πZ and πZ′ that

minimises pvk
(Ψ). That is, pvk

(Ψ) ≥ pvk
(Ψmin

vk
(Z, Z ′)) for all couplings Ψ of πZ

and πZ′ . Also let plow
vk

= maxZ,Z′ pvk
(Ψmin

vk
(Z,Z ′)). We can hence say that there

exist two 6-colourings Z and Z ′ of the boundary of a 2×2 block, that assign the

same colour to each site except for z1, such that pvk
(Ψ) ≥ plow

vi
for any coupling

Ψ of πZ and πZ′ . We have the following lemma, which is proved by computation.

Lemma 73. Consider 6-colourings of the 2×2-block in Figure 5.1. Then plow
v1
≥

0.379, plow
v2
≥ 0.107, plow

v3
≥ 0.050 and plow

v4
≥ 0.107.

Proof. Fix one site vk in the block and fix two colourings Z and Z ′ of the boundary

of the block that differ only on the colour of site z1. Let QZ and QZ′ be the two

sets of proper 6-colourings of the block that agree with Z and Z ′, respectively.

For c = 1, . . . , 6 let nc be the number of colourings in CZ in which site vk is

assigned colour c. Similarly let n′c be the number of colourings in QZ′ in which

site vk is assigned colour c. It is clear that the probability that vk is assigned

colour c in a colouring x′ drawn from πZ is PrπZ
(x′vk

= c) = nc/|QZ |. For

c = 1, . . . , 6 define mc = nc|QZ′|, m′
c = n′c|QZ | and M = |QZ ||QZ′ |. It follows

that PrπZ
(x′vk

= c) = mc/M and PrπZ′ (y
′
vk

= c) = m′
c/M , where x′ and y′ are
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colourings drawn from πZ and πZ′ , respectively. Observe that the quantities mc,

m′
c and M can be easily computed for a given pair of boundary colourings.

Now let Ψ be any coupling of πZ and πZ′ . The probability that site vk

is coloured c in both colourings drawn from Ψ is be at most min(mc,m
′
c)/M .

Therefore, the probability of drawing two colourings from Ψ such that the colour

of site vk is the same in both colourings is at most
∑

c=1,...,6 min(mc,m
′
c)/M ,

and the probability of assigning different colours to site vk is at least pvk
(Ψ) ≥

1 − ∑
c=1,...,6 min(mc,m

′
c)/M . We have successfully verified the bounds in the

statement of the lemma by maximising the lower bound on pvk
(Ψ) over all bound-

ary colourings Z and Z ′ for each site vk in the block. The computations are carried

out with the help of a computer program written in C. For details on the program,

see http://www.csc.liv.ac.uk/~kasper/grid_scan/.

For seven colours, Corollary 72 makes use of Lemma 71 to establish upper

bounds on the influence parameters ρk
i,j. These parameters are used in the proof

of Theorem 28 to obtain an upper bound on the parameter α. The upper bound

on α is shown to be less than one which implies rapid mixing for seven colours

when applying Theorem 14. We can use Lemma 73 to obtain lower bounds on

the influence parameters ρk
i,j by completing the coupling in a way analogous to

the coupling in Corollary 72. This in turn will result in a lower bound on the

parameter α that is greater than one. That is, following the proof of Theorem 28

and making use of Lemma 73, a lower bound on α will be

α ≥ 2(0.379 + 0.107 + 0.050 + 0.107) = 1.286 > 1.

Hence we fail to show rapid mixing of systematic scan with six colours using

2×2-blocks using this approach.

5.4.2 Bigger Blocks

We failed to show rapid mixing of systematic scan with six colours and 2×2-blocks

and we will now show that increasing the block size to both 2×3 and 3×3 will

not be sufficient either when using the technique from Theorem 14. Lemma 74

below considers 2×3-blocks and is analogous to Lemma 73. We make use of the

same notation as for Lemma 73, only the block is bigger and the labeling of the

sites is different (see Figure 5.3(a)). Lemma 74 is proved by computation in the

same way as Lemma 73. For details on the C-program used in the proof, see

http://www.csc.liv.ac.uk/~kasper/grid_scan/.
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Figure 5.3. (a) General labeling of the sites in a 2×3-block Θk and the sites
∂Θk on the boundary of the block. (b)–(c) All ten positions of a site i ∈ ∂Θk

on the boundary of the block in relation to a site j ∈ Θk in the corner of the
block.

Lemma 74. Consider 6-colourings of the 2×3-block in Figure 5.3(a). Then

plow
v1
≥ 0.3671, plow

v3
≥ 0.0298, plow

v4
≥ 0.0997 and plow

v6
≥ 0.0174.

We will now use Lemma 74 to show that α > 1 for 2×3 blocks. Let Θk be any

2×3-block and let j ∈ Θk be a site in a corner of the block. A site i ∈ ∂Θk on

the boundary of the block can occupy ten different positions on the boundary in

relation to j. See Figure 5.3(b) and (c). We can again determine lower bounds

on the influences ρk
i,j of i on j under Θk from Lemma 74. However, Lemma 74

provides lower bounds on ρk
i,j only when i ∈ ∂Θk is adjacent to a corner site of the

block, as in Figure 5.3(b). If i is located as in Figure 5.3(c) we do not know more

than that ρk
i,j is bounded from below by zero. Nevertheless, the lower bound on

α exceeds one. Let αk,j =
∑

i ρ
k
i,j be the influence on j under Θk. Following the

proof of Theorem 28 and using the lower bounds in Lemma 74 we have

αk,j =
∑

i in Fig. 5.3(b)

ρk
i,j +

∑

i in Fig. 5.3(c)

ρk
i,j

≥ 2(0.3671 + 0.0298 + 0.0997 + 0.0174) = 1.028,

where we set the lower bound on the second sum to zero. Now,

α = max
k

max
j∈Θk

αk,j ≥ 1.028 > 1.

Hence we cannot use Theorem 14 to show rapid mixing of systematic scan with

six colours and 2×3-blocks. It is interesting to note that considering 2×3-blocks

was sufficient for Achlioptas et al. [1] to prove mixing of a random update Markov

chain for sampling 6-colourings of the grid.

Lastly, we increase the block size to 3×3 and show that a lower bound on

α is still greater than one. We have the following lemma which is proved by

computation in the same way as Lemmas 73 and 74.
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Figure 5.4. (a)–(b) General labeling of the sites in a 3×3-block Θk and two
different labellings of the sites ∂Θk on the boundary of the block. The discrep-
ancy site on the boundary has label z1. (b)–(c) All twelve positions of a site
i ∈ ∂Θk on the boundary of the block in relation to a site j ∈ Θk in the corner
of the block.

Lemma 75. For 6-colourings of the 3×3-block with sites labeled as in Figure 5.4(a)

we have plow
v1
≥ 0.3537, plow

v3
≥ 0.0245, plow

v7
≥ 0.0245 and plow

v9
≥ 0.0071. Further-

more, for 6-colourings of the 3×3-block in Figure 5.4(b) we have plow
v1

≥ 0.0838,

plow
v3
≥ 0.0838, plow

v7
≥ 0.0138 and plow

v9
≥ 0.0138.

Note that Lemma 75 provides lower bounds on the probabilities of having a

mismatch on a corner site of the block when the discrepancy site on the boundary

(labeled z1) is adjacent to a corner site (Figure 5.4(a)) and adjacent to a middle

site (Figure 5.4(b)). Let Θk be any 3×3-block and let j ∈ Θk be a site in a corner

of the block. A site i ∈ ∂Θk on the boundary of the block can occupy twelve

different positions on the boundary in relation to j. See Figure 5.4(c) and (d).

Analogous to Corollary 72 lower bounds on the influences ρk
i,j of i on j under

Θk can be determined from Lemma 75. Let αk,j =
∑

i ρ
k
i,j be the influence on

j under Θk. Following the proof of Theorem 28 and using the lower bounds in

Lemma 75 we have

αk,j =
∑

i in Fig. 5.4(c)

ρk
i,j +

∑

i in Fig. 5.4(d)

ρk
i,j

≥ 2(0.3537 + 0.0245 + 0.0245 + 0.0071)

+(0.0838 + 0.0838 + 0.0138 + 0.0138)

= 1.0148.

Thus, α = maxk maxj∈Θk
αk,j ≥ 1.0148 > 1. Hence, we cannot use Theorem 14

to show rapid mixing of systematic scan with six colours and 3×3-blocks.

A natural question is whether we can show rapid mixing using even bigger

blocks. It seems possible to do this although the computations rapidly become

intractable as the block size increases. Already with a 3×3-block the number

of boundary colourings we need to consider (after removing isomorphisms) is in
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excess of 106 and for each boundary colouring there are more than 107 colourings

of the block to consider. In addition to simply generating the distributions on

colourings of the block, the time it would take to actually construct the required

couplings, as we did in the proof of Lemma 71, would also increase. Finally when

using a larger block size, different positions of site j in the block need to be

considered whereas we could make use of to the symmetry of the 2×2-block to

only consider one position of site j in the block. If different positions of j have

to be considered this has to be captured in the construction of the coupling and

would likely require more computations.

The above discussion suggests that in order to show rapid mixing for six

and fewer colours of systematic scan on the grid one may need to rely on a

different proof technique than Dobrushin uniqueness in the form of Theorem 14.

Furthermore, the fact that path coupling can be used to show rapid mixing of

a random update Markov chain for 6-colourings of the grid seems to support

this view. It is also possible that the condition in Theorem 14 is currently too

strong. Other possible conditions were discussed in Section 3.5 of Chapter 3, but

it remains on open question to see if a weaker condition would be sufficient to

establish a proof of Theorem 14.



Chapter 6

Single-site Systematic Scan for

Bipartite Graphs

In this chapter we study the mixing time of a systematic scan that makes single-

site updates. We take advantage of the fact that the underlying graph is bipartite

by fixing the scan order such that each site in the first colour class is updated

before updating the sites in the other colour class.

6.1 Preliminaries

Let G = (V, E) be any bipartite graph with maximum degree ∆. We denote the

colour classes of G by L(V ) and R(V ). Let C = {1, · · · , q} be the set of colours

and Ω be the set of proper q-colourings of G. Recall from Chapter 2 that MLR

is the systematic scan Markov chain which makes the following transitions

1. for each v ∈ L(V ) make a Metropolis move on site v

2. for each v ∈ R(V ) make a Metropolis move on site v.

Recall from Example 11 that a single-site Metropolis move on site v (and given

a configuration x) is made by selecting a colour c uniformly at random from C

and recolouring site v with colour c. Let x′ be the configuration obtained from x

by recolouring site v to c. If no edge containing v is monochromatic in x′ then

the resulting configuration of the Metropolis move is x′, otherwise output of the

Metropolis move is configuration x. Finally we remind the reader that each site

in L(V ) is assigned weight ωl = q3 − 4 and each site in R(V ) is assigned weight

ωr = 2ωl − 4. We will prove Theorem 30 namely

129
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Theorem 30. Let G be any bipartite graph with maximum vertex-degree ∆ ≥ 3.

Consider the systematic scan Markov chain MLR on the state space Ω. Let γ =

ωr

(
1 + 1

q3

)
− ∆ωl

q
− ∆ωr

q
− ∆2ωr

q2 where ωl = q3 − 4 and ωr = 2ωl − 4. If q ≥ 2∆

then γ > 0 and the mixing time of MLR is

Mix(MLR, ε) ≤ ωr log(nωrε
−1)

γ

scans.

As a final piece of notation we let xj denote the configuration obtained by

one partial scan of MLR (starting from configuration x) where site j is the next

site to be updated. For a configuration xj and a colour c let (xj ↑ c) be the

configuration obtained from the following two step process. Let σ be the config-

uration obtained from xj by assigning colour c to site j. If no edge containing

site j is monochromatic in σ then (xj ↑ c) = σ, otherwise (xj ↑ c) = xj. The

reason for introducing this notation is that a Metropolis move on site j can now

be formulated as follows. Select a colour c ∈ C uniformly at random and let

xj+1 = (xj ↑ c).

Our method of proof will be path coupling using weighted Hamming distance

as the metric.

6.2 Definition of the Coupling

We begin by defining the coupling that we will use in the proof. We define the

coupling for pairs of configurations (x, y) ∈ Si which differ only on the colour

assigned to site i. We consider the update of a site j.

When it is time to update site j it is possible that more than one site is

coloured differently in xj and yj due to previous updates that have been made

in the scan. Suppose that j has k neighbour sites which are assigned different

colours in xj and yj. Let these sites be denoted by j1, . . . , jk. Note that if k = 0

then we can couple the configuration (xj ↑ c) with (yj ↑ c) for each c ∈ C which

ensures that x′j = y′j. Similarly if xj
j 6= yj

j (which is only the case when i = j) we

also couple the choice (xj ↑ c) with (yj ↑ c) for each c ∈ C which may cause site

i to become a discrepancy. Otherwise xj
j = yj

j and we construct the coupling as

follows. For each site jk′ where k′ ∈ {1, . . . , k} make the following choices:

• If

xj

jk′ 6∈ {xj
j1 , . . . , x

j

jk′−1 , y
j
j1 , . . . , y

j

jk′−1}
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and

yj

jk′ 6∈ {xj
j1 , . . . , x

j

jk′−1 , y
j
j1 , . . . , y

j

jk′−1}

then couple the choice of (xj ↑ xj

jk′ ) = xj with the choice (yj ↑ yj

jk′ ) = yj

in order to ensure that site j is assigned the same colour in both x′ and

y′. Also couple the choice (xj ↑ yj

jk′ ) with the choice (yj ↑ xj

jk′ ) which may

cause site j to be coloured differently in x′ and y′.

• If

xj

jk′ 6∈ {xj
j1 , . . . , x

j

jk′−1 , y
j
j1 , . . . , y

j

jk′−1}

and

yj

jk′ ∈ {xj
j1 , . . . , x

j

jk′−1 , y
j
j1 , . . . , y

j

jk′−1}

then couple the choice (xj ↑ xj

jk′ ) with the choice (yj ↑ xj

jk′ ). This may

cause site j to be coloured differently in x′ and y′.

• If

xj

jk′ ∈ {xj
j1 , . . . , x

j

jk′−1 , y
j
j1 , . . . , y

j

jk′−1}

and

yj

jk′ 6∈ {xj
j1 , . . . , x

j

jk′−1 , y
j
j1 , . . . , y

j

jk′−1}

then couple the choice (xj ↑ yj

jk′ ) with the choice (jj ↑ yj

jk′ ). This may

cause site j to be coloured differently in x′ and y′.

For any remaining colours c ∈ C \ {xj
j1 , . . . , x

j
jk , y

j
j1 , . . . , y

j
jk}, couple the choice

(xj ↑ c) with the choice (yj ↑ c) which ensures that the same colour is assigned

to site j in x′ and y′. This completes the coupling construction since each colour

c ∈ C has been used exactly once.

By construction of the coupling, the marginal distribution is correct since each

colour is used exactly once in both (x ↑ ·) and (y ↑ ·). We now state and prove

an upper bound on the probability of a site which is coloured the same in x and y

receiving different colours in x′ and y′ obtained from one complete scan of MLR

starting from (x, y) ∈ Si.

Lemma 76. Suppose that (x, y) ∈ Si. Obtain a pair of configurations (x′, y′) by

one complete scan of MLR starting from (x, y). Let b(j) be the number of sites

adjacent to site j that are coloured differently in xj and yj. Then for any j 6= i

Pr(x′j 6= y′j | b(j) = k) ≤ k

q
.
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Proof. In the construction of the coupling each site which is coloured differently

in xj and yj is considered exactly once and will match one of the three stated

cases. Each of these cases will produce at most one assignment of a colour to j in

each copy such that x′j 6= y′j. There are k such sites and thus at at most k such

choices will exist in the joint distribution, each being selected with probability

1/q. Hence the probability of site j being coloured differently in x′ and y′ is at

most k
q
.

6.3 Proof of Mixing

We first consider the case when the original discrepancy is in the left colour class

of G, and hence the site containing the original discrepancy is updated before it

can percolate to any of its neighbour sites.

Lemma 77. Suppose that (x, y) ∈ Si. Obtain a pair of configurations (x′, y′) by

one complete scan of MLR starting from (x, y). If i ∈ L(V ) then

E [Ham(x′, y′)] ≤
(

1− β

ωl

)
Ham(x, y)

where

β = ωl − ∆

q

(
ωl +

∆ωr

q

)
.

In particular, when q ≥ 2∆ then β > 0.

Proof. We begin by showing that if i ∈ L(V ) then E [Ham(x′, y′)] ≤ ∆
q

(
ωl + ∆ωr

q

)
.

Since all sites in L(V ) are updated before R(V ), site i will be updated before any

of its neighbours and hence (xi, yi) ∈ Si. Since site i has at most ∆ neighbours

it will be coloured differently in x′ and y′ with probability at most ∆/q and

contribute ωl to the weighted Hamming distance.

Suppose that site i is coloured differently in each copy when the sites in R(V )

are being updated. Then each of i’s neighbour sites will be coloured differently in

x′ and y′ with probability at most 1/q by Lemma 76 and each will contribute with

weight ωr to the weighted Hamming distance. Adding it up we get the stated

bound on the expectation since site i has at most ∆ neighbours.

The statement of the lemma now follows since i ∈ L(V ) implies Ham(x, y) =

ωl and using the assumption q ≥ 2∆ gives

β ≥ ωl − ∆

2∆

(
ωl +

∆ωr

2∆

)
= 1 > 0
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by substituting the definition of ωr, which completes the proof.

We now consider the case when the initial discrepancy is in the colour class

R(V ), and hence the discrepancy can percolate to the neighbours of site i before

i is updated.

Lemma 78. Suppose that (x, y) ∈ Si and that i ∈ R(V ). Obtain a pair of

configurations (x′, y′) by one complete scan of MLR starting from (x, y). If j 6=
i ∈ R(V ) and d is the number of sites in L(V ) adjacent to both i and j then

Pr(x′j 6= y′j) ≤
d

q2
.

Proof. Let A(j) be the random variable denoting the number of sites adjacent to

j that are coloured differently in xj and yj. Note from the statement of the lemma

that it most hold that A(j) ≤ d. From the definition of conditional probability

we have

Pr(x′j 6= y′j) =
d∑

k=0

Pr (A(j) = k)Pr(x′j 6= y′j | A(j) = k).

From Lemma 76 we have Pr(x′j 6= y′j | A(j) = k) ≤ k
q

so

Pr(x′j 6= y′j) ≤
d∑

k=0

Pr (A(j) = k)
k

q
=

1

q
E [A(j)] .

For each l ∈ {1, . . . , d} let Il be the indicator random variable denoting the event:

xj
l 6= yj

l and pl = Pr(xj
l 6= yj

l ) be the probability of that event occurring. Using

linearity of expectation

Pr(x′j 6= y′j) ≤
1

q
E

[
d∑

l=1

Il

]
=

1

q

d∑

l=1

E [Il] =
1

q

d∑

l=1

pl.

From Lemma 76 we obtain pl ≤ 1
q

for l ∈ {1, . . . , d} since site i is the only site

adjacent to l that is coloured differently in xl and yl. Thus,

Pr(x′j 6= y′j) ≤
1

q

d∑

l=1

1

q
=

d

q2

which completes the proof.
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Lemma 79. Suppose that (x, y) ∈ Si. Obtain a pair of configurations (x′, y′) by

one complete scan of MLR starting from (x, y). If i ∈ R(V ) then

E [Ham(x′, y′)]− ωrPr(x′i 6= y′i) ≤
∆ωl

q
+

∆(∆− 1)ωr

q2
.

Proof. From Lemma 76 we know that the expected number of additional discrep-

ancies in L(V ) is at most ∆/q since site i has at most ∆ neighbour sites, each

of which will be coloured differently in each copy with probability at most 1/q.

Each of those sites has weight ωl.

To upper bound the expected number of additional discrepancies in R(V ) we

need to upper bound the number of sites in L(V ) adjacent to both i and some

j 6= i ∈ R(V ). We let d(v, u) denote the minimum distance (number of edges)

between site u and v in G, and u ⇀ v the existence of an edge between u and v.

The sum over all j 6= i ∈ R(V ) of the number of sites adjacent to both i and j is

thus

∑
j∈V

d(i,j)=2

∑

k∈V
k⇀j
k⇀i

1 =
∑

k∈V
k⇀i

∑
j∈V
j 6=i
j⇀k

1

≤
∑

k∈V
k⇀i

(∆− 1)

≤ ∆(∆− 1).

Combining this bound with Lemma 78 we have, by linearity of expectation, that

the expected number of additional disagreements in R(V ) is at most (∆−1)∆
q2 each

of which has weight ωr.

We now need to upper bound the probability of site i being coloured differently

in x′ and y′. To that end we introduce the following terminology.

Definition 80 (Colour compatibility). Let N(v) be the set of sites adjacent to a

site v, and let

C(v) = C \
⋃

v′∈N(v)

{xv′ , yv′}

be the set of colours not adjacent to v. Two distinct sites k and l are said to be

‘colour compatible’ if C(k) ∩ C(l) 6= ∅.
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Lemma 81. Suppose (x, y) ∈ Si for some i ∈ R(V ). Let N(v) be the set of sites

adjacent to a site v. If deg i = ∆ and q ≥ ∆ + 3 then there are two distinct sites

vk ∈ N(i) and vl ∈ N(i) which are colour compatible.

Proof. For ease of reference, let N(i) = {v1, . . . , v∆} and also let c(v) be the size

of the set C(v). Each site v ∈ N(i) has at most ∆ neighbours. Since site i is the

only site that contributes two colours to C \ C(v) it holds that

c(v) ≥ q − (∆− 1)− 2 = q −∆− 1 (6.1)

for every v ∈ N(i). We need to show the existence of two distinct sites vk and vl

that are colour compatible. We will do this by contradiction. Suppose that no

two sites in N(i) are colour compatible. Then

C(vk) ⊆ C \
⋃

vl∈N(i)
l<k

C(vl) (6.2)

for all k ∈ {1, . . . , ∆} since otherwise some site vl ∈ {v1, . . . , vk−1} would be

colour compatible with site vk. By (6.2), C(vk) cannot contain any of the colours

in ⋃

vl∈N(i)
l<k

C(vl).

Also, it cannot contain xi or yi so

c(vk) = q −
∑

0<l<k

c(vl)− 2 ≤ q − (k − 1)(q −∆− 1)− 2

by (6.1). Hence

q −∆− 1 ≤ c(v∆) ≤ q − (∆− 1)(q −∆− 1)− 2

where the lower bound is from (6.1).

When ∆ ≥ 3 it follows that q ≤ ∆+2 which contradicts our assumption that

q ≥ ∆ + 3. Hence there must be a pair of colour compatible sites in N(i).

Lemma 82. Suppose (x, y) ∈ Si for some i ∈ R(V ). Let N(i) be the set of sites

adjacent to site i. If deg i = ∆ and q ≥ ∆ + 3 then there are two sites k ∈ N(i)

and l ∈ N(i) such that

Pr (xi
k = xi

l = yi
k = yi

l) ≥
1

q2
.
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Proof. By Lemma 81 there exist two distinct sites k and l in N(i) that are colour

compatible. Since k and l are colour compatible there is at least one colour c

that will be accepted when updating both sites k and l. With probability at

least 1/q, colour c will be selected and accepted in the recolouring of site k and

independently with probability at least 1/q in the recolouring of site l.

Lemma 83. Suppose that (x, y) ∈ Si. Obtain a pair of configurations (x′, y′) by

one complete scan of MLR starting from (x, y). If i ∈ R(V ) then

Pr(x′i 6= y′i) ≤
∆(q + 1)

q2
− 1

q3
.

Proof. Let A(i) be the random variable denoting the number of sites in N(i) that

are assigned different colours in configuration xi and yi. Note from the statement

of the lemma that it most hold that A(i) ≤ ∆. From the definition of conditional

probability we have

Pr(x′i 6= y′i) =
∆∑

k=0

Pr(A(i) = k)Pr(x′i 6= y′i | A(i) = k).

We consider the two cases deg i = ∆ and deg i ≤ ∆ − 1 separately. First

suppose deg i ≤ ∆ − 1. If there are k sites adjacent to i that are assigned

different colours xi and yi then there can be at most ∆− 1 + k different colours

adjacent to site i. Hence Pr(x′i 6= y′i | A(i) = k) ≤ ∆−1+k
q

which gives

Pr(x′i 6= y′i) ≤
∆−1∑

k=0

Pr(A(i) = k)
∆− 1 + k

q

=
∆− 1

q

∆−1∑

k=0

Pr(A(i) = k) +
1

q
E [A(i)]

=
∆− 1

q
+

1

q
E [A(i)]

by definition of probability spaces.

Now for each l ∈ {1, . . . , deg i} let Il be the indicator random variable denoting

the event: xi
l 6= yi

l . Also let pl = Pr(xi
l 6= yi

l) be the probability that the event
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occurs. Using linearity of expectation we have

Pr(x′i 6= y′i) ≤
∆− 1

q
+

1

q
E

[
deg i∑

l=1

Il

]

=
∆− 1

q
+

1

q

deg i∑

l=1

E [Il]

=
∆− 1

q
+

1

q

deg i∑

l=1

pl.

From Lemma 76 we have pl ≤ 1/q for l ∈ {1, . . . , deg i} since site i is the only

site adjacent to l in that can be coloured differently in xl and yl. Thus,

Pr(x′i 6= y′i) ≤
∆− 1

q
+

1

q

deg i∑

l=1

1

q

=
∆− 1

q
+

deg i

q2

≤ (∆− 1)(q + 1)

q2
.

Now consider the case when deg i = ∆. As before, define N(i) as the set of

sites adjacent to i. Let Ei be shorthand for the following event: There exists two

distinct sites a ∈ N(i) and b ∈ N(i) such that xi
a = xi

b = yi
a = yi

b. If there are k

sites adjacent to i that are assigned different colours in xi and yi then there can

be at most ∆ + k different colours adjacent to site i. However, if Ei holds there

can be at most ∆+ k− 1 different colours adjacent to i since two sites are known

to have the same colour. Hence

Pr(x′i 6= y′i | A(i) = k) ≤ Pr (Ei | A(i) = k)
∆ + k − 1

q

+ (1− Pr (Ei | A(i) = k))
∆ + k

q

=
∆ + k

q
− Pr (Ei | A(i) = k)

1

q
.
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Proceeding as in the previous case

Pr(x′i 6= y′i) ≤
∆∑

k=0

Pr(A(i) = k)

(
∆ + k

q
− Pr(Ei | A(i) = k)

1

q

)

=
∆∑

k=0

Pr(A(i) = k)
∆ + k

q
−

∆∑

k=0

Pr(A(i) = k)Pr(Ei | A(i) = k)
1

q

=
∆

q

∆∑

k=0

Pr(A(i) = k) +
1

q
E [A(i)]

− 1

q

∆∑

k=0

Pr(A(i) = k)Pr(Ei | A(i) = k)

=
∆

q
+

1

q
E [A(i)]− 1

q
Pr(Ei)

by definition of probability spaces and observing that 0 ≤ A(i) ≤ ∆.

Again let Il be the indicator random variable denoting the event: xi
l 6= yi

l

defined for each l ∈ {1, . . . , ∆}. Also let pl = Pr(xi
l 6= yi

l) be the probability that

the event occurs. Using linearity of expectation

Pr(x′i 6= y′i) ≤
∆

q
+

1

q
E

[
∆∑

l=1

Il

]
− 1

q
Pr(Ei)

=
∆

q
+

1

q

∆∑

l=1

E [Il]− 1

q
Pr(Ei)

=
∆

q
+

1

q

∆∑

l=1

pl − 1

q
Pr(Ei).

From Lemma 76 we have pl ≤ 1/q for l ∈ {1, . . . , ∆} since site i is the only site

adjacent to l in that can be coloured differently in xl and yl. Thus,

Pr(x′i 6= y′i) ≤
∆

q
+

1

q

∆∑

l=1

1

q
− 1

q
Pr(Ei)

=
∆

q
+

∆

q2
− 1

q
Pr(Ei)

=
∆(q + 1)

q2
− 1

q
Pr(Ei)
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and so

Pr(x′i 6= y′i) ≤ max

(
(∆− 1)(q + 1)

q2
,
∆(q + 1)

q2
− 1

q
Pr(Ei)

)

=
∆(q + 1)

q2
− 1

q
Pr(Ei)

which can be verified by letting Pr(Ei) ≤ 1. Finally we have Pr(Ei) ≥ 1/q2 from

Lemma 82 which completes the proof.

Lemma 84. Suppose that (x, y) ∈ Si and ∆ ≥ 3. Obtain a pair of configurations

(x′, y′) by one complete scan of MLR starting from (x, y). If i ∈ R(V ) then

E [Ham(x′, y′)] ≤
(

1− γ

ωr

)
Ham(x, y)

where

γ = ωr

(
1 +

1

q3

)
− ∆ωl

q
− ∆ωr

q
− ∆2ωr

q2
.

In particular, when q ≥ 2∆ then γ ≥ 1− 12
q3 > 0.

Proof. From Lemmas 79 and 83 we have

E [Ham(x′, y′)] ≤ ∆ωl

q
+

ωr(∆− 1)∆

q2
+ ωr

(
∆(q + 1)

q2
− 1

q3

)

=
∆ωl

q
+

∆ωr

q
+

∆2ωr

q2
− ωr

q3

by expanding and simplifying.

Given that i ∈ R(V ) we have Ham(x, y) = ωr which implies the definition of

γ in the statement of the lemma. Finally use the assumption q ≥ 2∆ to verify

γ ≥ ωr

(
1 +

1

q3

)
− ωl

2
− ωr

2
− ωr

4

=
2ωl − q3 − 4

q3

= 1− 12

q3
> 0

using ωr = 2ωl − 4 and ωl = q3 − 4 and the fact that q ≥ 6.

This enables us to prove Theorem 30.

Proof of Theorem 30. Suppose that (x, y) ∈ Si and obtain a pair of configurations

(x′, y′) by one complete scan ofMLR starting from (x, y). From Lemmas 77 and 84



140 6: Single-site Systematic Scan for Bipartite Graphs

we have

E [Ham(x′, y′)] ≤ max

(
Ham(x, y)

(
1− γ

ωr

)
, Ham(x, y)

(
1− β

ωl

))

= Ham(x, y)

(
1−min

(
γ

ωr

,
β

ωl

))

= Ham(x, y)

(
1− γ

ωr

)
< Ham(x, y)

since γ > 0 from Lemma 84. The claim that min
(

γ
ωr

, β
ωl

)
= γ

ωr
can be verified

since 3 ≤ ∆ ≤ q
2
. This bound on the expected value of Ham(x′, y′) implies

Theorem 30 by Corollary 9 (path coupling).



Chapter 7

Conclusion

This thesis has been concerned with analysing the mixing time of systematic scan

Markov chains. We conclude by summarising the contributions this thesis has

made to the field of computer science as well as highlighting some open problems

it poses.

Summary of Contributions

The main contribution of this thesis has been the introduction of a new technique

for bounding the mixing time of systematic scan Markov chains using block dy-

namics. This technique involves providing sufficiently good upper bounds on an

influence parameter which represents the maximum influence on a site of the un-

derlying graph. These bounds are derived through the construction of a coupling

for the update of each block starting from two configurations that are identical

except for on the spin assigned to a single site. This influence parameter is often

simple to compute for a given coupling. If the maximum influence on a site is

sufficiently small then the systematic scan Markov chain mixes in O(log n) scans.

This new technique has the immediate advantage that one is not required to keep

track of intermediate states of the chain during the analysis. A further advantage

that this proof technique has is that it implies rapid mixing of systematic scan for

any order of the given set of blocks whereas path coupling is specific to the stated

order. The new proof technique is based on a known technique called Dobrushin

uniqueness and the main result (Theorem 14) was proved in Chapter 3. The

condition on the influence parameter that needs to be satisfied when applying

this technique is a generalisation of a similar condition that applies to single-site

dynamics as we discussed in Section 3.5 of Chapter 3.

We have presented several applications of this technique in this thesis and
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they all reduce the gap between the parameters that imply mixing for random

update and systematic scan. In summary these applications were

• systematic scan for sampling from the uniform distribution on proper q-

colourings of general graphs with maximum vertex-degree ∆ mixes in O(log n)

scans whenever q ≥ 2∆ (Theorem 16 which was proved in Chapter 3),

• systematic scan for sampling from the uniform distribution on proper q-

colourings of a height-H tree mixes in O(H) scans whenever q > ∆ +

2
√

∆− 1 in the single-site case and in fewer colours using some suitable

block dynamics (Theorems 18 and 20 which were proved in Chapter 3),

• systematic scan for sampling from the uniform distribution on proper 7-

colourings the grid mixes in O(log n) scans (Theorem 28 which was proved

in Chapter 5), and

• systematic scan for sampling from the uniform distribution on H-colourings

of the n-vertex path mixes in O(log n) scans whenever H has a 2-edge path

between all vertices (Theorem 22 which was proved in Chapter 4).

We have also used path coupling in some cases when the underlying graph of the

spin system could help to facilitate an analysis. In summary these results were

• a systematic scan Markov chain for sampling for the uniform distribution

of H-colourings of the n-vertex path mixes in O(log n) scans for any fixed

H (Theorem 24 proved in Chapter 4), and

• a single-site systematic scan Markov chain for sampling from the uniform

distribution of proper q-colourings of a general bipartite graphs with max-

imum vertex-degree ∆ mixes in O(log n) scans whenever q ≥ 2∆ (Theo-

rem 30 proved in Chapter 6).

A determining factor that helped significantly to facilitate the coupling analysis of

the two systematic scan Markov chains mentioned above was the structure of the

underlying graph. In the case of the systematic scan for sampling H-colourings

of the path, the fact that the underlying graph is a path clearly makes it more

feasible to keep track of any discrepancies that percolate during each individual

scan. In the case of proper q-colourings of bipartite graphs we were able to scan

each colour class of the underlying graph separately which significantly limited

the set of sites that could potentially have become discrepancies during one scan.
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Finally the results for sampling H-colourings of the path using systematic

scan created a temporary gap between the parameters required for mixing of

systematic scan and random update. This gap was closed by the following result

about a random update Markov chain which was included for completeness

• a random update Markov chain for sampling for the uniform distribution

of H-colourings of the n-vertex path mixes in O(n log n) block updates for

any fixed H (Theorem 26 proved in Chapter 4).

Open Problems

Despite the improvements in the parameters that imply mixing of systematic scan

for various spin systems presented in this thesis, the gap between the parameters

sufficient for mixing of systematic scan and random update still persists (although

in many cases the gap is now somewhat reduced). For example, in the case

when the spin system correspond to proper q-colourings of a general graph with

maximum vertex-degree ∆ then the condition q ≥ (11/6)∆ is sufficient for rapid

mixing of a random update Markov chain (Vigoda [53]) whereas the corresponding

condition required for rapid mixing of systematic scan is q ≥ 2∆ (Theorem 16).

Similar gaps also exist for special graphs such as trees or the grid and it is of

general interest to either close those gaps or to show that systematic scan does

not mix under the same conditions as random update. The possibility of the

latter, namely that systematic scan does not mix under the same conditions as

random update, is however unlikely. Currently the only types of examples where

there is a genuine difference between the mixing properties of systematic scan

and random update is the relatively uninteresting case when the spin system

corresponds to proper colourings of a graph with no edges (where random update

requires Ω(n log n) updates but systematic scan mixes in one scan) or contrived

examples such as the spin system in Observation 53 (where random update mixes

rapidly but systematic scan does not mix at all).

Another open problem that arises from the work presented in this thesis is

whether the condition required for mixing in Theorem 14 is too strong. The

possibility of using other conditions was explored to some depth in Section 3.5 of

Chapter 3, however it remains possible that a weaker condition on the influence

on a site could be sufficient to prove rapid mixing of systematic scan. Note

that it may be possible to develop conditions that hold for certain spin systems

such as proper q-colourings but not for general spin systems, and such conditions
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would also be of interest. A final open problem related to Theorem 16, which

was also raised in Chapter 3, is whether it is possible to find a general method

for obtaining a set of weights that would make the influence on a site sufficiently

small provided that the influence of a site is small. This would be a generalisation

of the matrix balancing in the single-site case as we have previously discussed.

Note that we do rule out the possibility of finding such a set of weights when

using a natural definition of “the influence of a site” that is similar to the path

coupling condition. None the less, it remains possible that a stronger definition

of “the influence of a site” would make it possible to find such a set of weights

(see Observation 54 and the remark following it).
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