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Chapter 1

Introduction

Much work in the design of multi-agent systemsa) [158] has focused on the de-
sign and engineering of individual agents; for example pitdblems of designing and
implementing effective trading strategies for agentsipi@dting in e-commerce mar-
ket places, or the design of effective learning algoritharsafiaptive agents. However,
increasingly attention is being turned to the design of tifeastructure, or the envi-
ronment, underlying the interactions between individggrds in avAs; for example,
the problem of designing rules governing the operation oé-@wommerce market in-
stitution, or the design of interaction protocols goveghagent argumentation. The
justification for the latter approach is that oftennass designers we are responsible
for engineeringpensystems, in which we do not have control over the exact behavi
of the agents connecting to our system; these agents aealifautonomous. Rather,
we build a set of standards and protocols with which our agard free to interact,
and if we have designed our infrastructure robustly, theesysas a whole will ex-
hibit our desired design properties despite the fact thadrisists of possibly millions
of autonomous agents interacting with each other in ways ave hot prescribed in
advance.

Such systems are known self-organising complex systeigsocs [64] 1. Exam-
ples of such systems are market places, ecosystems, negsiams, neural networks,
co-evolving systems, and of course, multi-agent systentgey are complex, in the
sense that they consist of many parts with many interacti@tseen them and ex-
hibit non-linear, hard-to-predict behaviour, and they se#-organising in the sense
that macro-level stabilities emerge despite the undaglgomplexity. As an example,
consider a stock market consisting of hundreds of thousahttaders. Each trader

1The precise definition of a self-organising complex systerhighly contentious, and there are many
to choose from [55]. There is a particular sub-classotsthat exhibit a property called self-organised
criticality [4], meaning that the attractors of the systéendn critical points (eg phase transitions) between
order and chaos. It is suggested that the long-tail digtdbuof time intervals between events such as
market crashes in the business cycle are due to criticality §8]. However, for the purposes of this thesis
the property of self-organised criticality is not consitttheessentiadefining feature of a self-organising
system or a market. Nevertheless the analysis and methwdduned in this thesis do nptecludechaotic
dynamics or critically-poised behaviour. We will returntkos discussion in Chapter 8.
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is an autonomous agent, free to trade using whatever syréttey want. Individual
prices at any given time are determined by the trading belbawf all of other agents
trading in the market; thus the actions of each agent campally influence all other
agents; there are many interactions between the compouoiethis system. Many as-
pects of the market’s behaviour are chaotic or hard to ptedicexample the price of
an individual stock, or the profits of an individual tradeetdespite this complexity,
the variables that the stock-market “designer” is inte@én, for example the overall
market efficiency, remain at consistently satisficing valu&dditionally, such systems
are robust to exogenous perturbation; for example, afeestiick market has been sub-
jected to a shock, such as a market crash, the system eJugsetles back into a state
in which the design variables, for example market efficieacg held at desirable val-
ues despite the fact that there is no explicit top-down admntiechanism for achieving
this. Such self-healing or homeostatic behaviour is typéaocsin general. These
systems possess state-space dynamics with attractorsadnbel states (also known as
equilibria) that lead the system to homeostatic stateg+shstates in which our design
variables are maximised or held within desirable ranges.

As designers of a multi-agent system, we are therefore dasith ensuring that
the complex system embodied by owks possesses attractors or equilibria in which
our design objectives are met. But how can we affect the dycsof our system if we
are not allowed to prescribe the behaviour of individualrage— what free variables
are at our disposal? The answer, of course is outlined aboweas design prob-
lems we typically have some control over the environmenhéfmastructure in which
third-party agents interact. This can take the form of, faraple, rules governing an
auction mechanism, or the protocols used by agents for aggtation. Small changes
in these rules or standards can have dramatic effects onettaviour of the agents
using these rules, and can radically alter the underlyingadyics of the system in sur-
prising ways. By altering the underlying dynamics, we amnmstimes able to adjust
the system so that the stable states of the system exhiliibtheostatic properties we
desire. For example, in a market-design context, by twegttie rules of the market,
we are sometimes able to design systems in which optimalatiie-efficiency is an
emergent stable macro-property of the system.

Economists have studied similar design problems in theestwif auction theory
[80] andmechanism desigii22, p. 640] [142]. In a mechanism design problem, the
task of the designer is to choose the rules of the auctiondéh suway that the de-
signer’s objectives are met when agents play their optitnalegies. One of the main
difficulties in solving this problem is computing the optistrategies, as the best strat-
egy to play depends on what strategies are being played ley atfents; the number
of agents can vary significantly, and the strategy space eaety large. The standard
technique is to view each possible set of auction rules asidgfa particular game,
and then to use game theory to “solve” this game by finding ¢hefstrategies com-
prising aNash equilibriunof the game — the set of strategies that are best responses
to each other. For many scenarios, especially for singlegsauctions comprising a
single seller and multiple buyers, auction theory and meisihhadesign yield clear-cut
results. However, in the general case the problem is analigtiintractable, especially
when it comes to analysirdpuble-sideductions, also known as exchanges, in which
we allow multiple sellers as well as multiple-buyers. In tiext section | shall describe
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our motivation for studying double-sided auctions.

1.1 Exchanges & their theoretical significance

A double-auction mechanism is a generalization of an andgtiavhich there are mul-

tiple sellers as well as multiple buyers, and both buyers saiérs are allowed to
exchange offers simultaneously. Since double-auctidowalynamic pricing on both

the supply side and the demand side of the marketplace dtugly is of great impor-

tance, both to theoretical economists [77], and those sgdkiimplement real-world

market places. On the one hand, economists who are intérigstheories of price

formation in idealized models of general markets have dftened to exchange-like
models such as Walrasian tatonnement, to describe andsiade the price-formation
process [17], and on the other hand, variants of the doulntdes are used in large
real-world exchanges to trade commodities in marketplatese supply and demand
fluctuate rapidly, such as markets for stocks, futures, hed tlerivatives.

However, the models of exchanges traditionally used by ewists in general
equilibrium theory are often simplified for the purposesmdigtical tractability to such
an extent that they are of scant relevance to the designegalefvorld exchanges, and
even, it is sometimes argued, of scant relevance to thedhiearmodelling of markets
[48]. For example, one important simplification often masithat the number of agents
participating in a market is very large; this simplificatialfows relative market power
and consequerstrategic effect$o be ignored. However, in many real-world market-
places, such as deregulated wholesale electricity martkeie may be relatively few
competitors on one or both sides of the market. With small lmens of participants,
general equilibrium models break down [88, p. 10] becausg thil to allow for mar-
ket power, and the potential gains of strategic behaviguasficipants.

1.2 Auction Theory & Mechanism Design

Auction theory can be thought of as an alternative approadieneral equilibrium
theory, in which we build a more sophisticated micro-modehe marketplace, and
we use game-thoeretic techniques to analyse the ratiohalle ofindividual agents
faced with different pricing institutions. Whereas neasiaal equilibrium theory of-
ten abstracts away from the details of individual agentmg¢heoretic models allow
economists to build sophisticated micro-models of indngdagents’ reasoning and
preferences. In many scenarios, especially in analyzimgesisided monopoly mar-
kets, these models have been spectacularly successfig extant where they have
been directly applied to the design of real-world auctiamshigh-value government
and corporate assets [76]. However, in other practicalasies especially when it
comes to analyzing and designing double-sided marketh, asiexchanges, there are
still a number of problems with the theory, which we shalkfii review.
Auction-theorists typically analyze a proposed marketitimson by defining a set
of design objectives, and then proceed to show that theggndalsjectives are brought
about when rational agents follow their best strategiesralieg to a game-theoretic
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analysis. The task of choosing the rules of the market in&iit so that these objectives
are brought about is calledechanism desigThe typical design objectives considered
by mechanism designers are

Allocative efficiency: The outcome of using the mechanism should be optimal in
some defined sense, for example, the total surplus geneshtedd equal the
available surplus in competitive equilibrium.

Budget balance: No outside subsidy inwards or transfers outwards are reddar a
deal to be reached.

Individual rationality: The expected net benefit to each participant from using the
mechanism should be no less than the net benefit of any diterna

Incentive compatibility: Participants should not be able to gain an advantage from
non-truth-telling behavior.

In many applications, auction-theory demonstrates tret@xce of market mechanisms
that satisfy all of these properties when agents followoratlly prescribed bidding
strategies. However, the impossibility result of [94] dersivates that ndouble-sided
auction mechanism can be simultaneously efficient, bubdgkthced and individually-
rational. Moreover, many of the underpinnings of the theasgume that designers’
interests are restricted to only the aforementioned ptggger For example, the rev-
elation principle [80, p. 62] states that, without loss ohegelity, we may safely
restrict attention to mechanisms in which agents reveat thpes truthfully. How-
ever, this result does not take into account the potentistl aoother practicalities of
polling agents for their type information. Once minimizittge cost of revelation is
introduced as a design objective, the revelation prinaipkses to hold, because there
may exist partial-revelation mechanisms with non-trutlefguilibria which sacrifice
incentive-compatibility for expedience of revelation. igls of more than academic
interest, since in real-world electronic exchanges it islggpossible to polall agents
for their valuations before clearing the market; hencedietinuousdouble-auction,
in which we execute the clearing operation as new offergerthus increasing trans-
action throughput at the expense of incentive-compatjbili

In designing market places, as with any other engineerioglpm, we often need
to make such tradeoffs between different objectives depgnah the exact require-
ments and scenario at hand. We can often satisfactorilyesaleh multi-objective
optimisation problems, provided that we have some kind aihgjtative assessment of
each objective, yet classical auction-theory providey @anbinary yes or no indica-
tion of whether each of its limited design objectives is aghble, making it extremely
difficult to compare the different trade-offs.

Further complications arise when we attempt to use audtienry to analyze ex-
isting (“legacy”) market institutions. Exchanges suchrasltondon Stock Exchange
have been in existence far longer than game-theory andbaditteory, thus, unsurpris-
ingly, the original rules of the institution were not necadly based on sound game-
theoretic or auction-theoretic principles. Moreoversitinrealistic to expect that core

2] will give more formal definitions of these desiderata in Qtea 3
Shtt p: // www. | ondonst ockexchange. cont
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financial institutions such as these radically alter theles overnight in response to
the latest fashionable developments in auction-theoryaonagtheory. Rather, it may
be more salient to view financial institutioesolvinggradually and incrementally in
response to a changing environment. Similarly, agentgjgaating in these institutions

do not necessarily instantaneously and simultaneousiisatfjeir trading behavior to
the theoretical optimum strategy; for example, adoptioa néw trading strategy may
spread through a population of traders as word of its efficiffyses in a manner akin

to mimetic evolutiorf: Thus, we may think of the institutions we see today as the out-
come of aco-evolutionaryadaptation between financial institutions on the one hand,
and trading strategies on the other.

The issue of legacy institutions has ramifications for madma design; in these
contexts the choice of adjustments to the auction rules neaygbtly constrained by
existing infrastructure, both physical and social; thusiéty be necessary to examine
theattainability of equilibria under the new design given existing stratéghbavior in
the legacy design. Classical auction theory relies on icalsgame-theory which in
turn says nothing about tllyynamicsf adjustment to equilibrium.

For such applications, we need to turn to models of evolwdimhlearning in strate-
gic environments; models that we collectively categorindar the banner oévolu-
tionary game theoryModels of learning and evolution as applied to agentstetjias
are not new. Where my approach differs, however, is in thdiegijpn of models of
learning and evolution to the market mechanism itself, a fiel | call evolutionary
mechanism design

1.3 Thesis outline

In this thesis | introduce an iterative methodology for garg out evolutionary mech-
anism design. The broad outline of the methodology is asvi@! We start with an
initial set of auction rules comprising a mechanijgnmn which we observe a set of trad-
ing strategies. All of these are refined iteratively in response to directervations of
the real life marketplaceér( vivo analysis), as well as forecasts based on simulation and
game-theoretic analysig(vitro analysis). The method is outlined by the pseudo-code
on page 6: we start by performing an analysis of our initi@tsgies to see if there are
hitherto unanalysed strategies that might upset the sfatuéstep 2); we then publicise
our analysis to participants and update our analysis basedbservations of the real
market (steps 3 to 5); and finally we choose new mechanisrs th& maximise our
design objectives based on our current analysis of the réstap 7) before iterating
the design cycle.

In the rest of this thesis | will define the various steps o thiethod in detail, and
provide a empirical validation that it is both computable a&ffective. The outline is
as follows. In Chapter 2, | survey the existing work that Iwdngpon. In Chapter 3,
| define the space of mechanismghat will be analysed, and explore some of the
difficulties that arise when using conventioaaklyticaltechniques to assess the prop-
erties of these mechanisms. In Chapter 4, | discuss the sppateategiesS . Given

“The adoption by derivatives traders of the Black-Scholesgn for option pricing provides an example
[84].
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input : A set of initial heuristic strategieS, and a legacy mechanism
repeat

S — Fi SH+( S, ) ;

publicisesS to participants

Z « frequency of each strategy observed in yivo

S «— S U { strategies observed in vivo;

A «— space of feasible variants qf;

p < argmax,,, c  EvaluateDesignObjectives(ux, S, 7);
implement rules defined by

until forever ;

Algorithm 1: Evolutionary mechanism design

© 00 N O 0 b~ W N P

the difficulties of a purely analytical approach in assessie properties of strategies
and mechanisms, in Chapters 5 and 6 | introduce and validfagereework forsimu-
lating the interaction between strategies and mechanisms in twdesess the likely
outcome. In Chapter 7, | give a brief overview of an existingtihodology called empir-
ical game-theory that can be used to combine the resultsiofidation approach with
a rigorous game-theoretic analysis. In Chapter 8, | intoedusemi-automated method
for computing the functiofivaluateDesignObjectives() using empirical game-theory
in conjunction with the simulation framework. In Chaptet $htroduce the algorithm
Fi SH+, which can be used to discovenawset of strategies that are likely to be played
given a mechanism and an existing set of strategies. In €hapt | outline a method
for computing the full optimisation functioarg max,, EvaluateDesignObjectives()
and empirically validate it with respect to a subset of thecgpofy, and.S. Finally, in
Chapter 11, | summarise my findings and discuss future work.



Chapter 2

Literature Review

2.1 Economics and Artificial Intelligence

It has long been understood that Artificial Intelligenee)t has strong roots in eco-
nomics [122, p. 9]; whilst the latter is traditionally comned with idealized models of
agents interacting in realistically complex environments, thenfier has placed more
emphasis on realistically complex agents interactingéalided environments. Indeed,
one of the pioneers ofi, Herbert SimoAwas originally motivated in much of hisi
research by attempts to build more complex models of agbetgviour in economic

1For the purposes of this chapter, the definitionaofis taken from [122, p. vii]: “The main unifying
theme is the idea of aimtelligent agent We defineal as the study of agents that receive percepts from the
environment and perform actions”.

20f course, the precise definition of the phrase “intelligagent” is itself highly contentious. The use of
the word “agent” in ami context did not enter into mainstream use until the mid 19%0swvever, taking
the perspective of Russell and Norvig [122], this was notahse intelligent agents did not exist prior to
the introduction of this phrase, but rather because theg keown by different terminology, and because
the emphasis prior to the intelligent-agent approach wasadxk on the individual components of agent
design (vision, planning, knowledge-representation,) ettisolation, without necessarily focusing on the
inherent problems entailed in building a “whole-agent’hétecture [122, p. 27]. However, researchers were
still working on intelligent agents prior to 1995; whereaglanning system hooked up to a physical robot
might have been called “an experiment in situatetiduring the 1980s, the same system might have been
described as “an intelligent agent” in the late 1990s. Thasm¥l use the word agent to mean “an entity
that receives percepts from the environment and perfortisnac Each such agent implements a function
that maps percept sequences to actions.” [122, p. vii]. eSime will be sometimes be taking a decision-
theoretic perspective, we will sometimes refer to this fiomcas the agent'decision functior(which solves
its decision problern Note that humans are are compatibile with this definitibarointelligent agent (since
we take actions in our environment in response to sequerigasrcepts in accordance with some yet-to-
be-formulated function), and we shall intentionally use girase intelligent agent ambiguously to refer to
both artificial and “natural” agents; the latter tying in eli¢ with the usual meaning of the word agent in the
economics literature (which predates its use in computense [91]). However, | urge the reader not to
take these definitions too rigidly; after all, to adapt a grrom Shakespeare [128], an agent by any other
name would act just as rationally.

3Herbert Simon was co-winner of the 1975 Turing prize for fbawntributions to artificial intelligence,
the psychology of human cognition, and list processing”],[#5 well as winner of the Nobel prize for
economics in 1978, and was co-author of the first automatesbreng program [122, p. 17], the Logic
Theorist, which was developed in 1955.
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environments (see, for example [23]).

Whilst the broad relationships between the two discipliwese generally under-
stood from the inception ofl, it was not until the late twentieth century and the birth of
the Multi-Agent SystemsmMAs)* [158] discipline that highly specialised theories and
concepts were imported from economics iato Boutilier et al. [14] were amongst
the first to clearly articulate the specific relationshipsi@en economics anel. The
particular significance of mechanism design in the contértuti-agent systems was
first discussed in [117] and [142], as summarised by Wellman:

“Within economics, the problem of synthesizing an intdmacproto-
col via which rational agents achieve a socially desirabtel és called
mechanism design. This is exactly the problem we face iguiegj dis-
tributed software systems, which suggests an opportumigxploit exist-
ing economic ideas. [151]

More recently the theme of incentive-engineering has bakent up in the wider
computer-science community in contexts as diverse asrrdton security [1], and
computer networking:

“If an artifact (a new congestion control protocol, a new ¢éeg scheme,
a new routing algorithm, etc.) is demonstrated to have siopgrerfor-
mance, this does not necessarily mean that it will be sutidedor the
artifact to be ‘fit’, there must existpathleading from the present situation
to its prevalence. This path must be paved with incentivatsviiil moti-
vate all kinds of diverse agents to adopt it, implement ig iisinterface
with it or just tolerate it. In the absence of such a path, theshclever,
fast and reliable piece of software may stay just tédtdesign problems
are now mechanism design problems.” [104]

2.2 The Double Auction

This thesis focuses specifically on a particular class ohemuc mechanism — the
double auction. As discussed in the previous chapter, thbdldcauction has come
to be recognized as an importdsgnchmark problein both economics and multi-
agent systems. In particular, a landmark workshop held imteSke [51] motivated

much contemporary research in this area by highlightingdiffeeulty of agents’ de-

cision problems in non-idealized variants of this type ofrke#place, and the Santa
Fe double-auction tournament was one of the first studieslwided advanced agent-
based simulation in order to explore the properties of tléstmanism [123]. To this day
the double-auction still represents an important benchiprablem by simultaneously
admitting of precise representations whilst stretching lounds of both analytical
tractability and computational brute-force. In the foliog | will review analytical

“The field ofMAs grew from distributedal [37], and is principally concerned with the issues thatearis
when multiple intelligent agents interact with each othiEtis is in contrast to traditionadl which tended
to focus on systems comprising a single agent. Multi-aggstess are generally harder to analyse because
the outcome of one agent’s action may depend on the acticsenhwy other agents.
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and computational approaches to the agents’ decisiongmofitaditionally the focus
of A1), and the mechanism-design problem (traditionally theigoof economics) in
turn.

2.2.1 Analytical approaches

The core of the analytic approach to agents’ decision probles based around the
theory of n-player non-zero-sum games as formulated by Mdsh [95], which |
shall discuss in more detail in Chapter 7. Nash’s insighttliasin any interaction of
preference-maximising agents whose outcome depends @irihset of actions — that
is, a game — any given agent has a theorelieat responst® the actions chosen by the
other agents. By applying this reasoning recursively weeagat the concept of a Nash
equilibrium; a situation in which every agent chooses adtithat are best-responses
to the best-responses of other agents. Nash provedihain-player game possesses
at least one equilibrium solution, thus providing a powktfieoretical framework not
only for optimizing one’s strategy in such an interactiohqosing a best-response),
but also in predicting a likely combination of joint actiofidash equilibrium). Many
refinements have since been made to Nash’s theory, some wicstesmportant being
Harsanyi's concept of a Bayesian-Nash equilibrimg) [63], which deals with situa-
tions where payoffs are dependent on some private unotigeqaperties of an agent
— the agent'sype (for example, the particular cards that an agent holds innaegaf
poker), and Maynard Smith’s theory of evolutionary games BB] which overlays a
dynamic model of gradual strategy-adjustment on top of thicsequilibria of Nash’s
original formulation.

Game-theory provides a very powerfigneralframework for solving agent inter-
actions in theory, but it was William Vickrey [143, 144] whedii saw the fundamental
economic significance of auctions and who first applied tle®mh of games in this
area giving birth to modern auction theory, as summariseWilay Krishna in his
comprehensive overview of the state of the art [80].

Auction theory provides a comprehensive theoretical fraork for analysing sin-
gle sided auctions — that is, auctions with a single selldmaaltiple buyers. However,
double-sided auctions — auctions with multiple sellers al as multiple buyers — re-
main something of a theoretical oddity despite their insiregprevalence in economic
reality. Vickrey [143] demonstrated that no double-sidegthranism could simultae-
nously achieve the incentive-compatibility, individuakionality, budget-balance and
efficiency desiderata. Subsequently d’Aspremont and idévaret [32] demonstrated
the existence of a budget-balanced mechanism that was @laehieve incentive-
compatibility in Bayesian-Nash equilibritihat the expense of individual-rationality.
McAfee [87] provided a formulation of a double-sided singlgit mechanism that
admitted of a dominant-strategy game-theoretic solutiotha expense of budget-
balance, and Huangt al. later refined this idea to the multi-unit case [67]. However
Myerson and Satterthwaite [94, 127] were able to extendreigk result and demon-
strated that for the case of a single buyer and seller thezs dot exist a mechanism

5Bayesian-Nash incentive-compatibility merely requinegh-telling as Bayesian-Nash equilibrium of
the game, rather than the usual stricter requirement thidq-telling is a dominant-strategy.
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that can simultaneously achieve incentive-compatibliitglget-balance, efficiency and
individual-rationality even when the incentive-compdii criteria is relaxed from
dominant-strategy t@NE, and hence there is no double-sided mechanism for achiev-
ing all the usual desiderata required by auction theonistseé general case.

Although there is no unequivocal and complete game-thieoagialysis of the
double-auction in the general case, that is not to say, hesvthat double-sided mech-
anisms do not admit of game-theoretic solutions in spegifitainces. The first equi-
librium analysis for a double auction was that of Chattegaed Samuelson [21], in
the paper in which they introduced the idea of thdouble auctiof, which we will
discuss in the next chapter, albeit only for the two tradeecé#n this initial paper, Chat-
terjee and Samuelson show that there is an equilibriumisallassuming independent
private values.

Considerable work has since been carried out extendingdbist. First, Williams
showed the existence of equilibria in the buyer’s bid doahietion [155, 154] — this
is an easier auction to analyse since the dominant strategseflers is to bid their
true value, thus fixing one side of the auction and, as [12#4jtp@ut, ensuring that
the market has a unique equilibridnThe same authors subsequently showed the exis-
tence of equilibria in the many-trader version of thdouble auction [127], at the same
time suggesting that the modifi@BbA has no equilibrium. This work was followed
by Jackson and Swinkels [70, 71], who showed the existenequifibria, though not
monotonic equilibria, under a wide range of conditions. fN&eny and Perry [115]
showed that monotonic equilibria exist if offers are reséd to discrete values, and
Fudenberget al. [53] showed that this result could be extended to continwalises
(which [71] argues is “a very useful approximation ... allogone ...to use calculus
to characterise equilibria”) provided that the auction Waage. Finally, Kadan [73]
showed that an increasing equilibrium exists for just tvemlérs with affiliated values.

2.2.2 Empirical approaches

Whilst double-auction mechanisms stretch the bounds@udtieory by admitting of
no unequivocal dominant strategy solution in the genersécthe theory of games
itself has come under scrutiny as a plausible general-perpwodel of the strategic
behavior of complex agents (human or otherwise); for exampberee and Holt [59]
give an overview of ten simple games where the game-theetition is easily ob-
tainable yet intuitively implausible. This has led to a semination of the use am-
pirical methods in economics, whereby experiments are conductadhatual agents
trading in a market-institution under laboratory condigo The agents may be human,
in which case the methodology is sometimes caéigderimental economigsee for
example [75]), or more generally they may be implementetdéform of a computer-
program; Tesfatsion [139] coined the phrasgent-based computational economics
(ACE), to describe this approach.

6Though not under this name — they refer to the price settifggas a “bargaining rule”.

"Note that all results for theBDA, the 1-DA, are symmetric with those for tedouble auction in which
the transaction price is determined by the price offeredheyhighest asking seller that trades, thea
[124].
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Experimental economics using human agents has the adeahtatcn large supply
of agents are available “off the shelf” so to speak; hencesagdrisingly experiments
using human agents were among the Gt investigations of the double-auction mar-
ket. Smith [131] was the first to study the double-auctionardboratory conditions
using human-agents, and his results suggested that hutbj@ctsuvere able to extract
close to theoretically optimal surplus from the market.

One of the disadvantages of human-based experimental etomoompared with
agent-based computational economics is that it is not aveaaightforward to an-
alyze the necessary cognitive mechanisms required to\achi@articular economic
outcome. In contrast, Gode and Sunder [58] performed oneecdarliest agent-based
experiments on the double-auction with the aim of invesitigethe lower-bounds on
the amount of cognitive machinery required to achieve efficoutcomes. They were
able to demonstrate that their mininzro-intelligencestrategies, implemented in the
form of computer programs, were able to achieve highly effitoutcomes, suggesting
that the double-auction mechanism was highly robust inémse that it required min-
imal rationality on behalf of participants. Their resultene not unequivocal, however;
Cliff and Bruten [28] demonstrated that some aspects of GodkSunder’s results
were highly contingent on the particular distribution ofeats’ valuations that were
used in the original experiments, and that a more sophisticand robust strategy,
zero-intelligence plugzip) was required in order more accurately fit the behaviour of
human subjects under less restrictive assumptions.

This was not the end of the story, though, since when anajysimarket mech-
anism ideally we want to demonstrate the existence @déminantstrategy, and that
design objectives such as high-efficiency outcomes areethidtrof agents adopting
this particular strategy. For example, in many single-gigections one of the desider-
ata usually considered iscentive-compatibilitythe dominant bidding strategy should
be to bid truthfully at one’s valuation. Unless we can deni@te that an economic
outcome such as high efficiency is the result of agents atpptdominant strategy, or
at the very least an equilibrium strategy profile, we can nbeesure that the strategy
under which high efficiency is observed will not, at some pdie discarded in favour
of an alternative strategy which yields higher payoff feradopters at the expense of
overall social welfare. By analogy, consider the prisamdilemma game [49, 9, 3]; al-
though the cooperative strategy yields the highest wetfateome if all agents adopt it,
this does not suffice to demonstrate that both agents wilpttthe cooperative strategy
since there will always be a temptation to choose the defiestrategy.

Thus there have been numerous attempts to craft agent-brasklg-strategies
for double-auctions that are able to out-compete othetegfies: Preist and van Tol
[112] devised a variant of Cliff’zip strategy that was able to trade in persistent-shout
auctions; Gjerstad and Dickhawt§) introduced a trading strategy that estimates the
probability of a bid being accepted as a function of bid pbhesed on an analysis of
historical market data, and then bids to maximise expeatefit |j67]; Todd Kaplan’'s
[51] entry into the Santa Fe tournament was one of the firstsh@nted double-auction
snipingstrategies, which wait until the last minute before suldnita bid in order to
prevent counter-bidding; Tesauro and Das [138] introdwegints of thesD andzip
strategies that were able to trade in continuous-time enwients; Nicolaisen et al.
[98] used a trading strategy based on Roth and Erev’s [48]Jamiement-learning [74]
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model of human game playing to analyse a simulated elegtritarket; and Hsu and
Soo [66] analysed the performance of a strategy based on-kb&rgjing algorithm
[147]. Variations on these and other strategies have bagsdEgainst each other in
several public tournaments designed to elicit new stratisgjgns from theCce com-
munity [61, 153, 123]. Some of these strategies will be dised in full detail in
Chapter 4. Although some of them have advantages over dtheestain situations,
and there are pros and cons to each, there is evidence tosstiggienone of them are
dominantover the others [145], even putting aside the problem of destnating that
any are dominant over the entire space of possible strategie

Evolutionary search

Much of the work cited in the previous section focussed onahg that particular
strategies yield high payoff if deployed in a market in whiadhagents adopt the same
strategy homogenously. However, if we have reason to betleat none of the strate-
gies from the previous section are dominant over the othéenwhey iteract with
each other in the same marketplace, we have no reason toddi anysingleone
of them will come to be used in a real market. Hence if we singasnpute market
outcomes by running experiments in which we equip agentsolgemeously with the
same non-dominant strategy, we are not necessarily neatgrdierstanding the eco-
nomic properties of the double-auction.

Of course, it may be the case that a single dominant strategylysdoes not exist
for the double-auction game; instead, somigture of these, or yet to be discovered
strategies, might constitute a Nastpuilibrium That is, even though no single strategy
is “optimal” in the sense that it is dominant over the othexmne mix of these or
other strategies might constitute best-responses to g¢heh &f this were the case and
our market were populated by such a mix of strategies, we neighect that such a
state of affairs would persist in reality, since by definitibthe agents were to change
their strategy they would be worse off. Therefore the agé@sselves would have an
incentive to maintain the status quo; and thus the compsméithe system would tend
to naturally drive the system back towards such an equilibri Thus if we evaluate
the properties of the mechanism when it is in these equilibstates, we might expect
that our predictions for variables such as market-effigiemidl be accurate for some
reasonable duration, and if our design objectives are niagitrin these equilibria we
will have shown that our mechanism is homeostatic.

In order to assess whether or not there are mixtures of giegteonstituting equi-
libria, it is necessary to systematically evaluate thetastia interactionbetween the
known strategies, as well as the space of yet to be considéraggies. Since this
search-space is very large, exhaustive search is unfea3ibis has led researchers to
turn to heuristic methods such as evolutionary search assitpe methods for studying
the interaction between different double-auction striateQy systematically sampling
the search space, e.g.: Cliff [25] used evolutionary setmoexplore the parameter
space of higzip strategy, and Andrews and Prager used Koza'’s genetic progirag
technique [79] to search for a best-response to a unifornednstrategy of the Santa
Fe tournament entrieCo-evolutionary algorithms [65, 2, 111] are highly promising
in this respect. In a co-evolutionary search the fitness dividuals in the popula-
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tion is evaluated relative to one another in joint intemaasi (similarly to payoffs in a
strategic game), and it is suggested that in certain cirtamoes the converged popula-
tion is an approximate Nash solution to the underlying gatima; is, the stable states,
or equilibria, of the co-evolutionary process are relatethe game-theoretic equilib-
ria. Price [113] and Dawid [34] used co-evolutionary sedocéxplore convergence to
equilibrium states in the double-auction.

However, there are many caveats to interpreting the equilib states of stan-
dard co-evolutionary algorithms as approximations of gaine®retic equilibria, as dis-
cussed in detail by Sevan Ficici [46, 45]. This has led to almemof refinements to
standard co-evolutionary algorithms by incorporating géireoretic concepts directly
into the co-evolutionary algorithm itself [100, 47, 44]ethse of heuristic search (evo-
lutionary or otherwise) to find approximate best-resporrsequilibrium strategies is
an open research topic that | shall return to in Chapter 9.

2.2.3 A hybrid approach: empirical game-theory

The various caveats discussed above with the game-theoagent-based and evo-
lutionary approaches, as used in isolation, have insisdutid approaches whereby
agent-based experimentation is used to build an approgigeanhe-theoretic represen-
tation which is then solved using standard techniques friagsical and evolutionary
game-theory. This methodology is knownexapiricalgame-theory, and it is the prin-
ciple methodology used in this thesis, as described in @n&ptMany studies prior to
2000 had started to take a more principled and systematioagpip to studying the in-
teraction between complex strategies in a simulation eofier example Rust, Miller
and Palmer systematically studied convergence to equitibof the strategies in the
original Santa Fe tournament using ideas very similar tdutiamary game-theory [51,
p. 183-189]. These ideas matured within th&es community, and a research group at
Michigan set this kind of analysis in a rigorous game-thgoterms: in 2002 Walsh
et al. demonstrated the effectiveness of the techniqueefeeral bargaining games,
including a double-auction [145]; Walsh, Parkes and Da®ihiced a refinement to
the technique to concentrate the sampling of simulationthose experiments that
were most critical to the equilibrium analysis [146]; Rege¢ al. performed a game-
theoretic analysis of strategies in a market-based scimgdhdenario [30] and Wellman
et al. [152] used empirical game-theoretic analysis to dekign their entrant on the
2004 trading agent competition.

2.3 Automated mechanism design

Whilst the application of computational techniques to therd decision problem has
a comparatively long tradition, their application to theahnanism-design problem is
more recent. The economist Alvin Roth was the first to posehairgism-design as
anengineeringproblem [118], thus paving the way for the application of ieegring
techniques to mechanism-design. CIliff [26] and myself [1087] were the first to
apply ad-hoc evolutionary search to the double-auctioigdgwoblem with a view to
automating the mechanism-design process (I present migreadrk in this area in
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Chapter 10). Meanwhile Connitzer and Sandholm [29, 126kwiee first to pose the
automated mechanism-design problem in rigorous theatdtms and analyze the
algorithmic complexity of the problem. Byde [19] used corgiional techniques to
analyze a space of variants to the Vickrey nth-pricing mifne context of single-sided
auctions, and Davidt al. used Bayesian learning to optimize the rules of a singleesid
auction mechanism in cases where agents are constrainetttetd bid prices [33].

2.4 Evolutionary mechanism design

The central theme of this thesis is that just as choice offegjyas not a static problem,
since agents may be constrained in their adjustment okegiyaiver time, neither is
mechanism-design; mechanism designers may also be dossitia their choice of
mechanism rules, for example there may be legacy infrastreithat prevents an insti-
tution such as a large stock exchange from radically atigtinauction rules overnight.
Just as constraints on strategy adjustment leaddtutionarygame theory, constraints
on mechanism adjustment lead évolutionarymechanism-design. We might think
of the market institutions that we observe today as the #giuim outcome of a co-
evolutionary process not just between individual strategbut a coevolution between
strategy and mechanism. Peyton Young was the first econtonsbpose this idea
[161], and it is a theme | shall revisit in Chapters 8 and 10.

2.5 Summary and Contribution

Economists have long used idealized models of agent balvawiorder to understand
market behaviouri practitioners have had to adapt these models in order td bail
tual agents, and the resulting engineering approach tasigehaviour requires more
sophisticated and complex models. Similarly, it has rdgdygen understood that the
idealized notion of a “free” market is not always applicalsiace actual markets entalil
many rules that govern their operation. Building real meglantails an engineering
approach just as does the building of real agents.

In this thesis | introduce several engineering methode¥oitutionarymechanism
design in the context of double-auction markets. In Cha@tediscuss an applica-
tion of empirical game-theory to analysing different pmigirules for a double-auction
with particular emphasis on the applicability of this teichue forlegacymechanism
design. This work first appeared in [106]. In Chapter 9 | idtroe a novel method for
automated strategy acquisition that can be used as a mathderveningin an ex-
isting mechanism in order to perturb the equilibrium of thstem back into a socially
desirable state. This work was originally presented in J[1@3nally, in Chapter 10 |
present one of the first attempts to use evolutionary algymistto directly search the
mechanism-design space, which was originally presentgDi].

The following is a list of my refereed publications that werglished during the
course of the research that | conducted for this thesis:

e [105] S. Phelps, M. Marcinkiewicz, S. Parsons and P. McBurné novel
method for automatic strategy acquisition in n-player zems-sum games. In
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H. Nakashima, M. P. Wellman, G. Weiss and P. Stone, ediknseedings of
the 5th International Joint Conference on Autonomous Agyantd Multiagent
Systems (AAMAS 20Q@ages 705-712, Hakodate, Japan, May 2006. ACM.

[106] S. Phelps, S. Parsons, and P. McBurney. An evolutiogame-theoretic
comparison of two double-auction market designs. In P.tkeaad J. A. Rodri-

guez-Aguilar, editorshgent-Mediated Electronic Commerce Wages 101-114.
Springer Verlag, 2006.

[107] S. Phelps, S. Parsons, P. McBurney, and E. Sklar. G#gon of auction
mechanisms and trading strategies: Towards a novel agptoagicroeconomic
design. InProceedings of the Bird of a Feather Workshops, Genetic armdu=
tionary Computation Conferencpages 65—72, New York, July 2002. AAAL.

[108] S. Phelps, S. Parsons, P. McBurney and E. Sklar. Ch#éwoary mech-
anism design: A preliminary report. In J. Padget, O. ShehbryParkes, N.
Sadeh, and W. E. Walsh, editofsggent-Mediated Electronic Commerce IV: De-
signing Mechanisms and Systeipages 123-143, Springer Verlag, July 2002.

[109] S. Phelps, S. Parsons, E. Sklar and P. McBurney. Usingtic program-
ming to optimise pricing rules for a double auction market?toceedings of the
workshop on Agents for Electronic Commereaitsburgh, PA, October 2003.

[110] S. Phelps, V. Tamma, M. Wooldridge and I. Dickinson.w&od Open
Negotiation.IEEE Internet Computing:(70-76), 2004.
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Chapter 3

A Generic Model of the
Double-Auction

A double-auction is a generalisation of the more commomigvin single-sidedauc-
tions in which a single seller sells goods to multiple corimgebuyers (or the reverse).
In a doubleauction, as well as multiple buyers competing against edloar result-
ing in price rises, multiple sellers of the same commoditynpete against each other
resulting in price falls. Institutions of this type are alsmown as exchanges, and are
typically used to trade commodities whose valuations abgestito much uncertainty
and can vary rapidly over time; for example, equity sharaded on stock exchanges.

In this chapter | shall describe in detail the operation g tiipe of marketplace.
However, arriving at a comprehensive description thatgenous enough for formal
analysis is a difficult task. Many variants of this institutiexist in the real-world, and
hence similarly in the economics literature. The diffelenbetween these variants can
be subtle and hard to describe since the trading rules gioegreal-world exchanges
have evolved over many decades, in many different countri¢snce there are no
definitive standards or terminology for formal modellingloése institutions.

There have been several attempts at formally defining a gesgace of possible
auction mechanisms, and modelling double-auction vagiaspoints within this space
[160]. | shall take a more constrained approach, howevseesi

e These approaches attempt to provide a general framewor&ldssifying all
types of auction mechanism, not just double-auctions, amtdthese models
have a great many parameters. By adopting a less general, me&dexpect to
be able to build a simpler framework with fewer parametegd thill be more
tractable for my purposes

e Any model is necessarily aabstractionof some real-world phenomenon. Ab-
straction involves discarding details that are felt to bel@vant for the purpose
at hand, and the models thus obtained incorporate many asismsiabout what
is relevant and what is not. However, what is relevant can significantly from
problem to problem. This is especially the case when we aalysingartifacts

17
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which do not share a single designer or design process, aad adr purposes
are practical in nature, such as when our problem is a desa@sigmn. Both of
these hold in the analysis of auction mechanisms. For exgrigstandardthe-
oretical model of an English ascending auction assumesati@ions are short
in duration, and that there is no opportunity cost to biddenglacing bids or
monitoring the auction. These assumptions hold in brickd-@ortar auctions,
but fail to hold in many internet auctions, and thus alteuweamodels are re-
quired [82]. This is a reflection of the fact that many probdeim economics
are engineering problems [118], and thus as with other eeging disciplines,
for example, software engineering, we should expect oureaisoid be highly
project-specific and somewhat disposable in nature.

Bearing in mind these considerations, we review severédmaifit double-auction
institutions that are commonly discussed in the literatuMe compare and contrast
their differences from a design perspective, and proceednstruct a model that en-
compasses each variation as a special case whilst capthémgsign-relevant differ-
ences between each institution. This model will then be tisexighout the thesis to
illustrate different economic design methodologies. Afitban engineering approach,
we will use a number of different modelling languages tosilfate our framework, in-
cluding the Universal Modeling LanguagenfL) [121], which is commonly used by
software engineerings not only to model software systemsalso the wider extra-
computer environment in which software systems are emhkdde

Since our model does not attempt to be all-encompassingjritroduces some
caveats. Firstly, we cannot make claims about all possibi¢i@n variants, such as
claiming that a particular mechanismtfse optimal one with respect to a given set of
design objectives. Secondly, we cannot provid@pnori guarantee that our methods
are applicable under alternative models.

However, as we reasoned earlier, in most real-world problérase caveats are
also applicable to so called general models, since we wilhgs be able to find a
scenario that violates certain of the assumptions of angrgilieory. Throughout this
chapter, we will see that many real-world double-sided raaidms violate some of
the fundamental assumptions of auction theory, such asetredation principle, and
are thus outside the space of mechanisms traditionallyidered by auction theorists.

Rather than attempting to circumvent these caveats, wénsttad adopt an engi-
neering approach; our discourse will not encompass thedlieally possible, rather
it will be limited to relevant design characteristics ofdrgst; when we introduce de-
sign methodologies, we will take a heuristic approach, aftdaboutgood rather than
optimaldesigns.

3.1 A model of a commodity-exchange market

3.1.1 The resource allocation problem

The market place is populated by a finite numbetrafiers represented by the set
A={ay,as,...a,}.
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A single class of resourcé is traded in the market place. The resource is divided
up intounits ¥ = {41, v2, ... }. Eachindividual unit of the resource is indivisible.
Each tradepwnsa certain subset of the resoungelefined by the function

0:A— 27

whereQ(a;) C ¥ denotes the units of resource to which traggenas exclusive access,
and with which it is free to do with as it pleases.
The resource ison-sharablethat is:

Q(a;) N Q(aj) =0 Vi#(ai, aj) € A?

The function(? defines thallocationof the resourc& amongst the trader4. Traders
cannot be coerced into relinquishing ownership of resa@jtmet they may volunteer to
transfera certain number of units of resource to another trader wigshlts in a new
allocation. A transaction involving the resource is reprasd by a tuple = (r; €
ArjeAry € 2¥) € Rrepresenting atransfer gf, units from trader; to traderr;.
The function mapping from an original allocatiéhto the allocation resulting from a
transaction € R is:

Q' = trans({r}, Q)

where:

Q’(aj) = Q(aj) JurT
Q(a;) = Qai) =T
Q(az) = Qaz)Verizjar € A

For multiple transactions thieans function is defined recursively. Given a set of
transaction?S C R = {rs1,rs2,...,rs,}, and an initial allocatiof?, the allocation
resulting from the sequence of transactiongisi is given by

|RS| >1 = Q' = trans(RS, Q)

where:

wo = Q
Q, = Wk
wi = trans({rs;},w;—1) Vrs; € RS

Traders participate in the market in order to exchange wiitg for cash The
amount of cash owned by an trader is given by the fundiio — R. Traders cannot
be coerced into relinquishing cash, but they may volunte&ansfer a certain amount
of cash to another trader, which again results in a new almtaA transfer of cash is
represented by a tupte= (¢; € A,¢; € A, ¢, € R) meaning that trader; transfers
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¢p to traderc;. The functionpay maps from an original cash allocatidnto the new
allocationI resulting from a cash transfer thus:

I = pay({c},I)

where:

I"(c;) = Tle)+ep
(i) = T(a)—c
For multiple transactions theay function is defined recursively as per thens func-
tion.
Typically, traders enter in mutual transfers of cash andue=. If a tradem;
transfers cash to trader, and in return trades; transfers resource to tradey, then
we say thati; buysresource, and that tradey sellsresource.

Each traden; has differenpreferencesver the possible allocations of catand
resource). Preferences are defined by the tradetikity function

ui (D, Q) = u(a;, T, Q) (3.1)
A traderi prefersan allocation(I”, ') over an alternative allocatiofT’, 2) if, and
only if:

U; (F/, Ql) > U (F, Q)
A traderi is indifferentover two allocationgI, Q') and(T", ) if, and only if:

U; (F/, Q,) = U; (F, Q)

In the scenarios that we shall studly,is acommaodity that is, traders are indifferent
over allocations in which they own the same number of item&.df1ore formally:

€922 (ai)] = [Qy ()] = wi(T, Q) = wi(T', Q)

We shall also assume that traders’ preferences are soltdyntieed by their own
allocations of resource and cash and not by those of othertgigbat traders always
prefer to have the greater of two bundles of cash; and thatteader; has avaluation
functiony; : 2¥ — R for their current allocation of their resource meaning that

(' (a;) = Qas) — ¥z) A (I(a:) = Tai) + xi (¥z))
— ([, Q) = w(,Q)

Accordingly, in our particular model, each trader’s wilis given by a function of the
form:

u; (T, Q) =T + x:i(Q(ay))
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Our model of utility is further simplified by dividing tradeiinto two distinct sets:
buyers represented by the sBt C A; andsellers represented by the s€tC A, such
thatS U B = A andS N B = . Our valuation function is then:

Qai) =0 = xi(a;)) =0
Qa;)| >0Na; € B = xi(Qa;)) = v;
a; €S = xi(Qai)) = vi|Qas)]

wherev; € R is the valuation of agentfor a single unit of resource.
Buyers carcash intheir allocation of resource. If buyéy € B cashes in, then

Qiy1(bi) = 0
Tip1(bi) = Ti(bs) + v

Sellers camproduceadditional resource. If seller; € S produces a single unit of
resourcep, € ¥ then

Qiri(si) = Qu(s:) Uty
Tivi(si) = Ti(ss) — v
Uipr = YUty

In general, traders will only perform actions that incredssir own utility. We will
refer to such actions asdividually-rationalactions.
Note that since, in the general case

(Hbi)B(ESj)S Vi > Vj

there may exist the possibility for traders to increaser thidity by entering into mutual
transfers of cash and resource. That s, in general, theneaentiafgains from trade

3.1.2 Optimal allocations and the equilibrium price

A natural question then is how we can maximise the utility lbhgents by selecting
a set of transactions of cash and resource that are indiiyehagional for individual
agents. More formally, given an initial allocati¢h, 2), we need to solve the following
optimization problem:

|A]
arg max Z u;(pay(Cx,T), trans(Rx, 2))
(C*,Rx) ;1
We restrict attention to scenarios in which sellers prodaeseurce which they then
sell to buyers. Accordingly, for each tuptec C'x
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ci €B
¢j € S
¢ €R
and
VCEC*HTER* T = Cj A i =¢ (32)
VreR*HCEC* Ci =T; A Cj =T (33)

Let v, (c) denote the valuation of the buyer involved in the transacemd let; (c)
denote the valuation of the corresponding seller:

w(c) = v,

vs(c) = v

Assumingus(c) < ¢, < vp(c), the gainin utility to each trader involved in a transaction
cisvy(c) — ¢, for the buyer, and,, — v, (c) for the seller. Therefore, the total gain from
trade for a solutior'x is:

E(Cx) = Z vp(c) — vs(c) (3.4)
ceCx*

We can solve this maximisation problem by choosing the eftgsnef C'x so that
buyers with higher valuations are paired with sellers witwér valuations. Let the
functionV : 24 — 2R denote the multiset of valuations corresponding to a gien s
of traders:

V(T) = {UZ‘ ta; € T}

LetV B = {vby, vba, ... } denote the multisdt (B), wherevdb; denotes the highest
valuation of any buyer, andb; denotes thé'® highest valuation of any buyer. So that
we have

Viji<j — ’UbiZ’Ubj

Similarly, let V'S = {vs1,vsa,...} denote the multiset’(S) where, wherevs; de-
notes thdowestvaluation of any seller, ands; denotes thé'" lowest valuation of any
seller.

V'S is called thesupply schedulendV B is thedemand schedul& hese have cor-
responding natural graphical representations which,erctintinuous case (6958 =
[a, b] wherea andb are arbitrarily constants R), can be represented as smooth curves
known as the supply and demand curves. We retain this noatenelfor the discrete
graphical representation of supply and demand.
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Let M B andM S denote the subsets bfB andV .S where buyer valuation®atch
seller valuations; that is, where buyer valuations aretgrehan seller valuations:

MB = {mby,mbs,...} CVB
MS = {msi,mss,...} CVS

such that:

mb; > ms; Vi
mby > mby > mbs > ...
msy < mss <msg < ...

Claim 3.1The maximum possible gain from trade is:

|MB|
TP =Y mb;—ms; (3.5)
i=1

Proof. We will prove this claim using a Reductio ad Absurdum argutnen

Let b; denote the buyer whose valuationuils and lets; denote the seller whose
valuation isvs;.

Suppose that the optimal gain from trade can be obtaineddtra set of transac-
tions C'x involving at least one transaction involving a pair of trextge ands; where
i # j. Then equation 3.4 will contain a term

mb; —ms;

However, ifi < j, then we could obtain a larger value Bf since we could choose
a set of transactionS’ in which we pairo; with b;, instead ob,; ands; and

1<j = ms; <ms;
= E(C') > E(Cx)
This contradicts our original assertion tiat is optimal, and thus the result holds

by Reductio ad Absurdem.
([l

The ratio

E(C)
TP

is known as thefficiencyof the market. The market efficientif, and only if, FA = 1.

EA(C) = (3.6)
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The Equilibrium Price

Of particular interest are solutions to the maximisatioolpem in which all transac-
tions share a common prige: so that we havévc)c. p(c) = p+. Faced with any
given pricep, any given buyeb; € B will voluntarily buy from any sellers; € S
at the specified price provided that< v;, otherwise they will refrain from entering
into a transaction. Similarly, any given sellere S will voluntarily sell to any buyer
b; € B at the specified price provided that> v;. Thus given any our transaction
setC' consists of all transactions satisfying the following doaisit:

C ={(ai,a;,p) :a; € SNaj € BAv; <p <}

The total increase in utility across all traders is thus gilg:

S(p) = Z p—v + Z Vi —p

a; ESAp>v; a;E BAp<wv;

= E ’Ui—’l}j

a;€EBAa;ESAp<v; Ap>v;

(3.7)

We refer to this metric as theocial welfareof the market, and our maximisation prob-
lemis

arg max S (px*)
D*
We can solve
S(px) =TP (3.8)
from equations 3.7 and 3.5:
|MB|
Z Vg — v = Z mb; — ms; (3.9)
a; EBAa;ESApx<v; Ap*x>v; =1

by noting that we must chooge: so that the induced transactions include only
those agents with valuations in the match d¢t® and M/ S.
In order to include allM B we must constraipsx:

px > min(M B) (3.10)

and in order to include all/ .S we must constraip::

px < max(MS) (3.11)

The above inequalities are necessary conditions for aictyel P, however we
must also take care to exclude agents with valuations nétamtatch sets. Let/ B’
and M S’ denote the unmatched buyer valuations and unmatched salletions re-
spectively:
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MB'" = VB-MB
MS = VS—-MS
In order to exclude valuations from these sets we must alsorerthat

min(MS") < px < max(MB’) (3.12)
Inequalities 3.10, 3.11 and 3.12 can be solved by choosing

p* € [eqa, eqp) (3.13)

where
eq, = max(max(MS), max(MB')) (3.14)
eqy = min(min(MS’"), min(M B)) (3.15)

Thus yieldingS(p*) = T'P.

The solutionp= is known as theequilibrium price Although in the general case
there are a range of possible solutions, by convention wreerefer to the equilibrium
price we arbitrarily take a value from the middle of this rantpat is:

_ €qy — €4a

5 (3.16)

p*

3.1.3 The role of the auctioneer

We have shown that we can induce individually-rational ésathat result in efficient
allocations provided that we know each trader’s valuatiprHowever, in most prac-
tical scenarios this information is private and unobsele/abin a typical auction, this
information is elicited through means of a bidding procé@ssyhich traders send sig-
nals about their valuation to a trusted third-party called artianeer. The job of the
auctioneer is to compute the optimal transaction set givemeported valuations. The
challenge facing the auctioneer is that these signals ¢araw@ssarily be relied upon
to be truthful and accurate. Indeed, since the auctionéecades resource to those

1In game-theoretic terms valuations are part of each tratigréinformation.

2The term “signal” in this context derives from the theorysignaling game$134]. Although strictly
speaking an auction is not a signaling game, the two are wawggly related. As Dutta points out [39, p.
395], in a signaling game the agents move first and then thitutien responds, whereas in a mechanism
design scenario the institution offers a set of moves totsgeho then respond. Thus although auctions are
not strictly signaling games, it can still be intuitive tdrtk in terms of signals; by forcing agents to back
up their value claims with hard cash the mechanism desigareencourag@onest signalingInterestingly,
signaling games have also been studied in evolutionanpdpjoin the context of théandicap principle
[162, 18]. In the scenario under discussion, bids — thaignads of valuation backed up with hard cash —
can be thought of as “handicaps” which lead to honest siggali
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agents with higher perceived valuations, traders may hraentives to misreport their
valuation.

Consider a scenario in which we have a single sellgith a valuatiorws which is
known to the auctioneer, and several buyers. The sellersadfsingle unit of resource
for sale. The auctioneer eliciteportedvaluations, obids, from each buyery’ B =
{vby,vby, ...}, ordered such that:

UAbl Z ’UAbQ Z ’UAbg...

which may differ from the corresponding actual valuati®nhB = {vby, vbs, ...} of
each buyeB = {b1,bs, ...}, whereb; is the buyer with the highest bich,, whose
true valuation isvb;. The reported valuatiorig B are known only to the auctioneer,
whereas each individual buy&r knows only its own valuatiomb;, and bidvb;. Such
a scenario is known as a single-sided sealed-bid auctiohtha&nvaluevs is known as
the reservation price.

The role of the auctioneer is to choose a transaciiea {(s, b;, p) } that maximises
social welfare as defined by equation 3.7. A naive solutigdhi®problem is to assume
that agents will report their valuations truthfully; that b; = vb; Vi. Accordingly,
provideduvb; > vs:

MS = {vs}
MS = {}
MB = {vb}
MB' = {uvby,vbs,...}
and
eqa = max(max(MS), max(MB')) = max(vs,vby) = vby
eqy = min(min(MS’), min(MB)) = min(MB) = wb

Thus according to equation 3.13, we should award the unésiurce to the buyer
with the highest bid (the “winner”), and charge them a pyieec [val, szg] anywhere
between the highest bid and the 2nd highest bid. But conglidewinner’s ex-post
incentives tanisreporttheir valuation for different values gf« in this range. Let; ()
denote the utility gained by tradeiif it reports valuation:. In our present scenario
Ui(z) = |z —p=*|.

If we setps = vb, then since the utility of the winning agentis; —p=, the winner
gainsvb, — vby, and ex-post the winning buyer will regret having not bidaéo price
w such thab, < w < vby, since if it bids truthfully its utility will bevb; — vb; = 0,

3Meaning “after the fact”. In economics ex-post payoffs &ese that are computed once any uncertain-
ties surrounding the payoff have been resolved, whereasexpayoffs are computed under uncertainty. In
the scenario under discussion the valuations of other agastunobservable to the agent under consider-
ation, hence until we apply the concept of Bayesian-Nasliiequm the payoff to our agent is unknown
before they choose their bid price.
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whereas if it had bidv it would have receiveddb; — w > 0. If, on the other hand, we
setpx = vb,, then the buyer has no ex-post incentive to deviate frorhfulibidding,
since the utility of the winner is alwaysh, — vb, regardless of the winner’s reported
valuationvb .

In fact, one can show that if we st = vbs, then there are nex-anteincentives
to deviate from truthful bidding [80]. That is:

This type of auction is known as 2nd-price auction, or Vigkaeiction, and the
above property is known ascentive compatibility*

3.1.4 Mechanism design

The art of designing the rules of an auction in order to bribgu certain design
objectives when agents act to maximise their own utilityaledl mechanism design
[69], and the underlying theory &uction theory80]. In a mechanism design problem,
we can easily determine whether or not our design objedireachieved provided that
we know exactly how the individual traders in our mechanisithsignal. However,
since the behaviour of these traders is not prescribed iarady and since they have
many possible signals from which to choose, this is not adalrjproblem to solve. In
a mechanism design problem, we assume that individualrsadi# choose a signal
that maximises their utility. However, this decision preol is highly complex, since,
in the general case, the outcome from choosing a particiglaalsdepends on theint
set of signals submitted by all agents. The theory of optideaision-making when
outcomes are the result of joint-actionsgame theory103]. By solvingthe game
corresponding to our auction, we can, at least in theorgiprlow utility-maximising
traders will behave under our proposed mechanism and egahtzether or not our
design objectives are achieved.

The principle design objectives considered in auctionityace:

e Incentive compatibilityas defined by 3.17
e Efficiency as defined by 3.6

e Budget balancethe mechanism can operate without external cash transfers
More formally, the full set of cash transactio6sgenerated by the mechanism
should satisfy the following constraint:

Z cp — Z cp=0 (3.18)
ceC:c;, €S ceC:c;,€B

For single-sided mechanisms involving a single sellerfian¢heory demonstrates
that all three of these design objectives can be achievegruvide range of conditions.

“Note that in order to maintain incentive compatibility, age bids must be binding; that is: when an
agent sends a bid to an auctioneer it is committed to the ftigsof paying a sum up to its bid amount —
agents cannot renege on their bids.



28 CHAPTER 3. A GENERIC MODEL OF THE DOUBLE-AUCTION

However, the impossibility result of [94] demonstratest tha double-sided auction
mechanism can simultaneously and robustly achieve aletbesiderata. Thus real-
world exchanges make various trade-offs between diffatesign objectives. This is
a theme we shall revisit throughout the thesis.

In the following section, we review several different doeHsided auction mecha-
nisms and briefly discuss their design properties. A fultelgsis of the design prop-
erties of these mechanisms will be conducted in Chapter 8.

3.2 The auction model

In this section | will give a formal description of differentariants of the double-
auction. This model is adapted from [159], [50], [28], an@][and is an attempt
to describe these different market scenarios within a uhifiedel. In this model, time
is represented in discrete slices N. We will follow the convention of representing
the value of any time-dependent variable X at titviy subscripting witht: X;.

The purpose of this section is to give and clear and unambigapecification for
the different auction mechanisms that we will discuss thhmut the thesis. However,
since the emphasis of this thesis is on empirical ratherfibramal methods, for brevity
and conciseness | omit frame axioms from the formalism. énfttiowing sections, if
a statement cannot be proven from the axioms we shall ashani¢ is false.

As a final disclaimer, the model presented in this chaptes do¢cover multi-unit
trading rules; that is, scenarios where buyers or selldmngwffers to purchase or sell
more than one unit of resource at any given time. Howeverfdhaalism is easily
extended to cover these scenarios as discussed in [159]

3.2.1 Rounds

Trading in the market proceedsiiounds Each round may consist of variable number
of time slices. During each round, every trader in the mapkate is given the oppor-
tunity to submit ashoutto the auctioneer. During any given time-slice only oneérad
may place ahout

3.2.2 Shouts

A shout is a commitment to buy or sell a prespecified quantitgaanmodity at a
particular price. Shouts are divided into two sub-clasgesoffer to sell is called an
ask and an offer to buy is calledlsd. Shouts are represented as tuples of the form:

p = (pe € {bid,ask,0},p. € A, p, €R,p, €N, p; € N) € P

wherep, is the class of offerp, is the trader making the offes,, is the price that the
trader is willing to buy or sell afy, is the quantity of commodity that they are commit-
ted to trade, ang, is the time at which the shout was submitted to the auction®er
buyer who submits a bitl € P is committed to buying at any prige< b,. Similarly,

a seller who submits an aske P is committed to selling, units at any pricg > a,,.
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A trader may submit aull shoutby settingp. = # meaning that the trader does not
currently wish to trade and will not be held to buying or selliat any price.

Alternatively, we also use the following functions to demtite subfields of a shout
tuple

price(p) Py
class(p) = pe
agent(p) = paq
time(p) = p

3.2.3 Active traders

The finite setK; = {ku1, k2, . .. ki } denotes the traders who are eligible to place
shouts in the auction at time We pick the next trader whose turn it is to shout,
randomly from this set:

Tt = ktét

whered; € N is a discrete random variable distributed according to foumi distribu-
tion on the interva[l, | K;|], and we then remove this trader from the active set:

Kt+1 =K —1

3.2.4 Events

Some of our state variables change in responsyémts The possible types of event
in our market are represented by the set:

e = {eor, eod, sp, clr}

These events denote “the end of a round”, “the end of a dayipus placed” and
“market clearing” respectively, and are defined formaltgta

Events are time-stamped according to the time-slice attwthiey occurred. We
denote this by subscripting events thus:

er = {eory,eody, ...}
Thus, we have:
€1 = {eory,eods, ...}
€3 = {eorq, eods, ...}

The setF; denotes the set of events tloatcurredat timet, as well as the set of events
that were previously active in prior time slices. An evepbccurredat timet if, and
only if x; € Ej.
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3.2.5 The end of round event

The end of round eventpr, is defined thus:

K, ={} =
eori11 € Eiq
eory € By —
Kiyg = A
Aroundir; = round, +1

That s, the end of round event occurs once all traders hdwaisted offers, and when
this event occurs we resat to allow all traders to submit shouts in the next round.

3.2.6 Shout processing

The auctioneer maintains four sets of shouts. These$s and M B, represent the set
of matched asks and matched bids respectively. These al@gana to the setd/.S
andM B defined in Section 3.1.2.

We denote thé'" highest matched bid at timeby mb}w, where

price(rﬁb(m)) > price(rﬁb(tyg)) > price(rﬁb(tyg)) >...

Similarly, for matched asks we have:

price(nis(;,1)) < price(ms 2)) < price(nisys) < ...

The match sets are maintained such that the following cainssrhold:

Vi price(n%b(tyi)) > price(ns,q)) (3.19)

|MSy| = |MB| (3.20)
AnalogoustaV/ S’ andM B', the sets]}fS’t and)M B’, contain all unmatched shouts at
timet. Intuitively, the setsV/ .S, and M B, can be thought of as the potential “winning”

shouts at time, and the setd/S’, and M B/, as the “runner-up” or “outbid” shouts at
timet.

Let p denote the shout submitted to the auctioneerby- the trader who is cur-
rently shouting. These sets are updated as follows:

pe =bid A\ (Ja € MS'; pp > ap) =
MSH_l :MStU{a}

ANMS" 1 =MS, —{a}

A MBy1, = MB, U{p}

(3.21)
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pc:bid/\(ﬂaEMS’t:pp > a,) =

R R (3.22)
MB/t+1 = MB/t U {p}
pe=askA(3be MB'; b, > p,) —
MBiy1 = MB; U {b} 3.23)
AMB' .y = MB', — {b} '
AN MBtJrl = MBt @] {p}
~_ !
pe=ask N\ (Pbe MB, :b,>p,) = (3.24)
MSlt+1 = MAB/t U {p}
c @ -
pe# (3.25)
Sp € Et+1
3.2.7 Quotes
Analogous to definitions 3.15 and 3.14, we have:
€q,(t) = min(min(]\/fS’t), min(MBt)) (3.26)
éq,(t) = max(max(MS;), max(MB';)) (3.27)

The pair(eg,(t), €q,(t)) is called themarket quoteand is public information to all
traders participating in the market. If all traders bid hfutly, then we havesy, =

eq, andég, = eqy. Thus the market quote encapsulates the hypothesised odnge
equilibrium prices assuming truthful bidding.

3.2.8 Trading days

A trading day consists of a number of rounds of trading. Défe events may take
place at the end of a day depending on the scenario we are lingd&or example, in
many scenarios we will allocate new randomly drawn valuregtifor traders at the end
of each trading day. These conditions will be introduceerlafor now, we introduce
the variablelay; which denotes the current trading day:

eod; € By, —
dayi1 = day; +1
—eod; € By, —
dayi+1 = day
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3.2.9 The clearing operation

The key role of the auctioneer is to compute a paymentsetnd a transaction set
R, as a function of the auction statd/S,, M By, M S",, MB',). Different variants

of the double-auction mechanism computedifferently in order to bring about dif-
ferent design objectives, and these are formalized bela&.nBw, we simply define
the clearing operationin which the auctioneer takes the matched shouts prodicing
transaction set, enforces the corresponding trades, artsriie auction state.

dry € By, —

Lip1 = pay(Ci, Ty)
A Qg = trans(Ry, Q)
AMSa = {}
ANMBy = {}
—clry € By, —
G o= {}
AR, = {}

3.3 The clearing-house double auction

In a clearing-housedH) double-auction, the clearing operation takes place agétite
of each round:

eory € By, —
Cl?“f,:,.l S Et—l—l
The auction designer can choose from amongst severaleahtfpricing policies

which determine exactly how the clearing operation occlilese are formalized be-
low.

3.3.1 Uniform pricing

A uniform pricing policy specifies that all traders with miagel reported valuations
(that is, all the potentially efficient trades) should adide with each other at the re-
ported equilibrium price (as determined &y, andég,). Thus, at any given time, all
traders are transacting at the same global market pricefwhay change over time).
This variant of thecH double-auction is discussed in [50].

dry € By, =
Ct = {Cl,CQ,...}

where:
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Vi<|aiB| G = (agent(W:Lb(t,i))y agent(nis i), pt)

and:

Pt = €q,(t)k + €q,(t)(1 — k)

wherek € [0, 1] is a constant chosen by the market designer. The designcianpli
tions of different values for this constant are discussdovhe

3.3.2 Discriminatory pricing

A discriminatory pricing policy, on the other hand, spedfikat each pair of matched
traders pays a price that is solely a function of their respedid and ask prices.
Thus, at any given time, different traders are transactiifferent prices for the same
commaodity. This variant of theH double-auction is discussed in [98].

dry € By, —
Ct = {Cl,CQ,...}

where:

vig\MBl = (agent(n%bi),agent(msi),pi) (3.28)

and:

P = price(rﬁb(tyi))k‘ + price(ms ;) (1 — k) (3.29)

wherek € [0, 1] is a constant chosen by the market designer.

3.3.3 In-order discriminatory pricing

This pricing policy specifies that trades occur at the pride®earliest submitted offer,
regardless of whether it is a bid or an ask:

clry € By, =
Ct = {Cl,CQ,...}

where:

Vi< | M Blstime(mbgs. ) <time(misce.p)) G0 = (agent(mby, ), agent(mis( ;) ), price(mb ;)))

Vi§|AiB\:time(WiS(tJ)Stime(m(@(t‘i)) G = (agent(mb(t:i))7 agent(’l’ﬁ/S(t’i)), price(ms(t’i)))
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3.3.4 Properties

It is easy to see that@H with uniform pricing is efficient provided that traders’ site
are truthful, since we will have

€dg, = €4a

€ = eq

and thus all transactions will occur at an equilibrium priceany k& € [0,1]. How-
ever, thecH is notincentive compatible, and thus, in the general case, weataaly
on utility-maximising traders to place truthful shouts. whver, as [159, 154] demon-
strate, there are interesting special-case exceptions wbeconsider extreme values
of k in an auction for a single unit of commodity. Whén= 1, we have incentive-
compatibility for sellers only, but not for buyers, and wher= 0 we have incentive-
compatibility for buyers, but not for sellers.

3.4 The continuous double-auction

In a continuous double-auctiokc®A), the clearing operation is performed continu-
ously as new shouts arrive:

spr € By =
ClrtJrl € EtJrl

C} is computed as for aH with either variant of discriminatory-pricing (Section832
and 3.3.3). Cliff [28] discusses a trading strategy fapa with in-order discriminatory-
pricing.

Properties

Thecba is particularly unusual from the perspective of auctioeetty, since not only
is truth-telling not dominantin this institution, but atlations ardikely to be inefficient
if all agents shout truthfully. This is because the cleadpgration is performed before
the auctioneer has a full picture of the supply and demantkimtarket-place. Because
clearing occurs as new shouts arrive, when the transaaids somputed from equa-
tion 3.28 there is no guarantee that the the match/detsand M B will contain shouts
corresponding to the potentially efficient trades definedby andM B. Indeed, there
is every possibility thafl/.S or M B will contain shouts corresponding to the poten-
tially inefficient valuations defined by/.S” and M B’ since the rules in Section 3.2.6
rely on competing bids frorall agents to arrive in order to relegate inefficient (outbid)
shouts taM S’ and M B'.

Claim 3.2ThecbaA is not always efficient when agents shout truthfully.

Proof. We will demonstrate this claim by constructing an exampla ofon-efficient
outcome under a continuous clearing rule.



3.4. THE CONTINUOUS DOUBLE-AUCTION 35

Consider a simple scenario in which we have three agérts{a;, az, a3} two of
which are buyer® = {a1, a2} and one of which is a sellet = {a3} with valuations:

Vo= {vi,v,v3} ={3,2,1}
Vs = {1}

In order to maximise social welfare we should pair the selletogether with the
buyer with the highest valuatian, since:

MS = {1}
MB = {3}
MS' = {}
MB' = {2}

thus we have a total possible gain from tradd'é? = v3 —v; =3 —-1=2.

If these agents participate incmA, we see that if agents shout truthfully there is a
potential to match inefficiently. Suppose that the selleis chosen to shout &t= 0
so thatry = a3 and places a truthful shopt = (ask, a3, vs,...) = (ask,as, 1), SO
that:

MSI = {}
MB, = {}
MS/l = {(a5k7a371)}
MBy = {}

This results in a clearing operation fat= 1; however, since there are no matching
shouts inM B; M S, no transactions occur.

At the next time slice, buyet, is randomly chosen to place a shout:= as, and
shouts truthfully withp; = (bid, as,v2) = (bid, as,2). Following the rules in Section
3.2.6, the auction state now contains:

MSy = {(ask,asz,1)}
MBy; = {(bid,as,2)}
MSy = {}
MB'y = {}

and since we now perform the clearing operation immediatetywill match buyer,
with selleras yielding a total surplus ofy — v3 = 1, and our efficiency will be only
1 1
O
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If, on the other hand, we had run this scenario usirgHanstead of acpa, the
auctioneer would have waited until all agents had had an ity to place shouts at
t = 3 before clearing the market, giving agentthe opportunity to outbid, with a
shout

p2 = (bid, a1,v1) = (bid, a1, 3)
yielding the auction state:

MSs; = {(ask,as3,1)}
MBs = {(bid,a1,3)}
MS's = {(bid,as,2)}

MB's = {}
which is equivalent to the optimal match satsB andM S.

Although thecDa is potentially very inefficient under homogeneous trutlifial-
ding, consider what happensiif: (i) all agents with valuagion the match set& B and
M S place shouts at a true equilibrium prige € [eq., eqy], and (i) all other agents
(with valuations inM B’ and M S’) shout truthfully.

Claim 3.3In a cDA, if all agents with valuations i/ B and M S place shouts
at pricepx and all other agents shout truthfully, we will always obtaim efficient
outcomeF A = 1.

Proof. All agents that place shouts at the same ppievill eventually have shouts in
the match setd/S and M B since the condition for promoting bids into the match set
(equation 3.21):

pe="DbidA3a € MS'; : p, > a,

will always hold providedM'S’; # {} asp, = a, = p*. If, on the other hand,
MS', = {}, then by equation 3.22)/5",,, will still contain a bid with pricep.
Similar reasoning applies to the ask promotion rules (egna3.23 and 3.24).

By definition, those agents with valuationsiB’ who shout truthfully will place
shouts at lower than the equilibrium prige since

€Ga < P* < eqp
thus from equation 3.15:

px > max(MB')

Therefore their truthful bidg,, = v; will fail the conditionp, > a, sincea, = p*
and we have just shown that for these buygrs< p+. A similar arguments applies to
sellers. Therefore our match setB’ and M S’ will contain only those shouts from
traders with potentially efficient valuations i1.S and M B, and since all trades will
occur at the same prigex regardless of which particular auction pricing rule is ysed
we can be sure of achievirigA = 1 by the reasoning in Section 3.1.2.

O



3.5. SUMMARY AND CONTRIBUTION 37

The problem with such a hypothetical trading strategy isonfree that agents have
no apriori knowledge of the true equilibrium price range. Neverthele® have a
glimpse of how high-efficiency outcomes might be achieved itDA in principle.
In the following chapters, we will see that remarkably thare situations in which
trading strategies cain practicediscover the true equilibrium price range ircaa
without this knowledge of the true equilibrium price beingkcitly provided by the
auctioneer.

3.5 Summary and Contribution

In this chapter | have defined a spacam#chanismsl have drawn on previous work,
and the formalism presented here to explore the design grepef various mech-
anisms within this space using analytical methods. Howeter complexity of the
mechanisms within this space is such that analytical metleodheir own are unable
to yield clear-cut results from the perspective of traditibauction theory; for exam-
ple, none of the mechanisms presented herdraxentive-compatiblén the general
case. Therefore, in the remainder of this thesis we will mspigcal methods (simula-
tion) in tandem with analytical methods in order to searehrttechanism design space
heuristically In Chapter 5 we will return to the design space from a contpmrtal
perspective, and see how auction mechanisms can be impietnand described in
software, thus allowing them to smulated
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Chapter 4

Trading Strategies

In the previous chapter we introduced a framework for speuafhow the market al-
locates goods and sets prices — the rules of the market miattee marketnstitution
In this chapter, we turn our attention to the agents pomgdathis environment. In
particular, we discuss the different tradistgategieghat will be used in our models of
traders’ decision-making.

Each agent;; has an associated trading strategy, which specifies a ngapgpin
between its valuation; and the shoup € P that it will place at timet. For simplicity,
we shall assume that: buyers always submit bids, sellemyalaubmit asks, each agent
only submits shouts for a single unit, and only the activddraK; place shouts (see
3.2.3). Thus:

Z(i,t) = (bid,a;,C(i,t),1,t) <= a; € BAa; € K, (4.1)
Z(Z"t) = (ask,ai,g(i,t), 1,t) — aq; €SNa; €Ky (4.2)
Z(i,t) = (0,a;,0,0,t) <= a; ¢ K, (4.3)

where( is a function that sets therice of the shout according to the strategy being
deployed.

I will now review several classes of strategy that are comlgnased inACE re-
search. In the following section | will discuasn-adaptivestrategies that do not adjust
their behaviour in response to changing market conditibonSection 4.2, | will review
several strategies that adapt their behaviour based oretafkrmation. Finally, in
Section 4.2.4 | will discuss strategies that adjust thefravéour based solely on local
feedback.

4.1 Non-Adaptive Strategies
4.1.1 The Truth-Telling Strategy

The truth-telling strategy (abbreviatiarr) simply places shouts equal to the agent’s
valuation:

39
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C(it) = v 4.4

Although it is extremely simple, the truth-telling straydgg of fundamental impor-
tance, since in an incentive-compatible mechanism thagesiy is guaranteed to obtain
the optimal payoff for agent; no matter what strategies are adopted by the other
agents. Of course, most double-auction mechanisms aragettive-compatibile and
henceTT is not dominant; but it is interesting to note that inca auction an ho-
mogeneous population of agents usirgwill bring about high-efficiency outcomes
(FA = 1) whereas in &DA, TT will result in poor-efficiency outcomes. This is dis-
cussed further in Chapter 8.

4.1.2 The Equilibrium-Price Strategy

As we demonstrated in Section 3.4, if agents hypothetidailgw thetrue equilib-
rium price px they can coordinate on high efficiency outcomes in a wideetaf
mechanisms regardless of their incentive-compatibiliyperties. This motivates the
introduction of acontrol strategy that is useful in comparing realistic tradingtstra
gies. Agents using the Equilibrium-Price strategy (abiatéan EP9 bid at the true
equilibrium price only if it is not unprofitable to do so:

a; € BApx<v; = ((i,t) =px (4.5)
a; € SApx>v; = ((i,t) =px (4.6)

As we have demonstrated this strategy will result in maxieftiency FA = 1)
when all agents adopt it in@bA mechanism.

4.1.3 The Pure Simple Strategy

In non-incentive-compatible mechanisms it may sometinagd@shout non-truthfully.
Consider a discriminatory-price clearing-house vt 1 for equation 3.29. An agent
who is a buyer in this mechanism € B, who submits a bigh which is subsequently
matched stands to pay an amount exactly equal to their bag pttius their surplus
will be given byv; — p,, suggesting that they can potentially increase their ssrpy
bidding under their valuation, provided that thejris sufficiently high to make it into
the match sef’. A similar argument applies to sellers faced with & 0 mechanism.

This motivates the introduction of our first non-truthfuledegy, the Pure Simple
(abbreviatiorrg). Thepsstrategy bids a fixed amount above/below the agent’s valua-
tion for sellers/buyers respectively:

C(ist) =v; — pit <= a; € B (4.7)
Clist) =v; +py < a; €8 (4.8)

whereu;; = PSg, € R is a configurable parameter. Of course, the major problem
we face is how to choosPSg,. On the one hand, smaller valuesBF g, increase
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the probability of the shout being accepted, but on the oliaerd this in turn may
decrease the agent’s surplus. Optimizing the expectedusuipnon-trivial since in
the general case the optimal value will depend on the mesimthiat the agent is
trading in (for example, if we are a seller inka= 1 clearing-house we should choose
PSg, = 0) and in non-incentive-compatible mechanisms the choidiedepend on
the strategies adopted by other agents, which may changdimes as well as the
details of the mechanism. Thus we see thatthstrategy is very brittle. Nevertheless
it is instructive to study, since the design of many otheatsgies in the double-auction
market can be thought of as progressively more sophisticathniques for tuning,;;

in response to changing market conditions.

4.1.4 The Zero Intelligence Constrained Strategy

We have seen that a very simple strategy —Tthstrategy — is able to yield highly effi-
cientoutcomesi{ A = 1) in clearing-house mechanisms, but fares poorly in cootist
clearing mechanisms. Indeed, from the perspective of tbeameer, it is difficult to
see how the market can be cleared with full efficiency in aicoous double-auction,
since the auctioneer only has a partial view of the full sepatential signals repre-
senting the supply and demand in the market-place when iesdmsetting prices and
enforcing trades. The match setsS, and M B, will contain shouts from relatively
few traders, as compared with a clearing-house mechanisrevthe auctioneer waits
until it has shouts from all traders before attempting tactee market; using continu-
ous clearing, the auctioneer has only a partial picture ppsuand demand and cannot
compute the equilibrium-price accurately.

The Zero Intelligence Constrained (abbreviation) is a slightly more sophisti-
cated version ofsthat shoutsandomlybelow/above the agent’s valuation:

C(i,t) =vi — pit <= a; €B (4.9)
Cli,t) =v; + iy <= a; €8 (4.10)

wherey;: € [0, ZICg,] C Nis a discrete random variable distribut@®d0, Z1Cg, ).

Gode and Sunder [58] demonstrated that this very simpleéegiyavas able to
achieve a fairly high allocative efficiency inaA marketplace. As Cliff comments:

“...the ZI-C traders scored over 99% in three experiments] aver
97% in the other two: the average efficiency for the humans3va8%,
while for the ZI-C’s it was 98.7%... thus, the main messag8ade and
Sunder’s paper is that allocative efficiency appears to beost entirely a
product of market structure[28] Page 32
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4.2 Adaptive Strategies

4.2.1 The Zero-Intelligence Plus Strategy

The Zero-Intelligence Plus strategy (abbreviatmp) was designed as the simpfest
possible trading algorithm that was able to yield fairlythajficiency outcomes{ A ~
0.98), as well as being able to replicate the bidding behaviounwhan traders in
double-auctions with continuous clearing [28]. Cliff obsed that Gode and Sunder’s
original results [58] were not precisely replicated wheerag’ valuations were ran-
domly drawn from probability distributions different toase of the original paper. Al-
though similar allocative efficiency was observed, therittistion of transaction prices
was not always as closely clustered around the equilibritiog px, suggesting that a
different mechanism was required to more precisely fit tha decorded from human
subjects.

Each agent maintains an output-led P, (i, t) which determines the margin over
and above their valuation that they will bid at:

Cag t) = v;|L + ZIPa(i, )] (4.11)

The output level is adjusted incrementally over time towadarget margin
ZIPo (i t):

ZIPo(i,t +1) = ZIPqo(i,t) + ZIPy(i,t) (4.12)
ZIP,(i,t + 1) = ZIP,(i,t) x ZIP,, + ZIPa(i,t) x [l — ZIP,]  (4.13)
ZIPA(i,t+ 1) = ZIPy\ [ZIPq (i,t + 1) — ZIPy(i,1)] (4.14)

whereZ1P,,, the learning-rate, is a constant which determines thedspeeonver-
gence, and I P,,,, the momentum, is a constant for dampening oscillations.

The target margi I P (i, t) is set by observing the most recent shout placed in
the market:

p:time(p) =t —1

For sellers, if this shout resulted in a transactiog C;, and the agent is currently
trading below the observed transaction pri¢éi(t) < c,), then the agent raises its
target margin so that its shout price will be a small threshol P,, above the observed
transaction price.

de:(ceCiN(ecg=pVea=p) =
¢p + ZIP:(cp, i) —

Vi

(4.15)

. V;
Z1Po (Za t+ 1) = vi:(aiES/\C(Z‘,IS)SC;,,)

1In the sense of possessing minimal state information
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where the threshold function is given by:

ZIP(p,i) = OSaiP+ 00,4 (4.16)
dieiy ~ U(0,ZIP;,) (4.17)
5(07“) ~ U(0,ZIP,,) (4.18)

If the agent is currently trading above the observed prloen provided that the agent
is still actively trading, the agent adjusts its price todsaa small threshold below the
observed transaction price:

HCI(CGCt/\(Cg:p\/Ca:p)) =

¢p — ZIP;(cp,i) — v; (4.19)
vi:(aiES/\C(i,t)>cp)

ZIPg (it +1) =
v;

If the last shout did not result in a transaction then actgends will adjust their prices
towards a small threshold below the shout price regardlietbed current price:

ﬂCI(CGCt/\(Cg:P\/Ca:p)) =

_ ) — 4.20
ZIPo (it +1) = 22 ZIP;@”’Z) Y ares) (4.20)
Correspondingly, for buyers:
de:(ceCiN(ecg=pVea=p) =
cp — ZIP:(cp, 1) — (4.21)

. (%
ZIPq (i,t+1) = Vii(as € BAC(4,t)>cp)

(%

de:(ceCiN(ecg=pVea=p) =

cp + ZIP;(cp,i) — v; (4.22)

ZIPo (it +1) = Vii(as € BAC(i,8)<cp)

Vg

Be:(c€eCiN(cg=pVeca=p)) =
_ o+ ZIP(pp,i) — i (4.23)

ZIPy(i,t+1) = o Vi:(aiEB)

4.2.2 Kaplan’s Sniping Strategy

Todd Kaplan’s sniping strategy (abbreviatior) waits until the last moment before
attempting to “steal the bid”; sniping agents remain inactn the background until

the state of the auction is in their favour or time is running, @t which point they

place truthful shouts [51].
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Parameter name Semantics Range
ZIP,, | Scaling factor eR
ZIP,, | Absolute perturbation € R
ZIPy, | Learning rate eR
ZIP,, | Momentum € [0,1]

Table 4.1: Parameters for taer strategy

Variable | Semantics
ZIP,(i,t) | Cumulative discounted momentum
ZIPq(i,t) | The current output-level for agenat timet
ZIPA(i,t) | The level of adjustment for agehat timet
ZIPq(i,t) | The target margin for agenat timet

Table 4.2: State variables for ther strategy

LetY; denote the set of transactions that occurred in the preday's trading.

{v,v2,...} =Y, = U C

irday;=days—1
The set is ordered on transaction price:
a<b < price(v,) < price(vy)

Let T denote the number of ticks until the next clearing operatiogt o; denote the
market spread

or = lein(t) — eda(t)] (4.24)

Kaplan snipers shout truthfully:

g(% t) =V

but only when the market is in their favour:

a; € B A 6@0(75) < mln(Y;)p — Kt+1 = Kt U {az} (425)

a; € SNheqp(t) > max(Vy), = Kit1=K U{a;} (4.26)

a; € BA ﬁt(t) < I(fllj(77 — Kt+1 =K U {az} (427)

4 € SA—t < KAP,, = K =K;U{a;} (4.28)
eqp(t)

or time is running out:

T < KAP,, = K1 = K, U {a;} (4.29)
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Parameter name Semantics
KAP,, | The time factor
KAP,, | The spread factor

Table 4.3: Kaplan parameters

4.2.3 The Gjerstad-Dickhaut strategy

The Gjerstad-Dickhaut (abbreviati@p) strategy estimates the probability of a shout
being accepted based on historical observations and theesits shout to maximise
the agent’s expected profit [57].

Agents using thesD strategy make use of a memory mechanism that records the
shouts that gave rise to the lastransactions in the market, whete= GDy € N is
the parameter that determines the size of the memory. Theonygsdivided into four
sets:

HS; c P The history of accepted asks up until tihe
HB, C P The history of accepted bids up until time
HS', c P The history of unaccepted asks up until time
HB', ¢ P The history of unaccepted bids up until tirhe

The history is empty at the start of trading:

HSy=HBy=HS"y=HB'y={} (4.30)

As shouts arelaced (Section 3.2.6) they are recorded in the historyuofccepted
shouts:

HS' 1 =HS Up < pe MY, (4.31)
HB',.1 =HB",Up < pe MB, (4.32)

As shouts arenatched(Section 3.2.6) they are recorded in the historyaotepted
shouts:

ﬁ5t+1:ﬁStUp <~ pGMSt (433)

HByy1 =HB,Up < pe MB, (4.34)
Note that the history is unaffected by the clearing opengiection 3.2.9), hence once
a shout is recorded as accepted it remains so, unless it ®/eghtue to memory-size

restrictions as defined below.
Let

hse = {hs(11), hS(2.1ys - hS(GDN 1)} (4.35)
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wherehs; ;) € N represents the total number of asks that were recordedebiiier**
most recent transactiohs . ;) is the total number of asks before thie? most recent
transactioretc

Similarly let

hby = {Rbe1.4y, hb(a.tys - hbGpw 1)} (4.36)

wherehb, ;) € N represents the total number of bids that were recorded défiet **
most recent transactiohp, ;) is the total number of bids before thé? most recent
transactioret cetera

Let the scalarh; € [0,GDy) represent the current transaction number defined as
follows

clry € By, — h/tJrl = hy + |Ct| mod GDN (437)
Jp:pe =tAp.=ask = (4.38)
hS(h+1,041) = hS(ny41,0) + 1 (4.39)

Agents using theD strategy use the history data to form an estimatd,, ,,y of the
probability of a shout with price being accepted, based on:

o the number of asks accepted at prices greater than or equial to

GDracpy ={p:p€HS: Ap, > p} (4.40)

the total number of bids in the history at prices greater tragqual top;

~ ~_
GDpapyy = H{p:p€ (HBy UHB,) A p, > p}l (4.41)

the number of rejected asks in the history at prices lessdhaqualp;

~ !
GDravpy = {p:p€ HS, App < p}| (4.42)

the number of accepted bids at prices less than or eqpal to

GDrprpey ={p:p € HB: Apy < p}| (4.43)

the total number of asks in the history at prices less thamjoalgop;

GD ey = [{p: p € (HS, UHS)) A p, < p} (4.44)

and the number of rejected bids at prices greater than ol emjpa

GDrpcpy = {p:p €{p € HB] A p, > p}| (4.45)
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Parameter name Semantics
GDy | The memory size

Table 4.4: GD parameters

Where we have recorded an ask at pgiée the history @p : p € (HS; UHS,) A
pp = p), the estimated probability of a new ask being acceptedeaséime price is
given by the following equation:

GDracps) + GDpap,1)

GD,, =
pa(p,t) GDracpt) + GDpcpt) + GDrarLpy)

(4.46)

Similarly, where we have recorded a bid at pricén the history, the estimated
probability of a new bid being accepted is:

) _ GDrBrps) + GDarp.)
pa(p,t) GDTBL(p,t) + GDAL(pJ,) + GDRBG(p,t)

GD (4.47)

For prices not recorded in the history, the function

GDpa(p,i) = Q3.0P° + a2,nD” + anp + Q0,1

is obtained using cubic-spline interpolation over the palefined by the function
GDya(p,t)-

Now that we have an estimate of the probability of a shout dpeiccepted at a
particular price, we are in a position to estimate the exgbsurplus as a result of

bidding at different prices. For buyér

GDE(p,it) = (Vi — Pp)GDypa(p) (4.48)

and for sellen:

GDE(p,it) = (Pp — vi)GDpa(p) (4.49)

Finally, theGD strategy chooses prices in order to maximise expectedusirpl

C(i,t) = argmax GDp(ps i ¢) (4.50)

p*

4.2.4 Reinforcement-learning Strategies

The adaptive strategies in the previous sections are demangose in the sense that
they do not rely on any of the underlying implementation dletaf the auction mech-
anism, such as the particular clearing rule that is used.y Toe however, rely on
certain market-data being made available;ZlreandGD strategies rely on the shouts
of other agents to be made public information, and tkestrategy relies on public
market-quote data. The strategies in this section, in asftrely only on the immedi-
ate feedback from interacting with the mechanism; the ssriplat each agent was able
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to obtain in the most recent round of trading. Thus they areegd-purpose enough to
be used in any auction-mechanism, even where we do not hagesato market-data,
for example, in repeateskaled-bidauctions.

These strategies choose their markup over their valuatioa thus:

¢(i,t) =vi+ RL\,(t)RL,, <= a; €S (4.51)
¢(i,t) =v; — RLx,(t)RL,, < a; € B (4.52)
based on aeward signalR L, (t) which represents the most recent profits of agent

RLp,i (t) = Ft(ai) - Ft,l(ai) (453)

The functionRL,, : N — O; represents the output of learning algoritinwhere
©; = [0, RLy,) C N is the set of possible outputs from

Parameter name Semantics

RLy,(t) | Afunction specifying the output from a
reinforcement learning algorithm
RL,, | Ascaling factor used to map learning outputs
onto actual prices
The number of possible outputs froRL

RLy

Table 4.5: Reinforcement-learning parameters

The Dumb-Random learning algorithm
The dumb-random learning algorithm (abbreviatizg) is a control algorithm that in
fact performs no learning and chooses actions randomly:

RLy, =4, (4.54)

whered;, is a discrete random variable distributed uniformly in taage[0, RLy, ).
This algorithm can be used in control experiments by sulistg it for one of the
other algorithms below; if an observation is preserved utiiis substitution we can
conclude that our observation is not likely to be due to legybehaviour. Functionally
it is equivalent to theic strategy (Section 4.1.4).

The Roth-Erev learning algorithm

The Roth-Erev algorithm (abbreviati®e) is designed to mimic human game-playing
behaviour in extensive form games [43]. Agents bid prolistizhlly according to:

RL,(t) = RE;(t) = é;, (4.55)

whered;, € ©; is a discrete random variable distributed:
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P(4;, = x) = REp(x,1,t) (4.56)

The propensities are initialised based on the scaling paterR E;,; Va; € A and
VO € O;:

RE,,
E i, to) = 4.57
R (1(970‘ to) RLkl ( 5 )
the RE, are then updated based on the experience funétibn
RE4(8,a;,t) = (1 —RE,,)RE;(0,a;,t —1) (4.58)

+ REE(H, ai)

where the experience function depends on the most receatdesignalR? L, and
the last action chosen by the agétw; (t — 1):

RE.(0,a;,t) = RL, (t—1)[1-RE,] <= 0=REj(t—1) (4.59)

RE(0,a;,t) =  RL,(t— 1)z s <= 0#RE(t—1) (4.60)

and then normalized to produce a vector of probabilitiesi)le denote the sum of all
the propensities for agefit

Qi, = Y RE,(0,a:,t) (4.61)
0cO;
ThenVvl € ©; andVa; € A:
RE,(0, a;,t) = w (4.62)

Parameter namg Semantics
RE}), | The number of possible outputs
RE,, | The recency parameter
RE,, | The experimentation parameter
RE;, | The scaling parameter

Table 4.6: Parameters for the Roth-Erev learning algorithm

Nicolaisenet al.’s modified Roth-Erev algorithm

Nicolaisen, Petrov and Tesfatsion [98] (abbreviati;T) used a modified version of
the Roth-Erev algorithnR L, (t) = RE!(t) whereRE(t) is computed identically to
RE;(t) but for a modification to the experience function:
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State variable| Semantics

RE;(t) | The output of the learning algorithm at time
RE,(8,a;,t) | The probability distribution over each possible action
0 €O,
RE,(0,a;,t) | Thepropensityfor each possible action
0 €O,
RE.(0,a;,t) | The experience function

Table 4.7: State variables for the Roth-Erev learning atigor

RE.(8,a;,t)= RL,(t—1)[1-RE,,] <= 0=RL;(t—1) (4.63)

RE.(0,a;,t) = RE,, jocnis <« 0+REi(t—1) (4.64)

The use of this algorithm is discussed further in Section 6.3

The Stateless Q-Learning algorithm

The Stateless Q-learning algorithm (abbreviat&p) is a single-state version of a
temporal-difference reinforcement-learning algorithatled Q-Learning [147]. The
algorithm maintains a tabl8Qq (0, a;, t) which can be thought of as an estimate of
the payoff to each possible actifre ©,. The estimates are updated using the rule:

SQo(0,a;,t+1) = 5Qq(0,a;,1)
+ SQa; [RLM +5Q~, max SQo(0',a:,t) — SQu(0, ai, t)}
(4.65)
whereSQ,, € R is a discount factor and@),, is a parameter controlling the rate of

convergence.
Actions are chosen to maximise estimated payoff usinggeedy rule:

RLA(f) =65 = &, <SQ. (4.66)
RLy,(t) = argmax SQq(0*,a;,t) <= €, > SQ., (4.67)
0%

wheree], € Ris arandom variable distributéd(0, 1) andd;; € N is a discrete random
variable distributed/ (0, RLy, — 1).
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Parameter namg Semantics
SQ., | The exploration parameter
SQ,,; | The discount factor
SQ., | The learning rate

Table 4.8: Parameters for the stateless Q-Learning atgorit

4.3 Summary and Contribution

In this section | have presented several classes of tradiagegy from the double-
auction literature. The main contribution of this chaptas been to formulate all of
these strategies within the common framework defined in theipus chapter. In so
doing, | have been able to formulate these strategies in augly that they can be
seen to be applicable in several different variants of thebteyauction market. For
example, although theip andGD strategies were originally formulated in the context
of a market with continuous-clearing, nothing in their fadation herein depends on
the form of the clearing-rule that is used. Indeed, in Chateve shall use a common
set of strategies from this chapter to explore the desigtigampns of different double-
auction mechanisms.
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Chapter 5

Simulation Framework

As we saw in Chapter 3, many of the variants of the doubleiau@re extremely
difficult to analyse using traditional analytical methodsh classical game theory and
auction theory. In such casesimulationsof double-auction markets have been used to
shed light on some of the grey areas that are difficult to aealging existing theories.
This methodology has come be to known as Agent-based CotignghEconomics
(ACE) [139]. In this chapter | give an overview of the simulatioarhework that was
used to conduct the experiments that are reported on indatgaters.

As with any software engineering problem, in choosing anr@yppate software
framework in which to implement ance simulation it is important to consider the
requirements that the software needs to meet. In Section §ile an overview of the
typical requirements addressed by simulation softwareeimegal, and | then proceed
to give an overview of some commonly-used simulation fraorés categorised ac-
cording to the functionality that they provide. In Sectiod.3 | give an overview of
my specific requirements for simulating the double-auatiamket, and give an outline
of the design of the system in terms of the formal model spetifi Chapter 3.

5.1 An overview of multi-agent simulation

5.1.1 Simulating a MAS verses implementing a MAS

Software forsimulatingmulti-agent systems typically addresses different resents
from that designed tomplemenimulti-agent systems. Although it is natural to view a
MAS implementation as its own simulation, there are a numberatflpms with such
an approach, which | shall address in turn.

Firstly, ideally we would like the outcome of a simulatiompeximent to be exactly
reproducible given the initial conditions of the experirérhis is not always possible
in aMAS implementation since many environmental factors will bgdrel the exper-
imenter’s control. For example, the precise outcome of gregment may depend on
the exact timing with which an agent responds to a particulessage, and this time
interval will depend on factors beyond the experimentesistiml, such as the memory

53
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and CPU currently available to the agent.

Secondly, when we come to analyse the results of a simulatieroften need to
generalise beyond a single run of an experiment with a sisgflef initial conditions.
Typically, we generalise by taking many samples of freedhitariables and running
the experiment many times for each sample. Simulation fvasrkes are equipped to
log data from the outcome of each experiment to a formatsleittor analysis using
statistical analysis software, such as MAT-LAB.

Thirdly, the performance considerations of a simulation gualitatively different
to that of an implementation. The software architecture ofas implementation is
driven by real-world requirements that do not always holdisimulation context,
and once these requirements are relaxed, alternativaectiries can yield significant
performance improvements. For example, trading agentseimeal-world need to be
able to run on different machines due to commercial and jpaaonsiderations. This
distributed parallelism is detrimental to raw system-lgarformance however, since
inter-host network communication overheads dominatergieeformance considera-
tions. By running all agents on the same host we can achieeeaerders of magni-
tude performance increase since inter-agent communice#io be achieved with the
negligible cost of an intra-process method invocation.sTould be an impractical
solution for a reaMAs trading implementation, and would not achieve a reduction i
elapsed auction times anyhow, since much of the processityed needs to be syn-
chronised with sporadic real-world events (such as waitimga human to determine
their valuation for an item). However, such consideratidosnot apply in a simu-
lation context, and by relaxing these constraints we camegeha significant gain in
performance.

Similarly, much of the technical complexity of a reahs implementation ad-
dresses requirements that are not present in a simulatime>do MAS implementa-
tions need to be robust against system failures, and they teeeespond quickly to
real-time asynchronous events. This requires a highlgljghisoftware architecture,
involving, for example, many threads of execution runniilgutaneously. This in
turn necessitates advanced, and costly, programmingiteamfor dealing with the
common defects, such as race conditions [22], that can iarigarallel applications.
Such considerations do not apply in agent-based simulaioce real-time parallelism
can be simulated using a sequential program, and this greatlices the complexity
of the software (and hence the potential for bugs). Notedimae we typically run the
simulation very many times (with different samples of fregigbles), we can easily
scale-up the performance of our experiments by runningdifft samples on different
hosts, despite the fact that we are using a sequential gefiavehitecture.

Finally, anymMAS interacts at some point with a set of non-agent componeiat)e
environment. In amCE scenario, for example, the environment might constitute ec
nomically relevant characteristics of the human ownergyehss, such as their utility
functions. Unlike the agents innaAs implementation, the environment is not a soft-
ware entity, and cannot be directly ported to an agent-bsisadlation. Rather, the en-
vironment itself must simulated. Agent-based simulatawikits provide Monte-Carlo
functionality for the abstract statistical simulation ofiv@onmental factors, which are
often modeled as stochastic processes. Im@m scenario, for example, rather than
explicitly modelling the socio-biological formation of man preferences, we may
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assume for convenience that preferences are drawn from ssmmdem distribution.
Hence a key feature of any simulation toolkit is a library sepdo-random number
generatorsfRNG). ThePRNGs provided in simulation toolkits are more advanced than
those provided in standard programmer’s libraries, suchHoasexample, the rand()
function provided by Unix’s libc library, which suffer froramall periods and pre-
dictable correlations between numbers in the sequencehvdaic skew the results of
experiments [102]. A good simulation toolkit will providégh qualityPRNGS, such as
the Mersenne Twiste*RNG[85], with extremely large periods, low statistical coerel
tion, and the ability to produce random numbers accordirayldétrary (non-uniform)
distributions.

In summary, when developing a system to simulate a multiregystem, it is im-
portant to choose a framework or toolkit that is specificdisigned for agent-based
simulation as opposed to toolkits such &DE [7] that are designed famplementing
multi-agent systems.

5.1.2 Different approaches to simulating time

As discussed in the previous section, for practical purpese prefer to simulate the
parallelism of events using sequential computation, ratien execute the simulation
of multiple simultaneous events in parallel in real-timéislnecessitates a framework
for computing the outcome of events that occur simultanigol&ince computations
in the simulation corresponding to these events occur trdifit times from the times
that the events would have occurred at in a real system, ésiglts in two distinct
notions of time, viz “simulation-time” as opposed to “rdahe” (also known as “wall-
clock time”). Since time plays an important causal role ig arodel, it is important to
be able to time-stamp events with the simulation-time thay toccurred and provide
the current simulation time to all entities in the model. Eenwe need to simulate
the progression of simulation-time and its causal role.r&laee several approaches to
simulating time in a model:

5.1.3 Continuous time models

Many physical processes are characterised by smooth atid@ons changes in time-
dependent variables. For example, the velocity of a pritgeista continuous function
of its acceleration and time, and may vary smoothly over aitrarily small interval
of time. Processes such as these are typically modeled sgstgms of differential
equations. Many simulation toolkits exist for approxintgsolving, and analysing the
dynamics of models expressed as differential or differepetions.

Differential equation models are common in analytical mé&ronomics. Such
models are applicable approximations of real marketplade=n there are very large
numbers of participants in the market since individual abteristics of the partici-
pants play a less significant role and the entities in theesystan be treated as simple
and homogeneous particles. However, these models breakwben the number of
participants becomes very small and the individual andesiia characteristics of the
participants become more prominent.
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Agent-based models address this issue by providing a rathecture with which
to model market participants. In such models, macro-leaelables describing the
ensemble of agents no longer vary smoothly with time. Thisessitates alternative
approaches to temporal modelling.

5.1.4 Discrete-event simulation

Discrete-event simulation frameworks [5, 54] model timediscrete quanta called
"ticks”. Intuitively, a tick can be thought of as an “instéf time. During the simula-
tion of a tick — the “tick cycle” — entities (agents) in the sitation signal which agents
they interact with during that instant of time by sendewgntgo each other. Individual
events specify the exact nature of the interaction betwgenta. In an auction simula-
tion, for example, an auctioneer agent may send an endaifealevent to all trading
agents in the auction when it has closed. At the end of tickegyance events have
been exchanged, each entity updates its internal statspomse to any events it has
received. Since an entity can have multiple events in itsiegaeue, it can take into
account the causal effect of multiple simultaneous evehenit comes to computing
its updated state.

5.1.5 Agent decision functions

In an ACE simulation agents often need to make intelligent decisinriseir resource
utilisation and acquisition behaviour. Modelling intgkint decision making behaviour
is one of the central problems in Artificial Intelligenceeasch, and there are as many
approaches to modelling agent decision functions in agaséd simulations as there
are schools of thoughtin Al.

The intelligent-agents community has traditionally farexsymbolicapproaches,
such as the class of Belief-Desire-Intenti@p() models [157]. In amCE scenario,
however, the most important aspect of an agent’s goals is dhgering with respect
to the agent’s preferences; for example, agents may act ximise their expected
utility. In the field of agent-based electronic commerce, this lthtol¢éhe adoption of
numericalmethods based on dynamic programming [8, 36], such as @aggtnt) rein-
forcement learninty in which the symbolic concept of a goal is replaced by a nicaker
reward value.

Many agent-based simulation frameworks have been dewglop¢he Artificial-
Life (ALife) community. Agents in Alife models are imbued thivery little intelli-
gent behaviour at the outset; rather, intelligent behavesuerges collectively from
the complex interactions between agents equipped witkivelacrude decision mak-
ing machinery. Connectionist approaches such as neunabries and evolutionary
approaches such as genetic-algorithms, are popular innrsadels [78].

Since simulation is the main methodology used in ALife reskegALife software
toolkits tend to be the most mature in terms of simulatiorcfiomality. Correspond-
ingly, since empirical methods are relatively rarevins research, there are few frame-
works forsimulatingsbl agents, as opposed to implementsy agents. Thus when

1see Chapter 4 of [137] for an explanation of the relationsfsipween reinforcement-learning and dy-
namic programming.
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conducting simulations &DI agents, it is sometimes necessary to develop software to
integrate functionality provided bgD1 software toolkits with that provided by simula-
tion toolkits.

5.1.6 Extensibility and integration

When conducting research via simulation it is often neggdsaextendthe existing
functionality of the system. Although all frameworks progithe ability to configure
simulations, the desired behavior cannot always be imphegeby configuring the
existing components provided by the framework. In this dagenecessary for the
researcher to implement the desired behaviour by writieg twn code. Toolkits take
two main approaches to allowing extensibility:

e scripting in a custom language; and

¢ introducing new classes and methods via inheritance

The former is sometimes preferred when the researcher ia kifled programmer,
but in general the latter approach is much preferable. Téaddiantages of a scripting
approach are considerable; third-party libraries, fonegx: libraries providingbl1 or
reinforcement-learning functionality, cannot be used;limguage may not necessarily
well-supported or well-known by the community and if it is iaterpreted language it
may cause performance issues.

In judging whether or not a toolkit is extensible via objeciented programming,
one needs to ask the following questions:

¢ |s the source code for the original framework available?
e Is it written in an object-oriented language?

¢ Is it available under an open-source license?

e Is there comprehensive APl documentation?

¢ Is the code well-structured and designed for extensifility

Extensible software is typically characterized by very gnamall classes each with
a clear functional role, and each with many small methoddtw&oe designed in a
monolithic fashion with a few large classes, or with verydomethods, is hard to
extend.

5.1.7 Requirements

As discussed, when selecting an appropriate foundationhichvio build a simulation

system it is important to review the requirements that safens to meet. In this sec-
tion, | review the key requirements that drove the develamroésimulation software

used for my research.
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e Large numbers of auctions with different sets of agents

| am interested in applying techniques from evolutionamnpatation to nego-
tiation and market design problems. This involves runnim@agicular trading
scenario a large number of times with different sets of éwnghagents, and/or
evolving mechanisms. A typical experiment may, for exampquire evaluat-
ing market outcomes ovéf* generations of evolution and require of the order
of 10 auctions to be run in total.

e A variety of auction protocols

My interest in auctions arises from their generality; ieittapplicability to a
wide range of scenarios in negotiation and market desigbl@nos. In order to
be general enough, our simulation software needed to suapade variety of
configurable auction protocols, includidiguble auctionsn which both buyers
and sellers submit offers, and multi-unit auctions in whichltiple units of a
commodity are traded.

e The ability to change the rules of the auction

Because | am interested in market design, | need to run erpats where | vary
the rules of the auction. These variations in auction rulay mot always be
taken from the set of known analysed auction rules.

e The ability to experiment with a wide variety of trading ségies

| am interested in running simulations with a wide varietypehavioural strate-
gies.

The key requirements can be summarisepgexformancendextensibility During the
course of my research, | could not find any existing auctiamugtion software that
supported the above requirements, and so | started devefdpn theJava Auction
Simulator API(AbbreviationJAsA) project. JASA is a high-performance extensible
auction simulator written in JavaAsA is built on top of the Repast multi-agent sim-
ulation framework [101, 125]. In the following section | rew many of the common
simulation frameworks available and explain why Repastetesen.

5.1.8 Software listing

In this section, we give a brief overview of some commonlgdigeneral-purpose sim-
ulation frameworks that might be suitable for analysing A@&blems.

Swarm

Swarm is one of the most famous ALife software toolkits and haen continually
improved by an active community of users and developeredine early 1990s [89].
It provides an API for discrete-event simulation.

’http://freshmeat. net/projects/jasa
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Features

high-qualityPRNGs

discrete-event simulation

spatial modelling

real-time visualisation tools

Advantages

It is well-supported and well-known by researchers

Open source

Disadvantages

It is written in Objective-C which is an obscure programmiagguage
which is not well supported, although recently a JAVA index has been

provided using JNI (Java Native Interface)
Languages and Platforms

Objective-C
Windows
Unix

MAML - Multi-Agent Modelling Language

MAML is an extension to Swarm that provides a higher-levelging language that is
simpler to use than Objective-C [62]. The goal is to alloneggshers from the social
sciences, who are not necessarily skilled programmerslitily develop simulations.
Features

high-qualityPRNGs

discrete-event simulation

spatial modelling

real-time visualisation tools

Advantages

It is well-supported and well-known by researchers

Open source

Disadvantages

It is written in Objective-C which is an obscure programmiagguage
which is not well supported, although recently a JAVA indexd has been
provided using JNI (Java Native Interface)
Languages and Platforms

Objective-C
Windows
Unix

RePast

The RePast toolkit is inspired by Swarm, but is written exiyiin Java, and the ultimate
design goals of this system are maras-oriented than ALife-oriented [101, 125].
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Functionality

high-quality pseudo-random number generation (Mersewistdr)
discrete-event simulation

spatial modelling

real-time visualisation tools

Advantages

Open source

Extensible

Core simulation functionality is relatively mature and ush Uses the
CERN colt library for high-performance scientific compugfin
Disadvantages

MAS-oriented features are relatively immature. There igently no
explicit reinforcement-learning or BDI support.

Languages and Platforms

Java
Multi-platform

Desmo-J

Desmo-J provides raw discrete-event simulation functity?a It uses the standard
JavaPRNG, but the API should allow otherRNGs to be plugged in.

Functionality

discrete-event simulation

Advantages

Highly-flexible

well-designed API

Disadvantages

Minimal functionality is provided beyond discrete-everdaelling
Languages and Platforms

Java

Multi-platform

AScape

AScape is a Java-based discrete-event simulation frankemitir an emphasis on spa-
tial modelling of agents

Shttp://sourceforge. net/ proj ects/ denpj
4ht t p: / / www. br ooki ngs. edu/ es/ dynani cs/ nodel s/ ascape/
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Functionality
discrete-event simulation
spatial modelling - including diffusion modelling
visualisation

Advantages

Oriented towards social-science research
Disadvantages

No high-qualitypRNG algorithms provided
monte-carlo functionality somewhat ad-hoc.

deX - Dynamic Experimentation Toolkit

deX is a C++ framework for building multi-agent systems wathemphasis on three-

dimensional visualisaticn
Functionality

high-quality pseudo-random number generatjon
discrete-event simulation

spatial modelling

real-time visualisation tools, including 3D
Advantages

High-performance

Disadvantages

Licensing agreement unclear
Source-code hard to obtain

Languages and Platforms

C++

Linux

5.1.9 Choice of toolkit

There are a great many agent simulation toolkits availabkheé software domain. |
have reviewed several that were popular at the time of wgitihchose the RePast
simulation framework [101, 125] as the basis of my simulasoftware.

5.1.10 Choice of language

In order to be truly extensible, the system must give resesiscthe ability to pro-
gram their own trading strategies, and auction mechanidinis. necessitates the use
of a general purpose programming language. Rather thatingeaustomised pro-
gramming languages for writing trading strategies andiancules, | decided to use
the Java programming language. Java suits our design geedaife it supports the
following features:

e Extensibility via inheritance

Shttp://dextk. or g/ dex/ i ndex. ht m
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Researchers can create auction mechanisms and traditegisafrom a set of
reusable softwareomponentswhose functionality they can extend and modify
using inheritance. Base classes can be provided which asskeletongor fur-
ther development. For example, a base class for auctionanexhs is provided
as part of the system; this class encapsulates common beih#or all types of
auction. A researcher can use this base class as a skeletemmate, which
they can extend, by for example, replacing the generic nafibrodetermining a
clearing price, with custom code to implement a specificipgpolicy.

Performance

In some circles, the Java programming language has gairegaligation for per-
formance problems. This reputation, however, derived fuamy early imple-
mentations of the Java Virtual Machingvfs). Although for some benchmarks
Java is nofquite as fast as C++, modervmMs (versions 1.4 and above) are
several orders of magnitude faster than the versioru\tM, and many bench-
marks demonstrate superior performance for Java over Cserire casés It

is now widely acknowledged that Java is mature enough to ée ias for high-
performance numerical computing [11, 93]. Part of Java&vimus poor rep-
utation in this area may be due the different style of pertoroe optimization
required, as summarised by Shirazi:

“There is a general perception that Java programs are sloart P
of this perception is pure assumption: many people assuateifth
a program is not compiled, it must be slow. Part of this petimep
is based in reality: many early applets and applicatiamsre slow,
because of nonoptimal coding, initially unoptimized Jairtudl Ma-
chines (VMs), and the overhead of the language. In earliesiovns
of Java, you had to struggle hard and compromise a lot to make a
Java application run quickly. More recently, there have roéaver
reasons why an application should be slow. The VM techncdogly
Java development tools have progressed to the point wheeva J
application is not particularly handicapped[129, p. 1]

Ease of use

Java is relatively easy to learn, compared with, for exam@ier, and it is also
well-established; many researchers already possess ay@mming skills.

Proximity to agent-oriented programming

Although it is not itself an agent-oriented programmingyaage, Java has many
features in common with other Object-oriented languagaes rtieke develop-
ment of MAS simulations relatively straight-forward. For exampleffetient
types of agents can be represented as classes; individesaisacan be instan-
tiated as objects and agents can communicate amongst oteerhy invoking
methods on each other.

8For example, sebt t p: / / www. kano. net / j avabench/ .
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5.2 Engineering Methodology

As Ropellaet al. [116] point out, building a simulation of a system as oppoted
implementing a system poses unique software engineerialleclges, which | shall
examine in the following sections.

5.2.1 Unit testing

Functional testing is very difficult when simulating compladaptive systemsc@s),
such as the double-auction market place. When developiragldidnal software sys-
tem, we typically have a set of well-defined system requimsithat specify the exact
macro-level behaviour of the system. These requirementsanplete in the sense
that unanticipated behaviours which have not been spedifiedlvance are consid-
ered undesirable However, when we are simulatingcas, we are often interested
in emergenbehaviour that has not been specified in advance; in traditisoftware
engineering, such behaviour is an obvious sign of a defdutr@as inCAS research,
it is the entire point of the exercise. That is not to say, hauethat software defects
are unimportant when we come to simulateias. On the contrary, we need to have
as much confidence as possible that the effects we obsenzeraseilt of the actual
assumptions that watateand not a result of an incorrect implementation of these un-
derlying assumptions.

In traditional software engineering, we can laboriousty, tmethodologically, test
the system to see that its behaviour matches a concretdisgion. However this is
problematic incAs modelling since the “specification” corresponds to a setatesl
assumptions about the domain, and does not take the fornatahstnts about the
macro-level behaviour of the system. Hence, so-cdlladk-boxtesting methods can-
not be applied teAs modelling software.

Therefore, when developingas software, we need to place much more emphasis
on glass-boxtesting methods, which attempt to verify the correctnesmadividual
software components rather than system-level behaviobe approach that | have
adopted is that of automated unit-testing [68]; each cle@sponent) in the system has
a corresponding class which is responsible for testing ldsainder consideration by
invoking each of its methods with different parameters. #sting class then verifies
that each methods returns the expected result given thdistiparameters.

This approach is especially beneficial in developing redesoftware, since it re-
sults in an automated suite of tests that can be quickly wsegtession testhe system
after we have made changes to the software. In traditiorialace engineering, once
the software has been released, code changes are pradjbéikpensive, partly be-
cause of the cost of testing to ensure that changes havesutterc in new defects to
other parts of the system as Brooks comments:

“Also as a consequence of the introduction of new bugs, puogr
maintenance requires far more system testing per statevwditén than

"For example, many security vulnerabilities in softwareidgply fall into this category of defect; a vul-
nerability arises when an attacker is able to exploit uegpaied behaviour from a piece of a software to
their own advantage.
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any other programming. Theoretically, after each fix onetmus the en-
tire batch of test cases previously run against the systemnsure that it
has not been damaged in an obscure way. In practice, suchgsigpn test-
ing must indeed approximate this theoretical idea, and itaésy costly”

[15, p. 122]

Therefore, traditional methodologies place an emphasife®ring the code to
further changes prior to release of the software- that isedhne software is “finished”.
However, research software is rarely finished in this sefigheoword, hence it is
necessary to use engineering methods that are robust teasefthanges, such as for
example, frequengutomatedegression-testing [68].

Increasingly, it has been realised that this also true ofmengial software, and
this has led to the development of software engineering oustithat are able to cope
with changing requirements — so calladile software engineering methodologies [6],
in which regular automated unit-testing is one of the ppleitechniques. During
the development ofasa, | have incorporated various other techniques from agile en
gineering methodologies, including the principle of makieleases of the software
available to other researchers as early and as frequenfpssble (“release early,
release often” [114]), as discussed below.

5.2.2 Replication of existing experiments

For some problems involving the use of simulation, we hava&iete physical system
corresponding to the simulation; for example, when modgllineteorological phe-
nomena, we have a physical system — the atmosphere — whichrwaadel using me-
teorological simulation software. In such scenarios, weuse the observed behaviour
of the physical system as a specification for the correspggbftware simulation.

In much of the ALife and Multi-Agent Systems research inte ttouble-auction
market, however, the emphasis is not so much on fine-grainadtigative or predic-
tive models of actual real-world instances of this insiitaf but rather, on assessing the
qualitative behaviour of such systems under differentraggions. This has resulted
in a proliferation of terminology foabstracta entities that exist solely in different
researcher’'s models. Whereas meteorologists know exabtythey mean when they
talk about, for example, a “cirrus cloud formation”, sin¢ey can, in a sense, sim-
ply point out of the window at one, it is more problematic foLife researchers to
know exactly what is meant by, for example, a ZIP agent [28esthis is neither an
entity that exists in the real-world, nor an abstractiort fi@ssesses a simple and ele-
gant mathematical description within a well-defined théoa¢framework. Indeed, the
most precise and concise definitions of a ZIP agent utiliseestmrm of pseudo-code.

This presents methodological hurdles, however, sinceisadeely directly portable
across different experimental frameworks. Thus reseasdigically have to re-engineer
such components from scratch when conducting experiments.

If one is reporting on results that are hypothesised to beirgent on a partic-
ular trading strategy such as ZIP, one has to be careful thadtave an agreed-upon
definition of what ZIP actually is. Definitions in the form obde, however, present



5.2. ENGINEERING METHODOLOGY 65

a challenge, since it is rarely possible to prove whether pveces of code exhibit
identical behaviour, even for very simple programs.

Therefore, when adopting abstracta with procedural defivstinto one’s experi-
mental framework, it is crucial to attempt to determine asafapossible whether the
imported entity behaves as specified. One approach thatlddopted in this thesis is
to rely onreplication attemptsin which | attempt to replicate as precisely as possible
the results reported in the original work. These are dislifigrther in Chapter 6.

5.2.3 Open-source

One of the key goals of theasaA project is to become a repository fi@ference imple-
mentationsof various entities that are commonly-used in agent-basetbatational
economics. For exampleasA contains implementations of many common trading
strategies that are reported on elsewhere in double-awstioulation experiments.
These implementations have undergone testing in the fomeptitation attempts, and
have associated automated regression tests that chedkewntietse components con-
tinue to replicate the original work after any changes tosibféware system are made.
By making these implementations publicly and freely addéaas early in their devel-
opment as possible, | have been able to gain invaluable éeédtom other researchers
as to the correctness of particular re-implementationstafraesearchers work.

Since many of the componentsAcE research are procedural in nature their more
concise and accurate description is in some general-pgigrogramming language. It
is my view that pseudo-code is not the best means of expetisise entities; rather,
| prefer to use actual runnable code. By using strict codiagdards, and object-
oriented design techniques, | have been able to develo@mblentode that is just as
easy to read as pseudo-code. This has the significant adesthiat other researchers
can actually execute this code, rather than relying on sevengineering of the code
in order to study the exact behaviour of the entities | descri

Visualisation

Providing a visual representation of the state of the sitiariazan allow for a easier and
more institutive analysis, as well as quickly identifyingusual or aberrant behaviour
that may be the result of software deféctBigure 5.1 shows a screen-shot of the sim-
ulator running with the aide of Repast visualisation feesufThe simulator allows the
auction state tupléM B, M B’, M S, M S") to be plotted graphically in real-time, as
well as the true supply and demand sched(d$B, M 'S, M B’, M S"). Visualisation
can be turned off when running batch experiments in orderaio ghaximum time
performance.

8That is not to say, however, that visualisation is a panasethat it is easy to design and implement
well in the general case.
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Figure 5.1: Real-time visualisation of auction simulati®ing RePast.
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5.3 Design overview

In this section | give an overview of some of the key composeiithe auction sim-
ulator. The UML diagrams that are referenced from this seatian be found in Ap-
pendix A.

5.3.1 The shout matching algorithm

As discussed in Section 3.2.6, a core part of simulating auction mechanism is
maintaining four sets of shouts: the matched agss§, the matched bids\( B), the
unmatched asks\(S'), and the unmatched bid34B).

I chose the 4-heap algorithm [159] as the basis of my desigee she 4-heap algo-
rithm specifically addresses both of my design goals. Therkeyvation of the 4-heap
algorithm, as far as performance is concerned, is the ussmafjbheaps to maintain
the state of the auction; this allows the fundamental opmratof an auction: shout
insertion and removal, clearing and providing quotes todreed out very efficiency.
Specifically, for a single-unit auction with active shouts, of whictl/ are asks andv
are bids:

- shout insertion/removal can be carried outiin(L)) time.
- market quotescan be provided ilD(1) time
- clearing® can be carried out i0(min(M, N)) time.

The 4-heap algorithm is also general; i.e. it is capable dhtaming state for a wide
variety of auction mechanisms.

Figure A.1 shows the UML class diagram for the clBesir HeapShout Engi ne.
The binary heap attributésl n, Bout , sl n, sQut correspond tdVi B, MB', MS,
MS respectively, as defined in Section 3.2.6.

The shout-matching service is accessed through the ineBf@out Engi ne, so
that alternative matching algorithms can be plugged in dasired.

5.3.2 Auction mechanisms

The different auction mechanisms are encapsulated thrtheghuct i oneer inter-
face, which defines how the clearing operation and quotergdion are scheduled in
response to different auction events. See Figure 5.2 fdhustrative example.

Figure A.2 shows a sample of the different double-auctiochmaisms that are
implemented inJASA. Each auctioneer can be configured with a specific class of
Pri ci ngPol i cy, the class heirarchy for which is illustrated in Figure ATBhese
classes implement the various aspects of our generic dauitéon model specified in
the Chapter 3. Table 5.3.2 lists the formal specification@ased with each class. The
experimenter may choose from the existing classes, or theyertend the existing
functionality by writing their classes that implement tiedevant interface

9see Section 3.2.7.
10see Section 3.2.9.
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Class Formal specification
C eari ngHouseAuct i oneer Section 3.3

Cont i nuousDoubl eAuct i oneer Section 3.4

Di scrim natoryPricingPolicy | Section3.3.2

I nOrder Pri ci ngPol i cy Section 3.3.3

Uni f or nPri ci ngPol i cy Section 3.3.1

Table 5.1: Auction rules reference

Class Formal specification
NPTRot hEr evLear ner | Section 4.2.4
Rot hEr evLear ner Section 4.2.4
St at el essQ_ear ner Section4.2.4

Table 5.2: Learning algorithm reference

5.3.3 Agents and trading strategies

The strategic behaviour of each agent — the choice of pridegaantity at any given
time — is decoupled from other aspects of the agent's bebagoch as determin-
ing valuation, or replenishing stock levels at the end ofaditig day. Thus we have
two separate class hierarchies for agents and strategiggsireFA.6 illustrates the
Tr adi ngAgent interface, which is implemented W3bst r act Tr adi ngAgent ,
each instance of which can be configured with a particulassctd trading strategy.
The class heirarchy for trading strategies is illustrateBigure A.5. Each subclass in
this heirarchy corresponds to a strategy defined in Chapésrdithe relevant mappings
are shown in Table 5.3.

The decoupling of strategic behaviour from agent hous@ikgeunctionality al-
lows new strategies to be configured via composition. Ofiqagr interest is the
Mar kupSt r at egyDecor at or class, which can be configured to bid a fixed per-
centage markup on top of another strategy, andMheedSt r at egyCl ass class
which can be configured to play a number of different “purdj-strategies with dif-
ferent probability.

The reinforcement-learning strategies described in @eeti2.4 are implemented
by theSt i nmul i ResponsesSt r at egy class. Strategies of this type can be config-
ured to use different learning algorithms, which are engkgbed in a separate class-
heirarchy; Figure A.7 illustrates the relationship betwémding strategies and learn-
ing algorithms. This design results in minimal dependentties allowing the various
learning algorithms implemented bxsa to be reused in non-trading contexts.

5.3.4 Events

Figure A.4 illustrategAsA’'s event architecture. Different types of event are encapsu
lated in different subclasses #fict i onEvent and the various entities in the sim-
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public class O earingHouseAucti oneer
ext ends Transpar ent Aucti oneer
i mpl ements Serializable {

protected ZeroFundsAccount account;

publ i c C eari ngHouseAuctioneer() {
this(null);
}

publ i c d eari ngHouseAucti oneer( Auction auction ) {
super (auction);
set Pri ci ngPol i cy(new Uni fornPricingPolicy(0));
account = new Zer oFundsAccount (thi s);

}

public void generateQuote() {
current Quote =
new Mar ket Quot e(askQuote(), bidQuote()):

}

public void endOf RoundProcessi ng() {
super . enddf RoundPr ocessi ng();
gener at eQuot e() ;
clear();

}

public void endOf Aucti onProcessi ng() {
super . endOf Auct i onProcessi ng();

}

publ i c Account getAccount() {
return account;
}
}

Figure 5.2: The source-code for the ClearingHouseAuctonkass. This code speci-
fies that the quote-generation and clearing operationsdmegithe end of every round.
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Class Formal specification
Equi libriunPriceStrategy Section 4.1.2
GDSt r at egy Section 4.2.3
Kapl anSt r at egy Section 4.2.2

RandontConst rai nedStrat egy | Section4.1.4
Stimul i ResponseStrat egy Section 4.2.4
TruthTel I i ngStrat egy Section4.1.1
ZI PStrat egy Section 4.2.1

Table 5.3: Trading strategy reference

ulator that respond to auction events do so throughAiinet | onEvent Li st ener
interface.

5.4 Summary and contribution

As we saw in Chapter 3 many of the variants of the double-anagtiechanism are
difficult to analyse using conventional analytical toolshefefore, the approach to
mechanism design | take in this thesis is an empirical onerhiich real-life observa-
tions and simulation play a key role. In this chapter | hawegian overview of the
simulation software —3AsA — that | developed in order to conduct the experiments
in this thesis. Since these experiments are a key part of sgareh, it is important
that their implementation in sofware is as readable andsparent as possible, and is
designed according to a sound methodology in an attemptstarerits correctness.

In this chapter | have described hawsA was developed using best-practice en-
gineering methodology for agent-based simulation: it igeooriented, extensible,
configurable, high-performance and open-source. | have jiseciples ofagile soft-
ware engineeringn keeping with the dynamic nature of software designed &r r
search purposes, specifically: automated unit-testindy ead frequent releases to
other users, community bug-tracking and an emphasis oalmwttive software de-
velopment. JASA has undergone many refinements and bug-fixes throughout-ts d
velopment and is now of sufficient maturity that it is used leyesal different re-
search teams around the world for research into agent-lcaseputational economics
[140, 60, 99, 16, 96].



Chapter 6

Replication Experiments

6.1 Introduction

In the previous chapter | discussed the fact that replinaigeriments are a key tech-
nigue in validating software used for agent-based comjmunalt economics. In this

chapter | report on the most important replication expenita¢hat were used to vali-
date the software used throughout this thesis.

6.2 Control Experiments

In many of the experiments discussed in this thesis the naiabie that is measured
is the efficiency of the markef' A (defined by equation 3.6). As discussed in Chap-
ter 4 there are twaontrol strategies that should yiel#A = 1 in a wide variety of
circumstances: th&T strategy (Section 4.1.1) and tle®s strategy (Section 4.1.2).
The former should robustly yiel# A = 1 in a cH mechanism provided that every
agent uses ther strategy, the latter similarly in@bA mechanism. This suggests that
experiments with agents using these strategies can seiwvgagant controls.

TheTT strategy is tested in@H with ak = 0.5 discriminatory-pricing policy (Sec-
tion 3.3.2). Agents’ valuations are drawn from a uniformidiition on the interval
[50,100] and the market is run for0? rounds. This experiment is rur)? times, and
if EA # 1 for any iteration then an error is reported.

The EPsSstrategy is tested in aba with a & = 0.5 discriminary-pricing policy.
Agents’ valuations are drawn from a uniform distributiontbe interval[50, 300] and
the market is run fot 02 trading days, each of which las2 rounds:

eory_1 € Et71 — NRt = NRtfl +1 (61)

NR;—1 mod?20=0 = eod; € E; (6.2)

This experiment is repeatedx 10% times, and ifE A # 1 for any iteration then an
error is reported.

71
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Both of these experiments are part of the automated regretesiting suite which
is run whenever changes to the simulation code are made. theugsults of these
control experiments are implicit in any experimental restgported in this thesis.

6.3 Nicolaisen’s Electricity Market

Nicolaisen, Petrov and Tesfatsion [98] (abbreviati®rT) describe several experiments
using a multi-unit clearing-house auctfowith discriminatoryk = 0.5 pricing?. The
domain they study is that of market design for deregulatectgtity markets, in which
small numbers of traders with relatively static valuatiogeatedly interact with each
other over a long time period.

Nicolaisenet al. were concerned with market-power effects as the number of
traders on the supply side or the demand side varied; thai ishat extent does the
market favour buyers or sellers as each group becomes syralild thus in more of
a monopoly-like situationNg and N denote the number of sellers and the number
of buyers respectively. As in the originebT paper, in the scenarios we consider we
examine cases whef¥s = 3, Ng = 6, Ng = 3, Ng = 6 and all corresponding
combinations. Buyer valuations are taken from the mukiset

VB ={37,37,17,17,12,12} < Np =6 (6.3)
VB ={37,17,12} < Np=3 (6.4)

Correspondingly for seller valuations:

VS ={11,11,16,16,35,35} <= Ng=6 (6.5)

VS =1{11,16,35} <= Ng=3 (6.6)
Each group of agents has a fixed, finite generating capaatydbtermines the
maximum amount of electricity resource that they are capabtrading at any given
time. The variable”'S denotes the generating capacity of sellers and the variaBle
denotes the generating capacity of buyers. Agents placgtsiad quantity equal to

their generating capacity, thus we modify equations 4.14Ado incorporate multi-
unit bidding according to generating capacity:

Z(i,t) = (bid, a;,C(i,t),CB,t) <= a;€ BAa; € K, (6.7)

Z(i,t) = (ask,a;,((i,t),CS,t) <= a;€SAa; €K, (6.8)

Agents use the modified version of the Roth-Erev tradindgesgsaspecified in Sec-
tion 4.2.4; thug (4, t) is given by equations 4.51 and 4.52, and:

RL,,(t) = RE'(i,t) Vi (6.9)

1see section 3.3
2See section 3.3.2



6.3. NICOLAISEN’S ELECTRICITY MARKET 73

whereRE' (i, t) is defined as in Section 4.2.4. Each agent’s strategy is aoefig
with the following parameters which are taken from the “B@8tparameter set used
by NPT[98, p. 10].

RE., =02 V,
RE, =01 YV,
RE, =9 VY,

RE,, =100 V;

Nicolaisenet al. tested a number of different scenarios by systematicallying the
relative concentration of sellers to buyeR;O N, and the relative generating capacity
of buyers to sellersRC AP, where these are defined:

RCON = 32 (6.10)
NB x OB

AP = ——— A1

RC Ns x CS (6 )

The outcomes of interest are the market-power availablegduyers and sellers re-
spectively, denoted by the variabl26P B and M PSS respectively, and defined by the
equations:

PBA — PBCFE
MPB=—ppep— (6.12)
PBS — PSCFE

wherePBA and PS A denote the profits of the buyers verses sellers once thebaucti
has finished#= t'):

PBA= Y Tu(a;) (6.14)
Va;€EB

PSA= > Tu(a) (6.15)
Ya, ES

and the variable® BCE and PSCE denote the profits of buyers and sellers respec-
tively in competitive equilibriumThis is calculated by running a control experimentin
which all agents use thersstrategy as defined in Section 4.1.2, and then calculating
PBCE as perPBA (similarly PSCE is calculated as peP.S A).

The efficiency of the outcome is denot&Bdl’ and defined:

_ PBA+ PSA "
- PBCE + PSCE
This is simply the efficiency A defined by equation 3.6 expressed as a percentage;
that is:

EA 100 (6.16)

EA = EA x 100 (6.17)
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Results

RCAP

RCON 3 1 2

EA”|99.76 (0.84)] 99.95 (0.20)] 99.60 (3.4)
2 | MPB| -0.36 (0.17)] 0.06 (0.30)| 0.01 (0.45)
MPS | 153 (0.73)| -0.05 (0.27)| -0.02 (0.40)
EA”|99.07 (2.87) 99.61 (0.40)| 98.27 (6.16)
1| MPB | -027 (0.14)| -0.37 (0.19)] 0.12 (0.38)
MPS | 113 (0.58)| 1.26 (0.66)| -0.14 (0.36)
EA”| 96.66 (6.18)] 99.64 (0.35)] 99.98 (0.01)
MPB | -041 (0.15)| -0.37 (0.20)| -0.13 (0.28)
MPS | 158 (0.58)| 1.28 (0.68)] 0.11 (0.25)

N[ =

Table 6.1: Replicated results fod* auction rounds

RCAP

RCON 3 1 2
EA’[100.00 (0.00) 99.49 (0.01)] 100.00 (0.00)
2| MPB | -0.04 (0.07)| -0.07 (0.26)] -0.07 (0.24)
MPS | 019 (0.32)| 0.21 (0.19)] -0.06 (0.19)
EA’| 9413 (0.09)] 99.66 (0.01)] 100.00 (0.00)
1| MPB| -0.16 (0.09)| -0.08 (0.07)| 0.06 (0.24)
MPS | 060 (0.38) 0.22 (0.28)] -0.05 (0.19)
EA’| 9522 (0.09)] 99.56 (0.01)| 100.00 (0.00)
MPB | -0.14 (0.07)| -0.06 (0.05)| 0.10 (0.20)
MPS | 059 (0.36)) 0.20 (0.19)] -0.08 (0.16)

N [=

Table 6.2: Nicolaisen et al.s’ results fod* auction rounds

Nicolaiseret al’s original results are re-presented in Table 6.2. The te#uht | obtain
using the current version of my simulation framework arevaihan Table 6.1. Each
value reported is the mean from= 100 samples of the experiment with the standard
deviation presented in brack&tsThese were obtained using the 64-bit version of the
Mersenne TwistePRNG[85] using double-precisiorEEE 754 floating point arithmetic
[135].

Although the results are not numerically identical to thoséhe original exper-
iment, thequalitative outcomes of both the original and the replicated experisent
are very similar. In particular, there are relatively fegrsidiscrepancies between the
market-power outcomes when comparing the replicated teestith the original re-
sults, and where there is a sign discrepancy the absolutie wdlthe market-power
variable is closer to zero than when there is not. This is #mesqualitative criteria

3Note that the standaretror of the mean is given by, = % which is not what is directly reported
in the results table
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that Nicolaisen et al. use to compare their experimentaawuées with the analytically
predicted outcomes for market power.

6.4 Cliff’s Zero-Intelligence Plus Strategy

As discussed in Section 4.2.1, CIiff [28] set out to exploneagparent anomaly in
the work of Gode and Sunder [58]. Gode and Sunder demordtitze their zero-
intelligence constrained strategy (Section 4.1.4) was tbyield high efficiency out-
comes in &bA mechanism that were comparable to those of human agentseugow

in analysing the micro-behaviour of the zero-intelligemggents compared with the
human trading behaviour, Cliff observed that the sta@s$tiistribution of transaction
prices around the equilibrium price would become signifilyegreater if agents’ valua-
tions were randomly assigned from different distributiomthose of Gode and Sunder,
and thus he argued that thec strategy was not an adequate model of human trading
behaviour. This is because in these scenarios, although

“As with the ZI-C traders, measures of allocative efficiefiay ZIP
traders are typically very high ...128, p. 47]

when analysing the statistical deviation of transactioogsfrom the equilibrium price
p* an alternative model, zero-intelligenp&us is required in order to replicate this
micro-behaviour in a wider range of circumstances:

“...the data in these graphs serves to demonstrate that IsirdfP
trading strategies can readily achieve results that are dasgible when
using ZI-C traders, and are closer to those expected fromamusub-
jects...on these ground at least, the minimally adapti tZhders rep-
resent a significant advance on the work of Gode and Sund28; p.
46]

The metric of interest here is the root mean squaneg) of the difference between
observed transaction prices and the equilibrium priceptihy, and defined formally
as:

oy = 1000t (6.18)
p*
whereo, is defined:
Ve, (ep = pe)?
o = (6.19)

|C|

The final outcome is averaged over the duration of the entpergment:

t=t’

o= =02 (6.20)
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In these experiments agents are endowed with a trade ergitlefor a single unit of
commodity which is replenished at the start of each tradayg dnd decremented each
time they enter into a transaction. LEf ;) denote the trade entitlement for agenat
timet. Agents place bids only if they are entitled to trade:

Z(i,t) = (bid, a;, ((i,t), T 4),t) <= a; € BAa; € Kg NT(;4) >0
Z(i,t) = (ask,a;,¢(i,t), Tii,t) <= a; € SNa; € Kg AT >0

The trade entitlement is reset at the start of each day:

codi_y € By — Ty =1V (6.21)

and decremented for each transaction:

deeCi1 = T({,,gem(c)?t) =0 (6.22)

Parameters

The auction was run for 20 days, each consisting of 50 rounds.

eory_1 € Et71 — NRt = NRtfl +1 (623)

NR;—1 mod50=0 = eod; € E; (6.24)

All experiments were run with @abA clearing-rule with in-order discriminatory pricing
(Section 3.3.3).
The following parameters were used for the strategy:

V: ZIP,, =0.05
V: ZIP,, =0.05
V; ZIPy, =0.1
V; ZIP,, =0.05

This was compared with a population of agents equipped WéhitC strategy (Section
4.1.4), configured:

V; ZICk, =50 (6.25)

For each repetition of the experiment agents’ valuationgweawn:

v; ~ U(50,200) (6.26)

All floating point computations were performed usiggE 754 double-precision arith-
metic [135] and the 64-bit Mersenne Twister PRNG [85] waglieeall random vari-
ables.
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Results

Table 6.3 shows the mean and standard deviatiornfand EA for 50 repetitions
of the experiment with different valuations. As is cleaggh results are statistically
significant since:

oN = \/55—0 ~ 0.7

Thus we see that once we compare andzic under a wide variety of different
supply and demand schedulesp achieves higheFE A and lowera as reported by

Cliff and Bruten.

Strategy Q@ EA
zic | 17.68 (5.58)| 96.40 (2.00)
zip | 7.18 (2.81)| 98.58 (1.40)

Table 6.3: Replication results comparing mean outcomegifowerseszip over 50
samples. The standard deviation is shown in brackets.
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6.5 Summary and Contribution

Replication attempts are a key part of validating the saféwesed in agent-based com-
putational economics. In this chapter | have reported otroband replication exper-
iments involving key combinations of certain strategied anction mechanisms. This
will provide more confidence in the results reported in lateaipters.
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Chapter 7

Empirical Game Theory

The automatic discovery of game-playing strategies hasli@en considered a central
problem in Artificial Intelligence. The most promising techue from evolutionary
computing for discovering new strategieisevolution, in which the fithess of each
individual in an evolving populatiorof strategies is assessed relative to other individ-
uals by computing the payoffs obtained when the selectetithdhls interact. Co-
evolution can sometimes resultanmms-racesin which the complexity and robustness
of strategies in the population increases as they counigptdo adaptations in their
opponents.

Often, however, co-evolutionary learning can fail to cageeon robust strategies.
In this chapter | explore some of the limitations of currestavolutionary algorithms,
and introduce a field known &snpirical game theorwhich combines game-theoretic
analysis together with simulation methods.

7.1 Nash Equilibrium

The failure of certain types of co-evolutionary algorithtngonverge on robust strate-
gies in certain scenarios is well known [148, 45, 20], andrhasy possible causes; for
example, the population may enter a limit cycle if stratedgarnt in earlier generations
are able to exploit current opponents and current opporevis “forgotten” how to
beat the revived living fossil. Whilst many effective tedures have been developed to
overcome these problems, there remains, however, a deeideim which is only be-
ginning to be addressed successfully. In some games, si@@hess, we can safely bet
that if playerA consistently beats playé?, and playerB consistently beats playér,
then playerA is likely to beat playe’. Since the dominance relationship is transitive,
we can build meaningfuhting system$132] for objectively ranking players in terms
of ability, and the use of such ranking systems can be usedsmsa the “external”
fitness of strategies evolved using a co-evolutionary meaad ensure that the popu-
lation is evolving toward better and better strategies. amynother games, however,
the dominance graph is highly intransitive, making it imgibke to rank strategies on a

10r sometimes several populations.
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single scale. In such games, it makes little sense to talktdbest”, or even “good”,
strategies since even if a given strategy beats a large nuofiltopponent strategies
there will always be many opponents that are able to beahit. best strategy to play
in such a game is always dependent on the strategies adgpteetis opponents.

Game theory provides us with a powerful concept for reagpainout the best
strategy to adopt in such circumstances: the notion Waah equilibrium A set of
strategies for a given game is a Nash equilibrium if, and dnho player can improve
their payoff by unilaterally switching to an alternativeagegy.

If there is no dominant strategy (a strategy which is alwéngstiest one to adopt
no matter what any opponent does) for the game, then we sptayldhe strategy that
gives us the best payoff based on what we believe our oppeméthplay. If we as-
sume our opponents are payoff maximisers, then we know hegtwill play a Nash
strategy set byeductio ad absurduif they did not play Nash then by definition at
least one of them could do better by changing their stratagyhence they would not
be maximising their payoff. This is very powerful conceptce although not every
game has a dominant strategy, every finite game possessestabhequilibriumso-
lution [95]. Additionally, if we know the entire set of stegfies and payoffs, we can
deterministically compute the Nash strategies. If onlynals equilibrium exists for a
given game, this means that, in theory at least, we can ale@ypute the “appropri-
ate” strategy for a given game.

Note, however, that the Nash strategy is not alwaydtsstrategy to play in all
circumstances. For 2-player zero-sum games, one can skadahthNash strategy is
not exploitable. However, if our opponents do not play tiNash strategy, then there
may be other non-Nash strategies that are better at expgaiff-equilibrium players.
Additionally, many equilibria may exist and in n-player noonstant-sum games it
may be necessary for agentsdoordinateon the same equilibrium if their strategy
is to remain secure against exploitation; if we were to pl&yaah strategy from one
equilibrium whilst our opponents play a strategy from ammiéative equilibrium we
may well find that our payoff is significantly lower than if wadhcoordinated on the
same equilibrium as our opponents.

7.2 Beyond Nash equilibrium

Standard game theory does not tell us which of the many dedd#sh strategies our
opponents are likely to plajvolutionarygame theory [86] and its variants attack this
problem by positing that, rather than computing the Nashtesgies for a game using
brute-force and then selecting one of these to play, our o@mps are more likely to
gradually adjust their strategy over time in response tepeated observations of their
own and others’ payoffs. One approach to evolutionary gdmery uses theeplicator
dynamicsequation to specify the frequency with which different psirategies should
be played depending on our opponent’s strategy:

mj = [u(ej, m) — u(m,m)]m; (7.1)

wherer is a mixed-strategy vectou(r, ) is the mean payoff when all players play
m, andu(e;,m) is the average payoff to pure strategywhen all players play,
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andrh; is the first derivative oin; with respect to time. Strategies that gain above-
average payoff become more likely to be played, and thistemuanodels a simple
co-evolutionanprocess of mimicry learning, in which agents switch to siyés that
appear to be more successful.

For any initial mixed-strategy we can find the eventual ootedrom this co-
evolutionary process by solving; = 0 for all j to find the final mixed-strategy of
the converged population. This model has the attractivpetees that: (i) all Nash
equilibria of the game are stationary points under the cafbr dynamics; and (ii) all
Lyapunov stable states [83] and interior limit states ase &lash equilibria [149, pp.
88-89F.

Thus the Nash equilibrium solutions are embedded in théstaty points of the
direction field of the dynamics specified by equation 7.1 haltgh not all stationary
points are Nash equilibria, by overlaying a dynamic modétafning on the equilibria
we can see which solutions are more likely to be discoveretidundedly-rational
agents. Those Nash equilibria that are stationary pointghéth a larger range of
initial states will end up, are equilibria that are more liki be reached (assuming an
initial distribution that is uniform).

This is all well and good in theory, but the model is of limiterhctical use since
many interesting real-world games arailti-staté. Such games can be transformed
into normal-form games, but only by introducing an intréatydarge number of pure
strategies, making the payoff matrix impossible to compute

7.3 Co-evolution

But what if we were to approximate the replicator dynamicsibinng an evolutionary
search over the strategy space? Rather than consideringinaitei population con-
sisting of a mixture of all possible pure strategies, we usmall finite population of
randomly sampled strategies to approximate the game. Byduating mutation and
cross-over, we can search hitherto unexplored regionseostitategy space. Might
such a process converge to some kind of approximation ofeaNiash equilibrium?
Indeed, this is one way of interpreting existing co-evalnéry algorithms; fithess-
proportionate selection plays a similar role to the repticadynamics equation in en-
suring that successful strategies propagate, and germpstiators allow them to search
over novel sets of strategies. There are a number of problthssuch approaches
from a game-theoretic perspective, however, which we sligduss in turn.

Firstly, the proportion of the population playing diffetestrategies serves a dual
role in a co-evolutionary algorithm [47]. On the one hane, pihoportion of the popu-
lation playing a given strategy represents the probalafilaying that pure strategy in
a mixed-strategy Nash equilibrium. On the other hand, ¢ianary search requires di-
versity in the population in order to be effective. This segig that if we are searching
for Nash equilibria involving mixed-strategies where offi¢he pure strategy compo-
nents has a high frequency, corresponding to a co-evohrjosearch where a high

2|t is important to note, nevertheless, that it is not the ¢hatall stationary points are Nash equilibria
3The payoff for a given move at any stage of the game dependsednigtory of play.
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percentage of the population is adopting the same strategry,we may be in danger
of over-constraining our search as we approach a solution.

Secondly and relatedly, although the final set of strateigie¢ke converged pop-
ulation may be best responses to each other, there is norgeartat the final mix
of strategies cannot be invaded by other yet-to-be-eneoedistrategies in the search
space, or strategies that became extinct in earlier geoesabecause they performed
poorly against an earlier strategy mix that differed frora fimal converged strategy
mix. Genetic operators such as mutation or cross-over wilpbor at searching for
novel strategies that could potentially invade the newhalgished equilibrium be-
cause of the dual role played by population frequencie$e$e¢ conditions hold, then
the final mix of strategies is implausible as a true Nash diriilm or ESS, since there
will be unsearched strategies that could potentially bteakequilibrium by obtaining
better payoffs for certain players. We might, neverthelbsssatisfied with the final
mix of strategies as an approximation to a true Nash eqiulibon the grounds that
if our co-evolutionary algorithm is unable to find equilibimi-breaking strategies, then
no other algorithm will be able to do so. However, as discdsdgove, we expea
priori that co-evolutionary algorithms will be particulaghpor at searching for novel
strategies once they have discovered a (partial) equiliori

Finally, co-evolutionary algorithms employ a number offeliént selection meth-
ods, not all of which yield population dynamics that coneog game-theoretic equi-
libria [46].

These problems have led researchers in co-evolutionarpeting to design new
algorithms employing game-theoretic solution concepf§.[4n particular, Ficici and
Pollack [47] describe a game-theoretic search techniquadguiring approximations
of Nash strategies in large symmetric 2-player constamt-games with type inde-
pendent payoffs. In this thesis, | address n-player norstemt-sum multi-state games
with type-dependent payoffs. In such games, playing théndastegy (or an approx-
imation thereof) does not guarantee a participant secagamst exploitation, thus if
there are multiple equilibria, it may be more appropriatplay abest-responst the
strategies that we infer are in play.

7.4 Empirical Game-Theory

Reevest al. [30] and Walshet al. [145] obviate many of the problems of standard
co-evolutionary algorithms by restricting attention toadhrepresentative sample of
“heuristic” strategies that are known to be commonly plajre@ given multi-state
game. For many games, unsurprisingly none of the strategiesnonly in use is
dominant over the others. Given the lack of a dominant gyati is then natural
to ask if there are mixtures of these “pure” strategies tlaistitute game-theoretic
equilibria.

For small numbers of players and heuristic strategies, wecastruct a relatively
small normal-form payoff matrix which is amenable to gareeretic analysis. This
heuristicpayoff matrix is calibrated by running many iterations ¢ tteme; variations
in payoffs due to different player-types (eg private valuag) or stochastic environ-
mental factors (e.g. PRNG seed) are averaged over many esuiitype information
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resulting in a single mean payoff to each player for eachyentthe payoff matrix.
Players’ types are assumed to be drawn independently frersatime distribution, and
an agent'’s choice of strategy is assumed to be independisitye, which allows the
payoff matrix to be further compressed, since we simply neegecify the number of
agents playing each strategy to determine the expectedfpiaygach agent. Thus for
a game withy strategies, we represent entries in the heuristic paydiifixnas vectors
of the form

ﬁ: (p1a7pj)

wherep; specifies the number of agents who are playing:thetrategy. Each entry
p € Pis mapped onto an outcome vectoge () of the form

7= (q1,---q5)

whereg; specifies the expected payoff to tité strategy. For a game with agents,
the number of entries in the payoff matrix is given by
g nti= ! (7.2)
nl(j —1)!
For smalln and smallj this results in payoff matrices of manageable size;jfer 3
andn = 6, 8, and10 we haves = 28, 45, and66 respectively.

Once the payoff matrix has been computed we can subject itigpeous game-
theoretic analysis, search for Nash equilibria solutiamsl apply different models of
learning and evolution, such as the replicator dynamicsehaadl order to analyse the
dynamics of adjustment to equilibrium.

The equilibria solutions that are thus obtained are notrags Nash equilibria for
the full multi-state game; there is always the possibilitgttan unconsidered strat-
egy could invade the equilibrium. Nevertheless, heurstiategy equilibria are more
plausible as models of real-world game playing than thogailoéd using a standard
co-evolutionary search precisely because tresjrict attention to strategies that are
commonly known and are in common use. We can therefore bedemtfihat no com-
monly known strategy for the game at hand will break our égiilm, and thus the
equilibrium stands at least some chance of persisting irstioet term future. | will
return to this issue in chapter 9. Meanwhile, in the next tdrapve will use heuristic-
strategy approximation to analyze two different variarithe double-auction from a
design perspective.
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Chapter 8

Analysing Auction Mechanisms

In this chapter | will analyze two variants of the double @&cimarket—the clearing
house auction and the continuous double auction. The coutypte these institutions
is such that they are extremely hard to analyse using toaditigame-theoretic tech-
niques, and so | shall use the heuristic-strategy apprdiaméchnique described in
the previous chapter in order to provide an approximatedegmoretic analysis. As
well as finding heuristic-strategy equilibria for these tmagisms, | shall subject them
to an evolutionary game-theoretic analysis which will gifgrwhich equilibria are
more likely to occur. We can then weight the design objestfioe each mechanism
according to the probability distribution over equilibrighich will allow us to provide
more realistic estimates for the efficiency of each mechmanis

8.1 The CH versus the CDA

In a typical exchange, the market institution attempts technaffers to buy with offers
to sell in such a way that the overall surplus extracted froenrharket is maximized.
If offers are considered as signals of agents’ valuationsafoesource, and assum-
ing agents signal truthfully, then an auctioneer can mazénaillocative efficiency by
matching the highest buy offers with the lowest sell offdrsthis chapter | compare
two types of exchange:

e Ak = 0.5 continuous double-auctiocpA) market in which trades are executed
as new offers arrive and prices are set half-way betweenitheria ask price, as
described in Section 3.4; and

e A discriminatory pricek = 0.5 clearing-housedH), as described in Sections
3.3 and 3.3.2, in which the auctioneer waits for all traderglace offers before
clearing the market.

On casual inspection of theba, we might expect that it is designed according to

auction-theory principles, and so should maximize allveagfficiency when agents
signal truthfully (see 4.1.1). Surprisingly, however ltris out that surplus extraction
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in aCcDA is extremelypoor under truth-telling —typical values aféA =~ 0.80, which
is extremely low compared with outcomes of almést ~ 0.98 which are observed
with the non-truthful strategies that are actually adoggtiuman traders [58].

As we saw in Section 3.4, the reason for this poor efficien@aisy to spot; the
continuous clearing rule results in myopic matching. WHean ¢learing operation is
performed the auctioneer has only a partial view of the agggeesupply and demand
in the market place. In order to maintain a high throughpuactfial transactions,
the auctioneer impatiently clears the market before evager has the opportunity
to place their bid. However, as we saw in Section 6.4, theeexdty surprising thing
about this institution is that rational agents acting logcad maximize their own profit
are able to compensate for this efficiency loss by placingpexiarginal, non-truthful
bids, which collectively result in high-efficiency outcome

Much analysis of theDbA has focused on showing that although ¢ is not an
incentive-compatible mechanism, it can be considereddatrincentive-compatible”
by virtue of the fact that trading strategies with only a rmai amount of intelligence
are able to extract high surpluses from the market [58, 28jvéVer, such approaches
are insufficient for market-design purposes, because #ikipfdemonstrate that such
minimalist strategies amominantagainst more sophisticated strategies. For example,
if we decide to use a population of homogenepwstraders to ascertain how tluoA
and thecH markets compare with each other, we are making an implisitragtion
that the state of affairs whereby all agents adoptthestrategy is an equilibrium state.
However, in order to justify this assumption we should eaghat any hypothetical
equilibrium ofzic or zip traders is not susceptible to invasion by an alternatiaegy

Ideally, we would like to find the game-theoretic solutiom fbe cbA, and show
that although truth-telling or other minimalist strategy@e not dominant, we can still
find the theoretical mix of strategies that are best-respotseach other, and demon-
strate that the institution performs well in game-thearetjuilibria. However, even at
this point, thecDA along with other variants of the double-auction marketfeonds
auction theorists by admitting of no unequivocal equiliionisolutior.

Hence in the absence of robust analytical tools, much aisalythis institution has
used an ad-hoc mixture of computer simulation and laboya&gperiments [51]. These
techniques are invaluable, since they are able to faithintorporate many of the
complex details of the market institution which lead todatability under conventional
analysis. However, the results thus obtained are ofteisexditfor being difficult to
generalize in the absence of compelling models that expiaimbserved outcomes.

However, as discussed in chapter 7, techniques have beelogded recently that
combine simulation-based approaches with an approxintgtetk-theoretic analysis.
In the following sections, | describe in detail an empirigaime-theoretic analysis of
thecbA and thecH mechanisms.

1That is, in whichall equilibrium strategy profiles are clearly identified. Théavant literature is re-
viewed in Chapter 2.
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8.2 Experimental setup

In order to compare thebA andcH, we must first generate a heuristic payoff matrix
for each institution by sampling many simulations of the ketigame. As in [145],
at the start of each game half the agents are randomly agsigriee buyers and the
remainder are chosen as sellers. For each run of the gamefieals are drawn as in
[145]:

Vivi ~ Ula,a+b)
a ~ U(161,260)
b ~ U(60,100)

but valuations remain fixed across periods in order to allgengs to attempt to learn
to exploit any market-power advantage in the supply and demarves defined by the
limit prices for that game. Additionally, although we disddimit-prices which do not
yield an equilibrium price, we do not ensure that a minimurargity exists in com-
petitive equilibrium as this introduces a floor effect whielils to expose the inferior
efficiency of acDA. The 64-bit version of the Mersenne Twister random number ge
erator [85] was used to draw all random values used in thelation and all floating
point calculations were performed usirege 754 double-precision arithmetic [135].
Each entry in the heuristic payoff matrix was computed byagmg the payoff to each
strategy across0* simulations.

8.2.1 Choice of heuristic strategies

In choosing candidate heuristic-strategies for our amglyge need to consider the
following constraints:

1. The strategies chosen should be able to trade in both 6fpeechanism.

2. They should be representative of strategies that are cmtyrknown for these
types of mechanism.

3. We should include the truth-telling strategyr{, since we are interested in the
incentive-compatibility properties of each mechanism.

Accordingly, | chose the strategies, RE, TK andGD as described in table 8.1:
theTT strategy was chosen in accordance with constraint 3 abloggktstrategy was
chosen since it is a very simple strategy that was also theewiof the original Santa-
Fe trading strategy competition [51] and is prevalent inlina-single-sided auctions
[120]; theGD strategy was chosen as a representative of the class of/fpghkipled
and highly-engineered strategies that analyse histarieaket data, and finally thee
strategy was chosen to represent naive human-like behagiodi thus was configured
with parameters that best-fit human game-playing [119]:
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Abbreviation| Description
TT The truth-telling strategy, (section 4.1.1).
RE The reinforcement-learning strategy (section 4.2.4),
configured with the Roth-Erev learning algorithm (sectic?.4).
TK Todd Kaplan’s sniping strategy (section 4.2.2)
which waits until the last minute before placing a shout.
GD The Gerstad-Dickhaut strategy (section 4.2.3)
which estimates the probability of shouts being accepted as
function of price and bids to maximise expected payoff.

Table 8.1: The heuristic strategies chosen for the analysis

Vi RE,, = 50
Vi RE,, = 0.1
Vi RE,, = 0.2
Vi RE,, = 9
Vi RL,, = 1

8.2.2 Choice of market size

Auction marketplaces with a small, fixed, number of traddre wepeatedly interact are
becoming more common place with the advent of businessi$inbss electronic com-
merce and the deregulation of wholesale markets such asi@lyd98]. As discussed

in sections 1.1 and 5.1.3, these are the most difficult s@str evaluate analytically
using conventional techniques. With large numbers of agénet market starts to ap-
proximate the continuous case;|ad — oo the supply and demand schedules start to
approximate smooth curves, as will the reported supply @naeshd)/ B and)M S, and

itis very likely thatmax(M S) ~ max(MS) andmin(M B) ~ min(M B) regardless

of which agent plays which strategy. Hence, iatafor example:

eQa - G?Jb
— X D%
5 p

and so we would clear at close to an equilibrium price regasibf strategy choiée
In other words, we can use general equilibrium theory to iptete likely outcome.
However, when we have small numbers of agents, the systeamtsscmore discrete
and unpredictable, and we have to pay much more attentiometdeéhaviour of the

2This argument is merely a sketch, however, see [53] for a migmeous example of how tractable
solutions emerge when the number of agents is very large
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individual components (agents) in order to predict outcgm&iven that analytic ap-
proaches are generally intractable for scenarios withlsfdal this is my justification
for using anempirical game-theoretic analysis, and | will analyze mechanismb wit
|A| =4, |A| = 6 and|A| = 12 traders.

8.3 Dynamic Analysis

Once the heuristic payoff matrix has been computed, we chjestit to a game-
theoretic analysis. In conventional mechanism design, alieghe game by finding
either a dominant strategy or the Nash equilibria: the skstrategies that are best-
responses to each other. However, because classical gaomg-is a static analysis,
it is not able to make any predictions about which equililatie more likely to occur
in practice. Such considerations are of vital importanae@t-world design problems.
Since our design objectives depend on outcomes, we shodargire consideration to
outcomes that are more likely than low probability outcontes example, if there is
a Nash equilibrium for our mechanism which yields very lolwedtive efficiency, we
should not worry too much if this equilibria is extremely ikely to occur in practice.
On the other hand, we should give more weight to equilibridwigh probability.

As in [145], we will useevolutionarygame-theory [86] to model how agents might
gradually adjust their strategies over time as they learimfrove their behavior in
response to their payoffs. We use the replicator dynamioatemn (equation 7.1), to
recap:

1y = [u(e;, m) — u(m, m)|m;

whereni is a mixed-strategy vectow(m, ) is the mean payoff when all players
playni, andu(e;, m) is the average payoff to pure strategwhen all players play,
andrh; is the first derivative oin; with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this temjuanodels a simple
co-evolutionaryprocess of mimicry learning, in which agents switch to sigas that
appear to be more successful. Since mixed strategies egpneobability distribu-
tions, the components afi sum to one. The geometric corollary of this is that the
vectorsn: lie in theunit-simplexA™ = {# € R" : Y7, z; = 1}. In the case ofi = 3
strategies the unit-simpleXx? is atwo dimensional triangle embedded in the three di-
mensional plane which passes through the coordinatesspameing to pure strategy
mixes: (1,0,0), (0,1,0), and(0,0, 1). We shall use a two dimensional projection of
this triangle to visualise the replicator dynamics in thetrsectiori.

For any initial mixed-strategy we can find the eventual ootedrom this co-
evolutionary process by solvingj ; = 0 to find the final mixed-strategy of the

3As Gintis points out [56], this is analogous to the modellafghysical systems at different scales. In
large-scale systems we can model bodies as homogeneoasticolk of simple particles whose macro-
behaviour is the statistical ensemble of many simple migreractions yielding Newtonian mechanics.
However, when we analyse behaviour at the molecular andamiascales, the characteristics of individ-
ual particles play a more prominent role and we get corredipgly more complicated and discrete models
(chemistry and quantum mechanics). In this analegy is to general equilibrium theory as Newtonian
mechanics is to quantum mechanics.

4See [149, pp. 3—7] for a more detailed exposition of the gexgnoé mixed-strategy spaces.
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converged population. As discussed in Section 7.2, thisahsignificant advantage
over non-game-theoretic co-evolutionary search, sucb%s in that we camguaran-
tee[149, pp. 88-89]:

e all Nash equilibria of the (approximated) game are statpm®ints under the
replicator dynamics; and

o all interior limit states are Nash equilibria; and
e all Lyapunov stable states [83] are Nash equilibria.

Thus the Nash equilibrium solutions are embedded in theataty points of the direc-
tion field of the dynamics specified by equation 7.1. Althouaghall stationary points
are Nash equilibria, by overlaying a dynamic model of leagndon the equilibria we
can see which solutions are more likely to be discovereadundedly-rationahgents.
Those Nash equilibria that are stationary points at whicrger range of initial states
will end up, are equilibria that are more likely to be reackassuming an initial dis-
tribution of m; that is uniform); in the terminology of dynamic systems tleye a
largerbasin of attraction The basin of attraction for a stationary point is propartio
of mixed strategies in\ which have flows terminating at that pointThe larger the
basin, the larger the region of strategy-space which leadse attractor, and hence
the stronger the attractor, and the mat&inablethe corresponding equilibrium [18].
This intuitive definition of basin size is formalized as flls. Let the function

T:A" x 228" 5N

representthaumberof trajectories that terminate at each coordinate in thewedsional
unit-simplexA™ c R™, so that we have:

T(F M C A") = |{§: 7€ MAmO) =FA3m(t) =7 Am(t) =0} (8.1)

where M is a set of starting points and is a limit state. Let3(Z, M) denote the
proportionof the elements of/ that terminate af:

T(Z, M)
|M|

If we choose a random samplé C A that is distributed uniformly over the simplex,

the functiong will provide us with an estimate of the probability of arrig at any

given stationary point, assuming that all starting pointhie simplex are equally likely;

that is, it will provide an estimate of the true basin sizeh# limit stater, denoted by

B(Z), and:

B(&, M) = (8.2)

Jim A(Z, M) = B(7)

5In many cases this will be theolumeof the state space which terminates at the attractor, asd thi
provides a useful intuition for thinking about attractaresigth. However, in the general case this definition
breaks down. For example, if we have chaotic dynamics theéraage attractor may capture many flows,
but the volume of its basin will be zero.
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8.4 Results

Since the vectof in equation 7.1 represents a mixed-strategy, that is, asdesproba-
bility distribution, we have) m; = 1; thus eachn lies in the unit-simplex (p. 89). For
n = 3 strategies we can project the unit-simpléx onto a two dimensional triangle
whose vertices correspond to the pure strategie8, 0), (0, 1,0), and(0,0,1). By
plotting the time-evolution of equation 7.1 we can then tifgnhe switching between
strategies. Figure 8.1 shows the direction-field when wesicken evolutionary switch-
ing between the three strategies RE andGD, in aCcH market populated bjA| = 12
agents which are selected at random from a larger populeafitraders on each play
of the game.

The direction field gives us a map which shows the trajectooiestrategies of
learning agents engaged in repeated interactions, froom@oma starting position.
Thus, for Figure 8.1, each agent participant has a startiogce of 3 pure strategies
(TT, RE andGD) and any mixed (probabilistic) combination of these thréke pure
strategies are indicated by the 3 vertices of the simplénte), while mixed strate-
gies are indicated by points on the boundaries or in the raidtithe simplex.

RE

TT GD

Figure 8.1: 3-dimensional replicator dynamics directi@hdfifor a 12-agent clearing-
house auction with the three strategies TT andGD.

An agent in the population at large is assigned a pure stratagdomly chosen
from the sef{ TT, RE, GD} to start, but switches to an alternative strategy with prob-
ability proportional to the relative payoffs observed fragents playing alternative
strategies. Thus in a large population of agents, the ptigmoof agents playing each
pure strategy will vary according to the learning processcdbed by Equation 7.1.
The paths shown in Figure 8.1 trace this sequence of adjas$m8ince at the begin-
ning of each market game, each agent in the smaller popnlefibd| = 12 agents
is chosen at random from the larger population of agentsayure strategies, we
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can think of the proportion of the populatien; playing each pure strategyas the
probability of playing that pure strategy. Thus the vectorcan be thought of as a
mixed-strategy.

We can assess the relative likelihood of one strategy beiogtad in long-term
play relative to another by comparing the size of their repe basins of attraction.
Figure 8.1 shows trajectories generated frgvh| = 250 randomly sampled initial
m vectors. For now, we assume that every initial mixed-stpate equally likely to
be adopted as a starting-point for the co-evolutionary ggscand so we randomly
sample the initial values ofi from a uniform distribution and plot their trajectories as
they evolve according to equation 7.1.

For four strategies, the direction-field is slightly triekito display. Figures 8.3 to
8.7 show the convergence to equilibrium as a time seriespnwieeconsider all four
strategies in both theba and thecH for |A| = 4, |A| = 6, and|A| = 12 agents.

To automate the analysis of institutions, we need to be aljedvide some metric
that allows us to quantify their performance in this kind nélysis. Different equilibria
will yield different outcomes and different values of oursidg objectives, such as
market efficiency, and we would like to weight these accaydmtheir likely-hood.
In other words, we would like to compute the size of the basiataction of each
equilibrium, in order to arrive at a probability of the edhiila actually occurring, and
use this to calculate the expected value of our design rsetric

Table 8.2 shows the values gf(equation 8.2) for thosg for which 3(Z, M) > 0.
These were obtained by taking a random sanidlef size|M| = 103, and solving
the replicator dynamics equation numerically. Statiormoints that occur with a prob-
ability less thanl0~2 were eliminated from the analysis as an approximation ntetho
to test for Lyapunov stability. Thus | take the stationarynp®reported in table 8.2 as
equilibrium solutionsand the value off as the probability of arriving at the reported
equilibrium. So for example in the top-left cell of table &2 see that in &H with
|A| = 4 agents there are two pure-strategy equilibria: (i) at cioate (0,0, 1,0) in
the simplex representing pugD; and (ii) at coordinat€0, 0,0, 1) representing pure
TK. The first equilibrium has a probability39 of being played whereas the latter has
a probability0.61.

The value ofU in each cell of table 8.2 denotes the pure strategy payofésmdd in
each particular experiment; that is, the heuristic-stpafayoff obtained to each pure
strategy when all agents adopt it. So for example in the betight cell we see that
in a CcDA with |A| = 12 agents we obtain payoff§.85,0.89,0.99, 0.90) to strategies
TT, RE, GD andTK respectively under homogenous adoption.

Similarly for the other cells in the table.

8.5 Discussion

With probabilities over outcomes, we are now in a positioagsess the design of each
mechanism. The value @ A in each cell of table 8.2 shows the expected efficiency of
the mechanism. This is computed by weighting the pureesiygpayoffs/ according

to the probability of the pure strategy being played. Fomepde, in the case ofbA
with | A| = 6 agents, we see that there are two possible equilibria. Ttefjuilibrium,
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CH
Al = Al = Al =12
ﬁ(0,0, 0)=0.39 ﬁ(0,0, .0)=0.31
ﬁ(0,0, 1) =0.61 ﬁ(0,0, 1) = 0.69 3(0,0,0,1) =1

— (1.00,0.90,1.00,1.00) | 7 = (1.00.0.92, 1.00,1.00) | U = (1.00,0.93,1.00,1.00)

EA_100 EA_100 EA=1.00

CDA
A =4 A[=6 A =12

3(0,0,0.84,0.16) = 0.97 | 5(0,0,0.8,0.2) = 1

3(0,0,0,1) = 1 3(0,0,0,1) = 0.03
U = (0.89,0.86,0.98,0.89) | U = (0.85,0.88,0.98,0.86) | U = (0.85, 0.89, 0.99, 0.90)
EA=0.89 EA=0.96 EA =097

Table 8.2: Heuristic-strategy equilibria ou@&'T, RE, GD, TK) for CH versuscDA

(0,0,0.84,0.16), has a probability 00.97 of being adopted. In this equilibrium the
strategyGD has a probability).84 whereas the strategy has a probability 0f).16.
By examining the payoffs to each of these strategies we capute the expected
efficiency of the mechanism in this equilibriuih84 x 0.98 4+ 0.16 x 0.86 = 0.96. In
the second equilibrium we see that the strategyas a probability 1 of being played,
hence the efficiency of this second equilibriunDi86. We then weight our overall
efficiency according to the probability of each equilibriutrd6 x 0.97+0.86 x 0.03 =
0.96.

First of all, since there non-truthful equilibria in all ements we can conclude
thatTT is not dominant, and hence neither ttie or CDA mechanism is strategy-proof
in these scenarios.

As expected from our discussion in Section 3.4, we obseratghyoffs under
truthful bidding in acpaA are relatively low: EA = 0.85 for |A| = 6 and|A| = 12.
This might suggest that thepa itself has a rather low efficiency. However, in order
to assess the efficiency of tlmA we must take into account the fact that in these
scenarios truth-telling is dominated. In fact, we see thaibus mixtures oD andTk
are likely outcomes, yielding efficiencies of betweeg9 and0.97.

Thus although theDA yields lower surplus, it is not as inefficient as we might
expect had we assumed that it was designed according totivee@ompatibility cri-
teria. As [50] points out, the main reason for choosingoa rather than acH is to
handle larger volumes of trade, and our results here sugfggsthis is a reasonable
trade-off. Switching to a&DA from acH as the New York Stock Exchange did in the
late 1860s [12, p. 29], does not seem likely to entail a langs bf efficiency when we
have relatively few|@A| = 6 or | A| = 12) traders in the market.

For the most part efficiency outcomes are deterministic retle either a unique
equilibrium that captures the entire simplex or all equistyield the same efficiency.
The exception is thepa with | A| = 6 agents. Here we have a mixed andGD equi-
librium with efficiency EA = 0.97 versus a purek equilibrium with asignificantly
lower efficiency of EA = 0.86. Since theTk equilibrium has a very small basin of
attractions = 0.03 we conclude that the lower efficiency outcome is not veryljike
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and hence if we have no prior knowledge of existing strateggufencies in the trading
population at large we assume a uniform distribution ovetisty pointsi/ C A and
conclude that our efficiency is still likely to be very highowever, in the case where
we do have prior knowledge about the frequency of strategigs we are tasked with
evaluating a proposed choice of a continuous-clearingfanla six-agent marketplace
in which wealreadyobserve high proportion of sniping, then we might concluds t
the puretk equilibrium is much more likely to be reached (since we wdldiarting
within its attractor), and thus we might recommend thatclearing is used instead in
order to avoid the probable efficiency hit predicted by owlgsis. This hypothetical
design tweak would yield an efficiency gain@b7 — 0.86, or 11 percentage points,
at the expense of transaction throughput. Thus by analysmgtrategiadynamicsof

a proposed mechanism, we can perfawolutionarymechanism design whereby we
make design decisions undegacyconstraints (in this hypothetical scenario our legacy
constraint is an existing marketplace populated by snjpé&rgolutionary mechanism
design is analogous to evolutionary game theory in thatgagplayers may be con-
strained to gradually adjust their strategies, similarBchanisms cannot always make
instantaneous adjustments in their rules irrespectivetadtstrategies are currently in
play. We shall return to this discussion in Section 10.2.

In Chapter 1, | introduced the double-auction as an examipteself-organized
complex systemgocg. With the dynamic analysis in the previous sections, we be-
gin to see what this means. In a traditional mechanism designario we simply
demonstrate that under our proposed mechanism truthgedidominant and that ef-
ficiency under truth-telling is maximised. We then assuna ttuthful behaviour will
be instantly adopted and that our mechanism will remainviarefficient in stasis.
In contrast, the picture | paint here is a dynamic and unicedae. Real-life con-
siderations and multiple design objectives mean that weaialy demonstrate that a
simple, prescribed strategy such as truth-telling is daminRather, we have multiple
equilibria within a dynamic system comprised of discretadinear components, and
we are not always certain how the ensemble will evolve. A wther complex sys-
tems, it is extremely difficult to discover the system'’s likbehaviour using analytical
methods. Using computationally-intensive numericallytmoels such as the empiri-
cal game-theoretic analysis conducted in this chapter wiegea aninsight into the
dynamics of the system and make some tentative forecasts.

However, as with other complex systems, such as meteooalogies, we should
take forecasts of them with a pinch of a salt, especially él¢img term. For example,
one of the potential drawbacks of our analysis is that we loaye considered a small
subset of the space of possible strategies, and one of theses strategy, has many
internal parameters. Is it not conceivable that if a newtetna(for example, a variant
of RE with tweaked parameters) were introduced into our markesystem that it
would upset the equilibria that we have so carefully analyered cultivated? We shall
address this question in detail in the next chapter, but thed Bnswer is: yes. As
with other engineering design methodologies [10, 6], téalmechanism design is an
iterative processwe do the best that we can to analyze anticipated outconus, b
complete and future-proof analysis is wholly intractitdad thus at some point reality
will inevitably overtake our initial predictions and we Wilave to adjust our design in
light of up-to-date empirical observations of the systenvivo. As discussed in the
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previous paragraph, the methods introduced here will allewo do just that. Thus
rather than simply launching a theoretically optimal amrctdesign onto the world,
instead, agvolutionarymechanism designers we design, analyse, observe, tweak and
then repeat.

One topic that has received considerable interest withoneics over recent
decades is that of viewing markets as a particular clas®afsthat exhibits a property
called self-organized criticalitys(© ) [4], meaning that the attractors of the system lie
on critical points (eg. phase transitions) between orddrcdyaos. These critical points
exhibit sufficiently dynamical behavior that the systemgloet “freeze” into low com-
plexity configurations, but at the same time their dynanscsufficiently ordered that
the system does not “boil” into noise, and hence this regsnigighly conducive to
complexity. Since these systems naturally have attratoaded at critical points, they
tend to be continuously “poised” between order and chaas hamce they naturally
equilibrate towards complex states. The existence of vergls physical systems that
possess critical-point attractors strongly suggestsstiiftorganised criticality may be
responsible for much of the complexity that we observe inrsisystems. One of the
characteristics of critically-poised systems is scaleiance hence their macroscopic
properties tend to follow power-law relationships. It iggested that the long-tail dis-
tribution of time intervals between events such as marladtes in the business cycle
are due to markets being critically-poised in this mannér §B].

In contrast, our analysis yields more well-ordered, noaetic dynamics. If we
do indeed observe power laws and chaotic behaviour as & mésuiticality in real
market§, this raises two questions:

e Are these methods applicable under chaotic dynamics (andeh® real mar-
kets)?

e Has the behaviour of the system been oversimplified?

The answer to both questions is yes. As regards the formtég ifeplicator-dynamics
hadyielded chaotic dynamics for the underlying heuristic-gdas it can do for certain
payoff structures [130]), we could have still computed basizes for the resulting
strange attractors and computed expected values of owgrdebjectives. As regards
the latteranyanalysis has to abstract and simplify in order to be usefuhis analysis
we are taking a very high-level view of the system in orderdsess its macroscopic
design properties. If we were to look under the hood, and thietevolution of the
state variables comprising each agent’s strategy (whiels@lf being computed and
accounted for by the underlying heuristic-strategy anglyse would likely see more
entropy in the underlying system. For example, Heestrategy chooses its actions
probabilistically in contrast to the deterministic evadut of the replicator-dynamics
equation, and it is not inconceivable that we would obseriteality if we were to
examine actual bid prices as a time-series at this level.

However, ultimately, at the macroscopic-level of the systaur analysis is based
on the replicator dynamics. Although as discussed thea&{oli-dynamics can exhibit

81n fact, this is highly contentious, as is the question of thieecriticality is actually observed in real-life
sand-piles [72, p. 14] as opposed to the simulated sand-pilBak et al.’s originasocpaper [4].
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chaos, it does not belong to the class of systems which tjp&ehibit criticality. The
replicator dynamics was originally introduced by Mayn&uhith [86] to model biolog-
ical evolution in terms of gradual adjustment to equililbniias originally envisaged by
Darwin [31]. However, Eldredge and Gould [40] argued thathstgradualist” mod-
els were oversimplistic, and put forward an alternativeotiieof evolution based on
the concept of “punctuated equilibrium”, which is closethe view of self-organized
criticality.

The debate over gradualism versus punctuated equilibreasmlever been settled
and rages on [133]. However, in future work | will use altdgiveadynamic models
of learning and evolution, such as those discussed by J¢rgep. 73], and conduct
a sensitivity-analysis similar to that described in thetnehapter in order to assess
whether these forecasts are sensitive to alternative modstrategy adjustment.

8.6 Summary and Contribution

Recall from section 1.3 that our method for evolutionary hasgsm design is outlined
as follows:

input : A set of initial heuristic strategie$S, and a legacy mechanism
repeat

S — Fi SH+( S, ) ;

publiciseS to participants

Z « frequency of each strategy observed in yivo

S «— S U { strategies observed in vivo;

A «— space of feasible variants qf;

p < argmax,,, c  EvaluateDesignObjectives(ux, S, 7);
implement rules defined hy

until forever ;

© 00 N O 0 b~ W NP

In this chapter | have described how to evaluate the function

EvaluateDesignObjectives(u, S, Z)

wherey denotes a mechanisrfi, denotes a set of heuristic strategies and Al®!
denotes a weighting over strategies based on current @tesrs of the frequency with
which each strategy is in plag vivo. | have shown empirically that this yields useful
results forS = {TT,RE, GD, TK} for each of the mechanisms = cH andu =
CDA. | also demonstrated that our design objectives can betsents : in the case
of 4 = cDA and|A| = 6, if we observer = (6,4,0,1 — §) whered is small, that is a
situation in which a high proportion of traders using thepsmg strategyrk in the real-
life mechanism, then our assessment of our design objsatiiiebe different to that
when we assume a uniform weightig= (1, 1,1, 1), and thus | have demonstrated
that this method can take into account legacy considemtion

One of the potential criticisms of this kind of analysis iattft is highly sensitive to
the set of heuristic strategieés which can never be truly comprehensive for an initial
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design. The next chapter will explicitly deal with this @ism by setting the mecha-
nism design problem in the iterative context implied by thewse pseudo-code, and we
shall discuss th&i SH algorithm for refining our initial heuristic-strategy awpsils by
searching for hitherto unanalysed strategies that migdahoour existing equilibria.
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Chapter 9

Searching the Space of
Strategies

In the previous chapter, we used a heuristic-strategy aisaly analyse two variants of
the double auction market mechanism populated with a mixeafistic strategies, and
were able to find approximate game-theoretic equilibriutatmns. In this chapter,
we shall use the same basic framework, but focus orcthemechanism with uniform
pricing (Section 3.3.1). Our goal will be to use ideas fronpé@imal game-theory in
order to search the space of tradstgategies whilst restricting attention to a single
mechanism.

Initially we will start with a subset of three heuristic dggies from the original
set of four discussed in the previous chaptar; RE andGb, which are summarised in
Table 9.1.

As in the previous chapter (Section 8.4), since all mixedtsgy vectors lie in
the unit-simplex, fork = 3 strategies we can project the unit-simplex onto a two
dimensional space and then plot the switching betweenegies that occurs under
the dynamics of equation 7.2. Figure 9.1 shows the diredtald of the replicator-
dynamics equation for these three heuristic strategiesyislg that we have two equi-
librium solutions. Firstly, we see th&b is a best-response to itself, and hence is a
pure-strategy equilibrium. We also see it has a very l&@gn of attraction for any
randomly-sampled initial configuration of the populationshof the flows end up in
the bottom-right-hand-corner. Additionally, there is a@ad mixed-strategy equilibria
at the coordinates (0.88, 0.12, 0) in the simplex correspgid an 88% mix of TT

Abbreviation| Description

TT The truth-telling strategy, (section 4.1.1)

RE The reinforcement-learning strategy (section 4.2.4),
configured with the Roth-Erev learning algorithm (sectich4)

GD The Gerstad-Dickhaut strategy (section 4.2.3)

Table 9.1: The initial heuristic strategies chosen for thelysis

105
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and a 12% mix oRE. However, the attractor for this equilibrium is much smeatlean
the pure-strateggD equilibrium; only 6% of random starts terminate here vs 94% f
pureGD. Hence, according to this analysis, we expect most of thelptipn of traders
to adopt thesD strategy.

RE

TT GD

Figure 9.1: The original replicator dynamics directiondiébr a 12-agent clearing-
house auction with the original unoptimized Roth-Erevtstyg (labeledE).

How much confidence can we give to this analysis given thap#yoffs used to
construct the direction-field plot were estimates basedimonlation? One approach
to answering this question is to conduct a sensitivity asiajywe perturb the mean
payoffs for each strategy in the matrix by a small percentageee if our equilibria
analysis is robust to errors in the payoff estimates. FiguBeshows the direction-
field plot after we perform a perturbation where we remov&®ds the payoffs from
the TT andGD strategies and assign +5% payoffs to Hestrategy. This results in
a qualitatively different set of equilibria; thee strategy becomes a best-response to
itself with a large basin of attraction (61%), and thus wedtode that our equilibrium
analysis is sensitive to small errors in payoff estimated,that our original prediction
of widespread adoption @D may not occur if we have underestimated the payoffs to
RE.

If we observe a mixture of all three strategies in actual pheyever, the pertur-
bation analysis also suggests that we could bring aboutspiéad defection tee
if were able to tweak the strategy by improving its payof§btly; the perturbation
analysis points t®kE as a candidate for potential optimization
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RE’

Equilibrium 1

TT

Figure 9.2: Replicator dynamics direction field for a 12+siggearing-house auction
perturbed with +5% payoffs to the Roth-Erev strategy (ladele’)

9.1 Strategy Acquisition

In the previous section we saw how heuristic-strategy appration could be used to
identify a potential candidate strategy for optimizati¥ve also introduced an intrigu-
ing metric for ranking strategies on a single fully-ordesedle: viz, the size of the
strategy’s basin of attraction under the replicator dyramiln this section we shall
use this metric to perform a heuristic search of a space afegfies closely related to
the RE strategy. In the following we shall define the space of sgiatethat are to be
searched, and the details of the search algorithm.

9.1.1 Strategy space

The RE strategy discussed in the previous section belongs to a geeral class of
strategies: those based on reinforcement-learning. Téiés of strategies is described
in detail in section 4.2.4. To recap, these strategies atljeg markup in response to
the most recent profits obtained in the market using one dbitmving reinforcement
learning algorithms: the Roth-Erev algorithmg), NPT's modifications torRE (NPT),
the stateless Q-learning algorithst), and the control algorithnbR). The parameters
governing these algorithms are detailed in Tables 4.5 t0 4.8

Individuals in this search space were represented as a 5@ibg, where:

e bits 1-8 coded for parametéL,, in the rangg1, 10);
e bits 9-16 coded for the paramet&t§). or RE, in the rangg0, 1);
e hits 17-24 coded for paramet&y, in the rang&2, 258);
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bits 25-32 coded for paramete$s)., or RE, in the rang€g0, 1);

bits 33-40 coded for paramet&F in the rangd1, 15000);

bits 41-42 coded for the choice of learning algorithm amomgs NPT, SQ or
DR; and

Bits 43-50 coded for parametsiQ,, in the rang€0, 1).

9.1.2 Search algorithm

A genetic-algorithm&A) was used to search this space of strategies, where thesfitnes
of each individual strategy in the search space was comgytedtimating its basin
size under the replicator dynamics under interaction withexisting three strategies:
GD, TT andrE. Basin size was estimated using the same brute-force metiesdribed

in Section 8.4, but since | recompute all entries in the tstigrpayoff matrix in support

of each candidate strategy, | used lower sample sizes irr twdacilitate evaluation
of many strategies; the sample size for the number of ganaseglfor each entry
in the heuristic payoff matrix was increased as a functiothefgeneration number:
10 + int(1001n(g + 1)) allowing the search-algorithm to quickly find high-fitness
regions of the search-space in earlier generations andireginoise and allowing more
refinement of solutions in later generations. | used a cohstamber of replicator-
dynamics trajectoriefM| = 50 in order to estimate the basin size from the payoff
matrix once it had been recomputed for our candidate styafidte fithess function is
derived from equation 8.2:

F(i,S,[H) = Y Bua(& M)z, (9.1)
TEEHS
where: i is the index of the candidate heuristic strategy being etatli from
amongst the set of heuristic strategiesvith heuristic payoff§ ], 35 denotes the
basin size of an equilibrium in the game defined by paydifsas specified by equa-
tion 8.2 (p. 90), and s is the set of heuristic equilibria:

ems = {& € AP B (7, M) > 2 x 1072}
Since we are comparing with our three existing strategiethis experiment:

S = {s*, TT,GD,RE}
i=1

wheres* is our candidate strategy. Thus the fitness function estisntite expected
frequency with which our candidate strategy will be playe@quilibrium outcomes.
The entire search process is summarised in pseudo-codd 68;d.call this the~i SH
algorithm, since we will use it to “fish” for a new heuristicategy.

A GA was chosen to search the spatef potential variations oRRE, principally
because of its ability to cope with the additional noise thatlower sample size in-
troduced into the objective function. Thea was configured with a population size
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input : A set of heuristic strategie$ = {s1, $2,...Sn}
output: A new heuristic strateg®S
[H] <« GetHeuristicPayoffMatrix(S);
F—0;
for i« 1tondo
[H] « perturb payoffs ifH] in favour of s;;
if F(i,S,[H]') > F then
F — F(i,8 [H]));
dS — S,
end
end

II — create a search space based on generalisationd$if
OS « argmaxg«p F'(1,s*U S, GetHeuristicPayoffMatrix(s* U S));
Algorithm 2: FiSH

of 100, with single-point cross-over, a cross-over rate .o Inutation-rate of0—*
and fithess-proportionate selection. Téae was run for 32 generations, which took
approximately 1800 CPU hours on a dual-processor Xeon Z @@hkstation.

9.2 Results

Figure 9.3 shows the mean fithess of the population for each generation. As can
be seen, there is still a large amount of variance in fithekgesdn later generations.
However, inspection of a random sample of strategies froch ganeration revealed
a partial convergence of phenotype, but with significanttfiations in fitness values
due to small sample sizes (see above). Most notably, thstfitteividual at generation
32 had also appeared intermittently as the fittest indidifiua times in the previous
10 generations, and thus this was taken as the output frosetreh.

The optimised strategy that evolved used the statelessQitey algorithm $Q)
with the following parameters:

RL, = 1.210937
RL, = 6

SQ. = 0.18359375
5Q, = 0.4140625
SQ., = 0.1875

The notable feature of this strategy is the small number e$iate markup$R L,
and the narrow range of the markups(RLy — 1)RL,,] as compared with the distri-
bution of valuation distribution widths. This feature wdseed by all of the top five
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0.9 x XX x x i

Mean fitness

[¢] 5 10 15 20 25 30 35
Generation

Figure 9.3: Mean fithess of th@a population with one standard deviation

strategies in the last ten generations, and is anotherfd@bindicated convergence
of the search.

| proceeded to analyze our specimen strategy under a fulidtieustrategy analysis
using10* samples of the game for each of the 455 entries in the paydfixmaVvith
the current version of my simulafgrl am able to complete this analysis in less than
twenty four hours using a dual-processor 3.6Ghz Xeon watist.

Figure 9.4 shows twenty trajectories of the replicatoraiwits plotted as a time-
series for each strategy, and shows the interaction betthearew, optimised strategy,
0s, together with the existing strategiesd, TT andRE.

TakingM c A*: |M| = 10 randomly sampled initial mixed-strategies, | calcu-
late that there are two attractors:

A = (0,0,1,0)

—

B = (0.67,0.32,0,0)
over(OS, TT, GD,RE). Attractor A captures only

B(A, M) =0.03

that is, three percent of trajectories, whereas attraBteaptures virtually the entire
four-dimensional simplex:

Ihttp://freshmeat . net/projects/jasa
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Figure 9.4: Replicator dynamics time series plot for a 12rglearing-house auction
showing interaction between optimised strategg)(versusGD, TT and the original
Roth-Erev strategyRE)

B(B, M) =0.97

Although this basin is very large, our optimized strategarsl this equilibrium with
the truth-telling strategy (TT), giving us a final total matishare

F =0.67x0.97=0.65

This compares favourably with a market-share of 32% fohttetling and 3% for GD.
The originalrE strategy is dominated by our optimised strategy. Figuresafid 9.6
show the direction field for two of the 3-strategy combinasianvolving our optimised
strategy:(OS, TT, GD) and(OS, GD, RE) respectively.

9.3 Discussion

It is somewhat remarkable that our fairly simplistic optend strategy is able to gain
defectors from a highly sophisticated strategy like, whilst at the same time truth-
telling is able to retain a share of followers in a populagwadominated bypsers (T
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appears to bearasiticon 0s). What accounts for the ability of smatls mixes to in-
vade high-probability mixes of a sophisticated adaptiv@tsgy D), whilst remaining
vulnerable to invasion by a low-probability mix of a non-atiae strategyr7?

Equilibrium A

Equilibrium B

Equilibrium C

GD

Figure 9.5: Replicator dynamics direction field for a 124sgdearing-house auction
showing interaction between optimised strategg)(versesrT andGb

As discussed earlier, we use the same method of assigningtiais as in [145];
that is, for each run of the game, the lower-bounaf the valuation distribution is se-
lected uniformly at random from the ranf§d , 160] and the upper-bourid is similarly
drawn from[b + 60, b + 209]. For that run of the game, each agent’s valuation is then
drawn uniformly from[b, &’]. However, it is possible that this results in a statisticat c
relation between the meta-bounds and the average slopgiufudrsupply and demand
schedules— that is, given these distribution parametergtis insufficient variance in
the difference between valuations of traders who are neighbn the supply or de-
mand curve. Since we are using a uniform-p#ce 0.5 clearing rule, the mechanism
is vulnerable to price-manipulation from the least effitigades; the buyer with the
lowest matched bid, and the seller with the highest matchkedan potentially manip-
ulate the final clearing priceprovided that they do not overstate their value claim to
the extent that it impinges on the 2nd-lowest matched bith@2nd-highest matched
ask For example, in the case of buyer € B who finds themselves with the low-
est matchable valuation, and if we assume that the othertsgen truth-tellers then
our competitors’ bids will be given by a subset®fB = {mb;, mbs,...mb,}. The
2nd-lowest matched bid will baub,,_; and our valuation will be givemyb,,. Let:

Amb = mb,,_1 — mb,,

This is a random variable. However if we know the distribntaf Amb, we can cal-
culate the probability of our bid being accepted as a funaibits price: Pyccept ().
Since our profit will bev; — 9;, given knowledge of the distribution dmb it would
be straightforward to choose a bid prigethat maximises our expected profit:
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Equilibrium B

os RE

Figure 9.6: Replicator dynamics direction field for a 124atgdearing-house auction
showing interaction between optimised strategg)(versescd and the original Roth-
Erev strategyKE)

arg max E(U7 (137)) = (’Uz' — ’UAi)P(L(:(:ept (’U})

Vi

Given sufficient variance in the distribution &fmb this feature of the market is not
easily exploited. However, in a market with a small numbetraflers and a narrow
distribution forAmb there is an opportunity to trade at small margin above tfutbu
find yourself with a valuation close to the equilibrium prige This is precisely the
behaviour of the strategies that we observe to be predomiimaine later generations
of our GA- they all use a small number of possible markups, each of thaall in
comparison to the possible valuation bounds. The reinfoecg-learning component
of the strategy is then able to fine-tune the markup deperatinghere the trader finds
themselves on the supply or demand curve after valuatiendrarvn. If it is far away
from the equilibrium-price it can adjust its margin closez&ro, whilst if it is near
the equilibrium-price it can find a small margin that does inghinge on its nearest-
neighbour. This hypothesis is also consistent with pacasiith-telling; it is easy to
see that truth-telling is a best-response for a 2nd-lowesthed bidder to a lowest
matched bidder playings.

In future work I will examine this hypothesis in more detaidaconduct a statisti-
cal analysis in which | determine the distribution&inb for different parameters of
the valuation distribution range, and attempt to correllaéth the parameters of the
evolved strategy. Meanwhile, | have demonstrated thatehech technique presented
here is capable of finding a new strategy that not only hagye laftractor, but also has
interesting properties worthy of further analysis.
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9.3.1 An iterative approach

In this chapter, we started out by asking whether our orlgaailibrium analysis of
TT, GD andrRE was sensitive to small perturbations in payoff estimatgsdddng so, we
identified that hypothetical variations on tRe strategy might be able to easily invade
our existing equilibria. We then identified a new entrastthat was able to penetrate
the original mix of strategies and displace the ancest@lrmbentrE, forming two
new equilibria comprising mixes as, TT andGb. Thus by performing this analysis
we haverefinedour original equilibrium analysis, since our original eidaia did not
take into account the existencead. This process can be generalised to an arbitrary set
of initial heuristic-strategies, and the algorithm, cdlié SH, is illustrated on p. 109.

We have validate&i SHempirically by applying it to a highly complex game, the
double-auction, and demonstrated that it is cagabfeinding a new strategy with
interesting properties, as demonstrated in the previoctiose However, one might
ask whether our new strate@ys, or more accurately our new set of equilibria over
OS U S, is not susceptible to the same process of systematicadhclsig for an
invader? Of course, the answer is that this is indeed a ghigsildve could straightfor-
wardly test for this by applying exactly the same analysisuonew set of equilibria;
that is, we could perform another sensitivity analysis ®whether our new equilibria
are stable under payoff perturbation. If they were, then vightrconclude that our
equilibria are comparatively stable for the time being.héy are not stable, however,
we could then perform another systematic search for vanatin the current strate-
gies which are good candidates for potential invaders oftatis quo; that is, new
strategies which form equilibria with estimated large hasze in interaction with the
incumbents. By performing this process repeatedly we wilngually end up with a
refined set equilibrium strategies. The pseudo-cod€if@H+ (p. 115) illustrates this
proposed algorithm.

9.3.2 Strengths and Weaknesses

The strength of this method for strategy acquisition is h8ity to be applied in re-
alistically complex games (mechanisms). However, justh@sdomain to which |
have applied it suffers from a lack of analytic tractabjlipe potential weakness of
the method is the lack of an analytical proof demonstratimgfficacy in the general
case. However, this is mitigated by the fact that the sintgietion algorithmFi SH
combines two fields in a very simple way, each with a growinglgical literature,
viz. empirical game-theory and optimisation. Additiogallhave demonstrated that
the algorithm works effectively in at least one highly compketting, thus we have
an existence proof that the algorithm is effective in attiea realistically complex
scenario. For the empirical study in this chapter | have @asgeneral purpose optimi-
sation method, that is a genetic algorithm. However, futuoek will attempt to find
a specialised optimisation algorithm for the purposes afimeing attractor size by
interleaving the optimisation and heuristic-strategylgsia steps in a similar manner
to that proposed by Walsh et al. [146].

2for at least one set of initial strategi€s= {TT, GD,RE}
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| have not attempted to validate the proposed iterativeimersf the algorithm,
Fi SH+, in this thesis. Again, this algorithm is a fairly simple letsation on the non-
iterative version, so the lack of analytical validation gltbnot detract from its poten-
tial. However, the fact that the approach is highly compatelly intensive for a single
iteration warrants an analaysis of how the algorithm migimverge prior to investing
in a full empirical case study.

input : A set of heuristic strategie$ = {s, s, . .. s, } for some
mechanismu
output: A refined set of heuristic-strategies

[H] <« GetHeuristicPayoffMatrix(.S, u);
repeat

F < max;—i » F(,S,[H));

for : — 1ton do
[H] « perturb payoffs ifH] in favour of s;;
if F(i,S,[H]') > F then

F— F(i,8 [H]);

i* g
end

end

if I < F(i*, 8, [H]) then return S;
II — create a search space based on generalisationd$if

(ONIE
arg maxgcpp F'(1,8% U S, GetHeuristicPayoffMatrix(s* U S, 1));

S—0SuUS,

[H] <« GetHeuristicPayoffMatrix(S, p);

S < eliminate dominated strategies frofhbased orfH|;
until forever ;

Algorithm 3: FiSH+

9.4 Summary and Contribution

In the previous chapter we performed a quantitative arabyfdhe design properties of
two different auction mechanisms using an initial set ofrfbauristic-strategies. We
also asked the question as to how stable our analysis was tigewe had only cho-
sen a small set of strategies, one of which had many free @deasn By applying the
Fi SH+ algorithm we can answer this question; we can see if theraddional, pre-
viously unconsidered strategies that break our initialilégiium. In this Chapter we
have refined an initial analysis of tlee4 based on the three strategies RE andGD,
and discovered a new incumbent strategywith large attractors (basin size), which
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are stable under payoff perturbations. To a mechanism wesithis latter state of af-
fairs is particularly attractivesince larger, more stable basin sizes correspond to more
deterministic, and hence predictable behaviolm a legacy mechanism design sce-
nario, if we are able to provide an equilibrium analysis oesting strategies which
demonstrates similarly clear-cut equilibria, then we mayable to convince partic-
ipants that these are the best-response strategies tliratahgpetitors are likely to
adopt, and therefore that they should adopt also. If we thakerthe algorithms cor-
responding to ounewheuristic strategies freely available to participantg] drthey
believe our equilibrium analysis, then they are likely taypbur prescribed strategies,
thus bringing about our predictions, and hence maximisungdesign objectives. By
finding new strategies with large stable attractors, we nmakeequilibrium analysis
more believable to participants. This is analogous to iticercompatibility in a con-
ventional mechanism design scenario, where it is clear toczants thattT is the
traders’ best-response to the mechanism: in an incentiugaatible mechanismTt

is a “freely-available” strategy with a large attractor. realistically complex mecha-
nisms such as the double-auctiar, is dominated. However by applying tiFesH+
algorithm we can find analogs ofr for complex mechanisms.

Of course, in our new equilibria, our existing mechanisnesuhay no longer max-
imise our design objectives. In the previous chapter, werileedd real-life mechanism
design as an iterative process (section 8.5), and that &lgxeow evolutionary mech-
anism design addresses this issue. Thus our algorithm fduteanary mechanism
design is as follows:

input : A set of initial heuristic strategie$S, and a legacy mechanism
repeat

S — Fi SH+( S, ) ;

publiciseS to participants

¥ — frequency of each strategy observed in yivo

S «— S U { strategies observed in viJo;

A — space of feasible variants of;

p — argmax,,, c , EvaluateDesignObjectives(ux, S, 7);
implement rules defined by

until forever ;

© 00 N o g b~ W NP

In this chapter | have demonstrated how could step 2 can lweratéed. In the
previous chapter, we saw how to semi-automatically comitigtéunction in step 7. In
the next chapter | shall describe how step 7 can be fully aatech



Chapter 10

Searching the Space of
Mechanisms

Recall that our method for evolutionary mechanism desigsifllows:

input : A set of initial heuristic strategie$, and a legacy mechanism
repeat

S — Fi SH+( S, ) ;

publicisesS to participants

Z « frequency of each strategy observed in yivo

S «— S U { strategies observed in vio;

A — space of feasible variants of;

p < argmax,, - , EvaluateDesignObjectives(ux, S, 7);
implement rules defined hy

until forever ;

© 00 N o 0 b~ W NP

In chapters 8 and 9 we examined methods for evaluating desigctives and itera-

tively searching for new heuristic strategi€$ SH+) respectively. In this chapter we
shall turn attention to step 7, that is, the problem of séagcthe space of mechanism
rules in order to solve the optimisation problem:

arg max EvaluateDesignObjectives(ux, S, )
puxEA

Rather than consider the entire space of possible mechanigashall take as the
space of possible transaction pricing rules farramechanism, the different forms of
which are discussed in sections 3.3.1 to 3.3.3. Recall tirmméetare two main variants
of pricing rules for this institution: uniform pricing in vith we set the transaction
price based on the market qudtsj,, eg,), and discriminatory pricing in which we
set the transaction price based on the individual bid andpaiskes. Each of these
rules is parameterised by a constare [0, 1] which determines where we will set the

117



118 CHAPTER 10. SEARCHING THE SPACE OF MECHANISMS

transaction price in either the interval betwe€p or eg,, or the bid and ask prices
depending on whether we are using uniform or discriminapoiging respectively. In
ak = % mechanism we set the price halfway between the two relevaoes. In a
k = 1 mechanism we set transaction prices at the bid price, orithedmponent of
the market quote. Similarly in &&= 0 mechanism we set prices at the ask price, or the
ask component of the market quote. For extreme values vafuethere are clear-cut
analytic incentive-compatibility results for buyeks<£ 0) or sellers £ = 1). However,
there is no clear-cut analysis of how we should chdogethe general case.

In the following section | briefly review earlier work in whid attempted to use
a co-evolutionary algorithm to solve the optimisation geob. In section 10.2 | dis-
cuss the relationship between co-evolutionary algoritansgame-theory in order to
demonstrate why this earlier approach is not suitable feretrolutionary mechanism
design algorithm outlined at the beginning of this thesisséction 10.3 | outline the
non-coevolutionary optimisation approach that | adoptedrder to circumvent these
problems. In section 10.4 | describe an experiment to engllyi validate this optimi-
sation approach, the results of which can be found in sedfiob.2. Finally | conclude
with a discussion and summary.

10.1 Areview of earlier work

As discussed in sections 3.3.1 to 3.3.3, the transactieingriule sets the price of any
given transaction as a function of thiel andaskprices submitted by buyers and sellers
respectively. In a private-values trading scenario, bitl$ @sks can be thought of as
signals [39, p. 395] from the traders expressing their w@uadgor the resource being
traded. The difficulty the auctioneer faces in allocatirgrthsource to those who value
it most highly (i.e. achieving an optimal allocation or maxim market efficiency) is
that these signals cannot necessarily be relied upon tautigul; agents might mis-
report their valuations in order to make profit at the expearisghers. One technique
to counter this problem is to desigmcentive-compatiblenechanisms which have the
property that the best strategy for every agentis to repeit valuation truthfully. This
is typically achieved by forcing agents to back up their eatlaims with hard cash,
thus imposing a “handicap” on the signals of the traders,aarouraging honest sig-
nalling through the handicap principle [162]. Successfgleation of this principle
involves careful reasoning about how to set the handicapthe transaction price, as
a function of the signal, i.e. the bids and asks of the traders

As discussed in Section 3.3.4, the uniform-pricecan be shown to be incentive-
compatible for sellers fok = 1, and incentive-compatible for buyers fér = 0.
However, there is no value &f for which the mechanism is incentive-compatible for
all traders.

In earlier work [107, 108], two possible approaches werelis@nalyse the space
of possible transaction pricing rules using computatidaehniques, with a view to
finding rules which optimise various design objectives.

In the first approach, co-evolutionary machine learning wsed to simulate an
evolutionary “arms-race” between populations of traditngtegies and a separate pop-
ulation of pricing rules (the mechanism population) [1dAdividuals in each popula-



10.2. MECHANISM DESIGN AS STRATEGIC-INTERACTION 119

tion were represented as lisp expressions and evolved Keiraggenetic-programming
[79]. The fitness function for the strategy populations wésretion of the individual
profits of traders playing those strategies, and the fitnasstibn for the pricing rule
population was a function of the overall market efficienchiaged by an auctioneer
using that rule against the current strategy populations.

In these early co-evolutionary experiments, it was hopat] #s the strategy popu-
lations evolved predatory non-truthful strategies, theipg rule population would re-
spond by evolving defenses, and that over time incentivepatible mechanism rules
would evolve that were robust against a wide variety of tigditrategies, in much the
same way that prey populations adapt robust defenses agataator populations in
co-evolutionary arms races in nature [35, 141]. Despiteespromising preliminary
results, it was found that this approach suffered from a remobdrawbacks, mainly:

1. The co-evolving system rapidly descended into subopimetion mechanisms
if the mechanism population was not artificially seeded vintthividuals with
a minimume-level of initial fithess. In cases where the med@rarpopulation
started from extremely low fithess individuals , such asipgicules which set the
transaction price at 0 regardless of the signals arriviagftraders, the strategy
populations would try and fit to these artificially low-fitreesnechanisms and
evolve to a state where their bids were meaningless. Medatte mechanism
population would be unable to discover more rational rulagtvworked with
the existing “broken” trading strategies. Therefore ttaaliing strategies could
not evolve to work with more rational mechanisms and so on.

2. Where more promising results were obtained by artificisdleding the mecha-
nism population with initial promising rules, the resultene highly ambiguous.
Often the mechanism population would oscillate betwedbls&tates represent-
ing rules corresponding te = 0 andk = 1. Initially speculation was that this
was a reflection of the fact that there were no incentive-atibfe rules for both
buyers and sellers. The theory was that the mechanism gapulzas settling on
incentive-compatible rules for sellers, the buyer popotaivas then responding
by evolving non-truthful strategies, the mechanism poiputawas responding
by evolving rules that were incentive-compatible for bisy¢he sellers were re-
sponding by evolving non-truthful strategies, ad infinitudowever, this theory
proved unfounded as the explanation turned out to be thed oflthe formk = 0
andk = 1 were more dense in the search space.

In the next section | take a game-theoretic perspective #athpt to explain why
the co-evolutionary algorithm failed to produce meanihgésults in this context.
10.2 Mechanism design as strategic-interaction
It is often instructive to analyse co-evolutionary pro@ssgr game-theoretic terms,

since in a co-evolutionary interaction the fitness assigneghy given individual de-
pends on the joint actions of the other individuals with vihitinteracts in a very
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similar manner to an evolutionary gameWhen we co-evolve auction mechanisms
and trading strategies we are implicitly defining a game betwtwo players: the
mechanism playeon the one hand, and theder playeron the other. Each player
attempts to maximise their payoff (analogous to maximigitess); in our present
scenario the mechanism player attempts to maximise maffi@ercy F A, whereas
the trader player attempts to maximise utility. Note that if the selection function
of our co-evolutionary algorithm picks individuals fromakapopulation based on a
stochastic function of fithess rather than phenotype, themre implicitly modelling
a game ofimperfect informationthe individuals in the population do not “know in
advance” the action that is being adopted by any other. Tdgsrhportant implications
which will be discussed further in the next section.

Ideally we would like to find theoptimal strategy for the mechanism player. In
game theory the concept of an optimal strategy is defineddtyras adominant strat-
egy In this chapter we will be restricting attention to the cleg rule (Section 3.2.9),
so a hypothetical dominant strategy for the mechanism plageld be a clearing rule
that obtained a better payoff;A than any other clearing rulap matter what strategy
is adopted by the trader playeHowever, not every game possesses a dominant strat-
egy solution (and it is not apriori clear that we should expghe mechanism versus
trader game to possess one). More commonly the conceptiofigity in a game is
relative if a dominant-strategy does not exist then the best stydteglay depends on
the strategy adopted by one’s opponent(s).

Although not every game possesses a dominant-strategynme thatall games
possess at least one Nasjuilibriumin which the strategy adopted by every playeris a
best-response to every other player’s strategy. Consillgpathetical equilibrium for
our game at hand in which the mechanism population choosksadng-rule which
sets the transaction price afigedconstant valu&/; price(c;) = d which is indepen-
dent of the trader shout price, and in response the tradgempsdopts a strategy of
always submitting shouts with zero pricés¥; ((i,t) = 0. Depending on the distri-
bution of trader valuations, a rule which sets transactidcep close to the expected
equilibrium priced ~ E(p*) would achieve a reasonable expected payigfff A) ~ 1
for the mechanism player. From an external mechanism dessgooint of view this
clearing rule is clearly brittle and undesirable, espécifithe variance in valuations
and hence in efficiency is large. However, this hypothetdalation would be very
hard to leave once we arrive at it, since if the mechanismaplagtempts to switch to
conventional clearing rules which set transaction pricea &unction of shout prices,
it will be faced with the issue that all shout prices @reSimilarly, the trader player
cannot improve their payoff by unilaterally switching toyasther strategy since their
payoff is no longer a function of their shout price. This aifon is a game-theoretic

INote that this applies regardless of whether we intuitivilink of our original problem as a game.
Game theory is simply a mathematical tool that allows us tdysico-dependent optimization problems-
that is, what potential solution should we choose given ¢haitchoice will influence the solution of other
optimizers and vice versa. This is precisely the scenastaitiated by a co-evolutionary algorithm, hence
game-theory is an invaluable theoretical tool in undeditemthe properties of co-evolutionary systems.

2For conciseness and simplicity, in this section only welsigsdume that many trading agents are under
control of the single notional trader player, and that @l éigents adopt the same strategy that is specified by
the trader player at any given time. Note, however, that websidropping this simplifying assumption in
the remainder of the chapter.
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equilibriumof the mechanism versus trader game.

If equilibria such as these have large basins of attracfiof@) under the dynamics
of our co-evolutionary process, then we should not be ssegrif our co-evolutionary
algorithm converges on them. Indeed, this was one of thempapiblems that was en-
countered in earlier work when | attempted to use co-ewafutid evolve robust mech-
anisms: the co-evolutionary algorithm sometimes conveayewhat appeared to be
game-theoretic equilibria, but it is not clear that the tietical equilibrium solutions of
the mechanism versus trader game are in any way desiralbesfrmechanism design
perspective, as illustrated by the above example.

In co-evolutionary terminology equilibrium states suciNash equilibria are some-
times referred to as “local optima” of the co-evolutionaliyaithm. Note however that
although they are referred to as “local” this does not imply éxistence of global
optimum that still remains to be found, since as discussedathere is not necessarily
adominantstrategy for the mechanism player. Additionally, it is nbways the case
that payoffs are straightforwardly maximised in theseestaélative to the majority of
other points in the phase space of the system. For exampee thay exist many
alternative clearing rules which give better paybffi to the mechanism player if the
trader player were to adopt a different, non-equilibriutrategy; or there may exist
alternative equilibria strategy profiles which yield higlpayoff to both players. Thus
there may be multiple equilibrium points in the phase spdceuo co-evolutionary
process. These are local “optima” in the sense that movireggyasmall distance away
from them in the phase-space will not yield an increase irofigjitness). However
it is important to note that there could be very many otheghhpayoff” states further
away in the phase space which yield a higher payoff to a gitayep than any any
of our “locally optimal” strategy profiles. However thesdd¢h-payoff” states are not
necessarilfNash equilibriunstates.

Thus in general these “local optima” do not minimise (or maise) any arith-
metical function of their payoffs compared with non-eduilim strategy profiles, and
neither is their basin size under the co-evolutionary dyinamecessarily proportional
to any of the payoffs. Hence if our co-evolutionary searchveoges on a Nash equi-
librium, it is difficult to view this as a solution to a maxinaison problem in which we
are systematically searching for optimal, or even satigficmechanisms; indeed in
our present scenario, in the absence of a dominant-stridethe mechanism player it
is not clear that the notion of an “optimal” mechanism hasmewgning, since the opti-
mal strategy for the mechanism player will be very sensttivie strategy adopted by
the trader player, and in the most likely case where therenaliéple Nash equilibria
(“local optima”) for the game, there will be many possiblecally optimal” strategies
that the trader player could adopt in the long term.

However, the Nash equilibria of the mechanism versus trgdere are useful so-
lutions to a different, but interesting, problem. If we aredelling a process in which
multiple competing market institutions asynchronouslyattheir rules over repeated
interactions in response to observed trader strategi¢®inetal world, and vice versa,
(analogous to the scenario analysed by Roth and Ockenf&0§ ji which they com-
pare two competing online auction formats: eBay and Amazbeh we might expect
equilibrium solutions such as the fixed-price clearing talbe the rational end result.
Itis notinconceivable, for example, that the reason thateveinue to see a prevalence
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of fixed-price institutions such as bricks-and-mortar shfmp selling consumer goods
in real market places, despite the possibility of dynanhegticed institutions such
as eBay, is due to fact that fixed-price institutions are an equilibr solution of the
real-life co-evolution between market mechanism and trégbavior. For example,
consumers may be unable to switch from a fixed-price to anauatarket for their
required good since one may not exist yet, and correspolydtmgay be very difficult
for a startup to create an online auction market in the alesehexisting traders on
either side of the market. As well as accounting for histrémd present observations
of actual market behavior, this analysis could alsmbemative we mightrecommend
that retailers adopt a fixed-price mechanism based on théhfaidt is a best-response
to the likely status quo. In this case we might interpret amlutson as “the optimal”
one in some sense.

10.3 Mechanism design as optimization

In the previous section we saw that co-evolutionary alpari are natural models of
games of imperfect information, or simultaneous move garmég previous experi-
ments could be thought of as an analysis of evolutionary sagism design in the case
that the mechanism designer and the traders are simultslyettempting to anticipate
the choice of the other.

However, our algorithm for evolutionary mechanism desgasequentialterative
process involving a single institution. In this case, thesiderations from the previous
section do not apply, since the mechanism designer is ghewpportunity to move
first by announcing their mechanism rules publicly to theergoopulation, who then
respond by placing shouts in the mechanism. In this scema&imo longer have a
repeated simultaneous-move game, instead we have a 2-m@resige-form game.
In the first move the mechanism player announces their mérhamles withperfect
information and in the second move the trader player responds by plabimgts. In
contrast to the previous section, in this scenario the tratleyer does not have to
attempt to “anticipate” the move made by the mechanism pjagther it can form its
strategy conditionally based on the mechanism rules chogéme mechanism player.
Thus, as a mechanism designer we should choose the optinchmiem rules in the
sense that the chosen rules optimise our design objectives the trader player plays
their best strategynder that particular chosen mechanism

This scenario is not straight-forwardly modelled by a staddco-evolutionary al-
gorithm; rather it is more natural to view it as a non-co-ewioinary optimisation prob-
lem in which we evaluate each potential mechanism by comgultie values of our
design objectives when traders play their best strategpdiorcandidate mechanism.
However, this problem is complicated by the fact that altifothe traders are not at-
tempting to anticipate the mechanism rules (since thesalegady known), they are
having to anticipate the moves of other traders (since theag be more than one
trader, and they will be interacting under imperfect infatian).

Rather than attempting to compute the full Bayesian-Nasiilibgja (which would
be intractable) for the trading strategies, | have adoptedrapirical game-theoretic

Shtt p: // www. ebay. cont
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approach based on the strategy (Section 4.2.4) and tRe learning algorithm (Sec-
tion 4.2.4). My rationale for choosing this combinationhat it forms the basis of a
cognitive modebf how people actually behave in strategic environmentpalticular
it models two important principles of learning psychology:

e Thorndike’s law of effeet-choices that have led to good outcomes in the past are
more likely to be repeated in the future; and

e The power law of practice-learning curves tend to be steep initially, and then
flatten out.

The Roth-Erev algorithm belongs to a class of game-playinglets known as
“stimuli-response” models. These models have much in comwith the replicator
dynamics model of evolutionary game theory [86], and as oludionary game theory,
the stable asymptotic behaviour of a multi-agent simutatising the Roth-Erev learn-
ing model can be interpreted similarly to the Nash-equitlitorof classical game theory
or the evolutionary-stable-strategy of evolutionary gdine®ry; stable states constitute
strategy sets that are hard-to-leave and are likely to §ieystce they are reached, even
when we consider agents who are not using the actual RothkEaming algorithm to
form their strategy. Hence, one way of viewing the analysihis chapter is as an em-
pirical game-theoretic analysis similar to that preseime@hapter 8, but in which the
choice of heuristic strategies corresponds to each maetapted by theR L, (t)RL,,
term of equations 4.51 and 4.52. The principle advantagbkisfapproach over a full
heuristic-strategy analysis is the reduced computatioverhead.

It is common to view mechanism design as the search for a meshahat opti-
mises a single parameter—market efficiency, for exampleohtrast, in this chapter
we shall consider mechanism design to bauwalti-objective optimizatioproblem in
which we simultaneously maximise several parameters—et&fkiciency and trader
market power being two we consider in this chapter. The diffyan doing this lies in
simultaneously maximising as many dimensions as possible.

In the remainder of this chapter, | describe how | have usedetlideas to carry
out some experiments in automated mechanism design in ttiregsef a deregulated
electricity market.

10.4 Experimental setup

The experimental scenario stems from [98] (hereafter rediio adNPT), as described

in detail in Section 6.3. To recap, a number of traders buy seildelectricity in a
discriminatory-pricé continuous double auction. Every trader assigns a valuthéor
electricity that they trade; for buyers this is the pricet they can obtain in a secondary
retail market and for sellers this reflects the costs aststiaith generating the elec-
tricity. Here this value is considergulivate because traders are always trying to make
a profit themselves, sellers are not willing to reveal hotlelithey might accept for
units of electricity and buyers are not willing to reveal howch they might pay for

4In uniform price auctions, all trades in any given auction round hapgiethe same price. ldiscriminatoryprice
auctions of the kind we have here, different trades in theesametion round occur at different prices.
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units of electricity. Trade in electricity is also affectby capacity constraints; every
trader has a finite maximum capacity of electricity that they generate or purchase
for resale.

In these experiments, the number of selle¥ss, is the same as the number of
buyers,NV B. All traders have a capacity af) units. All traders are equipped with the
(NPT) strategy as described in Section 4.2.4.

10.4.1 Parameters

TheNPT strategy is configured with parameters:

V; RE, = 1
V; RE,, = 0.1
V; RE,, = 02

Our design objective is to increase the efficiency of the miankhilst simultaneously
keeping the market-power, the degree to which they canaldht trade price, of both
buyers and sellers to a minimum—we want to increase gloldit fout without giving
unfair advantage to either buyers or sellers. To do this vesl te measure efficiency
and market power and | have adopted the three variablesmdég71', namely:market
efficiency seller market-poweandbuyer market-poweras defined in Section 6.3. To
recap, market efficiency, A, is defined as:

(10.1)

EA:lOO(PBA+PSA)

PBE + PSE

PBA andPS A are the profits that the buyers and sellers, respectivelyally make.
PBE and PBE are the profits theoretically available to buyers and sllexspec-
tively, in an market where all traders bid truthfully and gtimal allocation is made.
(We can, of course, compute the result of agents biddingftrlly since we have access
to their private values outside the simulation.)

Buyer market-power)! P B, is defined as the difference between the actual profits
of buyers,PBA, and the potential equilibrium profil8 BE for buyers, expressed as a
ratio of the equilibrium profits.

PBA - PBE
MPB = —————— 10.2
PBE (102)

Seller market-power is computed in the same way:

PSA— PSE
Market efficiency,F A, tracks how good our mechanism is at generagilodpal profit
whereas the market-power indicéd,P B and M PS track to what extent each group
is better or worse off compared to the ideal market.
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Strategic buyer market pow&tM P B measures the difference between the actual
profits of the buyers and the profits they would get if they bidktfully in the current
market (as opposed to the ideal market assumed when caiguéauilibrium profits),
expressed as a fraction of equilibrium profits:

PBA — PBT
_ oA ey 10.4
SMPB PEE (10.4)

Strategic seller market-power is computed in the same way:

PSA— PST
SMPS = PSE (10.5)
Zero strategic market-power values strongly suggest ti@tiechanism is strategy
proof—i.e., there is no way for a given trader to systemdyiggenerate profits at the
expense of the other traders.
We normalise each variable by mapping it onto the rgfigd, wherel represents

the optimal value of a variable afidrepresents the worst value. Variables are mapped
using the following functions:

— EA

EA = 1—001 (10.6)
MPB = TTIPE (10.7)
MPS = Hﬁ (10.8)
SMPB = HS‘% (10.9)
SMPS = m (10.10)

Given these, our aim is to perform a multi-objective optimtisn of efficiency and
market power. For these initial experiments | combine offedint objectives in a
simple linear sum with fixed weightings and optimise the acéitness value for the
particular case where we give equal weighting to efficienmay market-power Since
we have two measures of market power we have two values tmisgti

FA NPB+ 3175

F =

2 1

EA SMPB+ SMPS
Vo= 5 1

For now, we restrict our search of the mechanism design spabetransaction pric-
ing rule, which sets the price of any given transaction as a functighebid andask
prices submitted by buyers and sellers respectiv¥l§2T" uses a discriminatory-price

5The ultimate goal, however, for future work is to use mulijestive evolutionary algorithms to explore
the full Pareto frontier.
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Mean fitness with standard deviation vs k for NS=30 NB=30
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Figure 10.1: Fitnes$’ (with standard deviation) plotted agairkdor a market with 60
traders.

k-double-auction transaction pricing rule (Section 3.3i2)which a different trans-
action price is awarded for each matched bid-ask pair in theent auction round.
Recall that transaction prices are governed by a parametém the original N PT
experiments is taken to be 0.5.

Our aim is to investigate if there are alternatives to the= 0.5 discriminatory
pricing rule that perform well, not necessarily under eiquilm conditions, but when
agents play Roth-Erev derived strategies; i.e., adaptiategjies derived from eogni-
tive model of human game playing.

In these experiments, | shall consider the space of all plesgricing rules that are
functions of the individual ask price, and bid pricep,. Each function is represented
as a Lisp s-expression, and Koza's genetic programmingif/@ked to search this
space. Individual mechanisms are compared according toritegia represented by
F in order to judge their fitness, thus we are using geneticnaragiing to solve a
multi-objective optimisation problem. | return to the fdkktails of the GP experiment
in Section 10.5.2.

One might ask why we are using genetic programming to seaictha vast space,
when we could simply restrict attention to the k-doubleteunpricing rule, and search
for optimal values of%. The reason we use genetic programming is that | see this as
a general method of representiaudpitrary mechanism rules, not just those that can be
neatly parameterised. In this particular case, we haveerhas aspect of the auction
design that can be simply parameterised, so that | can centipaperformance of the
genetic programming search against a brute-force seardlifefent values of. In
the following section | use a brute-force searchkab get an approximate view of the
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Mean fitness with standard deviation vs k for NS=3 NB=3
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Figure 10.2: Fitnes$" (with standard deviation) plotted agairisfor a market with 6
traders.

fithess landscape that our genetic programming searchnatenter.

10.5 Experimental results

In this Chapter | report on two aspects of the experimentakwbave been carrying
out within the electricity market scenario. First | deseriork to map out the fitness
landscape in which the pricing rule is evolving. We do thisdsguming &-double
auction and then calculating the efficiency of the marketiftierent values of. Sec-
ondly, | describe an experiment in which the pricing rule rae to evolve and show
that it converged on the-double auction rule wittk = 0.5.

10.5.1 Mapping the landscape

Two mappings of the fithess landscape were carried out withdifferent values of

k at increments of 0.01. In the first mapping, each auction wasfar 100 rounds,
and for each value df we ran 1000 auctions each with a different supply and demand
schedule. These schedules were constructed by assigrihggant a random private
value from a uniform distribution in the rand0, 1000]. The market variables under
observation are averaged over these 1000 different sab®dBigure 10.1 shows the
mean fithess measuté for each value ok when the market consists of 60 traders
(30 buyers and 30 sellers) and Figure 10.2 shows the measditneasuré’ for each
value ofk when the market consists of 6 traders (3 buyers and 3 sellers)
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Mean fitness with standard deviation vs k for Discriminatory Price NS=30 NB=30
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Figure 10.3: Fitnesy” (with standard deviation) plotted agaiistor a market with 60
traders.

In the second mapping | looked at fithess meadureThis time, each auction
was run for 1000 rounds and outcomes were averagedl®vesupply and demand
schedules. The results of this mapping is given in Figure3 40d 10.4 for 60 traders
(30 buyers and 30 sellers) and 12 traders (6 buyers and és3etspectively. For the
second mapping we also looked at the measures of strategée bnd seller market
power. These are shown in Figures 10.5 and 10.6 and suggesivbrall strategic
market power (the sum of the buyer and seller figures) is aqmately zero fork =
0.5.

These mappings at different values/ofive us an idea of the fitness landscape
for the electricity scenario when using our measures of§gné qualitative interpre-
tation of this data would suggest that valuestoflose t00.5 should be selected by
any technique that is applying tikedouble auction rule and attempting to learn the
best value of while using our fithess measures. These results suggeshéat is
“heuristically incentive-compatible” foboth buyersand sellers for values ok close
tok = 0.5.

10.5.2 Evolving pricing rules

Having established the fitness landscape assuming-th@uble auction rule, | then
set out to search the entire space of possible pricing rsieg @enetic programming.
Each rule was represented as a Lisp s-expression, and | wgasKasic genetic pro-
gramming [79] with the parameters given in Table 10.1 to de#nis space. | made
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Mean fitness with standard deviation vs k for Discriminatory Price NS=3 NB=3
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Figure 10.4: Fitnesy (with standard deviation) plotted agairistor a market with 12
traders.

use of a Java-based evolutionary computation system cattell EcJimplements a
strongly-typedsp [92] version of Koza's [79] original system. For tie® experiments
in this chapter, the standard Koza parameters were usedribhination with the stan-
dard KozaGPp operators, with the addition of a small amount of parsimorgspure
(applied with probability 0.005) in order to counter theeetfs of GP code bloat.

The function-set consisted of the termindlSK PRICFE andBIDPRICE, rep-
resenting ask price and bid price respectively, togethén thie standard arithmetic
functions, + - */, and a terminal representing a double-isien floating point ephemeral
random constant in the rande 1]. Thus all we assumed about the pricing function is
that it was an arithmetic function of the bid and ask.

Individual mechanisms were compared according to theri@itepresented by’
in order to judge their fitness during the evolutionary pssceAs in Section 10.5.1,
market outcomes for each pricing rule were computed by sitimg agents equipped
with the Roth-Erev learning algorithm. | used the same nusbébuyers, 30, and
sellers, 30, and 100 auction rounds, but with only 100 difféisupply and demand
schedules, constructed by assigning agents differenaiterivalues, drawn randomly
from a uniform distribution in the rand80, 1000], to evaluate each generation of each
population of pricing rules. | ran fewer rounds than in thedscape experiment be-
cause, as is usual for evolutionary methods, we had to usg gearerations and large
populations—running each of these fidr* supply and demand schedules would have
taken a prohibitive amount of time.

Figure 10.7 shows part of the actual pricing rule that wadvexbafter 90 gener-

Bnt t p:// ww. cs. und. edu/ proj ect s/ pl us/ ec/ ecj/
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Average strategic buyer market-power with standard deviation for Discriminatory Price NS=30 NB=30
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Figure 10.5: Strategic buyer market power plotted again&ir a market with 60
traders.

ations. This has been algebraically simplified, but as casdes it is still far from
straightforward, something that is not surprising givea tay that standard genetic
programming approaches handle the evolution of a progrdottirgy the surface of
the transaction price as a functionmfandp,,, given in Figure 10.8, and comparing it
with the surface for:

0.5pa + 0.5ps

(given in Figure 10.9) shows that these two functions are@pmately equal apart
from a slight variation when the ask price is very small or whke ask price is
equal to the bid price. Thus the experiment effectively e®dla pricing rule for a
discriminatory-pricek double auction withk = 0.5 from the space of all arithmetic
functions of ask and bid price.
Although the fithess landscape for this benchmark problereiy simple, this

is a means of validating our design technique before we movi anore complex
scenarios.

10.6 Discussion

These results suggest that the approach | am adopting issanaale one— | have
managed to evolve a rule which not only provides a high fithbas also generates
a rule that, in terms of the prices it sets, is close to a wédldished rule from the

economics literature. The results also support the egigtidouble auction rule since
our GP search through the space of all functions of the bidaakgbrice has converged



10.6. DISCUSSION 131

Average strategic seller market-power with standard deviation for Discriminatory Price NS=30 NB=30
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Figure 10.6: Strategic seller market power plotted againkir a market with 60
traders.

((0.6250385(0.93977016(ASK PRICE + 0.76238054)))+
(((((—0.19079465) /(ASK PRICE — ((BIDPRICE
+BIDPRICE)/(((ASKPRICE — 1) + 1.6088724)/

(1 — ASKPRICE) — (ASKPRICE/ASK PRICE))+
(2.5486426 + (BIDPRICE+

0.000012302072)))) + ((BIDPRICE/ASK PRICE)
+((BIDPRICE + BIDPRICE)

+(1.430315)/(BIDPRICE - ASK PRICE)))))ASK PRICE)) ...

Figure 10.7: The first few terms of the derived pricing rule.

on a version of thé-double auction rule. This is in contrast to the results ioletzh by
Cliff [26, 27], which discovered a new form of auction betwexstassical buy-side and
sell-side auctions.

Interestingly, this result also sheds some light on a prolileat was encountered
with the approach in [108] when | used genetic programming&bh evolving auction
rules and evolving trading strategies. In those experimemt noticed thak-double
auction pricing rules were evolved early on, when the sjiateused by the traders
were poor, but did not thrive. It seems it is possible thalouble auction rules do well
provided that they are used in auctions with fairly goodérag—in auctions with poor
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Difference in transaction price between evolved and k=0.5
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Figure 10.10: The difference in transaction prices betwberk = 0.5 rule and the
evolved rule

traders other rules, which are incompatible with good tre,ddo better.

This is consistent with a recent view proposed by Philip Miski [90, pp. 536—
545] of economic marketplaces as complex ecologies. Somlketsasuch as garage
sales, have relatively simple rules and procedures, witilers, such as financial fu-
tures markets, are, by comparison, very complex. Yet allagarto co-exist, with
each type of market, apparently, finding its own niche in \Wwhiz survive and pros-
per. Indeed, the oldest markets have survived for hundregisans without rules from
the newer ones being adopted in them. The behaviours of ttieipants in the dif-
ferent markets are, as one would expect, different. Ondesigd for computational

Parameter | value
Population sizel 4000
Selection| Parsimony Binary|
Tournament
Cross-over probability 0.9
Reproduction probability 0.1
Parsimony size probability 0.005
Cross-over maximum tree depthl7
Grow maximum tree depth 5
Grow minimum tree depth 5

Table 10.1: Koza GP parameters
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economics, says Mirowski, is to explain this diversity, hiblwas arisen and how it is
maintained.

10.7 Summary and Contribution

Evolutionary mechanism design, as introduced in this hésian iterative methodol-
ogy for refining the design of a market mechanism in respansgpieated observations

of the real life marketi( vivo analysis) and analysis based on game-theory and simu-
lation (in vitro analysis). The methodology is outlined by the followingymbe-code:

input : A set of initial heuristic strategieS, and a legacy mechanism
repeat

S — Fi SH+( S, ) ;

publiciseS to participants

I — frequency of each strategy observed in yivo

S «— S U { strategies observed in viJo;

A — space of feasible variants of;

p — argmax,,, c , EvaluateDesignObjectives(ux, S, 7);
implement rules defined by

until forever ;

© 0 N o g b~ W NP

In this chapter | have empirically validated that it is pb#sito compute step 7,
and | have searched a subset of the space of mechanismArdlest determine the
final clearing price as a function of individual bid and aslces. In so doing, | have
demonstrated that a design in which we set the transactioa palfway between bid
and ask prices (& = 0.5 discriminatory pricing policy) has desirable propertiés;
spite the fact that this is not an optimal mechanism accgrtirthe usual desiderata
and assumptions of auction theory.



Chapter 11

Conclusion and Future Work

In this thesis | have introduced an iterative methodologytfe design of market mech-
anisms calle@volutionary mechanism desighhis differs from traditional mechanism
design, which is a static analysis based on rigidly definesiggheobjectives, in which
a theoretically pristine mechanism is launched into thdavand then remains forever
in Nash equilibrium stasis.

Evolutionary mechanism design, in contrast, attemptske tmengineeringap-
proach. It is not theoretically beautiful, but it is able aké into account real-life
ugliness: arbitrary multiple design objectivelgnamicadjustment to equilibrium, and
constant feedback from amvivo mechanism. The process is described by the follow-
ing pseudo-code:

input : A set of initial heuristic strategie$, and a legacy mechanism
repeat

S — Fi SH+( S, ) ;

publicisesS to participants

I « frequency of each strategy observed in yivo

S «— S U { strategies observed in viJo;

A «— space of feasible variants of;

p — argmax,, . , EvaluateDesignObjectives(ux, S, 7);
implement rules defined hy

until forever ;

© 00 N o g b~ W NP

We start with an initial, or “legacy” mechanismthat existdn vivo, that is, a real-life
market. This is a reflection of economic reality, in that mamgrket places initially
emerge in an ad-hoc fashion and are not necessarily desiggmadhe top-down ac-
cording to strict auction-theoretic principles [90]; in &ter 3, | analysed a space;of
based on commonly-encountered variants of legacy doules mechanisms, and
we saw that many variants of these mechanisms do not sdtisfysual desiderata of
auction theory.

135
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We then analyse the set of heuristgtrategiesS that are commonly observed to
be in use. This set of strategies may or may not yield cletegquilibria; therefore we
conduct arin vitro analysis in which we use a combination of game-theoretityaiza
and a simulation framework such as that discussed in Ch&ptey combining these
tools using an empirical game-theoretic analysis (Chaptere can discover if there
are hitherto unknown strategies that could yield more stabuilibria. This process
is summarised by thEi SH+ algorithm introduced in Chapter 9. If our initial equilib-
ria are not stable, thei SH+ algorithm will give us a new set of strategies that yield
equilibria with larger attractors, and hence more stablelibgia. As discussed in sec-
tion 9.4, this is analogous to the incentive-compatibitititerion from conventional
static mechanism design in that we are attempting to findegfies that are a clear-
cut choice for our traders, just &s is an obvious strategy in an incentive-compatible
mechanism. However, this is of no use to a mechanism designess our new strate-
gies are actually adopted vivo, hence in step 3 we publicise the resulting analysis to
the market participants.

Just as with engineering methods for other complex realdsdwmains, such as
software engineering, our analysis cannot be relied updreteompletely accurate
and future-proof [10, 6]. Therefore we continually update analysis in response to
feedback from thén vivo mechanism: in steps 4 and 5 we compare our predictions
with actuality, and update our set of heuristic strategiesd their observed frequency
in the populatiori. In Chapter 8 | demonstrated how we can take into accdwiien
evaluating whether we are likely to meet our design objestiv

The resulting status quo may not be optimal for our purpdsegxample, we may
be able to improve the likelyhood of achieving certain desibjectives, such as market
efficiency or liquidity (transaction throughput) by makismgall adjustments in a subset
of the space of mechanism rules, for example by adjustingrpeters such gsin the
market clearing rules (3.3.1 to 3.3.3). In Chapter 10, | destrated empirically that
step 7 can be automated using genetic programming.

Thus, in this thesis | have outlined an iterative methodpfog mechanism design:
evolutionary mechanism desigmhich incorporates botim vivo andin vitro analysis,
and | have introduced methods for the latter which | have englly validated as
summarised above.

11.1 Future work

Full in vivo analysis

In this thesis | have concentrated on the purely computatiaspects of the method:
that is, in vitro analysis. In so doing, | have glanced over some of the clgaien
presented by thim vivoanalysis of real-life market places, which may be considletra

For example, in Chapter 8, we saw how our design objectivae w#ected when

we considered different weightings over the frequency wittich sniping strategies
were observed in the existing mechanism. In the case of segyrauch as sniping,
it is relatively straightforward to determine which tragere adopting this strategy,

1As opposed to pure strategies in the strict game-theoretises See Chapter 7.
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provided that one has access to sufficient historical matket, since we can simply
look at the timing of agents’ shouts; Roth and Ockenfels [x#0vide just such an
analysis of the eBay marketplace, which validates thasstegnd 5 can be performed
in vivoin the case of a single class of strategy.

However, inferring the existence of other classes of gjfagein a real market
presents a significant challenge, not least because thedtuation of each agent is
not directly observable. Without any prior knowledge of gefat’s valuation, it is very
difficult to infer whether they are using a strategy even agp asTT (section 4.1.1).
That is not to say, however, that making inferences aboutati@ins is impossible,
especially from the privileged vantage point of the agemtiadling the mechanism,
who potentially has full access to the history of tradergiactions with the market.
We may, for example, be able to infer bounds on an agent’satialu by analysing
the order statistics of their trade prices over small timegaks; or by analysing their
trading behaviour in alternative markets for the same coditypor, in the case of
an ascending auction format such as eBay, by observing tbe @trwhich runner-up
bidders drop out of the auction. With estimates of valuatiorhand, it would possible
in many cases to infer an agent’s strategy. The reversereegng of valuations and
strategies from market data is a promising area of reseboth,for those seeking to
make profit, as well as for economists seeking to understenditnamics of real-world
marketplaces, and there is an emerging literature in tlis g2, 41] to draw upon.

Although it might be impractical in the context of an acadenasearch programme
to apply theseén vivo methods in the context of a market such as a stock exchange, it
may be possible to apply them to a markets such as the Univefdiowa prediction
markets [136]. Prediction markets are exchanges with @ndgsign considerations
[156], and an interesting possible research programmednyogito conduct a fulin
vivo case study of the application of evolutionary mechanisngde® a real-life pre-
diction market through several iterations of the desigrecyc

Competing mechanisms

The focus | have taken in this thesis is evolutionary medrardesign as a sequen-
tial refinement of a single market institution. However, immy real-life scenarios,
multiple competing mechanisms exist simultaneously afer @éxchange services for
the same commodity. For example, it is often possible to firrdsame commodities
posted on both the eBaynd amazohauction web sites. In this scenario, mechanism
designers must take into account what rules their competitiee adopting in order to
maximise their own design objectives, and mechanism désgomes a competitive
interaction. The research conducted by Roth and Ockertél3] [(discussed above)
specifically discusses how amazon and eBay’s choice of@uetmding rules affects
the other competitor. In this scenario, mechanism designfigm of strategic inter-
action between institutions, as discussed in section B0t is possible that earlier
work in which | used evolutionary computing to co-evolve maagisms and trading
strategies [108, 107] would be useful faympetitivenechanism design.

2http: // www. ebay. conl
Shtt p: // www. amazon. cont
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This kind of analysis may also be useful as an explanatotféoeconomists seek-
ing to understand the variety of market institutions obediin nature, from fixed price
retail markets to sophisticated electronic exchangesavitewildering array of trading
rules, some of which appear to be based more on historiceégent than rational de-
sign considerations. As discussed in the previous chadtesyski [90] suggests that
one of the challenges for computational economists is tda@xphis diversity; how
it has arisen and how it is maintained. One possible apprtmshbch an analysis is
to think of mechanisms and strategies as co-evolving egtitinder this analysis, the
varieties of market institution that we see today corresigorthe resultingequilibria
of the co-evolution between mechanism and strategy. Asudgssr in section 10.2,
the reason that we observe that the majority of institutionsetail goods are fixed-
price (for example, high-street retail outlets) rathentbdgnamically-priced (for exam-
ple, eBay), might be the same reason that earlier co-ewvolaty experiments arrived
at fixed-price solutions (section 10.1); fixed-price med$raus are a best-response to
truly “zero-intelligence” strategies which do not botherhtid, and vice versa. Thus
the Nash equilibria of the mechanism versus trader gamehizhihere may be many,
may well correspond to the trading formats that we obserypetsistin vivo. Thisis a
topic that | have only touched upon in this thesis, but coatdifthe basis of interesting
future research.

11.2 Applications to other domains

Multi-agent Systems

The focus of this thesis has been the double-auction dorfardiscussed in Chap-
ter 2, the double-auction is an important benchmark probdtemmechanism design
and strategy acquisition. However, my main motivation is tesearch was to develop
techniques that are applicable to the wider field of muléwatgystems technology. As
we saw in Chapter 1 one of the principle problems in this fislthe engineering of
opensystems. The internet is one of the most complex open systeexsstence, and
itis increasingly realised that incentive engineeringag i this domain. For example,
Friedman and Shenker [52] describe contention over netlarkiwidth (congestion)
by different self-interested parties (agents) in terms sifategic game, and propose a
non-monetarynechanisnin which socially desirable outcomes can be achieved even
when agents follow self-interested strategies by imposirigandicap” in the form
of a network latency that is proportional to an agent’s stétendwidth requirements
(analogous to the “handicap” in form of payment that an aneer imposes on stated
preferences for goods — see Section 3.1.3). Itis this kiratlefiocscenario to which
evolutionary mechanism design may be particularly suétte, in principle, evolu-
tionary mechanism design methods can be used to craft nelanismson the fly
and in situations in which classical game-theoretic or ianetheoretic assumptions
are violated; in the Friedman and Shenker scenario for elgntipe negative pay-
offs (“payments”) inflicted by the “auctioneer” may be sutijio environmental noise,
which is not taken into account by existing mechanism desigrhis is an ongoing
area of research that is being taken up by several reseapcipgr for example, by
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the EPSRQMarket-based control of complex computational systprogect, and has
applications to many other control problems in computezrsoé and beyond, such as
scheduling systems [30], memory allocation, and evenaiditioning [24].

From an economic perspective, market mechanisms areidraally thought of
as tools for achieving socially desirable outcomes betvegmmts whose interests are
notnecessarilyaligned, and who therefore attempt to maximise only thein onility.
However, this does not prevent them from being useful in@ges where agents’ inter-
estsare in alignment with other. Many scenariosims involve some form of cooper-
ative problem solving [38], which can involve complex cooation between different
subsystems, for example the problem of coordinating mowsnigetween different
joints or actuators in a robotics scenario [13]. In some arien it is possible to design
a mechanism for these scenarios that brings about the fledesired outcome when
each agent, or subsystem, solves an entloelgl decision problem (maximising their
utility), thus enabling simpler agent implementationss #rea of research is known as
market-oriented programming [150], in which evolutionargchanism design may be
able to play an important role.

Multi-agent learning & co-evolution

Finally, it is my tentative hypothesis that one of the keynpiples in acquiring robust
strategies in co-evolutionary scenarios may be in the ap@te design of thgame
underlying agent interactions, rather than focusing galelthe co-evolutionary algo-
rithm itself. For example, we may expect that co-evolutigriateractions in games
such as paper-rock-scissors, which admits of a single-claaequilibrium solution,
to result in lower diversity and robustness of phenotypas tin games such as the
double-auction where we have a multitude of potential gémeeretic equilibria. It is
possible that some of the methods proposed in this thesishmayeful for automat-
ically assessing and constructing environments (gamegfvancourage diverse and
robust solutions in co-evolutionary interaction; for exde) by quantitatively estimat-
ing the number of equilibria and their respective basinssize

4ht t p: / / www. mar ket basedcont r ol . coml
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Appendix A

UML Diagrams

«interface»
[ shoutEngine

n matchedShouts

n asklterator(): Iterator

n bidlterator(): Iterator

n newAsk(in Shout)

n newBid(in Shout)

n noMatchedShouts(): boolean
n noUnmatchedShouts(): boolean]
n printState()

n removeShaut(in Shout)

[l FourHeapShoutEngine

E bin: Shout

B vout: shout

- sin: Shout

B sout: Shout

E greaterThan: AscendingShoutComparator
E lessThan: DescendingShoutComparator

E FourHeapShoutEngine()

B removeShout(in Shout)

n toString(): String

B orintstate)

n prettyPrint(in String, in PriarityBuffer)

n insertUnmatchedAsk(in Shout)

n insertUnmatchedBid(in Shout)

n getHighestUnmatchedBid(): Shout

n getlLowestMatchedBid(): Shout

n getLowestUnmatchedAsk(): Shout

n getHighestMatchedAsk(): Shout

n promoteShout(in Shout, in PriorityBuffer, in PriorityBuffer, in PriorityBuffer):
n displaceHighestMatchedAsk(in Shout): int
n displaceLowestMatchedBid(in Shout): int
n promoteHighestUnmatchedBid(in Shout): int
n promoteLowestUnmatchedAsk(in Shout): int
n newBid(in Shout)

n newAsk(in Shout)

n asklterator(): Iterator

B biditerator(): Iterator

B getMatchedShouts(): List

3 noMatchedShouts(): boolean

n noUnmatchedShouts(): boolean

B reset()

h

Figure A.1: UML class diagram for the FourHeapShoutEnglass
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dirterface»
] Auctioneer

B askiterator(: iterator

B biditerator): Iterator

B cleary

B endOfAuctionProcessing()

B endomayProcessingd

B endofRoundProcessing)

B getAccount): Account

B getLastasko: Shout

B getLastBid): Shout

B getLastShout): Shout

B newshout(in Shout)

B printstateq)

B removeshout(in Shout)

B shoutAccepted(in Shou): boolean
B shoutsvisible(: boolean

B transactionsOceurred(): boolean

:

|

[Ei AbstractAuctioneer

i Abstractauctioneery

il AbstractAuctioneertin Auction)

B protoClone: Object

B setup(in ParameterDatabase, in Parameter)

B} newshout(in Shout)

B removeshout(in Shout)

B printstate

B reseto

B getQuote(): MarketQuote

B askiterator(: iterator

B biditerator): Iterator

4 generateuote

B endofDayProcessingd

B cleary

B clear(in Shout, in Shout, in double, in double, in in)
B determineCearingPrice(in Shout, in Shout): double
B eventoceurred(in AuctionEvent)

B endOfAuctionProcessing()

B recordMatch(in Shout, in Shout)

[Ei TransparentAuctioneer

il TransparentAuctioneer()

i TransparentAuctioneer(in Auction)
B shoutsVisible(: boolean

B} recordMatch(in Shout, in Shouty
B} shoutAccepted(in Shout): boolean
B transactionsOceurred(: boolean
B endofRoundProcessing()

B reseto

B getLastAsk): Shout

B oetlastBid): Shout

B oetLastShout): Shout

A
l

bleA

@c

H Aucti Qe

Il account: ZeroFundsAccount

Ei c

i ClearingHouseAuctioneer(in Auction)
i clearingHouseAuctioneer

B endofAuctionProcessing()

B endoRoundProcessing()

B generatequote

B getAccount): Account

B shoutsVisible(: boolean

il CortinuousDoubleAuctioneer(in Auction)
B generatecuote

B endofRoundProcessing()

B endofAuctionProcessing()

B shoutsvisible): boolean

B newShout(in Shout)

B3 checkimprovement(in Shout)

[« | (): Account

& McAfeeClearingHouseAuctioneer

B 2ccount: Account

il McAfeeClearingHouseAuctioneer()

Bl McAfeeClearingHouseAuctioneer(in Auction)
B clearg

B getAccount): Account

B reseto

& Peri ingH Aucti Econti DoubleA NoQuedl
i PeriodicClearingHouseAuctioneer() B cleary
Ei Periodicc i Auction)

B setup(in ParameterDatabase, in Parameter)

B clear)

B rewShout(n Shout)

Figure A.2: UML class inheritance diagram for Auctioneersses
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«interface»
I PricingPolicy

n determineClearingPrice(in Shout, in Shout, in MarketQuote): doublg

.

|
&2 KPricingPolicy

n k: double

W P_K: String

E KPricingPolicy(in double)

i «PricingPolicy()

n kinterval(in double, in double): double

n setup(in ParameterDatabase, in Parameter)
u toString(): String

A

& UniformPricingPolicy [ DiscriminatoryPricingPolicy

ﬁ UniformPricingPolicy()
E UniformPricingPolicy(in double)
n determineClearingPrice(in Shout, in Shout, in MarketQuote): doublg

ﬁ DiscriminatoryPricingPolicy()

E DiscriminatoryPricingPolicy(in double)

n determineClearingPrice(in Shout, in Shout, in MarketQuote): doublg
n setup(in ParameterDatabase, in Parameter)

& InOrderPricingPolicy

u determineClearingPrice(in Shout, in Shout, in MarketQuote): doublg

Figure A.3: UML class inheritance diagram for PricingPplatasses
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«interface»
D uk::ac::liv::auction::core::AuctionEventListener

@ eventOccurred(in event: AuctionEvent)

«interface»
@ uk:ac::liviauction::stats::AuctionReport

«interface» «interface»
@ uk:ac::liviauction::agent::Strategy @ uk::ac::livi:auction::agent::ValuationPolicy

«interface»
B uk::ac::livi:auction::agent:: TradingAgent

& AuctionEvent

@ AuctionClosedEvent @ RoundClosedEvent @ ShoutPlacedEvent @ TransactionExecutedEvent @ EndofDayEvent

@ AuctionOpenEvent @ AgentPolledEvent
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@ AbstractStrategy
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9 MixedStrategy

© FixedQuantityStrategylmpl
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© uk:ac:livi:auctio

«interface»

@ eventOccurred(in event: AuctionEvent)

APPENDIX A. UML DIAGRAMS

:core::AuctionEventListener

«interface»

/3 strategy

@ determineQuantity(in auction: Auction): int
@ modifyShout(in shout: Shout, in auction: Auction): Shout
@ setAgent(in agent: AbstractTradingAgent)

- strategyl

& AbstractStrategy

agent: AbstractTradingAgent
auction: Auction
currentShout: MutableShout

AbstractStrategy()
agent: AbstractTradingAgent)
endOfRound(in auction: Auction)

Qe o o0 o

o

eventOccurred(in event: AuctionEvent)
getAgent(): AbstractTradingAgent

initialise()

modifyShout(in shout: Shout, in auction: Auction): Shout
modifyShout(in shout: MutableShout): boolean
protoClone(): Object

reset()

setAgent(in agent: AbstractTradingAgent)

ee oo o0 ee

{order}

eeooee

cinterface»
TradingAgent

informOfBuyer(in auction: Auction, in buyer: TradingAgent, in price: double, in quantity: int)
informOfSeller(in auction: Auction, in winningShout: Shout, in seller: TradingAgent, in price: double, in quantity: int)
isBuyer(): boolean

isSeller(): boolean

requestShout(in auction: Auction)

+ abstractTradingAgent
0.1

2P0 OO POR OO0 HNOLOCROHNOOOOLOOLOO00ORLC0O0 00 Q0000

5
|
|

& AbstractTradingAgent

AbstractTradingAgent(in stock: int, in funds: double, in privateValue: double, in isSeller: boolean, in strategy: Strategy)
AbstractTradingAgent(in stock: int, in funds: double)

AbstractTradingAgent()

AbstractTradingAgent(in stock: int, in funds: double, in privateValue: double, in isSeller: boolean)
active(): boolean

auctionClosed(in event: AuctionEvent)

auctionOpen(in event: AuctionEvent)

deliver(in auction: Auction, in quantity: int, in price: double): int

determineQuantity(in auction: Auction): int

endOfDay(in event: AuctionEvent)

equilibriumProfits(in auction: Auction, in equilibriumPrice: double, in quantity: int): double
eventOccurred(in event: AuctionEvent)

getCurrentShout(): Shout

getFunds(): double

getGroup(): AgentGroup

getid(: long

getLastProfit(): double

getProfits(): double

getStock(): int

getStrategy(): Strategy

getStrategy1(): Strategy

getvaluation(in auction: Auction): double

getvaluationPolicy(): ValuationPolicy

gi seller: AbstractTradingAgent, in amount: double)

informOfBuyer(in auction: Auction, in buyer: TradingAgent, in price: double, in quantity: int)
informOfSeller(in auction: Auction, in winningShout: Shout, in seller: TradingAgent, in price: double, in quantity: int)
initialise()

isBuyer(): boolean

isSeller(): boolean

lastShoutAccepted(): boolean

pay(in amount: double)

protoClone(): Object

purchaseFrom(in auction: Auction, in seller: AbstractTradingAgent, in quantity: int, in price: double)
requestShout(in auction: Auction)

reset()

roundClosed(in event: AuctionEvent)

setGroup(in group: AgentGroup)

setisSeller(in isSeller: boolean)

setPrivateValue(in privateValue: double)

setStrategy(in strategy: Strategy)

setStrategy1(in strategyl: Strategy)

valuer: icy
setup(in parameters: ParameterDatabase, in base: Parameter)

Figure A.6: UML class diagram illustrating relationshiptiveen TradingAgent and

Strategy
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«interface»
O Learner

@ dumpState(in out: DataWriter)
@ getLearningDelta(): double
@ monitor()

«interface»
@ continuousLearner

@ act(): double

Al

«interface»
@ MimicryLearner

@ randominitialise()

@ setOutputLevel(in currentOutput: double)

@ train(in target: double)

& AbstractLearner

«interface»
O DiscreteLearner

@ act(): int
@ getNumberOfActions(): int

uk::ac::liv::auction::agent::StimuliResponseStrategy

4 learner: StimuliResponseLearner
¥ P_LEARNER: String

OE StimuliResponseStrategy(in agent: AbstractTradingAgent)

d: StimuliResponseStrategy()

@ act():int

@ getLearner(): Learner

@ getStimuliResponseLearner(): StimuliResponseLearner

@ learn(in auction: Auction)

@ protoClone(): Object

@ reset()

@ setLearner(in learner: Learner)

@ setStimuliResponseLearner(in stimuliResponseLearner: StimuliResponseLearner)
@ setup(in parameters: ParameterDatabase, in base: Parameter)
@ toString(): String

3 widrowHoffLearner

RothErevLearner

«interface» + stimuliResponseStrategy

& StimuliResponseLearner ‘ - stimuliResponseLearner {order}
‘ 0.1 0.1

i@ reward(in reward: double)
/\\ + momentumStrategy
- mimicryLearner JA {order}
1
0.1 | 0.1
S

19 StatelessQLearner

:

9 widrowHoffLearnerwithMomentum

9 NPTRothErevLearner

& uk::ac::liv::auction::agent::MomentumStrategy

% currentPrice: double

<+ initialMarginDistribution: AbstractContinousDistribution
% lastShout: Shout

< lastShoutAccepted: boolean

< learner: MimicryLearner

28 logger: Logger

o mimicryLearner: MimicryLearner

¥ P_LEARNER: String

% P_SCALING: String

< perterbationDistribution: AbstractContinousDistribution
« scaling: double

4 trAskPrice: double

4 trBidPrice: double

4 trPrice: double

YT
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