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Abstract

This thesis deals with computational problems that are defined on matrix

semigroups, which play a pivotal role in Mathematics and Computer Science

in such areas as control theory, dynamical systems, hybrid systems, compu-

tational geometry and both classical and quantum computing to name but

a few. Properties that researchers wish to study in such fields often turn out

to be questions regarding the structure of the underlying matrix semigroup

and thus the study of computational problems on such algebraic structures

in linear algebra is of intrinsic importance.

Many natural problems concerning matrix semigroups can be proven

to be intractable or indeed even unsolvable in a formal mathematical sense.

Thus, related problems concerning physical, chemical and biological systems

modelled by such structures have properties which are not amenable to

algorithmic procedures to determine their values.

With such recalcitrant problems we often find that there exists a tight

border between decidability and undecidability dependent upon particular

parameters of the system. Examining this border allows us to determine

which properties we can hope to derive algorithmically and those problems

which Will forever be out of our reach, regardless of any future advances in

computational speed.

There are a plethora of open problems in the field related to dynami-

cal systems, control theory and number theory which we detail throughout

this thesis. We examine undecidability in matrix semigroups for a variety

of different problems such as membership and vector reachability problems,

semigroup intersection emptiness testing and freeness, all of which are well

known from the literature. We also formulate and survey decidability ques-

tions for several new problems such as vector ambiguity, recurrent matrix

problems, the presence of any diagonal matrix and quaternion matrix semi-

groups, all of which we feel give a broader perspective to the underlying

structure of matrix semigroups.





Acknowledgements

I would like to especially thank my main supervisor, Dr. Igor Potapov,

for his continued support and guidance throughout both my undergraduate

as well as graduate degrees. His enthusiasm, constructive criticism, research

ideas and always making time for discussions over the past four years has

made the completion of my Ph.D. both possible and highly enjoyable.

I would also like to express my gratitude to my second supervisor, Dr.

Paul Dunne, and my thesis advisor, Dr. Alexei Lisitsa, for their assistance

and suggestions over the past three years.

The Complexity Theory and Algorithmics Group and the Department

of Computer Science in general at Liverpool University has been an excel-

lent place in which to conduct research and all members of staff have been

encouraging and helpful whenever needed. I would also like to kindly thank

the Department of Computer Science for funding my postgraduate studies.

Very sincere thanks also go to both of my thesis examiners, Prof. Leszek

Ga̧sieniec, who was my internal examiner and Dr. Vesa Halava (Turku

University) who was my external examiner, for their careful checking of my

thesis and helpful comments and suggestions during my viva.

Last, but by no means least, I am eternally indebted to my family and es-

pecially my parents for their invariable support and encouragement, without

whom the completion of my Ph.D. would not have been possible.





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Currently Known Results . . . . . . . . . . . . . . . . . . . . 7

1.3 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 16

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Matrix Theory . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Group Theory . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Abstract Algebra . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Finite Words . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.5 Hypercomplex Numbers . . . . . . . . . . . . . . . . . 22

2.2 Connections between Words and Matrices . . . . . . . . . . . 24

2.2.1 Semigroup Monomorphisms . . . . . . . . . . . . . . . 25

2.2.2 Group Monomorphisms . . . . . . . . . . . . . . . . . 25

2.3 Computational Problems in Matrix Semigroups . . . . . . . . 26

3 Decision Problems for Words 29

3.1 Algorithmic Undecidability . . . . . . . . . . . . . . . . . . . 30

3.2 Post’s Correspondence Problem (PCP) and Variants . . . . . 31

3.2.1 Claus Instances of PCP . . . . . . . . . . . . . . . . . 32

3.2.2 Index Coding PCP . . . . . . . . . . . . . . . . . . . . 33

I



CONTENTS II

3.2.3 Fixed Element PCP . . . . . . . . . . . . . . . . . . . 38

3.3 Word Embeddings of Computational Models . . . . . . . . . 41

3.3.1 Computational Models . . . . . . . . . . . . . . . . . . 42

3.3.2 Simulation of Computational Models . . . . . . . . . . 43

3.3.3 Periodicity in Counter Machines . . . . . . . . . . . . 46

3.3.4 The Infinite Post Correspondence Problem . . . . . . 49

4 Integral to Complex Matrix Semigroups 53

4.1 Membership Problems . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Scalar Matrix Membership Problem . . . . . . . . . . 55

4.1.2 Zero in Upper Right Corner Problem . . . . . . . . . . 58

4.1.3 Any Diagonal Matrix Problem . . . . . . . . . . . . . 62

4.2 Vector Reachability Problems . . . . . . . . . . . . . . . . . . 65

4.3 Matrix Embeddings of Computational Models . . . . . . . . . 73

4.4 Semigroup Intersection Problems . . . . . . . . . . . . . . . . 76

5 Quaternion Matrix Semigroup Problems 80

5.1 Hypercomplex Numbers Introduction . . . . . . . . . . . . . . 80

5.2 Quaternion Word Morphisms . . . . . . . . . . . . . . . . . . 82

5.2.1 Matrix Representation of Quaternions . . . . . . . . . 83

5.3 Low Dimension Quaternion Matrix Semigroups . . . . . . . . 84

5.4 Computational Problems in Lipschitz Integers . . . . . . . . . 91

6 Reductions of Skolem’s Problem 95

6.1 Zero in the Upper Right Corner . . . . . . . . . . . . . . . . . 97

6.2 Zero in the Upper Left Corner . . . . . . . . . . . . . . . . . 98

6.3 The Mortality Problem . . . . . . . . . . . . . . . . . . . . . 101

6.4 Exponential Diophantine Equations . . . . . . . . . . . . . . 102

7 Geometric Interpretations and Applications 107

8 Conclusion 113



CONTENTS III

Notation Glossary

Basic Notation

N - The set of natural numbers ({0, 1, 2, . . .}).
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C - The field of complex numbers.

C(Q) - The field of rational complex numbers.

H(Q) - The division ring of rational quaternions.

H(Q)0 - The ring of pure rational quaternions.

F - Arbitrary ring of numbers.

ℜ(z) - Real part of complex number z ∈ C.

ℑ(z) - Imaginary part of complex number z ∈ C.

z - Complex conjugate of complex number z ∈ C.

|z| - Modulus of complex number z ∈ C, (|z| =
√

(ℜ(z)2 + ℑ(z)2)).

δi,j - The Kronecker delta; equal to 1 if i = j else equal to 0.

Matrix Notation

In - The n× n identity matrix.

Fn×n - The set of n× n matrices over number system F.

det(M) - The determinant of matrix M .

M−1 - The inverse of matrix M (exists iff det(M) 6= 0).

MT - The transpose of matrix M .

M∗ - The Hermitian transpose of matrix M .

M[i,j] - The element at row i and column j of matrix M .

σ(M) - The set of eigenvalues of matrix M .

ρ(M) - The spectral radius of matrix M .

A⊗B - The Kronecker product of matrices A and B.

A⊕B - The direct sum of matrices A and B.
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• u · v = u1u2 . . . unv1v2 . . . vm - The concatenation of u and v.
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• ε - The empty word.

Group Theory Notation

A ∪B - The union of the sets A and B.

A ∩B - The intersection of the sets A and B.

|A| - The cardinality (or size) of the set A.

〈G 〉 - The semigroup generated by set of square matrices G .

S - A matrix semigroup.

Symbols

pcp - Post’s correspondence problem.

nPCP - The minimum instance size for which Post’s correspondence

problem (pcp) is known to be undecidable (currently 7, see [43]).

nCLAUS - The minimum instance size for which Post’s correspondence

problem (pcp) is known to be undecidable using “Claus instances”

(currently 7, see [28]).



Chapter 1

Introduction

“Quod est, nullum non problema solvere”,

There is no problem which cannot be solved,

Françoise Viète.

1.1 Background

Matrices play a fundamental and central role in a plethora of mathematical

disciplines. They describe linear transformations and their use has propa-

gated to such an extent, that to prove a result purely in terms of matrix

theory can induce an abundance of related results in a set of diverse fields.

Matrices are central to linear algebra which studies general properties

of vector spaces. Our aim is to study a core set of problems which may

be defined in terms of linear algebra. We shall detail an amalgamation of

disparate computational problems whose decidability status we shall explore

using several methods which shall be studied and developed in the early

chapters of this thesis. The exact and formal mathematical definitions of

these problems will appear in Section 2.3 of Chapter 2 but we shall give a

less formal description of them here in order to motivate the reader as to

the type of problems considered.

1
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There are many natural and important questions in terms of linear alge-

bra and one such problem is the membership problem, which is to determine

whether some element (linear transformation) is present within a given set

(of linear transformations). As an instance of the problem we are given a

finite set of objects G and a binary operator allowing us to take two elements

and create a new element. Thus from the set G , we can create a new set

of elements which may be infinite in size called S . The set S is formally

named a semigroup and we shall be dealing with matrix semigroups where

each element of the set is a square matrix. The membership problem on

matrix semigroups asks whether a particular matrix is contained within the

semigroup.

Another interesting and fundamental problem concerning semigroups is

the vector reachability problem (VRP). This question asks “given a set of

linear transformations and two points x and y, is it possible to find a com-

bination of transformations from the set that maps x to y?”. The problem

can also be formulated in terms of a matrix semigroup 1, S , and a pair of

vectors x, y as input and the problem then becomes whether there exists any

matrix M ∈ S such that Mx = y. A related problem is the scalar reach-

ability problem which takes as input a finitely generated matrix semigroup

S , two vectors a, b and a scalar k. The problem asks, “does there exist any

matrix M ∈ S such that aTMb = k?”. The equality can also be replaced

by other relations such as <,>,≤,≥, etc.

Other problems often arise in the study of semigroups such as determin-

ing the freeness of a matrix semigroup. In this problem we must determine if

a given finitely generated semigroup is free, i.e., if every element of the semi-

group has a unique factorisation over elements of the generator. Studying

the decidability of such general problems for matrix semigroups can prove

the decidability of problems in many other areas. We shall now show several

such areas from mathematics and computer science where problems that are

1We may define the set of linear transformations as a matrix semigroup since the

combination of linear transformations corresponds to matrix multiplication
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being researched are strongly related to computational problems on matrix

semigroups.

In automata theory, it is a widely known and utilised fact that finite state

machines can be simulated via a set of integral matrices. If we allow the

finite state machine to be non-deterministic and assign probabilities which

sum to 1 on each outgoing edge set for each vertex, this gives us probabilistic

finite state automata (PFA). Such automata may be simulated by a set of

rational matrices, one for each input letter. A possible question we might

ask on a PFA is “Starting from a given state, does there exist a word w,

leading to a final state with a probability greater than a certain threshold?”.

It is possible to define this problem instead as a type of scalar reachability

problem on stochastic matrix semigroups as is not difficult to show, see [15]

for example.

If we instead specify that the sum of squares of the values of outgoing

edges from each vertex equals 1 then we obtain the model of quantum fi-

nite state automata. When studying quantum automata, the matrices in

the generator are unitary matrices. Thus, if we have general properties for

computational problems on stochastic or unitary matrices in different di-

mensions (such as the decidability status of various problems) then it can

aid in the study of problems on probabilistic and quantum automata.

Another field where matrix problems play a central role is dynamical

systems in which we often aim to describe some real world system and

derive properties of it. For example, we may wish to simulate the trajectory

of a billiard ball on a table, the motion of celestial bodies or the dynamics

of particles in a fluid. Properties studied include fixed points of the system,

convergence and divergence of the system, the onset of chaotic behaviour

and various stability criteria. In a linear dynamical system we can describe

the evolution of a point via matrix equations and thus the properties of

the system we wish to discover can turn out to be specific properties of the

matrices used to represent it.
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Let us consider an example of one such dynamical system. Given an

initial state vector s0 = (u0, u1, . . . , un−1)
T ∈ Cn and a set of matrices,

G = {M0,M1, . . . ,Mk} ∈ Cn×n. If we consider a discrete time model,

then at each time step we non-deterministically (i.e., randomly) choose a

particular matrix Mi and obtain the next state vector, thus uj+1 = Miuj .

This process continues iteratively and we can see that it is a type of linear

non-deterministic dynamical system.

Typical questions we might ask on such a model are: “Given an in-

stance of the system, is it possible to reach a particular state v?” or another

question might be “Given a fixed set of matrices, does every initial vector

converge to the zero vector for all possible products?”. The former problem

seems very natural to ask but in fact we show that it is undecidable (which

we explain later) even for just 7 rational matrices of dimension-3 in The-

orem 4.10. The decidability status of the latter problem is a fundamental

but open problem in the field related to the joint spectral radius of a set of

matrices, see [15, 52].

Matrices and matrix semigroups also play a key role in other areas of

Mathematics and Computer Science. In Graph theory we model pair-wise

relations between vertices from a given set, often via adjacency matrices.

There exists a large number of problems on graphs such as colouring prob-

lems, the clique problem, the Hamiltonian path problem and the travelling

salesman problem to name but a few. Again we may often define these

problems in terms of properties of specific classes of matrices.

In the field of computer graphics we are interested in visualising mathe-

matically described objects on a 2D computer screen. We can conceptualise

the process by having a matrix represent the movement and rotations of

objects or the “camera” out of which we view the scene.

The above examples illustrate only a fraction of subjects whereby the

structures in question may be modelled via matrices or matrix semigroups.

Thus, as previously mentioned, algorithmic solutions to these questions on
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specific classes of matrix semigroups can aid us in several disciplines.

Complexity and Computability Theory

The discussion can now turn to complexity and computability issues arising

from the study of computational questions on these structures. For many

problems we may create a decision problem which will return the correct

answer “true” or “false” in a short amount of time whereby we use the stan-

dard definition of a short amount of time to mean time which is proportional

to a polynomial of the input size of an instance in some “reasonable” rep-

resentation. 2 The class of all such problems is denoted P for polynomial

time algorithms.

However, it is well known that certain problems seem to be much more

difficult to solve than problems in P . If we allow an algorithm to “guess”

the next computational step randomly and allow that the algorithm accepts

a given instance if and only if at least one path leads to an accepting state,

then we get the class NP of non-deterministic polynomial time algorithms.

It is a well known and fundamental open problem whether P = NP in

computer science but the equality is widely believed to be false and most

scientists would conjecture that P 6= NP .

Even in the case of NP problems however, there exists an algorithm

which will return the correct answer “true” or “false” after some finite

amount of time, even if the amount of time turns out to be exponential

in the size of the input. Throughout this thesis we shall not study the time

complexity of algorithms, we shall instead be interested in whether or not

any algorithm exists which will solve the problem regardless of any time

constraints. This is the area of computability theory.

We shall show many decision problems on matrix semigroups for which

there does not exist any algorithm which is guaranteed to return the correct

answer “true” or “false” in a finite amount of time. The problems are

2By reasonable we mean storing integers in binary rather than unary encoding etc.
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termed undecidable. Alan Turing proved the first undecidable problem in

computability theory, known as the halting problem. From this result we

can use a technique called “reduction”, discussed in Chapter 3, to show

many other problems are also undecidable.

One of the first results of undecidability in matrix semigroups was by

A. Markov [42] in 1947 where he proved results which we may interpret as

the emptiness testing of the intersection of matrix semigroups. We study

this problem in Section 4.4 and show some variations of the undecidability

results. In 1970, M. Paterson showed the mortality problem is undecidable.

This problem is concerned with determining whether the zero matrix (a

matrix with all zero elements) is in a semigroup generated by a given finite

set of integer matrices. Since that time there has been much interest in

decidability questions for problems concerning matrix semigroups.

One might question the rationale of studying the undecidability of com-

putational problems since an undecidability result inherently means a solu-

tion for the problem does not exist. There are two main reasons which may

be highlighted. Firstly, once a problem has been shown to be undecidable,

it can be considered futile to search further for an algorithmic solution to

the problem.

In this case we do have available choices such as simplifying the system

to some extent or using approximations of solutions for example which can

lead to algorithmic solvability of a problem. Let us illustrate this with an

example. Given a finite set of matrices, we may assign a non-negative real

number to the set called the joint spectral radius which can be thought of as

a generalisation of the spectral radius on single matrices. It was shown in

[15] that determining if the joint spectral radius, ρ, of a set of matrices Σ is

less than or equal to 1, i.e., determining if ρ(Σ) ≤ 1 is undecidable. However,

it is known from a result of [11] that we can approximate the joint spectral

radius to any degree of accuracy greater than 0. Thus, seemingly similar

properties can have a different decidability status and if we can tolerate
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some degree of approximation or probability then algorithmic solutions can

be developed.

The second reason to study undecidability is from a purely theoretical

perspective; we are truly studying the limits of what is computable. Often

with a small change to a parameter, i.e., the dimension of the matrices con-

sidered, the number of matrices in the generator or the number system used

in the matrices, we can observe a change from decidability to undecidability.

Understanding the reasons for this change is fundamental to understanding

computability in general.

Hopefully the above reasoning shows that since matrices and matrix

semigroups are so ubiquitous in mathematics and computer science, the

study of computability of problems on such structures is fundamental and

important in determining the computability of problems defined in many

diverse fields.

1.2 Currently Known Results

In this section we shall give the current state of known decidability results

for a set of problems in several dimensions and over different number fields.

Since this is a currently active research area, many of these results may be

improved upon relatively quickly but they are correct at the time of writing

as far as the author is aware.

Let us now give a list of the problems with a brief and informal descrip-

tion of each. For more details and rigorous definitions, see Section 2.3 of

Chapter 2.

Given a finite set of n × n matrices G over a semi-ring F, generating a

semigroup S we define the problems:

• Membership - Given a particular matrix M ∈ Fn×n, is it true that

M ∈ S ?

• Vector Reachability (VRP) - Given two vectors x, y ∈ Fn does
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there exist a matrix M ∈ S such that Mx = y?

• Mortality - Does the zero matrix belong to the semigroup S ?

• Identity - Does the identity matrix belong to the semigroups S ?

• Freeness - Is the semigroup S free? I.e. does each element of S

have a unique factorisation over elements of G ?

• Any Diagonal (AD) - Does the semigroup S contain any diagonal

matrix?

• Scalar - Does the semigroup S contain a specific scalar matrix kI

(where k 6= 0,±1)?

• Vector Ambiguity - Given a vector x ∈ Fn, is the set of vectors

{Mx : M ∈ S } free? I.e. is it true that for two matrices M,N ∈ S ,

it holds that Mx = Nx⇒M = N?

We shall present a table of known results including some, but not all, of

our contributions to the field presented in this thesis (highlighted in bold and

underlined). Let us discuss the notation; the top row represents the problem

to which we refer and they are listed above, the left column represents the

dimension of the matrices. Each element at arbitrary row i and column

j is of the form {D,U}(F)n or empty. The letters D and U represent

Decidable and Undecidable respectively, F represents the particular semi-

ring over which the decidability status refers and the subscript n represents

the number of matrices in the generator (the symbol k means the result

holds over any arbitrary (finite) number k).

Dim Memb VRP Mort Ident Free AD Scalar

1 D(C)k D(C)k D(H)k D(C)k D(C)k D(H)k D(H)k

2 U(H)14 U(H)14 D(Q)2 D(Z)k U(H)18 U(H)7 U(H)14

3 U(Z)8 U(Q)5 U(Z)8 ? U(N)18 ? ?

4 U(Z)8 U(Z)5 U(Z)8 ? U(N)18 U(C)14 U(Z)14
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The underlined and bold symbols represent a subset of our results that

are presented within this thesis. Note that we have the containment hierar-

chy: N ⊂ Z ⊂ Q ⊂ C ⊂ H. This means that if a problem is decidable over

Q for example, then it is also automatically decidable over N and Z but it

does not follow that the problem is decidable over C or H. The opposite

assertion is also true; if a problem is undecidable over Q then it follows that

it is undecidable over C and H but not necessarily over N or Z. In a similar

fashion, if a problem is undecidable when its generator contains j matrices

then the problem is also undecidable using any number greater than j of

matrices. The number of matrices required is based upon the minimum

instance size for which Post’s correspondence problem (pcp) or one of its

variants is currently known to be undecidable, therefore these numbers may

change if smaller instance sizes are found for which the corresponding pcp

variant used is still undecidable.

In dimension 1 all problems are straight forwardly decidable over the

complex numbers since they are commutative. Some problems are also easy

over the quaternions, for example the mortality problem, since the quater-

nions do not have zero divisors. However, we later state an open problem

about the decidability of membership in one-dimensional quaternion semi-

groups in Open Problem 7.9 and also the decidability of the one-dimensional

quaternion semigroup freeness problem in Open Problem 7.10.

All the undecidability results in two-dimensional quaternion matrix semi-

groups are from our paper [10] but decidability results in two dimensions

are very sparse. In fact, only partial results are known for sub cases of many

problems, for example a subclass of upper-triangular matrices is known in

two dimensions where the freeness is decidable, see [17]. The decidability of

the membership problem for the identity matrix in a matrix semigroup in

two-dimensional integral matrices was shown in [19].

The mortality problem for three-dimensional integral matrices was shown

to be undecidable in [45] and the number of matrices required in the genera-
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tor for undecidability was reduced to just 8 in [25]. Note that the mortality

problem is a special case of the membership problem. We later show, in

Theorem 4.10, that the vector reachability problem is undecidable for ma-

trix semigroups generated by 7 rational matrices of dimension 3. This result

is from our paper [8]. The mortality problem was shown to be decidable

for a pair of rational 2 × 2 matrices in [16]. The decidability status for an

arbitrary number of matrices is an important open problem which we state

in Open Problem 6.6.

We also mention that the problem of determining whether a finitely

generated semigroup over any field is finite or not is a decidable problem,

see [24] and [41]. From this result it follows that determining whether the

semigroup generated by a single matrix is free or not is a decidable problem.

To see this, we simply determine if the semigroup generated is finite, in which

case the semigroup is not free; else the semigroup is free. The mortality

problem for a single matrix is also thus decidable since we simply determine

if the semigroup is finite and if it is, search for zero matrix in the finite

number of matrices given. Lastly, the same argument holds to show that

the membership problem for the identity matrix is decidable for a matrix

semigroup generate by a single matrix (since the presence of the identity

matrix means the semigroup must be finite, thus we simply need search the

finite set for its presence).

1.3 Overview of the Thesis

We shall now show the general structure of the thesis. Chapter 2, “Prelim-

inaries”, gives all the required elementary definitions from matrix theory,

group theory and abstract algebra that will be used throughout. We have

attempted to make this as self contained as possible and indicated references

to books for other material when necessary. We also introduce hypercomplex

numbers, specifically quaternions in this chapter. Since these are perhaps

not as well known to some researchers, we have given a more thorough
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treatment of them.

Several classes of computational questions such as “membership prob-

lems”, “vector reachability problems” and “freeness problems” are then

given and discussed. The majority of problems studied throughout the thesis

will fall into one of these categories and we give a general overview of them

from a higher level here. Finally we show the strong connection between

words and matrices and present a list of semigroup and group morphisms

both from the literature and our work which may be useful as a reference.

In Chapter 3, “Decision Problems for Words”, we introduce the formal

concept of undecidability and reduction which will be so useful throughout.

This allows us to then show the familiar Post’s correspondence problem

(pcp) with some of its more recent variants. We provide two new versions

which we name Index Coding PCP and Fixed Element PCP for reasons

which become clear upon examining their proofs. The usefulness of the

undecidability of these two problems becomes apparent later in the thesis

when we reduce them to show new undecidability proofs of important matrix

semigroup problems.

We then introduce two models of computation, namely, Turing machines

and two-counter Minsky machines. A method of encoding these computa-

tional devices within two words will be shown and this allows us to obtain

results later in the chapter. In fact, the simulation of a Turing machine via

two words is exactly the way pcp can be shown to be undecidable. The

results of this chapter and some from Chapter 4 were presented in [9]:

• P. Bell and I. Potapov, Periodic and Infinite Traces in Matrix Semi-

groups, Technical Report, The University of Liverpool, 2007.

Chapter 4, “Integral to Complex Matrix Semigroups”, begins the dis-

cussion of matrix semigroups problems on number fields up to the rational

complex numbers 3. We show that the membership problem for a scalar

matrix in an integral matrix semigroup is an undecidable problem. A scalar

3i.e., integers, rationals, complex rationals but excluding the quaternions
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matrix is one with a particular value k on each element of the main diagonal

and 0 elsewhere. Such a matrix is important since it scales all matrices or

vectors by an equal amount. These types of matrices occur in many ap-

plications due to this property. For the proof of this theorem we use the

Index Coding PCP discussed in Chapter 3. We presented this paper at the

Developments in Language Theory conference (DLT05) [5] and subsequently

published in the Theoretical Computer Science journal, [7]:

• P. Bell, I. Potapov, On the Membership of Invertible Diagonal Matri-

ces, Developments in Language Theory (DLT05), LNCS 3572, 146-157,

2005.

• P. Bell, I. Potapov, On the Membership of Invertible and Diagonal

Scalar Matrices, Theoretical Computer Science, 372:37-45, 2007.

We then move to a problem which upon initial examination appears

somewhat contrived but actually has links to several areas, namely that

of determining whether in a particular finitely generated integral matrix

semigroup any matrix has a zero in the top right element. The problem

is often named the Zero in the Upper Right Corner Problem and is related

to Skolem’s problem on linear recurrences as is shown in Chapter 6 and

the related Zero in the Upper Left Corner Problem was used in the proof

of the mortality problem, see [25]. We reduce the dimensions of the two

matrices needed for undecidability with an encoding technique which may

be useful in other areas. We also use this technique to reduce the dimensions

needed for the undecidability of the vector reachability problem to just 11 for

semigroups generated by two rational matrices. These results were presented

at the Developments in Language Theory 2006 conference and are currently

awaiting publication in a special issue of Theoretical Computer Science, see

[6, 8]:

• P. Bell, I. Potapov, Lowering Undecidability Bounds for Decision Ques-

tions in Matrices, Developments in Language Theory (DLT06), LNCS
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4036, 375-385, 2007.

• P. Bell, I. Potapov, On Undecidability Bounds for Matrix Decision

Problems, Special Issue of Theoretical Computer Science, (accepted

for publication), 2007.

Next we move to the problem of determining whether any matrix in a ra-

tional complex matrix semigroup is diagonal. Clearly we can see similarities

in the problem description to that of the scalar matrix problem mentioned

above however the scalar matrix problem looks for a single particular matrix

but there may also be other diagonal matrices which are in the semigroups

which do not correspond to correct solutions of the pcp instance. Thus we

cannot prove undecidability for any diagonal matrix using that particular

method. The problem was given in [14] and the decidability status was

said to be an open problem in any dimension. We show it is undecidable

for four-dimensional rational complex matrix semigroups using the Fixed

Element PCP of Chapter 3.

We then study several vector reachability problems and specifically the

Vector Ambiguity Problem, the precise definition of which we leave for Sec-

tion 2.3. At this point we then show how to simulate the previously men-

tioned computational models within a matrix semigroup in order to derive

results on the undecidability of properties of the structure of matrix semi-

groups such as the Recurrent Matrix Problem.

The intersection emptiness problem for two semigroups is then discussed

and undecidability results are shown similar to those studied by A. Markov

[42]. This problem can roughly be stated as “Given two finitely generated

semigroups S, T , is the intersection of these two semigroups empty? I.e. is

|S ∩ T | = 0?”. The results on semigroup intersections are from [4]:

• P. Bell, A note on the emptiness of semigroup intersections, Funda-

menta Informaticae, 79:1-4, 2007.
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Chapter 5, “Quaternion Matrix Semigroup Problems”, concerns compu-

tational problems on quaternion matrices which can be thought of as an

extension to complex numbers which retain associativity but lose the com-

mutativity property. Even more exotic number systems exist for any dimen-

sion which is a power of 2 however, after the four-dimensional quaternions,

these numbers systems (starting from the 8-dimensional octonions) lose the

property of associativity with their multiplication. Since semigroups require

associativity by their definition, when using multiplication as the binary

operator, the quaternions are the most abstract number system we may use.

For this reason we study computational problems on quaternion and

quaternion matrix semigroups since in some ways this gives a more complete

understanding of these problems. We start the chapter with an introductory

discussion on the quaternions and then move to word morphisms. We then

show a monomorphism γ : Σ∗ 7→ H(Q) between words and quaternions. This

result allows us to encode word problems and show undecidability for several

results such as membership, vector reachability, freeness, the existence of

any diagonal matrix in the semigroup and semigroup intersection emptiness

problems. We can also use the result to derive a free group of complex

unitary matrices. We presented the majority of the results of this chapter

in [10]:

• P. Bell, I. Potapov, Reachability Problems in Quaternion Matrix and

Rotation Semigroups, Mathematical Foundations of Computer Science

(MFCS), accepted for publication, 2007.

In Chapter 6 we consider matrix interpretations of Skolem’s problem.

We show the well known result that Skolem’s problem can be interpreted as

the zero in the upper right corner problem but we also show it is equivalent

to the zero in the upper left corner problem. This proves useful since we

can then show that Skolem’s problem can be reduced to an instance of the

Mortality problem on a semigroup generated by two matrices.
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The results of this thesis were presented at the British Colloquium

of Theoretical Computer Science (BCTCS 2005), Developments in Lan-

guage Theory conference (DLT 2005, DLT 2006), Workshop on Algorithms

on Words (WAW 2007), Mathematical Foundations of Computer Science

(MFCS 2007) and several internal seminars in the Department of Computer

Science at the University of Liverpool.



Chapter 2

Preliminaries

In this chapter we shall outline the introductory material from number the-

ory, matrix theory, group theory and abstract algebra that will be required

in this thesis. We try to give full definitions when possible for completeness

and refer to the literature for any concepts not fully defined. A rather more

complete introduction to quaternions is also given since this subject is per-

haps not as widely known or studied in the field. We study computational

problems on quaternions and quaternion matrices in Chapter 5.

We shall also define a general set of problems on matrix semigroups which

will be studied extensively throughout this thesis with different constraints.

To a large extent, all the problems studied will fall into one of these general

categories.

The well known connection between binary words and matrices will also

be shown and a selection of 2 × 2 free matrix semigroups and groups will

be given. This will prove invaluable in many of the proofs of this paper and

we collect them here for reference. The different homomorphisms between

words and matrices have different properties which will aid us in later proofs.

16
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2.1 Definitions

We use the standard notations N,Z,Q,C for the sets of natural numbers

(including 0), integers, rationals and complex numbers respectively. We

denote by C(Q) the field of rational complex numbers, i.e., numbers of the

form a + bi where a, b ∈ Q and i =
√
−1. This avoids the problem of how

to input real numbers which do not have a finite representation.

Where we wish to be more general and not restrict ourselves to a specific

number system, we shall use the notation F to refer to an arbitrary ring

(defined below).

A set is a collection of distinct objects (called elements of the set). Given

two finite sets, for example, A = {w, x, y} and B = {x, y, z}, the union of

A and B is denoted by A ∪ B = {w, x, y, z} and is the set of objects from

either set A or B (discounting multiplicities). The intersection of sets A

and B is denoted by A ∩ B = {y, z} and is the set of objects appearing in

both A and B.

The cardinality of a set A = {a1, a2, . . . an} is denoted by |A| and is

defined as the number of objects in the set A, thus |A| = n (note that we

do not allow multiple copies of the same element in the set).

2.1.1 Matrix Theory

We denote an m × n matrix over a ring F by Fm×n. Actually, we shall

almost exclusively be dealing with square matrices where m = n. We shall

use basic properties of matrices which are outlined below. See [31] for a

more thorough treatment. We denote by In the n× n identity matrix :

In =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1




For a matrix M ∈ Fn×n we denote the element in the i’th row and j’th



2.1. Definitions 18

column by M[i,j] ∈ F. For a matrix M , we denote the transpose ofM byMT .

This is obtained by exchanging rows for columns, i.e., setting M[j,i] = M[i,j].

A row vector x is a 1 × n matrix x = (x0, x1, . . . , xn−1). A column

vector is the transpose of a row vector and of dimension n× 1. Two vectors

x = (x0, x1, . . . , xk)
T , y = (y0, y1, . . . , yk)

T are said to be orthogonal if

xT y = (x0, x1, . . . , xk)(y0, y1, . . . , yk)
T =

k∑

i=0

xiyi = 0.

If the vectors x, y are both of unit length, i.e.,
∑k

i=0 x
2
i =

∑k
i=0 y

2
i = 1, and

also orthogonal, then they are said to be orthonormal.

The determinant of a matrix M is denoted by det(M). We may define

it inductively using the Laplace expansion by minors. Given a matrix A =

[aij ] ∈ Fn×n where F is an arbitrary ring, then let Ãij ∈ F(n−1)×(n−1) denote

the submatrix of A with row i and column j deleted. Assume that the

determinant is already defined on F(n−1)×(n−1), then let:

det(A) =

n∑

j=1

(−1)i+jaijdet(Ãij)

for all 1 ≤ i ≤ n and define that the determinant of a 1 × 1 matrix is the

single value in the matrix. See also [31] for more details. The important

property that we shall require is that the determinant is multiplicative:

det(AB) = det(A) · det(B); A,B ∈ Fn×n

A matrix M is invertible (i.e., has an inverse, M−1, such that MM−1 =

I) iff det(M) 6= 0. Otherwise M is called singular or non-invertible. A

matrix D is said to be diagonal if D[i,j] = 0 whenever i 6= j, i.e., all off

diagonal elements are zero. A matrix T is said to be upper triangular if

T[i,j] = 0 whenever j < i, i.e., the lower triangular part of the matrix

(excluding the leading diagonal) is zero.

Given a matrix M ∈ Fn×n, a non-zero vector x ∈ Fn such that Mx = λx,

where λ ∈ C, is called an eigenvector . The scalar λ is called an eigenvalue
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of the matrix M . In general, the matrix M may have up to n different

eigenvalues but it may have duplicates. We denote by σ(M) the set of

eigenvalues of M . This is called the spectrum of M . The spectral radius of

M is the non-negative value ρ(M) = max{|λ| : λ ∈ σ(M)}.
If Mx = λx then (λI−M)x = 0. Since x is not the zero vector, (λI−M)

is singular, thus det(λI−M) = 0. This gives a degree n polynomial, named

the characteristic polynomial, the roots of which are the eigenvalues of M .

Given two matrices A ∈ Fi×j and B ∈ Fk×m then the Kronecker product

of A and B, denoted by A⊗B is defined by:

A⊗B =




A[1,1]B · · · A[1,j]B
...

. . .
...

A[i,1]B · · · A[i,j]B


 ∈ Fik×jm.

We shall require the mixed-product property of Kronecker products:

Lemma 2.1. [32] Let A ∈ Fm×n, B ∈ Fp×q, C ∈ Fn×k and D ∈ Fq×r. Then

(A⊗B)(C ⊗D) = AC ⊗BD.

Given two matrices A ∈ Fm×m and B ∈ Fn×n, the direct sum of A and

B, denoted by A⊕B is given by:

A⊕B =




A[1,1] · · · A[1,m] 0 · · · 0
...

. . .
...

...
. . .

...

A[m,1] · · · A[m,m] 0 · · · 0

0 · · · 0 B[1,1] · · · B[1,n]

...
. . .

...
...

. . .
...

0 · · · 0 B[n,1] · · · B[n,n]




∈ F(m+n)×(m+n).

It is easily shown that det(A ⊕ B) = det(A) · det(B) by the definition

of the determinant.

2.1.2 Group Theory

A semigroup is denoted by (S , ·) where S is a (possibly infinite) set of

elements and · is an associative binary operation such that if a, b ∈ S then
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a ·b ∈ S . We usually omit · and simply write ab. It is also a standard abuse

of notation to refer to the semigroup itself by S . We call the minimal set

of elements G such that any element of S can be expressed as a product of

elements of G the generator of the semigroup S . If each such factorisation

is unique, we call the semigroup free.

If there exists an element e ∈ S such that for all x ∈ S , we have

that xe = ex = x, then e is called the identity element and S is then

called a monoid denoted by (S , ·, e). It can be proven that the identity

element e is unique. Furthermore, if for all x ∈ S there exists a y ∈ S

such that xy = yx = e then S is called a group (each element has an

inverse). If · is also commutative (i.e., ab = ba for all a, b ∈ S ) then the

above structures are called a commutative semigroup, commutative monoid

and an Abelian group respectively. If each factorisation of elements of S

is unique with respect to the generator of the group for reduced products

(where we discount consecutive inverse elements), then the group is said to

be free.

A semi-ring is a set S , with two operations defined on it, denoted +

and · and two distinct elements 0, 1 such that (S ,+, 0) is a commutative

monoid and (S , ·, 1) is a monoid. If (S ,+, 0) is an Abelian group then S

is known as a ring . If (S \ {0}, ·, 1) forms an Abelian group as well, then

S is a field [1].

A division ring is a ring in which each element has a multiplicative

inverse. We can see that a division ring is thus similar to a field but with-

out the requirement of multiplicative commutativity. We shall see that the

quaternions form a division ring but not a field since they have a non-

commutative multiplication. Division rings are also sometimes known as

skew fields or non-commutative fields in the literature but we shall not use

this terminology since it is non standard.



2.1. Definitions 21

2.1.3 Abstract Algebra

The structures discussed in Section 2.1.2, such as semigroups, groups, fields

etc., are known collectively as algebraic structures (note that the list of

structures given is by no means complete). We shall utilise functions or

mappings between equivalent algebraic structures which preserve certain

properties.

Given two algebraic structures A,B of the same type, we define a func-

tion ψ mapping elements of A (called the domain) to elements of B (called

the codomain) by ψ : A 7→ B. If each element of A maps to a distinct

element of B, i.e., ψ(x) = ψ(y) ⇒ x = y, then ψ is said to be injective. If,

for each element y ∈ B, there exists some x ∈ A such that ψ(x) = y, then

ψ is said to be surjective. A function which is both injective and surjective

is called bijective.

A homomorphism is a mapping ψ between two algebraic structures of

the same type A,B such that ψ(x ∗ y) = ψ(x) ◦ ψ(y) for all x, y ∈ A

where ∗ is the binary operator of A and ◦ is the binary operator of B.

A monomorphism is an injective homomorphism and an isomorphism is a

bijective homomorphism.

2.1.4 Finite Words

Given an alphabet Γ = {a0, a1, . . . , ak} we define a finite word, w, over the

set Γ by w = w0w1 · · ·wn ∈ Γ∗. Given two words, u = u0u1 · · · um and

v = v0v1 · · · vn over the same alphabet, u, v ∈ Γ∗, the concatenation of u

and v, written u · v (or uv for brevity) is given by:

uv = u0u1 · · · umv0v1 · · · vn ∈ Γ∗.

The reverse of word w = w0w1 · · ·wn is written wR and is defined by

wR = wn · · ·w1w0. The empty word is denoted by ε and signifies a word

with 0 letters. The notation |w| is used for the length of word w, thus for

the word w = w0w1 · · ·wn, clearly |w| = n+ 1 and also |ε| = 0.
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The inverse of a letter, a is denoted by either a−1 or a (depending which

is clearer in the proof). The inverse of a word w = w0w1 · · ·wn may be

defined as: w = w−1 = wn · · ·w1 · w0, which is the reverse of w with each

letter replaced by its inverse. This is the inverse of w since clearly:

ww = w0 · w1 · · ·wn · wn · · ·w1 · w0 = ε.

2.1.5 Hypercomplex Numbers

Rational complex numbers, which we denote by C(Q), are of the form a+ bi

where a, b ∈ Q and i =
√
−1. There is a natural extension to complex

numbers which gives hypercomplex numbers where we allow more imaginary

parts.

W. R. Hamilton discovered that by using four dimensions, we can extend

complex numbers to form a division ring with similar properties to the com-

plex numbers. In fact, using the so called “Cayley-Dickson construction”,

it is possible to define such an algebra in any dimension which is a power of

two.

In a similar style to complex numbers, rational quaternions, which are

hypercomplex numbers, can be written ϑ = a+bi+cj+dk where a, b, c, d ∈ Q.

To ease notation let us define the vector: µ = (1, i, j,k) and it is now clear

that ϑ = (a, b, c, d) ·µ where · denotes the inner or ‘dot’ product. We denote

rational quaternions by H(Q). A quaternion with real part 0 is called a pure

quaternion and the set of such rational quaternions is denoted H(Q)0.

Quaternion addition is simply the componentwise addition of elements

as in complex numbers, i.e.,

(a1, b1, c1, d1)µ+ (a2, b2, c2, d2)µ = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)µ

It is well known that quaternion multiplication is not commutative. Mul-
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tiplication is completely defined by the equations

i2 = j2 = k2 = −1,

ij = k = −ji,

jk = i = −kj,

ki = j = −ik

.

Thus for two quaternions ϑ1 = (a1, b1, c1, d1)µ and ϑ2 = (a2, b2, c2, d2)µ,

we can define their product as:

ϑ1ϑ2 = (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k
.

which can be verified by laborious multiplication using the above equations.

In a similar way to complex numbers, we define the conjugate of ϑ =

(a, b, c, d) · µ by ϑ = (a,−b,−c,−d) · µ. We can now define a norm on

the quaternions by ||ϑ|| =
√
ϑϑ =

√
a2 + b2 + c2 + d2. The inverse of a

quaternion is given by:

ϑ−1 =
ϑ

||ϑ||2
since we see that

ϑϑ−1 =
ϑϑ

||ϑ||2 =
||ϑ||2
||ϑ||2 = 1

Any non zero quaternion has a multiplicative (and obviously an additive)

inverse [38]. Note also that ϑI = (1, 0, 0, 0)µ ∈ H(Q) is the multiplicative

identity quaternion which is clear from the multiplication shown above. The

other properties of being a division ring can be easily checked.

A unit quaternion has norm 1 and corresponds to a rotation in three-

dimensional space. Given a unit vector ~r = (r1, r2, r3) and a rotation angle

0 ≤ θ < 2π, we would like to find a quaternion transformation to represent

a rotation of θ radians of a point P ′ = (x, y, z) ∈ Q3 about the ~r axis. To

facilitate this, we require an encoding of P ′ as a pure quaternion P , namely

P = (0, x, y, z) · µ ∈ H(Q)0.

Let us define a function ψq : H(Q) 7→ H(Q) by ψq(P ) = qPq−1 q, P ∈
H(Q) and ||q|| = 1. If q is correctly chosen to represent a rotation of θ about
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a unit axis r, then this function will return a pure quaternion of the form

(0, x′, y′, z′) · µ where (x′, y′, z′) ∈ Q3 is the correctly rotated point.

It is well known (see, for example, [38]) that:

ϑ =

(
cos

θ

2
, ~r sin

θ

2

)
· µ

represents a rotation of angle θ about the ~r axis. Therefore using ψϑ(P ) as

just described rotates P as required. This will be used in the next section.

All possible unit quaternions correspond to points on the three-sphere.

Any pair of unit quaternions p, q represent a four-dimensional rotation.

Given a point x ∈ H(Q), we define a rotation of x, by pxq [53]. Also we use

the notation SU2 to denote the special unitary group (the set of all 2 × 2

unitary unimodular matrices), the double cover of SO3 which is the special

orthogonal group (the set of all 3 × 3 orthogonal unimodular matrices).

2.2 Connections between Words and Matrices

There is a strong connection between word problems and matrix prob-

lems. In this section we shall emphasise this connection and show several

monomorphisms between words or set of words and low dimensional ma-

trices. Obviously, since the complex numbers are commutative, we cannot

hope to store a word within a single complex number when using standard

multiplication for concatenation, however we shall show that words can be

stored in 2-dimensional matrices even over the integers.

We shall only be considering binary words in this section and most of

the thesis, since we can usually use a simple homomorphism from arbitrary

alphabets to binary alphabets. For example, given two alphabets, Γ =

{x1, x2, . . . xk} and Σ = {a, b}, we may define the homomorphism ψ : Γ∗ 7→
Σ∗ by ψ(xi) = aib for example. This is an injective homomorphism (thus a

monomorphism) and can usually be used to reduce problems over arbitrary

alphabets to problems on binary alphabets.
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We shall give examples of both free semigroups and free groups (where

we require the presence of inverse letters also). These morphisms will be

used in several places throughout this thesis and all but ζ below are well

known from the literature. We arrived at the freeness of ζ through studying

quaternions, see Chapter 5.

2.2.1 Semigroup Monomorphisms

Given a binary alphabet Σ = {a, b}, let γ1 : Σ∗ 7→ Z2×2 be defined by:

γ1(a) =

(
1 1

0 1

)
, γ1(b) =

(
1 0

1 1

)

then γ1 is a monomorphism.

Next we shall give a pair of monomorphisms which will be useful in

Section 4.4. Let ρ, τ : Σ∗ 7→ Z2×2 be monomorphisms defined as:

ρ(a) =

(
2 1

0 1

)
, ρ(b) =

(
2 2

0 1

)
τ(a) =

(
1 1

0 2

)
, τ(b) =

(
1 2

0 2

)
.

The interesting properties of ρ and τ are that they are both integral and

upper triangular. Furthermore, since element [2, 2] of ρ(w1) and element

[1, 1] of τ(w2) are equal to 1 for any w1, w2 ∈ Σ∗, when we form the direct

product ρ(w1)⊕τ(w2), we can join this element together and map into N3×3

(which will also be upper triangular) rather than N4×4. See Section 4.4 for

further details.

2.2.2 Group Monomorphisms

Given a binary alphabet with its inverses Σ = {a, b, a, b} forming a group

〈Σ, ·〉. Let λ : Σ∗ 7→ N2×2 be defined by:

λ(a) =

(
1 2

0 1

)
, λ(b) =

(
1 0

2 1

)
, λ(a) =

(
1 −2

0 1

)
, λ(b) =

(
1 0

−2 1

)
.
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It is well known from the literature that λ is an injective homomorphism,

i.e., the group generated by {λ(a), λ(b), λ(a), λ(b)} is free.

In Chapter 5 we shall deal with computational problems on rational

quaternions. The theorems developed there allow us to define a mapping

ζ : Σ∗ 7→ C(Q)2×2 where:

ζ(a) =

(
3
5 + 4

5 i 0

0 3
5 − 4

5 i

)
, ζ(b) =

(
3
5

4
5

−4
5

3
5

)
,

ζ(a) =

(
3
5 − 4

5 i 0

0 3
5 + 4

5 i

)
, ζ(b) =

(
3
5 −4

5
4
5

3
5

)
.

We prove that ζ is an injective homomorphism in Section 5.2.1 and thus the

group generated by {ζ(a), ζ(b), ζ(a), ζ(b)} is free. Note that these matrices

are unitary.

2.3 Computational Problems in Matrix Semigroups

We shall primarily be dealing with computational problems on matrix semi-

groups. There are a general set of problems which we can consider on such

structures which we shall now outline.

Problem 2.2. Membership Problem - Given a semigroup S generated

by a finite set G , and some single element X. Is it true that X ∈ S ?

We ask these computational problems for a class of instances rather than

a single specific instance. For example, we might ask “Given a generator of

10 integral matrices of dimension 4 generating a semigroup S , does there

exist an algorithm to determine if X ∈ S where X ∈ Z4×4?”. We wish to

either find a single algorithm which can take any instance of this class and

return the answer “true” or “false” after some finite amount of time or else

we wish to prove that no such algorithm exists.
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Problem 2.3. Vector Reachability Problem - Given a semigroup

of matrices S , generated by a finite set G ⊂ Fn×n and two column vectors

x, y ∈ Fn. Does there exist some matrix M ∈ S such that Mx = y?

It should be clear that in the vector reachability problem the matrix M

is not unique. For example, we see that:

(
1 1

0 1

)(
1

1

)
=

(
1
2

3
2

−1 2

)(
1

1

)
=

(
2

1

)

Problem 2.4. Scalar Reachability Problem - Given a semigroup

of matrices S , generated by a finite set G ⊂ Fn×n two column vectors

x, y ∈ Fn and a scalar r ∈ F. Does there exist some matrix M ∈ S such

that xTMy = r?

Again, it is clear that M is not unique in the scalar reachability problem.

Problem 2.5. Semigroup Freeness Problem - Given a finite set of

matrices G generating a semigroup S , does every element M ∈ S have

a single, unique factorisation over G ?

As an example of the Semigroup Freeness Problem, imagine we

have a set of two matrices G = {A,B} generating a semigroup S . Consider

the binary tree of products of G in Figure 2.1.

If for example the two elements marked, AAB and BBA, are equal then

the matrix they are equal to does not have a unique factorisation over G . If

every matrix in the infinite binary tree is unique, then the semigroup is free.

We study the freeness of quaternion matrix semigroups in Theorem 5.8 of

Section 5.3.
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I

A B

AA AB BA BB

AAA AAB ABA ABB BAA BAB BBA BBB

Figure 2.1: Binary Tree of Two Matrices

Problem 2.6. Vector Ambiguity Problem - Given a semigroup

S ⊆ Fn×n and an initial vector u ∈ Fn×n. Let V be a set of vectors

such that V = {v : v = Mu;M ∈ S}. Does S and u generate an am-

biguous set of vectors? In other words the question is whether for every

vector of set V there is a unique matrix M ∈ S such that Mu = v?

This problem can be thought of as the freeness problem for a set of

vectors formed by multiplication of each matrix is a finitely generated semi-

group. We show that this problem is undecidable in Theorem 4.12 of Sec-

tion 4.2.

Throughout this thesis we shall study these and related decision prob-

lems on algebraic structures. Our main aim is to explore the boundaries of

decidability for the problems. This means we would either like to present an

algorithm to solve the problems or to prove that no algorithm exists which

will always halt and give the correct answer to the decision problem. In the

next chapter we shall therefore begin the discussion of undecidability for

word problems by embedding computational models. This will allow us in

later chapters to encode such problems within matrix semigroups.



Chapter 3

Decision Problems for Words

In this chapter we shall begin exploring computability theory and introduce

the fundamental mathematical concept of undecidability which will feature

heavily throughout this thesis. The problems we shall encounter will be

defined on words. Since we showed the strong correspondence between word

problems and matrix problems in the last chapter, we will then be able

to interpret the undecidable problems of this chapter in terms of matrix

problems in later results.

One of the central problems that we will utilise several times called Post’s

correspondence problem will be shown and proven to be undecidable via the

standard encoding of a Turing machine within it such that the instance has

a solution if and only if the corresponding Turing machine halts. This may

be familiar and a standard result, however we give a simple proof of the

theorem in Section 3.3.2, both for completeness and also since the details of

the proof itself will be required for a later result.

Two models of computation will be shown, namely “Turing machines”

and “Two-counter Minsky machines”. The concept of a universal machine

will be introduced and will play a role in a later theorem.

29
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3.1 Algorithmic Undecidability

A decision problem takes an instance of a problem in some representation,

performs a calculation on the instance data using a computational device

(such as a Turing machine [49]) and returns the answer “true” or “false”.

Given a class of instances of a decision problem, then the problem is

said to be decidable for that class if there exists an algorithm A that ‘halts’

after some finite amount of time on every input of the class and returns the

correct “true” or “false” answer to the decision problem.

If, for some decision problem, we can show that no such algorithm ex-

ists, the problem is said to be undecidable. The natural question then is

“how do we prove that no such algorithm can exist for a particular class of

problems?”.

Alan Turing, building upon previous work by Kurt Gödel, famously

proved that the halting problem is undecidable. He then reduced this to the

“Entscheidungsproblem” (German for “decision problem”) posed by David

Hilbert. The idea of algorithmic reduction is a key step in showing unde-

cidability and we shall give an informal description of the method (see [49]

for more details).

Given two problems A and B, a reduction is a way of converting problem

A to problem B such that a solution to problemB gives a solution to problem

A. We say A is reducible to problem B. Thus, intrinsically problem B is at

least as hard as problem A. If we know that problem A is “hard” in some

formal sense, then so is problem B.

We shall show an intuitive example of this. Imagine we have a problem

“Factor” which takes a natural number and returns its full factorisation.

We also have a second problem “Prime” which takes a natural number and

returns “true” or “false” (it is a decision problem) depending whether the

number is a prime. Obviously “Prime” is reducible to “Factor” since if

we can factor a number then it is prime iff the number itself and 1 are its

factors.
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We shall heavily utilise a well known undecidable problem known as

Post’s correspondence problem (pcp). By reducing this problem to other

problems we consider, we can show that they are also undecidable. In fact,

Post’s correspondence problem is a reduction from the halting problem dis-

cussed above but clearly reduction is transitive.

3.2 Post’s Correspondence Problem (PCP) and

Variants

We shall use Post’s correspondence problem several times throughout this

thesis and therefore we shall give two equivalent definitions of the problem.

Sometimes one definition may be easier to visualise than the other or may

give a simpler proof but it is clear that the two formulations are essentially

the same.

Problem 3.1. PCP Version 1 - Given a binary alphabet Σ = {a, b}
and a finite set of pairs of words:

P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊂ Σ∗ × Σ∗.

Does there exist a finite sequence s = (s1, s2, . . . , sk) of indices such that

us1
us2

· · · usk
= vs1

vs2
· · · vsk

?

and the equivalent formulation of the problem:

Problem 3.2. PCP Version 2 - Given a finite alphabet Γ, a binary

alphabet Σ and two homomorphisms h, g : Γ∗ 7→ Σ∗. Does there exist any

word w ∈ Γ+ such that h(w) = g(w)?

Once again we state that Problems 3.1 and 3.2 are equivalent as can

easily be seen. The instance size of Post’s correspondence problem (pcp)



3.2. Post’s Correspondence Problem (PCP) and Variants 32

is the number of pairs of words n in Problem 3.1 or the cardinality of Γ in

Problem 3.2. These two values are also equivalent in each problem regardless

of which definition of the problem we use.

Post’s correspondence problem was shown to be undecidable in 1946 by

Emil Post [46]. In fact it is undecidable even when |Γ| = 7 as was shown

in [43] and it is known to be decidable when |Γ| = 2 [22]. The decidability

status when 3 ≤ |Γ| ≤ 6 are currently open problems. We denote by nPCP

the minimum instance size of pcp which is known to be undecidable, thus

nPCP currently equals 7. We show a standard proof of the undecidability of

pcp in Section 3.3.2 after we have introduced the mathematical model of a

Turing machine.

An example of Post’s correspondence problem - Given the set of

pairs of words P = {P1, P2, P3} such that:

P1 =

[
aab

a

]
, P2 =

[
ba

a

]
, P3 =

[
ab

bbaabb

]
,

where we have placed the first word on top and the second word on the

bottom to make the example clearer. Now take the sequence P1P2P3P2

which gives: [
aab

a

] [
ba

a

] [
ab

bbaabb

] [
ba

a

]
.

Reading the top and bottom words we see that they are equal thus this is a

correct solution to pcp.

3.2.1 Claus Instances of PCP

We shall now describe a variation of Post’s correspondence problem (pcp)

which allows us to use a smaller instance size in several problems. We

shall state the theorem without proof and refer the interested reader to the

original recent paper [28]. The authors of that paper name such instances

of pcp as Claus Instances of pcp after the author of a paper (V. Claus) who

shows how to encode a semi-Thue system within pcp instances of small size
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[20]. This result was later used by Y. Matiyasevich and G. Sénizergues to

show that pcp(7) is undecidable.

Problem 3.3. Claus Instances PCP: Given a finite set of letters

Γ = {x1, x2, . . . , xn}, a binary alphabet Σ = {a, b}, and a pair of ho-

momorphisms h, g : Γ∗ 7→ Σ∗. Does there exist a solution x1wxn where

w ∈ {x2, x3, . . . , xn−1}∗? I.e. does h(x1wxn) = g(x1wxn)?

Note that this means the first and last letters, x1 and xn respectively, are

used just once and their positions within the solution are known in advance.

The following result was studied in [28] and originally shown in the works

of [20] and [43]:

Theorem 3.4. [20, 28, 43] Problem 3.3, Claus Instances PCP is unde-

cidable with 7 letters in the domain, i.e., |Γ| = 7.

In fact, even Post’s original proof of the undecidability of pcp used a

similar formulation whereby we fix the first and last letters of the domain

which are used just once in (respectively) the first and last positions of the

solution. It is often possible to use this problem instead of the usual version

of pcp in order to derive lower dimensions of undecidability in many cases.

Indeed, we use this theorem several times throughout this thesis. Actually,

by studying the proof of [43] where the authors prove pcp is undecidable

with just 7 words, the authors encode a semi-Thue system exactly in the

above way. Thus whenever we use the result of [43] we are in fact using

these “Claus instances” already.

3.2.2 Index Coding PCP

A new coding technique for Post’s correspondence problem (pcp) which we

call Index Coding PCP will be of use several times throughout this thesis.

We developed this coding in order to show the scalar matrix membership
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is undecidable in matrix semigroups. It appears to be of separate interest

however since it has been useful in other contexts [10] and was recently

studied by V. Halava, T. Harju and M. Hirvensalo [28].

Problem 3.5. Index Coding PCP: Given a binary alphabet Σ =

{a, b}, inverse alphabet Σ = {a, b} and a finite set of pairs of words:

{(ui, vi)|1 ≤ i ≤ n} ⊂ (Σ ∪ Σ)∗ × (Σ ∪ Σ)∗.

Does there exist a finite sequence s = (s1, s2, . . . , sk) such that exactly one

sj = n and us1
us2

· · · usk
= vs1

vs2
· · · vsk

= ε?

Theorem 3.6. The Index Coding PCP (Problem 3.5) is undecidable.

We shall utilise this theorem several times throughout this thesis. By

examining and proving the result purely in terms of words, we can later use

the proof in matrix problems with reasonably straight-forward encodings.

We use a similar style to that of [28] by proving the result in terms of words

rather than just matrices, but we do not use Claus instances and thus the

number of matrices in the generator will be somewhat larger than required.

See [28] for details.

Proof. We shall first give an outline of the proof followed by the detailed

explanation. The proof is somewhat technical in nature but not difficult

to follow once the general idea is understood. Given a standard version of

pcp, we try to find a sequence s = (s1, s2, . . . , sk) such that us1
us2

· · · usk
=

vs1
vs2

· · · vsk
but without using inverse alphabet Σ. If we invert the second

word, we see that:

us1
us2

· · · usk
· vsk

· · · vs2
vs1

= ε.

This means we only need store one word rather than two, and if some non-

empty sequence equals ε, we have a solution to the pcp. However, we need
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to ensure that the sequence of indices is also in the correct order and for

this we require the second word. With the encoding we outline below, the

first and second word will both equal ε in the case that we have a correct

solution to pcp.

We can think of the indices as being a stack, we push on each index of

the u word we use and then pop each once we start using v words. Using

our encoding, if there is ever an “error” (the sequence is not in the correct

order), then the word produced cannot ever equal ε after that. We shall

now give the details of the proof.

Given an instance of Post’s correspondence problem (pcp), i.e., a finite

set {(uj , vj) : 1 ≤ j ≤ n} ⊂ Σ∗ × Σ∗ where Σ is a binary alphabet. Define

the set of pairs of words P by:

P = {(ui, a
ib), (vi, a

ib), (ε, b), (⋆, b) : 1 ≤ i ≤ n}.

We use the mixed modification pcp where the first pair used is fixed, see

Section 3.3.2. For a technical reason, we also append ⋆ to the beginning of

u1 in the instance (which is then mapped into a unique binary sequence as

explained in the proof). We then put ⋆ under this same binary encoding

into the first element of the final pair of words (⋆, b). The reason for this

will become apparent later.

Let m = |P | = 2n + 2 and assume there exists some sequence s =

(s0, s1, . . . , sk) with each 1 ≤ si ≤ m, exactly one sj = m and Ps0
Ps1

· · ·Psk
=

(ε, ε) using pairwise concatenation. Let us consider the form the second word

must take.

Take the set of second words from pairs in P , i.e., S = {aib, aib, b, b : 1 ≤
i ≤ (n− 1)}. We shall prove that for all words w ∈ S+ such that w = ε and

w uses the final word (b) exactly once, w is a conjugate of the form :

w = (ai1b)(ai2b) · · · (aitb)(b)(aitb) · · · (ai2b)(ai1b)(b) = ε. (†)

Let us assume for now that both b and b are used only once in the second

word.
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Clearly w equals ε so we must only prove that any word w ∈ S+ con-

taining exactly one b and (b) equalling ε is of the given form.

Notice first that no product from A = {aib, aib : 1 ≤ i ≤ n} equals the

identity element. Thus if b and b are consecutive then the product contains

no element from A if it equals ε. Since the first words corresponding to b

and b are not inverse by the construction of the pcp, we can discount this

situation since the first word would not equal ε and we thus require that

at least one aib and aib type word from S is used. Assume then that the

product does contain elements from A and thus b and b are not consecutive.

Assume we have a product containing exactly one b and b in the second

word which equals ε. Clearly then we can write the product in the form:

x1x2 · · · xnby1y2 · · · ymb ;xi, yi ∈ A

by cyclically permuting the product (since it equals identity). If xn = aib for

some i, then we have xnb = aibb. No element of A can left or right multiply

to reduce this product and we cannot right multiply by the remaining b since

b and b would then be consecutive. Thus xn = aib for some i. This gives

the product xnb = ai. Now consider y1; if it equals ajb for some j, then we

get xnby1 = ai+jb. Since b has been used however, we cannot reduce this

further by right multiplications, thus y1 = ajb for some j.

Assume that i 6= j, then xnby1 equals either ai−jb if i > j or aj−ib if

j > i. The only way these can be reduced is to right multiply by b giving

ai−j or aj−i with both b and b now used. But now we must right multiply

by ai−jb or aj−ib respectively leaving a single b or b. But since we only have

one such element, it cannot reduce the product to ε; thus i = j.

Finally then we see that xn = aib and y1 = aib for some i. This gives the

central product xnby1 = b. We can continue this argument inductively and

see that the product must be a conjugate of the form given on the previous

page (†).
This therefore fixes the form of the second word in a sequence where

both words equal ε. Now we shall observe the form of the first word when
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the second word is of the form (†). It clearly must be:

⋆ui1ui2 · · · uitεvit · · · vi2 vi1 ⋆

From the mixed modification pcp we used, the first pair of words is fixed,

thus i1 = 1. Clearly then, this product equals ε if and only if ui1ui2 · · · uit =

vi1vi2 · · · vit if and only if the mixed modification pcp instance has a solution.

Thus the problem is undecidable as required.

In our proof we required that the last two pairs of words were use only

once instead of only the last pair, however it was proven in [28] that using a

different encoding and Claus instances of pcp, we can in fact fix that only

one pair of words must be used once and also reduce the number of pairs of

words required.

Corollary 3.7. [28] The Index Coding PCP is undecidable for 2nCLAUS

pairs of words were one specific pair is used only once in any product.

We shall now give an example of Index Coding PCP to show how an

instance of the standard pcp can be adapted to fit into this problem using

the ideas present in the previous proof.

An example of Index Coding PCP - We will use the same initial

instance of pcp from the previous example and extend the instance set using

the instructions of Theorem 3.6. Let us define:

L1 =

[
⋆aab

ab

]
, L2 =

[
ba

aab

]
, L3 =

[
ab

aaab

]
M =

[ε
b

]
,

R1 =

[
a

ab

]
, R2 =

[
a

aab

]
, R3 =

[
bbaabb

aaab

]
N =

[
⋆

b

]
,

where according to the construction, u1, u2, u3 are stored in the first word

of L1, L2, L3 and v1, v2, v3 are stored in the first words of R1, R2, R3 re-

spectively. Thus since as in the previous example a correct solution was

P1P2P3P2, a correct solution in this example is L1L2L3L2MR2R3R2R1N .
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Note that, as required, N is used once. The first word of this product is

given by:

⋆aab ba ab ba ε a bbaabb a a ⋆ = ε,

as we expect. The second word in this product can be seen to be:

ab aab aaab aab b aab aaab aab ab b = ε,

again as expected. Thus if we have such a solution, the top and bottom

words will equal ε and correspond to it (so long as a specific element N is

used once in the solution).

3.2.3 Fixed Element PCP

We shall now detail another variant of Post’s correspondence problem (pcp)

which shall later be useful. It is similar to the Index Coding PCP but

with some interesting differences which allow us to directly show the un-

decidability of determining if there exists any diagonal matrix in a com-

plex matrix semigroup. The proof is also somewhat simpler than that of

Index Coding PCP since we avoid conjugates.

Problem 3.8. Fixed Element PCP - Given an alphabet Γ =

{a, b, a, b, ⋆} and a finite set of pairs of words over Γ,

P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊂ Γ∗ × Γ∗.

Does there exist a finite sequence of indices s = (s1, s2, . . . , sk) such that

us1
us2

· · · usk
= vs1

vs2
· · · vsk

= ⋆?

This variant of pcp is interesting since it is similar to the standard pcp

however instead of testing for a solution via equality checking for two arbi-

trary words, the solutions will have a specific form of a fixed letter ⋆.

Theorem 3.9. The Fixed Element PCP is undecidable.
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Proof. The instance set of Fixed Element PCP will now be defined. Given

an instance of pcp over Σ = {a, b} where the first and last pairs are used

exactly once 1:

P ′ = {(u1, v1), (u2, v2), . . . , (um, vm)} ⊂ Σ∗ × Σ∗

we shall define two sets L,R such that P = L ∪R:

L = {(⋆u1, ⋆∆bab), (ui, a
ib)} ⊂ Γ∗ × Γ∗ ; 2 ≤ i ≤ m (3.1)

R = {(vi,∆a
i b∆), (vm, b a

m b∆)} ⊂ Γ∗ × Γ∗ ; 1 ≤ i ≤ m− 1 (3.2)

Since we are looking for a product of pairs of words equal to (⋆, ⋆) and

⋆ /∈ Γ, then the first pair L1 = (⋆u1, ⋆∆bab) must occur exactly once. Let

us denote any such product (if it exists) as:

X = (⋆, ⋆) = X1X2 · · ·Xk ∈ 〈L ∪R〉.

It can be seen that X1 = L1, otherwise if Xj = L1 for some j > 1, then:

〈(L ∪R) \ {L1}〉 ∋ X1X2 · · ·Xj−1 = (ε, ε),

but this is impossible since clearly ε is not in the subsemigroup generated

by {bamb∆, aib,∆aib∆ : 1 ≤ i ≤ m− 1}, therefore the second word cannot

equal ε. This follows since the inverse of ‘b∆’ clearly cannot be found as

a prefix of any word in the subsemigroup and thus an element equal to ε

would have to begin using elements of the form aib. But this must eventually

concatenate with bamb∆ to reduce the word, and again we will have ‘b∆’ on

the right which then cannot be reduced. Therefore we must have:

X = L1X2 · · ·Xk = (⋆, ⋆).

Let us consider the second words, in order to determine the sequence

they must take to give ‘⋆’. We have the set of elements:

A = {⋆∆bab, bamb∆, a2b, . . . , amb,∆ab∆, . . . ,∆am−1b∆}.
1This is standard in proofs of undecidability of PCP, see the construction in [49]
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We know the first element is (⋆∆bab) which is used only once. We now show

that the only products equal to ‘⋆’ are of the form:

L1Li1Li2 · · ·LmRm · · ·Ri2Ri1R1, (3.3)

for some i1, i2, . . . , il ∈ {2, . . . ,m − 1}. Since (⋆∆bab) is the first element

used, assume that the next element is from R, i.e., of the form (∆aib∆)

for some 1 ≤ i ≤ m − 1 or (bamb∆). But this gives ‘(⋆∆bab)(∆aib∆)’ or

‘(⋆∆bam−1b∆)’ and both cannot be reduced by further right multiplications

since clearly from the set A, there is not any product of elements with a

‘∆b’ on the left hand side.

Thus, the only option is for the second element to be of the form (aib)

for 2 ≤ i ≤ m. Let j+1 be the first index at which we do not have an element

from L, thus the productX1X2 · · ·Xj is of the form: (⋆∆bab)(ai2b)(ai3b) · · · (aijb)

where 2 ≤ i2, i3, . . . , ij ≤ m. To reduce this product, the next element must

be (bamb∆) since this is the only element with a ‘b’ on the left. The product

of (aijb)(bamb∆) is am−ijb∆. If ij < m, then this will not reduce to ‘b∆’

and so the left ‘b’ will not cancel. Similarly to before, we cannot reduce this

product any further since the right hand element is ‘b∆’. Thus ij = m.

The next element to the right cannot be (bamb∆) since the left hand

letter does not cancel with ∆ and it will have ‘b∆’ on the right hand side

which cannot be canceled. Similarly, the next element cannot be of the form

(ak1b) since this would then give:

(⋆∆bab)(ai2b)(ai3b) · · · (aij )∆ak1b,

and again this is only reduced with (bamb∆), but

(aij )∆ak1b(bamb∆) = aij∆am−k1b∆,

and regardless of whether k1 = m, the product ends with ‘b∆’ which cannot

be reduced.

Thus, the next element must be of the form (∆ak2b∆) giving:

(⋆∆bab)(ai2b)(ai3b) · · · (aij )∆(∆ak2b∆)
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and the product does not end with ‘b∆’ if and only if k2 = ij−1, in which case

it ends with · · · aij−1∆. This continues inductively for each pair of elements

from the center outwards and we see that we finally reach ‘⋆’ if and only if

the product is of the form shown in Equation (3.3).

The first word corresponding to this is a correctly encoded PCP sequence

which equals ‘⋆’ if and only if it corresponds to a correct solution word,

completing the proof. Note that set P has 2 times the number of elements

as the set P ′. Since PCP was shown to be undecidable for 7 pairs of words

in [43] (even with the first and last pairs used only once), Fixed Element

PCP is undecidable for 14 pairs of words.

Let us consider a small example of the second word encoding for the

sequence of words 1, i1, i2,m. Following the above proof, we correctly obtain:

(⋆∆bab)(ai1b)(ai2b)(amb)(bamb∆)(∆ai2b∆)(∆ai1b∆)(∆ab∆) = ⋆.

3.3 Word Embeddings of Computational Models

The undecidability results for matrix semigroups we shall show will in gen-

eral use a reduction from Post’s correspondence problem (pcp) which sim-

ulates a Turing machine and thus deciding whether it has a solution is an

undecidable problem. In this section we will show other direct embeddings

of classical computational models such as Turing machines and two-counter

automata into matrix semigroups. The simulation is done via pairs of words

as in pcp, but in such a way that the termination of the computation is not

always required for analysis, which is similar to the idea of infinite pcp.

We shall convert these word problems into matrix problems in Sec-

tion 4.3. We shall then show that the proposed simulations can be used

as a new tool for the analysis of matrix semigroup structures. In particu-

lar, we reformulate several undecidable questions for the above models into

matrix semigroup problems. This is a different approach from standard un-

decidability results which may have far-reaching consequences and may help
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with some open problems that are difficult to explore by reduction directly

from the undecidability of Post’s Correspondence Problem.

3.3.1 Computational Models

Turing Machines - Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be a Turing ma-

chine, where Q is the finite set of states, Σ is the input alphabet, Γ is the

tape alphabet q0 is the initial state, qaccept is the accepting state, qreject is the

rejecting state and δ is the transition function. An instantaneous descrip-

tion of the Turing machine is given by s1s2 . . . sm1
qit1t2 . . . tm2

where each

sj, tj ∈ Γ and qi ∈ Q. This means that M is in state qi and s1s2 . . . sm1
are

the symbols to the left of the tape head and t1t2 . . . tm2
is to the right of the

tape head (or the words may be empty).

The transition function δ defines the next rule to apply depending which

state we are in and the next symbol read to the right of the tape head. The

rule can change the current state, write a new symbol to the right of the

tape head and then move left or right one step. If L denotes a left move and

R denotes a right move, then δ : Q× Γ 7→ Q× Γ × {L,R} is the transition

function. For example, let δ(qi, a) = (qj, b, R). This means, if we are in

state qi with symbol ‘a’ to the right, then we move to state qj, change the

‘a’ to a ‘b’ and move the tape head to the right. In terms of instantaneous

descriptions, this means “. . . qia . . .” will map to “. . . bqj . . .” under δ for

example.

Two-Counter Register Machine - In this section we describe a well

known model known as a Minsky machine (or register machine). Informally

speaking, a Minsky machine is a two-counter automata that can increment

and decrement counters by one and test them for zero. It is known that a

two-counter Minsky machine represents a universal model of computation

[44]. Being of very simple structure, Minsky machines are very useful for

proving undecidability results (see for example [36, 37, 40]).



3.3. Word Embeddings of Computational Models 43

It is convenient to represent a counter machine as a simple imperative

program M consisting of a sequence of instructions labelled by natural num-

bers from 1 to some L ∈ Z+. Any instruction is one of the following forms:

l: ADD 1 to Sk; GOTO l′;

l: IF Sk 6= 0 THEN SUBTRACT 1 FROM Sk; GOTO l′;

ELSE GOTO l′′;

l: STOP;

where k ∈ {1, 2} and l, l′, l′′ ∈ {1, . . . , L}.
The machine M starts executing with some initial non-negative integer

values in counters S1 and S2 and the control at instruction labelled 1. We

assume the semantics of all above instructions and of entire program is clear.

Without loss of generality one can suppose that every machine contains

exactly one instruction of the form l: STOP which is the last one (l = L).

It should be clear that the execution process (run) is deterministic and has

no failure. Any such process is either finished by the execution of L: STOP

instruction or lasts forever.

As a consequence of the universality of such computational model the

halting problem for Minsky machines is undecidable:

Theorem 3.10 ([44]). It is undecidable whether a two-counter Minsky ma-

chine halts when both counters initially contain 0.

3.3.2 Simulation of Computational Models

Turing Machine Simulation - We shall illustrate the simple encoding of

a Turing machine by a set of pairs of words as is standard in the proof of

Post’s correspondence problem [49].

Given a Turing machine M , our aim is to produce a set of pairs of words

P = {(u1, v1), (u2, v2), . . . , (un, vn)} such that there exists a finite sequence

of indices S = (i1, i2, . . . , ik) with each 1 ≤ ij ≤ n where ui1ui2 · · · uik =
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vi1vi2 · · · vik iff M halts on input v which is encoded in v1. The sequence S

we shall call a solution and corresponds to a halting configuration of M .

We may assume without loss of generality that M doesn’t attempt to

move its tape head to the left of an empty word which is an easy restriction to

impose. Furthermore, we currently assume the first pair used for a solution

is (u1, v1) and we remove this restriction later.

We shall now show a set of pairs of words simulating the Turing machine

M . Let w = w1w2 · · ·wf ⊂ Σ∗ be the input word. Then define the pair

(u1, v1) = (#,#q0w1w2 · · ·wf#) ∈ P . This is the initial configuration of

M . Now, for every a, b ∈ Γ and every qi, qj ∈ Q, with qi 6= qreject, if

δ(qi, a) = (qj , b, R), add pair (qia, bqj) to the set P .

Also, for every a, b, c ∈ Γ and every qi, qj ∈ Q with qi 6= qreject, if δ(qi, a) =

(qj , b, L), add pair (cqia, qjcb) to set P . Now, for every a ∈ Γ, add (a, a) to P .

Also add (#,#) to P which is used to separate instantaneous descriptions

and for all a ∈ Γ, add (aqaccept, qaccept), (qaccepta, qaccept).

We can now see that the given construction will have a solution iff

the Turing machine M halts on input w. We must start with the first

pair (u1, v1) = (#,#q0w1w2 · · ·wf#) as stated previously. The next pair

(ui2 , vi2) in a solution must have ui2 = q0w1 and thus vi2 will be the

corresponding pair from the transition function. We must then use pair

(ui3 , vi4) = (w2, w2) and this continues for the rest of w until we must use

pair (#,#). At this point we may have the following pairs:

(#q0w1w2 · · ·wf#,#q0w1w2 · · ·wf#y1qiw2w3 · · ·wf#)

for example. As can be seen, the first word contains the first instantaneous

description q0w and the second contains the first description q0w followed

by δ applied to the first configuration. After the next iteration of applying

these pairs of words, the second configuration will be concatenated to the

first pair and the third configuration will be appended to the second pair.

This continues until we reach a state with qaccept at which point we use the

pairs (aqaccept, qaccept), (qaccepta, qaccept) which will increase the size of the first
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word to be equal to the second word which corresponds to a correct solution.

We can enforce that the first pair used must be (u1, v1) by using a word

morphism. Let y = y1y2 · · · yn ⊂ Γ∗ be any word and let ‘∗, ⊲’ be new letters

not in Γ. Then define the three functions:

⋆y = ∗y1 ∗ y2 · · · ∗ yn

y⋆ = y1 ∗ y2 ∗ · · · yn∗
⋆y⋆ = ∗y1 ∗ y2 ∗ · · · ∗ yn∗

We finally add (un, vn) = (∗⊲, ⊲) to set P . Now, for each element of

P = {(ui, vi)|1 ≤ i ≤ n} ⊂ (Q∪Γ∪{∗, ⊲})∗ × (Q∪Γ∪{∗, ⊲})∗, we apply one

of the three above ⋆ functions to each word pair. Let (u1, v1) = (⋆u1, ⋆v1⋆),

(uj , vj) = (⋆uj , vj⋆) for each 2 ≤ j ≤ (n− 1) and (un, vn) = (∗⊲, ⊲) is left as

before. Clearly if a match occurs in P it must start with this new (u1, v1)

since only the first two letters in these two words are equal. Examining the

morphism allows us to conclude it must then proceed as before using the

new pairs (ui, vi) with 2 ≤ i ≤ n and finally finish with the pair (un, vn), see

[49] for further details.

Two-Counter Minsky Machine Simulation - Finally we show how

to simulate a two-counter Minsky machine using a set of pairs of words P .

We use the definitions of a two counter machine from [33]. We require two

operations, firstly “from state q, increment counter {1, 2} and move to state

s”. Secondly we require operation “test if counter {1, 2} is zero, moving

to state r if it is, or state t if it is positive”. We shall use the symbol ‘z’

throughout to denote a zero counter.

We start with the initial pair of words (u1, v1) = (#,#zaiq0a
jz#) where

i denotes the value of the first counter C1 and j denotes the value of the

second counter C2. Note that ai is simply i copies of the letter ‘a’, thus

ai = aa · · · a. Let us deal with the first type of operation. To move from

state q to s and increment C1, we add the pair (q, as) to P . To move

from state q to s and increment C2, we add the pair (q, sa) to P . But the
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counters could be zero (denoted zqC2 or C1qz) so we also add pairs (zq, zas)

to increment C1 and (qz, saz) to increment C2.

For the second operation, we require to move from q to r if C1 is zero, so

we add pair (zq, zr). To move from q to r if C2 is zero, we add pair (qz, rz).

To move from q to t and decrement C1 if not zero, we add pair (aq, t) and

to move from q to t and decrement C2 if not zero, we add pair (qa, t).

Finally, we add pairs (a, a), (#,#), (z, z), (aqaccept, qaccept), (qaccepta, qaccept)

and (#⊲, ⊲) to P .

Once more, we use morphism ⋆ to ensure pair (u1, v1) ∈ P is used

first and to avoid trivial pcp solutions and if there exists some sequence

S = (i1, i2, . . . , ik) such that the equation u1ui1ui2 · · · uik = v1vi1vi2 · · · vik

holds, then it corresponds to a correct halting computation of a two-counter

machine and it is thus undecidable whether such a sequence S exists.

Proposition 3.11. Turing machines and two-counter machines can be sim-

ulated by Post’s correspondence problem (pcp).

This is straight-forward from the above descriptions. It is usual to prove

pcp undecidability by simulating a Turing machine but we have shown it is

also possible to directly simulate a two-counter Minsky machine.

3.3.3 Periodicity in Counter Machines

Counter machines are a particularly nice model of computation since they

are simple to define whilst retaining universality with just two counters. It

was proven in [12] that given a counter machine M which may or may not

halt, we can construct a second counter machine, called M ′, such that M ′

never halts and has a periodic configuration if and only if M halts. Since the

halting problem for arbitrary counter machines is undecidable, this means

that checking the periodicity of counter machines is also undecidable.

We shall now give a simpler proof to the above result from [12]:
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Figure 3.1: Minsky machine with k counters

Theorem 3.12. Let M ′ be a counter machine that has no halting con-

figuration. The problem of deciding if M ′ has a periodic configuration is

undecidable. The problem is undecidable even in the case of two-counter

machines.

Proof. Given a specific counter machine M . Let q0 be the initial state

of M and H = {qh1
, qh2

, . . . , qht
} be the set of halting states. Let R =

{R1, R2, . . . , Rk} be the set of counters (or registers) of M . See Figure 3.1.

The transition function of M depends upon whether specific registers

equal zero. Firstly, it can increase a register Ri and move to a new state.

Secondly, if a specific register Ri is non-zero, it can decrease Ri and then

move to a new state r. Otherwise, if register Ri is equal to zero, it leaves it

unchanged and moves to a new state s. The transition function, δ, will be

a set of such rules.

We shall now show how to create a new machine M ′. Initially, let M ′

have the same states Q as M and the same transition function δ. We add a

new start state qI and add the two rules to δ which move from qI to state q0

regardless of whether the first register R1 equals zero and leaves all registers

as they are.

We define all halting states H ⊆ Q to be non-halting states and add new

states qR1
, qR2

, . . . , qRk
. These new states will be used to zero all counters.
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Figure 3.2: Periodic Minsky machine

We add rules which move us from each q ∈ H to qR1
regardless of whether

R1 is non-zero and leave all counters at their current values. Then for each

state qRi
, 1 ≤ i < k we add rules which decrease Ri if it is non-zero and

remain in the current state. We add a rule to move to state qri+1
if it does

equal zero (thus the counter is decremented to zero before going to the next

state. Finally, for state qRk
we add a rule to decrease Rk if it is non-zero

and stay in state qRk
, or else move to the initial state qI if it does equal zero

(note that once we go to qI , all counters are equal to 0 and we are back to

the original configuration).

Thus, if M reached a halting state with some values in its counters R,

then M ′ will instead decrement all counters to zero and restart the compu-

tation. Clearly the only way to get back to qI is via some state in H of M ,

thus the only way M ′ is periodic (i.e., the only way it goes to qI and zeros

all counters) is if M halts as required.

We may note that there may be some configuration of M which is peri-

odic, thus M ′ will contain an ultimately periodic configuration (though not

periodic since it still wont go to qI). We can avoid this situation if required

by a simple construction. Add a new counter P such that every transition

from machine M increments P and then does what it would do normally
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(we need to add new states and rules to do this). Then add a new state qP

such that qRk
now goes to qP instead of qI . Then add rules to decrement

qP to zero as before and then move to state qI . The only way to decrement

counter P is via a halting state thus now the only periodic orbit contains a

configuration in state qI with all counters zero. See Figure 3.2.

Theorem 3.13. Let M ′ be a nondeterministic n-counter machine. The

problem of deciding if M ′ has an infinite number of trajectories leading to a

halting state sfinal with zero in all counters is undecidable for any n ≥ 2.

Proof. The problem of determining if a counter machine M can reach a

halting state with zero counters is undecidable. Without loss of generality

we can also assume that the initial state of M will be visited only once. Let

us construct a new nondeterministic counter machine M ′ based on a deter-

ministic counter machine M as follows. First, we add two extra states qfinal

(which is the only halting state of M ′) and qcontinue. Then add transitions

from all halting states of M leading to both qfinal and qcontinue which will

only be executed if both counters are zero. Secondly, we create copies of all

transitions from the initial state of M and add them to the automaton as

outgoing transitions from qcontinue.

As a result, we have that the initial state of M ′ (which is the same

as in M) will be visited only once and a state qfinal with zero counters is

reachable in M ′ if and only if machine M can reach a halting state with zero

counters. On the other hand, if qfinal with zero counters can be reached at

least once, we can construct an infinite number of traces that will lead to

qfinal by returning from the halting state of M to qcontinue and repeating

the same looping trace an unbounded number of times before going to state

qfinal.

3.3.4 The Infinite Post Correspondence Problem

It was shown in [12] that the Infinite Post Correspondence Problem

is undecidable for 105 pairs of words. This result was later improved to 9 by
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V. Halava and T. Harju [27] by encoding semi-Thue systems and utilising

Claus’s construction for Post’s correspondence problem (pcp). The authors

of [27] also show a related result that determining if a particular pcp instance

has a solution that is non ultimately periodic is undecidable.

Lemma 3.14. [27] If the termination problem is undecidable for n-rule

semi-Thue system, then it is undecidable for instances of the pcp size n+ 3

whether or not there exists an infinite solution that is not ultimately periodic.

We recall that an infinite word is said to be ultimately periodic if it can

be written in the form w = uv∞ where u, v are non-empty, finite words.

We shall not give the definition of the termination problem for a semi-Thue

system, (see [27]), but merely state that it is undecidable for instances of size

3 as was proven in [43]. Thus Lemma 3.14 is undecidable for pcp instances

of size 6.

We shall use our encoding of two-counter Minsky machines into pairs

of words and thus pcp instances and Theorem 3.12 of [12] to derive a re-

sult on a specific set of words (we use the definition of pcp in terms of

homomorphisms):

Theorem 3.15. There exists a class of instances of Post’s correspondence

problem which have a guaranteed single infinite solution and no finite solu-

tion where it is undecidable whether the solution is ultimately periodic.

Proof. We saw a construction in Section 3.3.2 which allowed us to simulate

an arbitrary two-counter machine by a pair of words as is done in pcp.

We shall use the idea from Theorem 3.12 in which we start with an initial

counter machine M and create a second counter machine M ′ such that M ′

does not halt and M ′ has a periodic configuration if and only if M halts on

its input in the same way as was originally done in [12]. Since determining

if the arbitrary counter machine M halts is undecidable, determining if M ′

has a periodic configuration is undecidable as explained in Theorem 3.12.

It is well known that a k-counter machine can be simulated by a two-

counter machine (with an increase to the number of states and instructions).
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Let R1, R2, . . . , Rk be the k counters of the machine. We create a new

machine with two counters C1, C2 such that C1 stores the prime number

encoding of the previous counters, i.e.,

C1 = 2R13R25R3 · · · π(k)Rk ; Ri ∈ N,

where π(k) is the k’th prime number. We can thus increment register Rj by

multiplying C1 by π(j), test counter Rj for zero equality by testing if C1 is

divisible by π(j) and decrement C1 by performing this division. The second

counter C2 allows us to achieve these operations whilst retaining the other

values in counter C1.

Therefore, from machine M ′, we create a third machine M ′′ which has

only two states using the prime power idea of the previous paragraph. Using

the construction in Section 3.3.2, and Proposition 3.11, we can simulate

machine M ′′ via an instance of pcp which we denote P . However, because

of the construction of M ′, we know that it does not halt, thus P has no

solution.

The counter machine M ′ is deterministic and has a guaranteed infinite

run since it does not halt. Therefore instance P has a single infinite word

solution. By the conversion from a two-counter machine to a pcp instance

from Section 3.3.2, there is a single letter γ1 ∈ Γ which must be used first

and then never again. Therefore, the infinite solution to pcp is of the form:

w′ = γ1w; γ1 ∈ Γ, w ∈ (Γ \ {γ1})∞.

Since determining if M ′ is periodic is undecidable, it is also undecidable

whether w is a periodic word, or equivalently, whether w′ is ultimately

periodic, thus completing the proof.

Therefore our steps are as follows. Given any two-counter Minsky ma-

chine M , we create a second machine M ′ such that M ′ does not halt and it

is periodic if and only if M halts (see Theorem 3.12). Then we create a third

machine M ′′ which is equivalent to M ′ but uses only two states. Next we

convert M ′′ to a pcp instance with a guaranteed single infinite solution and
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no finite solutions (see Section 3.3.2). This gives us a specific infinite word

of the form γ1w for each initial counter machine M such that w is periodic

if and only if M halts.



Chapter 4

Integral to Complex Matrix

Semigroups

In this chapter we shall explore various reachability problems on semigroups

of matrices defined over integers, rational numbers and complex rational

numbers in small dimensions such as those outlined in Section 2.3. In gen-

eral, we shall identify which problems are undecidable and attempt to min-

imise the number of matrices required in the generator of the semigroup as

well as the dimension of the matrices used.

Since the integers are a subset of the rationals which in turn are a sub-

set of rational complex numbers, we will also try to prove results on the

smallest subset possible, i.e., integers before rationals which in turn we try

to use before complex rationals. When the number system used impacts the

dimension or number of matrices required however, we may indicate both

bounds in corollaries.

We have separated these results on integral, rational and rational com-

plex matrix semigroups from that of Chapter 5 which deals with hypercom-

plex numbers. There are two main reasons for this. Firstly, number systems

up to the complex numbers are more ‘traditional’ to study for computability

problems and there exists a plethora of results in this area. It may be un-

53
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clear how the results on quaternions matrices should be compared with the

current results in the field and thus they are included separately so that we

can give a better context for their study. Secondly, the quaternions are non-

commutative and thus they have a fundamental difference from numbers up

to the complex rationals which we study here.

4.1 Membership Problems

We recall from Section 2.3 the general definition of a membership problem:

Membership Problem - Given a semigroup S generated by a finite set

G , and some single element X. Is it true that X ∈ S ?

We shall evaluate the decidability of this problem for a particular scalar

diagonal matrix and then consider a special case of the membership whereby

we are only interested in a specific single element of the matrices generated.

One of the first problems in this area shown to be undecidable was

The Mortality Problem, which is the membership problem of the zero

matrix in a finitely generated matrix semigroup. The problem was shown

to be undecidable for three-dimensional integral matrix semigroups in 1970

by M. Paterson [45]. It was then shown by V. Halava and T. Harju that the

problem is in fact undecidable even when the generator contains only eight

matrices, see [25]. See Chapter 6 for a reduction of Skolem’s Problem to

The Mortality Problem.

The presence of a zero matrix in a semigroup is important since it means

any time we multiply by this matrix, all current values are lost; there is no

way to recover the previous state. This is indeed the case for any singular

matrix (when the determinant equals 0) since we cannot invert the matrix

to retrieve the state before applying this matrix.

Another important matrix is the identity matrix I. Multiplication by

I leaves the matrix unaffected and the presence of the identity matrix in
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a semigroup is an important property to determine for many problems, for

example it tells us whether the semigroup is a monoid and also whether the

semigroup is a group.

It is known that for commuting matrix semigroups, membership is de-

cidable, see [3]. In fact there exists a polynomial time algorithm to solve the

membership problem. It was shown in [39] that membership in integral row-

monomial matrix semigroups is decidable in any dimension which is one of

the very few known decidable cases for non-commuting matrix semigroups.

We shall now consider membership problems for scalar matrices which

have interesting geometric properties.

4.1.1 Scalar Matrix Membership Problem

A rational scalar matrix is a matrix of the form kIn where k ∈ Q and In is

the n× n identity matrix. It is thus of the form:



k 0 · · · 0

0 k · · · 0
...

...
. . .

...

0 0 · · · k




; k ∈ Q.

Geometrically, a scalar matrix will scale a vector to be of a different

length (the length is multiplied by k) but the direction remains unchanged.

When multiplied by a matrix a scalar matrix will multiply all elements by k

while retaining the general properties of the matrix. The determinant will

clearly be multiplied by kn.

We are now ready for the main result of this section:

Theorem 4.1. Given a finite set of integer matrices G in dimension 4

generating a semigroup S , and a scalar k ∈ Z such that |k| > 1, it is

undecidable whether kI4 ∈ S .

Proof. In order to prove this result we shall use the Index Coding PCP

(see Section 3.2.2). Given a binary alphabet Σ = {a, b} and inverse alphabet
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Σ = {a, b}, an instance of this problem is of the form:

P = {(ui, vi)|1 ≤ i ≤ n} ⊂ (Σ ∪ Σ)∗ × (Σ ∪ Σ)∗.

and we must determine if there exists a finite sequence s = (s1, s2, . . . , sk)

such that exactly one sj = n and us1
us2

· · · usk
= vs1

vs2
· · · vsk

= ε. We

shall reduce this problem to the membership problem for a particular k-

scalar matrix in a 4 × 4 integral matrix semigroup such that the matrix kI

is in the semigroup if and only if the instance of Index Coding PCP has

a solution thus proving the undecidability of the membership problem.

Let us use the injective homomorphism λ : (Σ ∪ Σ)∗ 7→ Z2×2 from Sec-

tion 2.2.2 defined by:

λ(a) =

(
1 2

0 1

)
, λ(b) =

(
1 0

2 1

)
, λ(a) =

(
1 −2

0 1

)
, λ(b) =

(
1 0

−2 1

)
.

Since this is an injective homomorphism, the group 〈{λ(a), λ(b), λ(a), λ(b)}〉
is free. Given the instance P above, for each pair (ui, vi) ∈ P , where 1 ≤
i ≤ n, we define a matrix:

Xi =

(
λ(ui) 02

02 λ(vi)

)

where 02 is the 2 × 2 zero matrix. Note that by the definitions of the

monomorphisms used, each Xi is unimodular. We must enforce that in the

Index Coding PCP the final pair (un, vn) is used only once. To encode

this within the semigroup, we shall multiply the final matrix Xn by a scalar

k (say k = 2 will do).

Now, let S be a semigroup generated by {X1,X2, . . . , kXn}. If matrix

kI4 (the k-scalar matrix) is in S , it implies that the matrix kXn is used

in its product exactly once since all other matrices in the generator are

unimodular (the determinant is multiplicative). Therefore there exists a

finite product:

Xs1
Xs2

· · ·Xsj
= kI4.
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where exactly one Xsi
= Xn. Examining the top left and bottom right 2×2

matrices of this product, since λ is a monomorphism, we see that if such a

product exists, then:

us1
us2

· · · usj
= vs1

vs2
· · · vsj

= ε,

again with exactly one si = n. This is a reduction of Index Coding PCP

to the membership of the matrix kI4 in a matrix semigroup S . Since

Index Coding PCP is undecidable with 14 pairs of words [28], the mem-

bership problem is undecidable for semigroups generated by 14 matrices.

We can also extend the generator by a single matrix to gain a more

general result for different k:

Corollary 4.2. Given a finite set of rational matrices G in dimension 4

generating a semigroup S , and any scalar k ∈ Q\{0,±1}, it is undecidable

whether kI4 ∈ S .

Proof. In the last step of Theorem 4.1, we multiplied matrix Xn by 2.

Clearly we could multiply by any k ∈ Q \ {0,±1} instead and obtain a

more general result.

We might ask about the excluded cases whereby k = 0,±1 in which our

construction fails to hold. For k = 0 this is simply the mortality problem,

“Does the zero matrix belong to a finitely generated semigroup?”. This was

shown to be undecidable by M. Paterson, see [45].

For the case where k = 1, this is also an important open problem which

has been studied extensively without avail:

Open Problem 4.3. Identity Matrix Membership Problem - Given

a finitely generated matrix semigroup S , does the identity matrix I belong

to S ?

This seems to be a difficult and long standing open problem whose solu-

tion might have many consequences in different settings. Unfortunately our
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construction above fails to work for the identity matrix. We must ensure

that one specific pair of words in Index Coding PCP is used exactly once

in a correct sequence. We enforce this by making all matrices unimodular

except one special matrix Xn whose determinant k is not equal to 0,±1.

This allows us to conclude that if we have a matrix product with deter-

minant k, it must contain Xn exactly once as required. But by using all

unimodular matrices we cannot enforce this constraint and we no longer

reduce the problem correctly to that of membership.

4.1.2 Zero in Upper Right Corner Problem

In Section 4.1.1, we showed the undecidability of a particular matrix in a

matrix semigroup. We shall now consider a slightly different membership

type problem where we ask if there is any matrix M in the semigroup such

that the top right element is equal to 0.

Problem 4.4. Zero in the Upper Right Corner Problem

(ZURC)- Given a finite set of n × n integral matrices G generating

a semigroup S . Does there exist any matrix M ∈ S such that

M[1,n] = 0?

This may seem somewhat artificial at first glance, however the problem

of whether a zero appears in the upper right corner of a matrix can encode

Skolem’s problem as we show in Chapter 6. Furthermore, the presence

of a zero in the top left corner was a pivotal point in the proof of the

undecidability of The Mortality Problem [45].

We shall consider the zero in the upper right corner problem where the

generator contains just two integral matrices. This problem was known to

be undecidable for dimension 3nPCP + 3 (currently 24) in [18] and this was

improved to 3nPCP+2 (currently 23) in [23]. We shall now prove the problem

is undecidable even for dimension 2nPCP + 4 (currently 18).
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Theorem 4.5. The Zero in the Upper Right Corner Problem is un-

decidable for a semigroup generated by two integral matrices of dimension

2nPCP + 4 (currently 18).

Proof. We have already seen that there exists an injective morphism between

pairs of words over a binary alphabet Σ = {a, b} and integral matrices

in Section 2.2. In fact, one such morphism, which was originally used by

M. Paterson to prove the undecidability of the mortality problem for integral

matrix semigroups [45], is λ′ : Σ∗ × Σ∗ 7→ Z3×3 defined by:

λ′(s, t) =




3|s| 0 σ(s)

0 3|t| σ(t)

0 0 1




for two words s = s1s2 · · · sr and t = t1t2 · · · tj , with si, ti ∈ Σ, where σ(w)

is the 3-adic representation of the binary word w, i.e., let 1,2 correspond to

a,b respectively, then

σ(w) =

|w|∑

k=1

wk3
|u|−k ; wi ∈ {1, 2}.

Now consider the following matrix:

H =




1 −1 0

0 −1 0

0 0 −1




which is self-inverse since HH = I3. We can thus define a similarity trans-

form Hλ′(s, t)H which gives us the alternate (but still injective) morphism:

λ(s, t) = Hλ′(s, t)H =




3|s| 3|t| − 3|s| σ(t) − σ(s)

0 3|t| σ(t)

0 0 1




Notice that s = t iff λ(s, t)[1,3] = 0 since the top right element of the

matrix is the subtraction of the 3-adic representations of s, t. It is therefore
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easy from this point to obtain the undecidability of zruc for nPCP integral

matrices of dimension 3. However, we would like to obtain the result for a

semigroup generated by just two matrices.

Given a pcp instance P = {(u1, v1), (u2, v2), . . . , (un, vn)}, we can apply

a new encoding technique to embed the n matrices λ(ui, vi) for 1 ≤ i ≤ n

into a single matrix, B, of size 2n+ 1 and use a second matrix T which is a

permutation matrix to give all possible products of words in the semigroup.

Let us define:

B =




3|u1| 3|v1| − 3|u1| 0 0 · · · σ(v1) − σ(u1)

0 3|v1| 0 0 · · · σ(v1)

0 0 3|u2| 3|v2| − 3|u2| · · · σ(v2) − σ(u2)

0 0 0 3|v2| · · · σ(v2)
...

...
...

...
. . .

...

0 0 0 0 · · · 1




and define the permutation matrix T by:

T =




0 I2 0 0

I2n−3 0 0 0

0 0 1 0

0 0 0 1




It is clear that B,T ∈ Z(2n+1)×(2n+1). Note that applying T to matrix B

alters the ordering of the pairs of rows but preserves the word mapping itself

since it is a permutation matrix. We can see that a product containing both

B and T has a zero in the upper right corner iff there exists a solution to the

pcp. This follows since the top right element will simply be the subtraction

of two words 3-adic representations. However, T has a zero upper right

corner on its own so the required result does not immediately follow. We

can apply the encoding technique used in [18] so that the case with a power
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of only T matrices can be avoided. Define:

B′ =




0 1 x 1

0 0 0 1

0 0 B z

0 0 · · · 0



, T ′ =




0 1 x 1

0 1 0 1

0 0 T z

0 0 · · · 0




where x = (1, 0, · · · , 0), z = (0, 0, · · · , 1)T , with x ∈ Z1×k, z ∈ Zk×1 and k is

the dimension of matrix B (and T ). It is clear that the sub-matrices B,T

are multiplied in the same way as before and unaffected by this extension.

Notice the element [2, 2] is 0 in B′ and 1 in T ′. This will be used to avoid

the pathological case of a matrix product with only T matrices.

Consider an arbitrary product Q = Q1Q2 · · ·Qm where Qi ∈ {B′, T ′}
for 1 ≤ i ≤ m. It is easily seen that if m ≤ 2 then the top right element

of Q equals 1 for any Q1, Q2. Let us thus assume m ≥ 3 and write this

multiplication as Q = Q1C
′Qm where C ′ = Q2Q3 · · ·Qm−1,

C ′ =




0 ∗ ∗ ∗
0 λ 0 ∗
0 0 C ∗
0 0 · · · 0




where ∗ denotes unimportant values, λ = {0, 1} and C is a submatrix equal

to some product of B,T matrices.

Now we compute the top right element of Q. Let r denote the dimension

of matrix C ′ (or Q). The first row of Q1C
′ equals (0, λ, C1,1, C1,2, · · · , C1,k, ∗)

where again ∗ is unimportant. Note that this vector contains the top row of

the C submatrix. We can now easily see that Q[1,r] = (Q1C
′Qm)[1,r] equals

(0, λ, C1,1, C1,2, · · · , C1,k, ∗) ·(1, 1, zT , 0)T = λ+C1,k. It is clear that λ = 1 iff

C ′ = (T ′)m−2, i.e., C ′ is a power of only T ′ matrices. In this case, note that

(C ′m−2)[1,k] = 0 since this is a power of matrix T . Thus Q[1,r] = 1 + 0 = 1

which is non-zero as required (since this is not a solution).
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In the second case, λ = 0 whenever C ′ contains a factor B′. Therefore

Q[1,r] = 0 + C[1,k] = C[1,k] which is exactly the top right element of C as

required. This equals 0 iff there exists a solution to the pcp instance.

We must increase the dimension of the matrices by 3 for this encoding

therefore the problem is undecidable for dimension 2nPCP +1+3 = 2nPCP +4

(currently 18).

4.1.3 Any Diagonal Matrix Problem

A related problem to that of Theorem 4.1 (determining whether any element

of a matrix semigroup is equal to a particular scalar matrix) was given as

an open problem in [14]:

Problem 4.6. Given a finite set of matrices G generating a semigroup

S . Does there exist any matrix D ∈ S such that D is a diagonal matrix?

We shall now show that Problem 4.6 is undecidable for rational complex

matrix semigroups by using the Fixed Element PCP. In our proof we

shall exhibit a semigroup that has no diagonal matrices if the instance of

pcp has no solution and an infinite number of diagonal matrices (which are

powers of a specific, known diagonal matrix) if the pcp instance does have

a solution.

Theorem 4.7. Given a finitely generated matrix semigroup S ⊆ C(Q)4×4,

it is algorithmically undecidable to determine whether there exists any matrix

D ∈ S such that D is a diagonal matrix.

Proof. We shall utilise the Fixed Element PCP, the matrix representa-

tion ζ of the free group of rational quaternions and some properties of linear
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algebra. Recall the definition of ζ:

ζ(a) =

(
3
5 + 4

5 i 0

0 3
5 − 4

5 i

)
, ζ(b) =

(
3
5

4
5

−4
5

3
5

)
,

ζ(a) =

(
3
5 − 4

5 i 0

0 3
5 + 4

5 i

)
, ζ(b) =

(
3
5 −4

5
4
5

3
5

)
.

thus, ζ(a), ζ(b), ζ(a)−1, ζ(b)−1 ∈ C(Q)2×2 and they form a free group as

we shall prove later in Corollary 5.2 (see Section 5.2.1). Recall also that in

Fixed Element PCP we have an alphabet over 5 letters, Γ = {a, b, a, b, ⋆}.
We shall use a homomorphism, γ : Γ∗ 7→ C(Q)2×2, to encode these letters

using elements of ζ. Specifically, let:

γ(⋆) = ζ(a), γ(a) = ζ(bab), γ(b) = ζ(b2a2b2), γ(∆) = ζ(b3a3b3)

γ(a) = ζ(bab), γ(b) = ζ(b
2
a2b

2
), γ(∆) = ζ(b

3
a3b

3
)
,

and then extending to a monoid homomorphism in the usual way. Now,

given an instance of Fixed Element PCP:

P = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆ Γ∗ × Γ∗,

we create the new set of pairs of two-dimensional rational complex matrices:

R = {(γ(u1), γ(v1)), (γ(u2), γ(v2)), . . . , (γ(un), γ(vn))} ⊆ C(Q)2×2×C(Q)2×2

Using the mixed product property of Kronecker products that for any

four matrices A,B,C,D ∈ Cj×j:

(AB ⊗ CD) = (A⊗C)(B ⊗D),

given in Lemma 2.1, we create a final set of four-dimensional rational com-

plex matrices:

T = {γ(u1) ⊗ γ(v1), γ(u2) ⊗ γ(v2), . . . , γ(un) ⊗ γ(vn)} ⊆ C(Q)4×4.
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From the definition of Fixed Element PCP, we know that a solution

s = (s1, s2, . . . , sk) gives the equation us1
us2

· · · usk
= vs1

vs2
· · · vsk

= ⋆

for the special symbol ⋆. Now, using our above encoding, we observe that

γ(⋆) = ζ(a)3 which is clearly a diagonal matrix. Thus, given a correct

solution to Fixed Element PCP, there exists a matrix D ∈ 〈T 〉 such

that:

D = γ(us1
us2

· · · usk
) ⊗ γ(vs1

vs2
· · · vsk

) = γ(⋆) ⊗ γ(⋆) = ζ(a)3 ⊗ ζ(a)3,

which is diagonal (since the Kronecker product of two diagonal matrices is

diagonal). It can be seen that any word which is not a solution will contain

at least one matrix ζ(b) or ζ(b) which can be clearly observed by considering

the definition of the morphism γ. Since these two matrices are not diagonal,

the Kronecker product will not be diagonal either.

This shows that Problem 4.6 is undecidable for four-dimensional rational

complex matrix semigroups. We can convert all the matrices to rational

matrices by using a simple well-known encoding from complex numbers to

two-dimensional real matrices by defining a function φ : C(Q) 7→ Q2×2 by:

φ(z) =

(
ℜ(z) −ℑ(z)

ℑ(z) ℜ(z)

)
; z ∈ C(Q),

and clearly we can apply φ to each element of the four-dimensional rational

complex matrices constructed in Theorem 4.7 to map into eight-dimensional

rational matrices. However a correct solution will now only give a block

diagonal matrix (of 2 × 2 blocks). Thus the problem remains open in any

dimension for rational and thus integral matrices. We shall therefore state

the open problem which is a subcase of that found in [14]:

Open Problem 4.8. Any Diagonal Matrix - Given a finite set of in-

tegral matrices G generating a semigroup S . Does there exist any matrix

D ∈ S such that D is a diagonal matrix? I.e. is Problem 4.6 decidable for

integral matrices?
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4.2 Vector Reachability Problems

In this section we shall evaluate the decidability of reachability problems on

planar points mapped by a semigroup of two-dimensional affine transforms.

We can represent a point on the plane p0 via a two-dimensional rational

vector (x, y) ∈ Q2. An affine transformation of point (x, y) is a function

ψ : Q2 7→ Q2 such that ψ((x, y)) = (a1x + a2y + a3, b1x + b2y + b3) and

ai, bi ∈ Q for 1 ≤ i ≤ 3.

Theorem 4.9. Given a semigroup of two-dimensional affine transforma-

tions S generated by a finite set of transformations G , determining if a

particular point p0 can be mapped back to itself via some transformation in

S is undecidable.

Proof. Let Σ = {a, b} be a binary alphabet and define the monomorphism

λ : Σ∗ 7→ Q2×2 by:

λ(a) =

(
1 1

0 2

)
, λ(b) =

(
1 2

0 2

)
.

as stated in Section 2.2.1, this pairs of matrices generates a free semigroup.

Let us also define a second monomorphism γ : Σ∗ 7→ Q2×2 using the inverse

matrices of λ:

γ(a) =

(
1 −1

2

0 1
2

)
, γ(b) =

(
1 −1

0 1
2

)
.

Assume that we have an instance of Post’s correspondence problem

(pcp), h, g : Γ∗ 7→ Σ∗. For each element c ∈ Γ, we shall create the pair

of matrices λ(h(c)) and γ(g(c)). Note that if there exists a solution to

pcp, then there exists a word w ∈ Γ+ such that h(w) = g(w) and thus

h(w) · (g(w))−1 = ε.

Thus to encode this problem, we shall begin with the empty word ε and

to add the next pcp letter, c ∈ Γ, we will add h(c) to the left and (g(c))−1
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to the right, i.e., ε 7→ h(c)ε(g(c))−1 . We continue this iteratively for a word

w ∈ Γ+ and clearly we return to the empty word ε iff h(w) = g(w).

In terms of matrices, we associate a matrix Cw ∈ Q2×2 where w ∈ Γ∗

with h(w)(g(w))−1 and clearly Cw is of the form:

Cw =

(
1 x

0 y

)
; x, y ∈ Q

To extend this configuration by the next letter c ∈ Γ, we multiply Cw to the

left by λ(h(c)) and to the right by γ(g(c)) giving:

Cwc = λ(h(c))Cwγ(g(c))

This will give us a matrix product of the form:

(
1 x′

0 y′

)
=

(
1 p1

0 p2

)
·
(

1 x

0 y

)
·
(

1 q1

0 q2

)

Performing the matrix multiplication, we find that:

(
1 x′

0 y′

)
=

(
1 q2x+ q2p1y + q1

0 q2p2y

)

But in fact we see that this is a two-dimensional affine transformation

of the point (x, y). It can be written as:

{
x′ = q2x+ q2p1y + q1

y′ = p2q2y

Since the starting configuration is ε, we start with the matrix Cε = I2,

the 2 × 2 identity matrix which corresponds to the point x = 0, y = 1 and

a correct solution to pcp maps I2 to I2 which also corresponds to the point

(0, 1). Therefore, the problem of mapping point (0, 1) back to itself by using

a set of two-dimensional affine transformations is undecidable as required.

Note that we require nPCP (currently 7) transforms in the generator G .
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We recall the general definition of a vector reachability problem for a

matrix semigroup from Section 2.3:

Vector Reachability Problem : Given a semigroup of matrices S ,

generated by a finite set G ⊂ Fn×n and two column vectors x, y ∈ Fn.

Does there exist some matrix M ∈ S such that Mx = y?

Utilising the undecidability results on two-dimensional affine transfor-

mations from Theorem 4.9 allows us to easily gain an undecidability result

on three-dimensional integral matrices:

Theorem 4.10. The vector reachability problem is undecidable for three-

dimensional rational matrix semigroups.

Proof. We proved in Theorem 4.9 that there is a set of two-dimensional

affine transformations generating a semigroup for which it is undecidable if

there exists an element of the semigroup mapping point (0, 1) to (0, 1). We

shall convert each two-dimensional affine transformation into an equivalent

three-dimensional linear transformation as follows:

(
x′ = q2x+ q2p1y + q1

y′ = p2q2y

)
⇒




x′

y′

1


 =




q2 q2p1 q1

0 p2q2 0

0 0 1







x

y

1




Thus for a set of n affine functions, this conversion gives us a set of

matrices {M1,M2, . . . ,Mn} ⊂ Q3×3.

From the proof of Theorem 4.9 follows that the problem to decide whether

there exists a product M = Mi1Mi2 · · ·Mik where 1 ≤ ij ≤ n for 1 ≤ j ≤ k

such that Mv = v where v = (0, 1, 1)T is undecidable. Theorem 4.9 was

shown undecidable for semigroups generated by nPCP transforms thus the

vector reachability problem is undecidable for three-dimensional rational

matrix semigroups generated by nPCP matrices.
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We shall now show that the vector reachability problem is also unde-

cidable for semigroups that are generated by just 2 rational matrices of

dimension 2(nPCP − 2) + 1.

Theorem 4.11. The vector reachability problem is undecidable for semi-

groups generated by two rational matrices of dimension 2(nPCP−2)+1 (cur-

rently 11).

Proof. We shall perform three steps and reduce the dimensions of the two

matrices in each of these steps. Given a set of matrices {M1,M2, . . . ,Mn}
where Mi ∈ Qm×m. Let us define two block diagonal matrices A1 and T1

by:

A1 = M1 ⊕· · ·⊕Mn =




M1 0 · · · 0

0 M2 · · · 0
...

...
. . .

...

0 0 · · · Mn



, T1 =

(
0 Im

In(m−1) 0

)

where 0 denotes a submatrix with zero elements. The dimension of both of

A1 and T1 is nm. Furthermore, it can be seen that for any 1 ≤ j ≤ n then

T n−j+1
1 A1T

j−1
1 permutes the blocks of A1 in a cyclic way, so that the direct

sum of T n−j+1
1 A1T

j−1
1 is Mj ⊕Mj+1 ⊕ · · · ⊕Mn ⊕M1 ⊕ · · · ⊕Mj−1. We can

also note that A1 ∼ T n−j+1
1 A1T

j−1
1 (therefore this is a similarity transform)

since T n−j+1
1 ·T j−1

1 = T n
1 = In. It is therefore apparent that any product of

the matrices can thus occur and in fact can appear in the first block of the

nm matrix product.

Let us define a vector x = (v, 0, · · · , 0)T ∈ Qnm where v = (0, 1, 1). It

is easily observed that there exists a matrix product M = Mi1Mi2 · · ·Mit

satisfying Mv = v as in Theorem 4.10 iff there exists a matrix R ∈ 〈A1, T1〉
satisfying Rx = x unless R = T n

1 = I which is a pathological case we must

avoid. This can easily be achieved by increasing all dimensions by one but

we shall not detail this since we are going to reduce the dimensions two times

further. From Theorem 4.10 then, this establishes the undecidability of the
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vector reachability problem for 2 rational matrices of dimension 3nPCP + 1

(currently 22).

The first step is now complete, however we can reduce the dimensions

of the two matrices A1, T1. We observe that (Mi)[3,3] = 1 and Mi is up-

per triangular for all 1 ≤ i ≤ n. Let us now construct two new matrices

A2, T2 ∈ Q(2n+2)×(2n+2) directly using the elements from the matrices in

Theorem 4.10:

A2 =




(q2)1 (q2p1)1 0 0 · · · (q1)1

0 (p2q2)1 0 0 · · · 0

0 0 (q2)2 (q2p1)2 · (q1)2

0 0 0 (p2q2)2 · · · 0
...

...
...

...
. . .

...

0 0 0 0 0 1




, T2 =




0 I2 0

I2n−2 0 0

0 0 1




where 0 denotes either the number zero or a submatrix with zero elements,

Ik is the k dimensional identity matrix and (x)i denotes the element x from

matrix Mi used in Theorem 4.10. Straight-forward calculation shows that

T n−j+1
2 A2T

j−1
2 permutes the pairs of rows in A2 and using a similar argu-

ment as before, we thus can form any product of matrices in the first two rows

of this matrix. We define a 2n+2-dimensional vector w = (0, 1, 0, · · · , 0, 1)T .

Finally we see that there exists a solution Mv = v to pcp as in The-

orem 4.10 iff there exists a matrix R ∈ 〈A2, T2〉 satisfying Rw = w unless

R = T k
2 = I for some k ∈ N which again is a pathological case we can avoid

by increasing the dimensions by one. This completes the second step and

gives the undecidability of the vector reachability problem for semigroups

generated by two rational matrices of dimension 2nPCP + 2 (currently 16).

We now perform the final reduction to create two rational matrices

A3, T3. We shall use Claus instances of pcp (see Section 3.2.1) which al-

low our previous encoding to use smaller dimensions. Recall that in the

Claus construction of pcp we fix an initial and final pair (u1, v1), (un, vn)

and must find a sequence s = (s1, s2, . . . , sk) such that:

u1us1
us2

· · · usk
un = v1vs1

vs2
· · · vsk

vn,
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where 2 ≤ si ≤ (n− 1).

In terms of matrices, this means if G = {M1,M2, . . . ,Mn} encode each

pair of words, then we may fix the first and last matrices M1,Mn and then

take the semigroup S generated by G \{M1,Mn}. This set is of size nCLAUS−
2 and using the construction for the second reduction above, this reduces

the matrix dimension in the generator to 2(nCLAUS − 2) + 1 (we ignore the

pathological case of T k for the moment).

Since M1 is the first matrix of the product and Mn is the last, given a

product of the form:

M1Ms1
Ms2

· · ·Msk
Mnv = v

as in Theorem 4.10, we can instead write this product as:

Ms1
Ms2

· · ·Msk
x = y

where x = Mnv and y = M−1
1 v (clearly M1 is invertible by the construction).

Applying this idea to the second step above also avoids the pathological case

of a matrix in the semigroup containing T k = I giving an incorrect result,

since now x 6= y as can be seen by examining the Claus construction. This

completes the proof giving the undecidability of the Vector Reachability

Problem for semigroups generated by two rational matrices of dimension

2(nCLAUS − 2) + 1 (currently 11).

We shall now show that the related Vector Ambiguity Problem is

undecidable. We recall the previous definition:

Problem 2.6. Vector Ambiguity Problem - Given a semigroup

S ⊆ Fn×n and an initial vector u ∈ Fn×n. Let V be a set of vectors

such that V = {v : v = Mu;M ∈ S}. Does S and u generate an am-

biguous set of vectors? In other words the question is whether for every

vector of set V there is a unique matrix M ∈ S such that Mu = v?
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Theorem 4.12. The Vector Ambiguity Problem is undecidable for

matrix semigroups over integers in dimension 4 and over rational matri-

ces in dimension 3.

Proof. It was proven in [12] that distinguishing between counter machines

that have a periodic configuration from those that do not, is an algorith-

mically undecidable problem. We gave a simpler proof which used a fewer

number of rules in Theorem 3.12 from Section 3.3.3.

The proof of Theorem 3.12 was achieved via a reduction of the classical

counter halting problem for counter machines. In the proof, we started with

a machine M and described how to construct a counter machine M ′ that

has no halting configuration and that has a periodic configuration if and

only if M halts on its initial configuration in a similar way to that of [12].

Let us use a construction proposed in Section 3.3.2, which simulates any

two-counter machine by a set of pairs of words. Note that our method does

not require defining a halting state of the machine and in this case we can

only predefine an initial configuration of a counter machine M .

Assume that a set of pairs of word that are used for a counter machine

simulation is P = {(ui, vi)|1 ≤ i ≤ n}. Let us construct a set of pairs of

2 × 2 matrices using the homomorphism λ:

{(λ(u1), λ(v1)), . . . , (λ(un), λ(vn))}.

Instead of equation u = v we consider a concatenation of two words u · v
which equals ε only in the case where u = v. We associate 2 × 2 matrix C

with a word w of the form u · v. Initially C is a matrix that corresponds

to the initial configuration of the machine which is stored in the first pair

(u1, v1), so C = u1 · v1.
The extension of a word w by a new pair of words (ur, vr) (i.e., that

gives us w′ = ur · w · vr) corresponds to the following matrix multiplication

Cw′ = λ(ur) ×Cw × λ(vr) (1)
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Let us rewrite operation (1) in more detail.

(
c11w′ c12w′

c21w′ c22w′

)
=

(
u11 u12

u21 u22

)
·
(
c11w c12w

c21w c22w

)
·
(
v11 v12

v21 v22

)
(2)

In this case, pairwise multiplication will correspond to an update of the

current state according to the operation of the two-counter machine M .

Let us consider the dynamics of changes for the matrix C. It is easy to

see that in the case of an incorrectly applied command for a machine M ,

the pairwise concatenation (multiplication) will lead to an increase of the

length for a word w and will never end up in a repeated word after that.

Therefore after an incorrect application of a command of M , a matrix C

will never have the same value again. The correct application of pairwise

concatenation of words or multiplication of matrices covers the set of correct

configurations of a two-counter machine M . In the case of a periodic two-

counter machine, the finiteness of the configuration space will lead to the

finiteness of the set X of possible C matrices that can be generated during

the correct application of rules forM , since every matrix C ∈ X corresponds

to a unique reachable configuration of M . Thus the set of matrices that can

be generated by pairwise multiplication may contain repetitions if and only

if a two-counter machine has periodic behaviour.

In order to finish the proof of undecidability for the case of an integer ma-

trix semigroup, we represent matrix C as a vector x = (cw
11, cw

12, cw
21, cw

22)T

increasing the dimension to 4 and rewriting pairwise multiplication as a four-

dimensional linear transformation of a vector x.




c11w′

c12w′

c21w′

c22w′




=

(
u11 u12

u21 u22

)
⊗
(
v11 v12

v21 v22

)
·




c11w

c12w

c21w

c22w




The same method can be used to prove the undecidability of the vector

freeness problem in dimension three for rational matrices by using another
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homomorphism τ based on a free semigroup:

τ(a) =

(
1 1

0 2

)
, τ(b) =

(
1 2

0 2

)
,

τ(a) =

(
1 −1

2

0 1
2

)
, τ(b) =

(
1 −1

0 1
2

)
.

The rest of the proof repeats the above arguments along the lines of

the proof of undecidability for the vector reachability problem for rational

matrices in dimension 3 shown in [8].

Note that from the above result it follows that it is undecidable whether

there exists a periodic trace of configurations in a one-state blind nonde-

terministic four-counter machine with counter updates in terms of linear

transformations.

We can also see that it follows from the above proof that any periodic

orbit of the given two-counter Minsky machine will correspond to a unique

solution of the Index Coding PCP.

4.3 Matrix Embeddings of Computational Models

We shall now show how a Turing machine or two-counter Minsky machine

can be encoded within a finitely generated integral matrix semigroup. We

use the simulation of a computational device via a set of pairs of words as

in Section 3.3.2.

We gave a construction in Proposition 3.11 showing that a Turing ma-

chine and a two-counter Minsky machine can be stored within an instance

of Post’s correspondence problem (pcp) such that the instance has a solu-

tion if and only if the computational model halts and accepts. In Theo-

rem 3.6 we showed how to convert an instance of pcp into an instance of

Index Coding PCP which is Problem 3.5.
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Let us therefore consider an instance of Index Coding PCP corre-

sponding to the simulation of a Turing machine or a two-counter Minsky

machine given by:

P = {(ui, vi) : 1 ≤ i ≤ n} ⊂ Γ∗ × Γ∗,

where Γ = {a, b, a, b} is a binary alphabet with inverses. We shall use the

homomorphism λ : Γ∗ 7→ Z2×2 defined by:

λ(a) =

(
1 2

0 1

)
, λ(b) =

(
1 0

2 1

)
, λ(a) =

(
1 −2

0 1

)
, λ(b) =

(
1 0

−2 1

)
,

which, as stated in Section 2.2.2, is an injective homomorphism. Let us

now create a set of matrices G defined by:

G =

{(
λ(ui) 02

02 λ(vi)

)
: 1 ≤ i ≤ n

}
⊂ Z4×4,

where 02 is the 2 × 2 zero matrix. This is now exactly an instance of

Index Coding PCP as defined in Problem 3.5 which directly simulates

a Turing Machine or two-counter Minsky machine. We shall use this con-

struction in the next theorem.

Theorem 4.13. There is a fixed matrix semigroup S with an undecidable

membership problem. There is a fixed semigroup T with undecidable vector

reachability problem.

Proof. It is well known that there exists universal Turing machines which

can simulate another Turing machine input in a pre-defined way which halts

iff the machine it is simulating halts. Thus, we can define semigroup S to

be a fixed encoding of a universal Turing machine generated by a finite set

of integral matrices. From the proof of Theorem 3.6, it can be seen that the

first pair (u1, v1) in such an instance is used only once.

Since u1 stores the input word to the problem, we may remove the cor-

responding matrix X = λ(u1) ⊕ λ(v1) from the generator set G . Now, a

correct solution to Index Coding PCP corresponds to the identity matrix
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and uses X exactly once, thus we see that X−1 ∈ S if and only if there

exists a solution to Index Coding PCP.

Finally then, we see that the semigroup generated by G ′ = G \ {X}
stores a universal Turing machine and the input to this Turing machine is

contained within matrix X = λ(u1) ⊕ λ(v1). Thus, we have a fixed matrix

semigroup S generated by G ′, and determining if X−1 ∈ S for varying X

is algorithmically undecidable as required.

The existence of a semigroup with an undecidable vector reachability

problem follows from the same arguments and the construction of an unde-

cidable vector reachability problem for 3 × 3 matrix semigroups over ratio-

nals and 4×4 matrix semigroup over integers (due to the invertibility of the

matrices). For more details see Theorem 4.10 and [47].

The next problem that we consider here is the problem of whether an

element of a matrix semigroup has an infinite number of factorisations over

elements of the generator. This question is trivially undecidable in the

case of singular matrices since it can be reduced to the mortality problem

(whether a zero matrix belongs to a semigroup). Here we show that this

problem is also undecidable for invertible matrix semigroups.

Problem 4.14. Recurrent Matrix Problem - Given a matrix semi-

group S generated by a finite set of matrices G and a matrix M . Does

M have an infinite number of factorisations over elements of G ?

Theorem 4.15. The Recurrent matrix problem is undecidable for in-

tegral 4 × 4 matrix semigroups.

Proof. The proof is achieved via a simulation of a nondeterministic two-

counter machine, where the problem of deciding if M ′ has an infinite number

of trajectories leading to a final state sfinal with zero counters is undecidable,

see Theorem 3.13.
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Note that in Section 3.3.2 we showed how to simulate a Turing machine

via a pcp instance but as mentioned in the comments, the proof is essentially

the same for a two-counter machine.

Given an instance of pcp, P ′, which simulates the two-counter machine

M ′ above, we create an instance of Index Coding PCP, P as explained in

Theorem 3.6 and embed the instance into a four dimensional integral matrix

generator set G as is done in Theorem 4.1. Since a particular matrix, N ,

must appear exactly once in a product equalling the identity matrix for a

correct solution, we shall consider the semigroup generated by G \ {N} (N

is invertible by the construction).

If N−1 ∈ 〈G \{N}〉, then it corresponds to a correct computational path

of the counter machine M ′. Let us assume that we have an algorithm to

check if matrix N−1 has infinitely many factorisations. This means that M ′

has an infinite number of trajectories leading to a configuration sfinal with

zero counters. Since the last problem is undecidable the problem whether

M ′ has an infinite number of factorisations is undecidable.

4.4 Semigroup Intersection Problems

In this section we shall study the decidability of the intersection of a pair

of matrix semigroups. Such problems were studied by A. Markov [42] and

more recently by V. Halava and T. Harju [26]. We shall use a different

encoding to that of V. Halava and T. Harju to obtain a similar result which

more closely mirrors that of A. Markov but in reduced dimensions.

Our primary aim shall be to determine if the intersection of two semi-

groups generated by a finite set of matrices is empty or not. In other words,

is there some matrix in one semigroup that is also in the other semigroup?

The emptiness problem for matrix semigroup intersection was shown to be

undecidable by A. Markov, although we have written the theorem in a dif-

ferent but equivalent form, [42]:
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Theorem 4.16. [42] Given two finite sets X = {X1,X2, . . . ,Xn} and Y =

{Y1, Y2} of 4 × 4 non-negative integer uni-modular square matrices. It is

undecidable if |〈X〉 ∩ 〈Y 〉| = 0. We may assume that all matrices in X,Y

except for X1 are fixed 1.

Note that Markov’s result was recently improved by the following theo-

rem:

Theorem 4.17. [26] Given two sets X = {X1,X2, . . . ,Xn} and Y =

{Y1, Y2} of 3 × 3 integer non-singular matrices. It is algorithmically un-

decidable if |〈X〉 ∩ 〈Y 〉| = 0.

Note that the authors in [26] used semigroups over Z3×3 rather than

N4×4 as was used by A. Markov. We use a new encoding to show that it

is in fact possible to obtain a similar theorem over N3×3 even with upper

triangular matrices. We shall also show that we may prove a similar result

on unimodular matrices as Markov did, but we require matrices over Q3×3

instead. It was shown that an embedding of two words is not possible into

2 × 2 complex matrices using matrix multiplication as the binary operator

in [17].

Theorem 4.18. Given two sets X = {X1,X2, . . . ,Xn} and Y = {Y1, Y2}
of 3 × 3 non-negative upper-triangular integral non-singular matrices. It is

undecidable if |〈X〉 ∩ 〈Y 〉| = 0.

Proof. Let Γ = {a, b} to be a binary alphabet. Let:

P = {(uj , vj)|1 ≤ j ≤ n} ⊂ Γ∗ × Γ∗

be an instance of Post’s correspondence problem (pcp). Define two mor-

phisms σ, τ : Γ∗ 7→ N2×2 by:

σ(a) =

(
2 1

0 1

)
, σ(b) =

(
2 2

0 1

)
, τ(a) =

(
1 1

0 2

)
, τ(b) =

(
1 2

0 2

)
.

1The statement that all matrices except X1 can be fixed is not difficult, see [26].
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We stated in Section 2.2.1 that σ, τ are injective homomorphisms. Note

that for all pairs of words w1, w2 ∈ Γ∗, σ(w1)[2,2] = τ(w2)[1,1] = 1 thus the

pair of 2 × 2 matrices, σ(w1), τ(w2), can be embedded into N3×3 by using

the direct sum σ(w1) ⊕ τ(w2) and joining the common element 1. Let us

define the morphism λ : Γ∗ × Γ∗ 7→ N3×3 by:

λ(w1, w2) = σ(w1) ⊕ τ(w2) =




2|w1| x 0

0 1 y

0 0 2|w2|


 ,

where w1, w2 ∈ Γ∗ and x, y ∈ N. This is still a monomorphism. Define

Xi = λ(ui, vi) for each 1 ≤ i ≤ n, Y1 = λ(a, a) and Y2 = λ(b, b). If there

exists a solution to the pcp (i1, i2, . . . , ik) then Xi1Xi2 · · ·Xik ∈ 〈X〉 is of

the form λ(ui1ui2 · · · uik , vi1vi2 · · · vik) = λ(w,w) ∈ 〈Y 〉 for some w ∈ Γ∗

thus their intersection is non-empty. Clearly 〈Y 〉 contains only matrices

embedding the same two words which corresponds to a correct solution to

the pcp. Thus the intersection is not empty iff there exists a solution to the

pcp. Since pcp is undecidable with 7 pairs of words[43], X is generated by

7 matrices and Y is generated by 2 matrices.

Corollary 4.19. Given two sets X = {X1,X2, . . . ,Xn} and Y = {Y1, Y2}
of 3 × 3 non-negative upper-triangular rational unimodular matrices. It is

undecidable if |〈X〉 ∩ 〈Y 〉| = 0.

Proof. Since each matrix in X,Y is invertible we can divide through by

the cubic root of the determinant ( 3
√

det(λ(w1, w2)) =
3
√

2|w1|+|w2|) to make

each unimodular (but mapping instead into R3×3) and obtain the same result

since the determinant is multiplicative, however the resulting matrices are

now real. Using a similar idea as in [26] suggested by M. Soittola, we can

replace the 2 on the main diagonal in the definitions of σ, τ and λ with 8.

This will give 8-adic numbers on the off diagonal elements rather than 2-adic

numbers and they retain their freeness. The determinant of λ will now be

a power of 8, thus the cubic root of the determinant will be a power of 2.

Therefore we can map into Q3×3 as required.
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Using the idea of pcp and “Claus instances” as in [26], we can reduce

the required number of matrices after slight modification of the problem.

Given two matrices A,B and two semigroups X = 〈{X1,X2, . . . ,X5}〉,
Y = 〈{Y1, Y2}〉 it is undecidable if there exists M ∈ X such that AMB ∈ Y .

See [26] for a more detailed discussion.



Chapter 5

Quaternion Matrix

Semigroup Problems

5.1 Hypercomplex Numbers Introduction

Quaternions have long been used in many fields including computer graph-

ics, robotics, global navigation and quantum physics as a useful mathemat-

ical tool for formulating the composition of arbitrary spatial rotations and

establishing the correctness of algorithms founded upon such compositions.

Many natural questions about quaternions are quite difficult and cor-

respond to fundamental theoretical problems in mathematics, physics and

computational theory. Unit quaternions actually form a double cover of the

rotation group SO3, meaning each element of SO3 corresponds to two unit

quaternions. This makes them expedient for studying rotation and angular

momentum and they are particularly useful in quantum mechanics. The

group of unit quaternions form the group SU2 which is the special unitary

group. The large number of applications has renewed interest in quaternions

and quaternion matrices ([2], [21], [50], [54], [55]).

Quaternions do not commute and this leads to many problems with their

analysis. In particular, defining the determinant and finding the eigenvalues

80
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and the inverse of a quaternion matrix are unexpectedly difficult problems

[55]. In this chapter, we shall study decision questions about semigroups of

quaternions, quaternion matrices and rotations, such as several reachability

questions, membership problems, freeness problems, etc.

It appears that there has not so far been much research on computational

problems for quaternions and quaternion matrices. This is partially because

the results for matrices over Z,Q,C are not easily transferable to the case

of quaternions. We shall investigate most of the open problems for 2 × 2

matrix semigroups showing undecidability of them in the case of matrices

over quaternions. After the quaternions, the hypercomplex numbers lose

the associativity property and thus no longer form a semigroup. Due to this

fact it could be concluded that research on quaternion matrices gives a more

complete picture of decision problems for matrix semigroups. We shall also

study several problems for the case of Lipschitz integers and state several

new open problems which arose from our research.

We shall also establish connections between classical matrix semigroup

problems and reachability problems for semigroups of rotations. In fact,

using unit quaternions for encoding computational problems gives us an op-

portunity to formulate and prove several interesting results in terms of 3

and 4-dimensional rotations defined by quaternions. In particular, we will

show that the point-to-point rotation problem for the 3-sphere is undecid-

able. The same problem for the 2-sphere is open and can be formulated

as a special case of the scalar reachability problem for matrix semigroups

that we show is undecidable in general. As an additional benefit, the results

on rotation semigroups give immediate corollaries for a class of orthogonal

matrix semigroups.

These type of geometric interpretations of quaternions and quaternion

matrices will be studied later in Chapter 7. We show that studying such

matrix problems is of interest since they do arise in many situations in the

real world.



5.2. Quaternion Word Morphisms 82

5.2 Quaternion Word Morphisms

Let Σ = {a, b} be a binary alphabet and Σ = {a, b} be the inverse alphabet,

thus a = a−1 and b = b−1. Let u = (1, 0, 0) and v = (0, 1, 0) with u, v ∈ Q3.

Define ϕ : (Σ ∪ Σ)∗ × Q 7→ H(Q) to be the following homomorphism:

ϕ(a, θ) = (cos(θ
2), u sin(θ

2)) · µ,
ϕ(b, θ) = (cos(θ

2), v sin(θ
2 )) · µ,

ϕ(a, θ) = (cos(θ
2 ),−u sin(θ

2 )) · µ,
ϕ(b, θ) = (cos(θ

2 ),−v sin(θ
2 )) · µ,

where θ ∈ Q ∈ [0, 2π), i.e., ϕ(a, θ) is a quaternion corresponding to a rotation

of angle θ about the u axis and ϕ(b, θ) corresponds to a rotation of angle

θ about the v axis, with the inverse elements being the opposite rotations.

ϕ(ε, θ) = ϑI is the multiplicative identity element of the division ring of

rational quaternions. Note that u · v = 0 and ||u|| = ||v|| = 1, thus these

two vectors are orthonormal.

Let us define a specific instance of this morphism. Let α = 2arccos(3
5 ) ∈

R. Now we define γ : (Σ∪Σ)∗ 7→ H(Q) where γ(a) = ϕ(a, α), γ(a) = ϕ(a, α),

γ(b) = ϕ(b, α) and γ(b) = ϕ(b, α). This gives the homomorphism:

γ(a) = (cos(arccos(3
5 )), ~u sin(arccos(3

5 ))) · µ = (3
5 ,

2
5 , 0, 0) · µ

γ(a) = γ(a)−1 = γ(a)∗ = (3
5 ,−2

5 , 0, 0) · µ
γ(b) = (cos(arccos(3

5 )), ~v sin(arccos(3
5))) · µ = (3

5 , 0,
2
5 , 0) · µ

γ(b) = γ(b)−1 = γ(b)∗ = (3
5 , 0,−2

5 , 0) · µ

which follows from the identity cos2θ + sin2θ = 1 since
√

1 − (3
5)2 = 2

5 . It

can be seen that the rational quaternions in the image of γ are unit, i.e.,

∀w ∈ Σ∗, ||γ(w)|| = 1 since quaternion length is multiplicative (||q1q2|| =

||q1|| · ||q2||, which we prove later in Lemma 5.12) and γ(a), γ(b) have unit

length.

Lemma 5.1. The mapping γ : Σ∗ 7→ H(Q) is a monomorphism.
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Proof. It was proven in [51] that if cos(θ) ∈ Q then the subgroup of SO3(R)

generated by rotations of angle θ about two perpendicular axes is free iff

cos(θ) 6= 0,±1
2 ,±1. We note that in the definition of γ we use a rotation

about two orthonormal axes u, v. We use a rotation of α = 2arccos 3
5 . From

basic trigonometry, cos(2 arccos(3
5 )) = −2 sin2 (arccos(3

5 )) = 1−2(4
5)2 = − 7

25

and sin(2 arccos(3
5)) = (cos(arccos(3

5 ))sin(arccos(3
5))) = 24

25 , thus the cosine

and sine of both angles are rational and not equal to 0,±1
2 ,±1 (we only

require this of the cosine) as required. We showed that all elements of the

quaternions are rational, thus we have a free subgroup of SO3(Q) generated

by γ(a), γ(a), γ(b), γ(b) ∈ H(Q).

Note that the conditions mentioned are guaranteed to give a free group

but are not necessary for freeness. See [21].

5.2.1 Matrix Representation of Quaternions

It is possible to represent a quaternion q ∈ H(Q) by a matrix M ∈ C(Q)2×2.

For a general quaternion ϑ = (a, b, c, d) · µ we define the matrix:

M =

(
a+ bi c+ d i

−c+ di a− bi

)
.

The correctness of multiplication and addition under this encoding can

be checked by verifying the result of the operation in terms of quaternions

and matrices separately.

Corollary 5.2. There exists a class of two-dimensional complex unitary

matrices forming a free group.

Proof. We can define a morphism similar to γ which instead maps to two-

dimensional complex matrices: Formally, ζ : Σ∗ 7→ C(Q)2×2 where:

ζ(a) =

(
3
5 + 4

5 i 0

0 3
5 − 4

5 i

)
, ζ(b) =

(
3
5

4
5

−4
5

3
5

)
,
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Note that matrices ζ(a) and ζ(b) are unitary, therefore let ζ(a) = ζ(a)−1 =

ζ(a)∗ and ζ(b) = ζ(b)−1 = ζ(b)∗ where ∗ denotes the Hermitian transpose,

thus:

ζ(a) =

(
3
5 − 4

5 i 0

0 3
5 + 4

5 i

)
, ζ(b) =

(
3
5 −4

5
4
5

3
5

)
,

Therefore we have the injective morphism ζ : (Σ∪Σ)∗ 7→ C(Q)2×2. Since

γ is an injective homomorphism, ζ is also clearly injective and therefore the

set G = {ζ(a), ζ(a), ζ(b), ζ(b)} ⊂ C(Q)2×2 generates a free group of two-

dimensional complex rational matrices.

Also note that we can define such matrices for any two orthonormal

vectors where the rotation angle θ satisfies cos(θ)∈ Q and cos(θ) 6= 0,±1
2 ,±1.

Thus we can find an infinite number of such matrices which will obviously

be unitary by the definition of ζ and unit quaternions.

Notice that we can multiply both matrices by the scalar matrix with

element 5 to give a Gaussian integral matrix (at the expense of losing uni-

modularity).

5.3 Low Dimension Quaternion Matrix Semigroups

We shall now show an undecidability result similar to the one considered

in Section 4.4 concerning semigroup intersections as studied by A. Markov

[42].

Theorem 5.3. Given two sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn},
where A,B ⊂ H(Q), it is undecidable whether there exists a non-empty se-

quence of indices r = (r1, r2, . . . , rm) such that ar1
ar2

· · · arm = br1
br2

· · · brm.

Moreover, this holds for n = nPCP.

Proof. We use a reduction of Post’s correspondence problem (pcp) (see Sec-

tion 3.2) and the morphism γ defined in Section 5.1. Given two alphabets

Γ,Σ, such that Σ is binary, and an instance of the pcp, (h, g) : Γ∗ 7→ Σ∗.
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We proved in Lemma 5.1 that γ : (Σ ∪ Σ)∗ 7→ H(Q) is a monomorphism.

Thus let us define a new pair of morphisms (ρ, τ) to map Γ+ × Γ+ di-

rectly into H(Q) × H(Q) (we can think of this as SU2 × SU2 since each of

these unit quaternions represents an element of S3 (the 3-sphere)). For-

mally, ρ : Γ∗ 7→ H(Q), τ : Γ∗ 7→ H(Q) where for any w ∈ Γ+, we define

ρ(w) = γ(h(w)) and τ(w) = γ(g(w)). This is clearly injective since it is the

composition of two injective homomorphisms.

Thus for an instance of pcp, Γ = {a1, a2, . . . , am}, (h, g), we instead

use the pair of morphisms (ρ, τ). Define two semigroups S1, S2 generated

respectively by {ρ(a1), ρ(a2), . . . , ρ(am)} and {τ(a1), τ(a2), . . . , τ(am)}. We

see there exists a solution to the given instance of pcp iff ∃w ∈ Γ+ such that

ρ(w) = τ(w).

We now move to an extension of the previous theorem where it is no

longer necessary to consider the index sequence. Markov obtained a similar

result by extending the dimension of the integral matrices to 4 × 4.

Theorem 5.4. Given two sets of matrices A = {A1, A2, . . . , An} and B =

{B1, B2} where A,B ⊂ H(Q)2×2 generating two semigroups S, T respec-

tively. It is undecidable if |S ∩T | = 0. Furthermore, all matrices in S, T are

diagonal.

Proof. Given an instance of pcp, (h, g) where h, g : Γ∗ 7→ Σ∗. We again use

the injective morphisms ρ, τ : Γ∗ 7→ H(Q) introduced in Theorem 5.3. Now,

for each a ∈ Γ we define:

Aa =

(
ρ(a) 0

0 τ(a)

)

and these matrices form the generator for the semigroup S. For the second

semigroup, T , we simply wish to encode each symbol from Σ in the [1, 1]

and [2, 2] elements using the morphism γ : Σ∗ 7→ H(Q) which was shown to
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be injective in Lemma 5.1:

B1 =

(
γ(a) 0

0 γ(a)

)
, B2 =

(
γ(b) 0

0 γ(b)

)
.

Now we can prove the theorem. We see that for some M ∈ A, M[1,1] =

M[2,2] iff there exists a solution w ∈ Γ+ to the instance of pcp. This follows

since element [1, 1] of M stores an encoding of h(w) and element [2, 2] of

M stores an encoding of g(w). Clearly any such matrix M will also be

in B since every matrix in B corresponds to an encoding of a word over

Σ+. Matrices in B clearly store an encoding of the same word in elements

[1, 1] and [2, 2]. Note that all matrices are diagonal and each element on the

leading diagonal is a unit quaternion by the definitions of the morphisms

used.

The previous two theorems used two separate semigroups. It is more

natural to ask whether a particular element is contained within a single

semigroup. We shall show an undecidable membership result for a class of

two-dimensional quaternion matrices.

Theorem 5.5. Given a matrix semigroup S generated by the (finite) set

G = {X1,X2, . . . ,Xn} ⊂ H(Q)2×2 where Xi is diagonal for each 1 ≤ i ≤ n.

It is undecidable for a fixed matrix Y whether Y ∈ S . Moreover, Y can be

chosen such that each diagonal element of Y has the form (a, 0, 0, 0) ·µ with

a ∈ Q \ {0,±1}.

Proof. This theorem can be proved essentially in the same way as Theo-

rem 4.1 using an instance of Index Coding PCP. We shall however use a

different injective homomorphism in order to map into the rational quater-

nions rather than 2 × 2 integral matrices.

We shall use the version of Index Coding PCP which is defined using

the pair of homomorphisms h, g : Γ∗ 7→ (Σ ∪ Σ)∗ where Σ = {a, b} is a

binary alphabet and Γ = {a1, a2, . . . , an}. We thus require a solution to
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Index Coding PCP:

w = w1w2 · · ·wk ∈ Γ∗,

such that exactly one wi = n and h(w) = g(w) = ε.

Recall the injective homomorphism γ : (Σ ∪ Σ)∗ 7→ H(Q) defined by:

γ(a) = (3
5 ,

2
5 , 0, 0) · µ, γ(b) = (3

5 , 0,
2
5 , 0) · µ,

γ(a) = (3
5 ,−2

5 , 0, 0) · µ, γ(b) = (3
5 , 0,−2

5 , 0) · µ,

from above.

We define the matrices G = {X1,X2, . . . ,Xn} ⊂ H(Q)2×2 where:

Xi =

(
γ(h(ai)) 0

0 γ(g(ai))

)
, 1 ≤ i ≤ n

which is analogous to the mapping into matrices we used in Theorem 4.1. If

there exists a solution to Index Coding PCP, say w = w1w2 · · ·wk ∈ Γ∗

with exactly one wi = n, then:

Xw1
Xw2

· · ·Xwk
=

(
γ(ε) 0

0 γ(ε)

)
=

(
1 0

0 1

)
= I2.

We need to enforce the constraint that only one element of this product

equals Xn however. We achieve this in a similar way to that in Theorem 4.1.

We multiply matrix Xn by a scalar such as 2, giving X ′
n = 2Xn and we

can therefore see by the construction that 2I2 ∈ 〈G 〉 iff the instance of

Index Coding PCP has a solution.

We again require 14 matrices since Index Coding PCP is undecidable

for an instance of size 14.

Note that in Theorem 5.5 we use diagonal quaternion matrices which are

equivalent to double quaternions.

Corollary 5.6. The vector reachability problem for a semigroup of 2 × 2

quaternion matrices is undecidable.
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Proof. The vector reachability question for quaternions is defined as: “Given

two vectors a, b ∈ H(Q)n and a finitely generated semigroup of matrices

S ⊂ H(Q)n×n, does there exist some M ∈ S such that Ma = b?”.

The undecidability of this problem is straightforward from Theorem 5.5.

Let x, y ∈ H(Q)2 and x = (1, 1)T , y = (2, 2)T . Then, for some M ∈ S , it is

clear that Mx = y iff M = 2I2 since all matrices in S are diagonal. Since

determining if 2I2 ∈ S was shown to be undecidable, the vector reachability

problem is also undecidable.

The next problem was given as an open problem over matrices of natural

numbers N in any dimension [14]. We show it is undecidable over H(Q)2×2.

Theorem 5.7. It is undecidable for a two-dimensional rational quaternion

matrix semigroup S whether there exists any diagonal matrix D ∈ S . This

holds for a semigroup generated by nPCP matrices.

Proof. Given a pair of homomorphisms h, g : Γ∗ 7→ Σ∗ which are an in-

stance of Post’s correspondence problem (pcp) where Σ = {a, b} is a binary

alphabet. We use the injective homomorphism γ : Σ∗ 7→ H(Q) defined and

proven injective in Section 5.2.

Let us define a homomorphism Ψ : H(Q)× H(Q) 7→ H(Q)2×2, where for

any two quaternions q, r ∈ H(Q):

Ψ(q, r) =
1

2

(
q + r q − r

q − r q + r

)

It is clear that Ψ is a homomorphism, as shown in [13], since clearly

Ψ(q1, r1) · Ψ(q2, r2) = Ψ(q1q2, r1r2) which is verified easily via:

1

2

 

q1 + r1 q1 − r1

q1 − r1 q1 + r1

!

·

1

2

 

q2 + r2 q2 − r2

q2 − r2 q2 + r2

!

=
1

2

 

q1q2 + r1r2 q1q2 − r1r2

q1q2 − r1r2 q1q2 + r1r2

!

.

It is now obvious that Ψ(q, r) is diagonal iff q = r since the top right

and bottom left elements of the matrix equal 0 only if the two quaternions

are equal.
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Therefore, given an instance of Post’s correspondence problem (pcp),

h, g : Γ∗ 7→ Σ∗, where Γ = {a1, a2, . . . an}, we define the set of matrices

G = {X1,X2, . . . ,Xn} ⊂ H(Q)2×2 where:

Xi =

(
γ(h(ai)) + γ(g(ai)) γ(h(ai)) − γ(g(ai))

γ(h(ai)) − γ(g(ai)) γ(h(ai)) + γ(g(ai))

)
, ai ∈ Γ

If there exists a solution w1w2 · · ·wk ∈ Γ∗ to the given instance of pcp,

then h(w) = g(w) and therefore:

Xw1
Xw2

· · ·Xwk
=

(
2γ(h(w)) 0

0 2γ(h(w))

)

which is diagonal, and as previously stated, this is the only case in which

such a diagonal matrix will occur in the semigroup S = 〈G 〉. Since we

know that pcp is undecidable for |Γ| = 7, this problem is undecidable for

semigroups generated by 7 quaternion matrices of dimension 2.

Unfortunately this does not hold when we convert the matrices to four-

dimensional rational matrices since we only get a block diagonal matrix. We

showed previously in Theorem 4.7 that the problem is also undecidable for

4 × 4 complex rational matrix semigroups.

Another problem which can be stated is that of freeness of quaternion

matrix semigroups. We shall use an almost identical proof to that in [17]

to show the undecidability of the problem, and we obtain the result for

matrices over H(Q)2×2 rather than (Z+)3×3:

Theorem 5.8. Given a semigroup S generated by a finite set of matrices

G = {M1, . . . ,Mn} where Mi ∈ H(Q)2×2, deciding whether S is free is

algorithmically undecidable.

Proof. Since we can store two words within a matrix Mi ∈ H(Q)2×2 we can

use an almost identical proof that was used in [17]. We will give a brief

sketch of the proof and refer to [17] for a more rigorous version.



5.3. Low Dimension Quaternion Matrix Semigroups 90

The mixed modification pcp (or MMPCP) is a variant of the standard

Post’s correspondence problem (pcp). As in the original pcp, we are given

two (finite) alphabets Γ,Σ and two morphisms h, g : Γ∗ → Σ∗. The MMPCP

asks whether there exists a word w = w1w2 · · ·wm ∈ Σ+ such that:

h1(w1)h2(w2) · · ·hm(wm) = g1(w1)g2(w2) · · · gm(wm)

where each hi, gi ∈ {h, g} and hj 6= gj for some 1 ≤ j ≤ m. We shall use a

reduction of this problem to the freeness of quaternion matrix semigroups.

Define the set of 2 × 2 quaternion matrices:

G =

{(
γ(a) 0

0 h(a)

)
,

(
γ(a) 0

0 g(a)

)
; a ∈ Γ

}
.

If S is not free then there is a word w = w1w2 · · ·wn ∈ Σ+ such that

h1(w1)h2(w2) · · · hm(wm) = g1(w1)g2(w2) · · · gm(wm) since any equal matrix

product in S must have the same word w in the top left element and the

same element in the bottom right which was generated by different matrices.

Thus the problem of freeness for 2×2 rational quaternion matrix semigroups

is undecidable. See [17] for more details of the proof method.

Note that an alphabet size of |Γ| = 7 was required for the undecidability

of MMPCP (see [28]), thus the problem is undecidable for a semigroup

generated by 7 matrices.

We now consider a problem which is decidable over complex numbers,

but undecidable over rational quaternions. This gives a bound between the

computational power of complex numbers and quaternions. We first require

a lemma.

Lemma 5.9. [3] Given a semigroup S of commutative matrices of any

dimension, then the membership problem for S is decidable.

Corollary 5.10. The problems for diagonal matrices stated in Theorems

5.3, 5.4 and 5.5 are decidable when taken instead over any field up to the

complex numbers.
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Proof. In Theorem 5.3 we can change the problem to one over two-dimensional

matrices which will be equivalent. For each 1 ≤ k ≤ n we define

Mk =

(
qik 0

0 qjk

)
∈ C2×2.

Now define a semigroup S generated by G = {M1,M2, . . . ,Mn}. Clearly

then the problem becomes “Does there exist a matrix X in S such that

X[1,1] = X[2,2]?”. This is decidable if the matrices commute (in the case

of complex diagonal matrices) and we have shown it to be undecidable for

diagonal matrices over the quaternions.

Theorem 5.4 concerns the emptiness testing of the intersection of two

semigroups A,B. However, B is just the set of matrices with equal elements

on the diagonal generated by γ(a) and γ(b). Thus the problem when taken

for complex numbers is simply: “Does there exist some matrix, X ∈ A with

X[1,1] = X[2,2]” as in the previous paragraph. Again, since the matrices are

diagonal and complex, they commute and the problem is clearly decidable.

For Theorem 5.5, all matrices in the semigroup commute since they are

diagonal with complex entries. By Lemma 5.9 this means we can decide if

any M is in semigroup S (in polynomial time) thus concluding the proof.

5.4 Computational Problems in Lipschitz Integers

We shall now consider decision questions on matrices over Lipschitz integers,

denoted by H(Z) which are quaternions with integral parts.

Corollary 5.11. The problems stated in Theorems 5.3 and 5.4 are unde-

cidable for matrix semigroups when taken instead over the Lipschitz integers

H(Z).

Proof. Note that in Lemma 5.1 we showed γ is injective and in Section 5.2.1

we showed an isomorphism between quaternions and a subgroup of the two-

dimensional complex matrices, H(Q) ∼= C2×2. If we examine the definition
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of ζ in 5.2.1 we see that all elements have 5 as their denominator thus we

can multiply ζ(a), ζ(b) by the scalar matrix 5I2 thus giving two-dimensional

matrices over the Gaussian integers. This will still be free and is equivalent

to the (non-unit) quaternions q1 = 5(3
5 ,

4
5 , 0, 0) · µ = (3, 4, 0, 0) · µ and q2 =

5(3
5 , 0,

4
5 , 0) ·µ = (3, 0, 4, 0) ·µ which still form a free semigroup. We therefore

define λ : Σ∗ 7→ H(Q) by

λ(x) =

(
5 · γ(x) if x 6= ε

γ(x) if x = ε

)
.

Thus in Theorems 5.3 and 5.4 we can replace the definitions of ρ, τ to

use λ instead and this will give an injective morphism over the Lipschitz

integers H(Z). This cannot be extended to Theorem 5.5 however since the

inverse of a non-identity Lipschitz integer is not itself a Lipschitz integer

(obviously it must have rational coefficients).

Lemma 5.12. The modulus of quaternions is multiplicative and the ring of

Lipschitz integers with multiplication and addition is closed.

Proof. These simple results are needed in Theorem 5.13 below. For the first

statement we wish to prove ||q1q2|| = ||q1|| · ||q2||. Fortunately we do not

need to use a laborious proof of this since the determinant of the matrix

representation of a quaternion shown in 5.2.1 corresponds to the modulus.

It is well known that the determinant of complex matrices is multiplicative,

see [31].

The second part is easy to see by examining the product of two quater-

nions. We only multiply and sum entries in the product therefore if both

quaternions have integral components, so does their product. Thus the prod-

uct of two Lipschitz integers is a Lipschitz integer and obviously the sum is

also closed since it is simply the component-wise addition of integers.

Theorem 5.13. Given a set of Lipschitz integers G ∈ H(Z) generating a

semigroup S = 〈G 〉, the problem of deciding for an arbitrary L ∈ H(Z) if

L ∈ S is decidable.
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Proof. Note that all non-zero quaternions have modulus d ∈ R+. Further-

more, it is obvious that for any non-zero Lipschitz integer L ∈ H(Z), that

d ≥ 1, with equality iff

L ∈ Φ = {(±1, 0, 0, 0) · µ, (0,±1, 0, 0) · µ, (0, 0,±1, 0) · µ, (0, 0, 0,±1) · µ}.

We have named this set Φ for later explanation. It is easily seen ∀q ∈ Φ

that q is of unit length, i.e.,

||q|| = qq =
√
a2 + b2 + c2 + d2 = 1.

Also note that their fourth powers are all equal to the identity element, i.e.,

∀q ∈ Φ, q4 = ϑI = (1, 0, 0, 0) · µ which is easily checked.

For a given L ∈ H(Z) whose membership in S we wish to determine, it

will have a magnitude ||L|| = m ∈ R. If m < 1 then L cannot be a product a

Lipschitz integers since the magnitude must be at least 1 by definition of the

quaternion magnitude. If m = 1 then L can only be a product of elements

from Φ and membership is trivial by examining the generator G . Otherwise,

m > 1. Let G ′ = G \Φ (which is the generator set G minus any elements of

Φ). We can see that there exists only a finite number of products to check

since m > 1 and ∀x ∈ 〈G ′〉 we have that ||x|| > 1. Again, this is easy to see

from the definition of the magnitude when considering integral components.

Thus, excluding Φ we have a finite set of products of finite length to

check. However if a (non-identity) element of Φ is in the generator, we must

include these in the products. Let S ′ = 〈G ′〉. For each product from S ′

whose magnitude equals L:

P = p1p2 · · · pn |(pt ∈ S′) ∧ (||P || = m)

we define the (finite) set of products:
{
P =

( n∏

t=1

rtpt

)
rn+1 |rt, pt ∈ H(Z)

}
,

where each rt varies over all elements of [(Φ∩G )∪ϑI ] for 1 ≤ t ≤ n+1. I.e. rt

varies over all possible products of elements of Φ that are in G or the identity
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quaternion in all possible places in the product (since elements of 〈Φ〉 are

unimodular). We must simply prove that 〈Φ〉 (the semigroup over elements

of Φ) is finite. This is easily seen however from the following three facts;

the only Lipschitz integers with moduli 1 are in Φ, the quaternion moduli

is closed under multiplication and the product of two Lipschitz integers is a

Lipschitz integer.

The first fact is obvious since the square root of a sum of four squares is

equal to 1 iff exactly one component is 1. The second and third facts were

proven in Lemma 5.12. Thus 〈Φ〉 is a finite semigroup and there exists a

finite set of products to check for equality to L ∈ H(Z) and thus this is a

decidable problem.



Chapter 6

Reductions of Skolem’s

Problem

In this chapter we shall study some encodings of a well known problem

known as Skolem’s Problem. It is also sometimes called Pisot’s problem.

The problem itself is concerns the decidability of determining zeros in linear

recurrent sequences which we shall soon detail. We shall show how the prob-

lem is related to The Mortality Problem and exponential Diophantine

equations.

We are often interested in systems whereby future states depend on some

finite history. Given such a system we would then like to characterise its

properties. For example, is the set of possible future states bounded? Is it

periodic? Can we reach a particular state? Such problems are related to

dynamical systems but it is frustrating that for even simply defined systems

we often cannot develop algorithms to determine the types of properties

listed. We shall now define a very simple example of this type of system.

A sequence u = (u0, u1, · · · ) = (ui)
∞
i=0 is called a linear recurrent se-

quence if it satisfies the condition that:

uk = rn−1uk−1 + rn−2uk−2 + . . .+ r0uk−n,

95
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for all k ≥ n where (r0, r1, . . . , rn−1) ∈ Zn is a fixed integral vector we shall

call the coefficient vector. We can see that the next value uk depends upon

this fixed coefficient vector and the n previous values uk−1, uk−2, . . . uk−n.

Let us consider an example. Take u0 = 0, u1 = 1 and the coefficient

vector (2, 1). Thus, u2 = 2u1+u0 = 2, u3 = 2u2+u1 = 5 and u4 = 2u3+u2 =

12 etc. This gives us the sequence (0, 1, 2, 5, 12, 25, 70, 169, 408, . . .) which

are the so called Pell numbers which can be used to approximate
√

2 by the

formula √
2 ≈ uk−1 + uk

uk

.

Another more famous example is given by u0 = 0, u1 = 1 and the coeffi-

cient vector (1, 1) which generates the Fibonacci sequence of natural num-

bers (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .).

We are now ready to state Skolem’s Problem:

Open Problem 6.1. Skolem’s Problem - Given a linear recurrent

sequence (u0, u1, u2, . . .) ∈ ZN, does there exist some value k ≥ 0 such

that uk = 0?

We can represent linear recurrent sequences using matrix notation and

properties of the sequence can then be formulated as a property of the

underlying matrix and vector equations. We shall show this representation

in the next section. This will allow us to express Skolem’s Problem in

terms of a matrix property.

The decidability status of Skolem’s Problem is a long standing open

problem. It is known to be decidable for n = 5 which is a highly non-trivial

result requiring algebraic number theory, see [29]. A related problem, that

of determining whether all elements of a linear recurrent sequence of depth

2 are all positive, is known to be decidable [30].

We can represent linear recurrent sequences using matrix notation and

properties of the sequence can then be formulated as a property of the
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underlying matrix and vector equations. We shall show this standard rep-

resentation in the next theorem.

6.1 Zero in the Upper Right Corner

There is a well known construction whereby we can convert an instance of

Skolem’s Problem to an instance of the zero in the upper right corner

problem for a single integral matrix. Let (r0, r1, . . . , rn−1) be the coefficient

vector and u = (un, un−1, . . . u0) be the initial values. We construct the

matrix:

A′ =




rn−1 1 · · · 0 0
...

...
. . .

...
...

r2 0 · · · 1 0

r1 0 · · · 0 1

r0 0 · · · 0 0




∈ Zn×n.

Let 0 = (0, 0, . . . , 0)T ∈ Zn be a zero vector. We may now extend matrix

A′ by 1 dimension to give the matrix:

A =

(
0 uA′

0 A′

)
∈ Z(n+1)×(n+1),

and clearly by studying the form of the matrix we can see that:

Aj =

(
0 uA′j

0 A′j

)
∈ Z(n+1)×(n+1).

Thus the top right element of this matrix, Aj

[1,n+1] = uj+n for any j ≥ 1

as required. Therefore it follows that Skolem’s Problem has a solution if

an only if some power of matrix A has a zero in its upper right corner as

required.

This construction is well known from the literature and for a depth n

linear recurrence it requires a matrix of dimension n + 1. We shall next

show that instances of Skolem’s Problem can be converted to instances
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of the zero in the upper left corner problem on a single matrix of dimen-

sion n. The resulting matrices are rational however rather than integral.

The reason for us showing such a construction is to reduce any instance of

Skolem’s Problem to the mortality problem for a pair of integral matrices

later in the chapter.

6.2 Zero in the Upper Left Corner

In this section we shall show a new formulation in terms of rational matrices

where Skolem’s Problem instances can be converted into instances of

the Zero in the Upper Left Corner Problem (which we now define),

and also into the The Mortality Problem for integral matrix semigroups

which we define in the next section.

Problem 6.2. Zero in the Upper Left Corner Problem - Given

a finite set of matrices G = {M1,M2, . . . ,Mn} ⊆ Zk×k generating a semi-

group S , does there exist some M ∈ S such that M[1,1] = 0? I.e. does

there exist some matrix in the semigroup with a zero in the top left ele-

ment?

In the next theorem we convert instances of Skolem’s Problem to

an instance of Zero in the Upper Left Corner Problem with just a

single matrix in the generator. Then we shall show that we can also convert

into instances of The Mortality Problem which we define in the next

section with just two matrices in the generator.

Theorem 6.3. Skolem’s Problem of depth n is equivalent to an instance

of the Zero in the Upper Left Corner Problem for a semigroup gen-

erated by a single matrix M ∈ Qn×n.

Proof. Let u = (u0, u1, . . . , un−1)
T ∈ Zn be the initial vector of values for a

depth n linear recurrence and r = (r0, r1, . . . , rn−1) ∈ Zn be the coefficient
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vector.

We may write the updating procedure using matrices in the following

way:

R =




0 1 0 · · · 0

0 0 1
. . . 0

...
...

. . .
. . .

...

0 0 0 · · · 1

r0 r1 r2 · · · rn−1




, u =




u0

u1

u2

...

un−1




where R ∈ Zn×n and we see that R · u = (u1, u2, . . . , un−1, un)T , and more

generally:

Rk · u = (uk, uk+1, . . . , un+k−2, un+k−1) (6.1)

We can then define a vector x = (0, 0, . . . , 1)T ∈ Zn and individual values

of the sequence can be obtained:

un+k = xTRk+1u; k ≥ 0

Now let us define two new matrices S, S−1 ∈ Zn×n by:

S =




u0 1 0 · · · 0

u1 0 1
. . . 0

...
...

. . .
. . .

...

un−2 0 0 · · · 1

un−1 0 0 · · · 0




, S−1 =




0 0 0 · · · 1
un−1

1 0 0 · · · − u0

un−1

0 1 0
. . . − u1

un−1

...
...

. . .
. . .

...

0 0 0 · · · −un−2

un−1




Clearly, det(S) = (−1)n−1 ·un−1, and S is thus invertible (since if ui = 0

for 1 ≤ i < n, we have a trivial solution to Skolem’s problem). Let us now

examine element (RS)[n,1] (the bottom left element of this product). It is

equal to
∑n−1

i=0 riui which is exactly un. Now consider element (S−1RS)[1,1]:

(S−1RS)[1,1] = − 1

un−1
·

n−1∑

i=0

riui,
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and we know un−1 6= 0 as stated previously. Let us define X = S−1RS and

consider powers of this matrix. We see that:

Xk = S−1RkS (6.2)

We see that (Rk · S)[n,1] =
∑n+k−1

i=k riui = un+k which follows from (6.1)

since the first column of S equals the vector u. Finally then we see as before

that:

Xk
[1,1] = (S−1RkS)[1,1] =

1

un

n−1∑

i=0

riuk+i =
1

un

· un+k (6.3)

Since 1
un

6= 0, then (Xk)[1,1] = 0 iff
∑n−1

i=0 riuk+i = 0 iff there exists a

solution to the instance of Skolem’s problem.

The characteristic polynomial of R equals tn − rn−1t
n−1 − . . . − r0 and

therefore by the Cayley-Hamilton theorem:

Xn = rn−1X
n−1 + rn−2X

n−2 + · · · + r0I.

Thus, Xk+n = rn−1X
k+n−1 + rn−2X

k+n−2 + · · · + r0X
k for any k ∈ Z+

validating the correctness of the encoding.

We now state a simple result we shall require later on:

Lemma 6.4. The characteristic polynomial of a depth n minimal linear

recurrent sequence does not have 0 as a solution.

Proof. The characteristic polynomial is tn − rn−1t
n−1 − . . . − r0. If r0 = 0

then the linear recurrent sequence is not minimal, we can replace it by an

equivalent recurrence of depth (n − 1).

Therefore, we initially have an integral matrix R ∈ Zn×n and then de-

fine X = S−1RS for S, S−1 ∈ GLn(Q), such that the given instance of

Skolem’s Problem has a solution iff there exists k > 0 such thatXk
[1,1] = 0.
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6.3 The Mortality Problem

We have shown that Skolem’s Problem can be converted to an instance

of the Zero in the Upper Left Corner Problem. We shall now show

that it can also be converted to The Mortality Problem which we now

define:

Problem 6.5. The Mortality Problem - Given a finite set of integral

matrices G = {M1,M2, . . . ,Mn} ⊆ Zk×k generating a semigroup S , does

there exist Z ∈ S where Z is the zero matrix?

It is known that The Mortality Problem is undecidable for semi-

groups generated by 8 integral matrices of dimension 3, see [25]. Conversely,

it is known that the problem is decidable for a pair of 2×2 rational matrices,

see [16]. The problem is currently open for an arbitrary number of matrices

in dimension 2:

Open Problem 6.6. Is The Mortality Problem decidable for a

semigroup generated by a finite set of 2 × 2 rational matrices?

Theorem 6.7. Skolem’s Problem for linear recurrences of depth n can be

converted to The Mortality Problem for a 2-generator integral matrix

semigroup of dimension n.

Proof. This can be shown in a similar way to The Mortality Problem

was proven undecidable in [25]. Let X = S−1RS as in the previous theorem.

Define

P =




1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



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Now define a semigroup S = 〈X,P 〉. Notice that PXrP has zero’s

everywhere except the top left element which is 0 iff Xr
[1,1] = 0 iff ur+k = 0.

Now, assume that some matrix M ∈ S is equal to the zero matrix:

M = M1M2 · · ·Mt = 0. Since P is idempotent (i.e., P 2 = P ), clearly we

can equivalently write this in the form:

M = (Xi · P ) · (P ·Xj1 · P ) · · · (P ·Xjk · P ) · (P ·Xm),

where i,m, k ≥ 0 and jl > 0 for each 1 ≤ l ≤ k, since it either starts/ends

with a power of X matrices or with P . If (Xi ·P )[1,1] = 0 or (P ·Xm)[1,1] = 0

then we are done (since this is a solution), otherwise assume they do not.

Now consider each central product (P ·Xjl · P ). Clearly from the form

of P this equals Xjl

[1,1] · P , which is a matrix with all zeros except the top

left element which equals the top left element of Xjl .

Thus if (P · Xj1 · P )(P · Xj2 · P ) · · · (P · Xjk · P )[1,1] = 0 then one of

the bracketed subproducts equals 0 which corresponds to a correct solution.

Thus, again assume no such product equals the zero matrix.

Finally then we have a product M = (Xi · P )(λP )(P ·Xm) = 0 where

λ ∈ Q \ {0}. But (Xi · P )(λ · P ) = Xi · λP . This has zero’s everywhere

except the leftmost column and (P · Xm) has zeros everywhere except the

uppermost row. Thus element M[1,1] = (Xi · λP )[1,1] · (P ·Xm)[1,1] = 0 but

this is a contradiction since if the upper left corner is zero it corresponds to

a correct solution.

6.4 Exponential Diophantine Equations

It is also interesting to note that from this matrix representation we may

derive a related problem in terms of exponential Diophantine equations.

This may also be derived more directly from the Cayley-Hamilton theorem

but we include it here for completeness and to show the connection between

these three problems.
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Problem 6.8. Given two vectors x = (x0, x1, . . . , xn−1), z = (z0, z1, . . . , zn−1)

where x, z ∈ Cn and each xi, zi are algebraic integers. Does there exist some

k ∈ N such that:
n−1∑

i=0

zix
k
i = 0?

Or equivalently:

Problem 6.9. Given two vectors of algebraic integers x, z ∈ Cn, we can

define the decision question,

Does

∞∏

k=1

n−1∑

i=0

zix
k
i = 0? ; zi, xi ∈ C

We shall now show a case where Skolem’s Problem can be reduced

to Problem 6.8, or equivalently to Problem 6.9. In other words we show

a subset of instances of Skolem’s Problem that have a solution if either

Problems 6.8 or 6.9 have an algorithmic solution.

Theorem 6.10. Given an instance of Skolem’s Problem with linear re-

current sequence u = (u0, u1, . . . , un), if the companion matrix of u has a

characteristic polynomial with distinct roots then the instance can be reduced

to Problem 6.8.

Proof. Since the characteristic polynomial of R has distinct non-zero roots

(by the statement of the theorem and Lemma 6.4), R is diagonalizable, thus

R = T−1DT where T ∈ GLn(C) and D ∈ Cn×n is a diagonal matrix. Now,

as before, we let X = S−1RkS. Therefore we see that:

Xk = (S−1T−1DTS)k = S−1T−1DkTS; S, T ∈ GLn(C),D ∈ Cn×n

It is now apparent that we have fixed matrices S−1T−1, TS and a di-

agonal matrix D whose powers are easy to compute. We are interested in

the upper left corner of X. Let u be the top row of S−1T−1 and v be the

leftmost column of TS. Obviously uT v = 1 since these matrices are inverse

to each other.
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Let D = d1 ⊕ d2 ⊕ . . . ⊕ dn where di ∈ C be the diagonal matrix. Thus

Dk = dk
1 ⊕ dk

2 ⊕ . . .⊕ dk
n. Now we see that:

Xk
[1,1] = (u1d

k
1 , u2d

k
2 , . . . , und

k
n) · vT =

n∑

i=1

uivid
k
i

Clearly uivi is constant for each instance and we simply take the initial vector

x in the statement of Problem 6.8 to be x = (u1v1, u2v2, . . . , unvn) ∈ Cn.

We take the second vector z to be z = (d1, d2, . . . , dn). And now we see that

the two problems are indeed equivalent. Note that we still have the factor
1

un
which changes the result but since this is non-zero, the summand equals

zero iff the instance of Skolem’s problem has a solution.

What form will the diagonalizing matrix for R (a companion matrix)

take? The next proposition will show this.

Proposition 6.11. If the characteristic polynomial of a companion matrix

R ∈ Cn×n has n distinct roots {α0, α1, . . . , αn−1}, then it is diagonalized by

the Vandermonde matrix V of these values.

Proof. Let us define the Vandermonde matrix V of {α0, α1, . . . , αn−1} by:

V =




1 1 · · · 1

α0 α1 · · · αn−1

α2
0 α2

1 · · · α2
n−1

...
...

. . .
...

αn−1
0 αn−1

1 · · · αn−1
n−1




Let {x0, x1, . . . , xn−1} be the set of row vectors of V −1. Thus:

xi · (1, αj , α
2
j , . . . , α

n
j )T = δij (††)

where δij is the Kronecker delta. Recall the companion matrix R defined
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as:

R =




0 1 0 · · · 0

0 0 1
. . . 0

...
...

. . .
. . .

...

0 0 0 · · · 1

r0 r1 r2 · · · rn−1




Consider the product R · V . Since the characteristic polynomial p(λ)

of R is defined by p(λ) = det(λI − R) = λn − rn−1λ
n−1 − . . . − r0 then

r0αj + r1α
2
j + · · ·+ rn−1α

n−1
j = αn

j iff p(αj) = 0. Thus if {α0, α1, . . . , αn−1}
are indeed latent roots of R, then:

RV =




α0 α1 · · · αn−1

α2
0 α2

1 · · · α2
n−1

...
...

. . .
...

αn
0 αn

1 · · · αn
n−1




Finally we must compute V −1R = [bij ] ∈ Cn×n. Element bij of V −1RV

is given by xi · yj where xi is the i’th row vector of V −1 and yj is the j’th

column vector of RV (i.e, yj = (αj , α
2
j , . . . , α

n
j )T ). From (††) on the previous

page, we know that xi · (1, αj , α
2
j , . . . , α

n
j )T = δij thus:

bij = xiyj =

n−1∑

k=0

(xi)kα
k+1
j = αj ·

n−1∑

k=0

(xi)kα
k
j = αj · δij ,

and [bij ] is a diagonal matrix (due to the Kronecker delta) which is equal to

α0 ⊕ α1 ⊕ · · · ⊕ αn−1 as required.

It is now clear that in Theorem 6.10, T can be taken to be the Vander-

monde matrix of the eigenvalues of R. Let D = [bij ] = α0 ⊕α1 ⊕ · · · ⊕αn−1

be the diagonal matrix from the last theorem. Then V −1RV = D and thus

R = V DV −1.

In Theorem 6.3, we defined a matrix X = S−1RS and noted that the

linear recurrent sequence had a zero iff there exists a particular k > 0 such
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that Xk
[1,1] = 0 with k a positive integer. Since R = V DV −1 we can see

that X = S−1V DV −1S and that a zero in the linear recurrent sequence is

present iff there exists a k > 0 such that (S−1V DkV −1S)[1,1] = 0.

In conclusion, we have shown that any instance of Skolem’s Problem

with a linear recurrent sequence of depth n can be reduced to an instance

of The Mortality Problem with a pair of integral matrices of dimension

n × n. We have also shown a subclass of instances of Skolem’s Problem

which can be reduced to a form of exponential Diophantine equation prob-

lems where the coefficients are algebraic integers.



Chapter 7

Geometric Interpretations

and Applications

In this section, we will move from an algebraic point of view to geometric

interpretations of previously considered problems and in particular, new

theorems concerning quaternion matrix semigroup problems. This leads to

an interesting set of problems which we shall now outline.

Problem 7.1. Point Rotation Problem (PRP(n)) - Given points

x, y ∈ Qn on the unit (n−1)-sphere and a semigroup S of n-dimensional

rotations. Does there exist M ∈ S such that M rotates x to y?

In general, we can consider PRP(n) with a semigroup of n-dimensional

rotation matrices (i.e., orthogonal matrices with determinant 1). In 3-

dimensions, we may take S to be a semigroup of quaternions and define

the rotation problem to be “Does there exist q ∈ S such that qx′q−1 = y′

where x′, y′ ∈ H(Q)0 are pure quaternions with imaginary components cor-

responding to the vectors x, y.

We shall show that the Point Rotation Problem is decidable for 2-

dimensions. Further, it is undecidable in 4-dimensions, and its decidability

107
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status is open in 3-dimensions.

Theorem 7.2. The Point Rotation Problem, PRP(2) is decidable.

Proof. Points x, y ∈ Q2 where x = (x0, x1), y = (y0, y1), can be represented

instead as complex numbers x′, y′ ∈ C. Using the exponential representa-

tion, let x′ = r1e
iθ1 and y′ = r2e

iθ2 where r1 = |x|, r2 = |y|, θ1 = arccos(x1

x0
)

and θ1 = arccos(y1

y0
). We can convert all rotations of the semigroup in the

same way to give a complex semigroup SC . Now the problem becomes:

“Does there exist M ∈ SC such that Mx′ = y′?”, but clearly M = y′

x′ and

since SC is commutative, membership is decidable [3], proving the result.

We can define a standard scalar reachability problem in terms of quater-

nions:

Problem 7.3. Quaternion Scalar Reachability Problem

(QSRP(n)) - Given vectors u, v ∈ H(Q)n a scalar r ∈ H(Q) and a

semigroup of matrices S ⊂ H(Q)n×n. Does there exist M ∈ S such that

uTMv = r?

Now we can prove that:

Theorem 7.4. The Point Rotation Problem PRP(3) is reducible to the

Quaternion Scalar Reachability Problem QSRP(2).

Proof. Since we are dealing with three-dimensional rotations, we can convert

all elements of the PRP(3) instance to quaternions. Specifically, we define

x′, y′ ∈ H(Q)0 to be pure quaternions with imaginary parts corresponding

to x, y vectors respectively. We convert each three-dimensional rotation, R

in S to an equivalent unit quaternion q such that the imaginary vector in

qx′q−1 is equivalent to Rx for example.

Each quaternion q in the PRP(3) is of unit length, therefore it is invert-

ible and thus if qxq−1 = y we may write qx = yq. Let G = {q0, q1, . . . , qm} =
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S \ S 2 be the generator of S . Define α = (y, 1) and β = (−1, x)T and let

G ′ = {M0,M1, . . . ,Mm} where

G
′ =

{
Mi =

(
qi 0

0 qi

)
; 1 ≤ i ≤ m

}

and let S ′ = 〈G ′〉 be a new semigroup.

Then ∃M ∈ S ′ such that αMβ = 0 iff ∃q ∈ S such that qxq−1 = y. To

see this, note that αMβ = qx− qy where M =

(
q 0

0 q

)
and

qx− yq = 0

⇒ qx = yq

⇒ qxq−1 = y

as required.

In fact we know that QSRP(2) is undecidable in general:

Theorem 7.5. The Quaternion Scalar Reachability Problem is un-

decidable for a semigroup S generated by 5 two-dimensional diagonal quater-

nion matrices.

Proof. Let γ : Σ∗ 7→ H(Q) be an injective homomorphism as defined previ-

ously. Let

{(u1, v1), (u2, v2), . . . , (un, vn)} ⊂ Σ∗ × Σ∗

be a Claus instance of pcp. Then we see that if

Mi =

(
γ(ui) 0

0 γ(vi)

)
; 2 ≤ i ≤ n− 1,

and α = (γ(u1), γ(v1)), β = (γ(un),−γ(vn))T and r = 0 then:

αMwβ = γ(u1uwun) − γ(v1vwvn) = 0 ⇔ u1uwun = v1vwvn

where Mw = Mw1
Mw2

· · ·Mwk
and 1 ≤ wi ≤ n − 1 for each 1 ≤ i ≤ k.

Since there exists a Claus instance of pcp which is undecidable for n = 7 [28],
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the problem is undecidable for 5 matrices (since we have put the first and

last elements inside the vectors α, β).

But the decidability status of PRP(3) remains open (since the reduction

is one way):

Open Problem 7.6. 3D Point Rotation Problem (PRP(3)) - Given

two points on the 2-sphere, x, y ∈ Q3, and a semigroup of rotations S

generated by a finite set G . Does there exist some rotation R ∈ S such that

R rotates x to y?

The rotation problem PRP (3) is not only related to problems on quater-

nions but can also be reformulated as a 1-dimensional vector reachability

problem for a semigroup or a group of rational linear functions over the

complex field also known as Möbius transformations. In geometry, a Möbius

transformation is a function, f : C 7→ C defined by:

f(z) =
az + b

cz + d
,

where z, a, b, c, d ∈ C are complex numbers satisfying ad − bc 6= 0. Möbius

transformations may be performed by taking a stereographic projection from

a plane to a sphere, rotating and moving the sphere to a new arbitrary

location and orientation, and making a stereographic projection back to the

plane. Since there is a unique mapping between rotations of the 2-sphere and

Möbius transformations, problem PRP (3) is equivalent to the reachability

problem of nondeterministic iterative maps: “Given a finite set M of one-

dimensional linear rational functions over the complex field and two points

x and y on the complex plane. Does there exist an algorithm to determine

whether it is possible to map x to y by a finite sequence of linear rational

functions from the set M?”.

We next show that PRP(4) is undecidable.

Theorem 7.7. The four-dimensional Point Rotation Problem (PRP(4)) is

undecidable.
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Proof. The set of all unit quaternions forms a 3-dimensional sphere (3-

sphere) and any pair of unit quaternions a and b can represent a rotation in

4D space. We can rotate a point x = (x1, x2, x3, x4) on the 3-sphere, repre-

sented by a quaternion qx = (x1, x2, x3, x4), in the following way: aqxb
−1.

Given a finite set of rotations, {(a1, b1), . . . , (an, bn)}, represented by

pairs of quaternions. The question of whether a point x on the 3-sphere

can be mapped to itself by the above set of rotations is equivalent to the

problem whether there exists a non-empty sequence of indices (r1, . . . , rm)

such that ar1
· · · armqxb

−1
rm

· · · b−1
r1

= qx.

If x is a point represented by quaternion (1, 0, 0, 0)µ the above equation

only holds when ar1
ar2

· · · arm = br1
br2

· · · brm . According to Theorem 5.3

we have that the four-dimensional Point Rotation Problem is undecidable

for 7 rotations. Moreover it is easy to see that PRP(4) is undecidable even

for 5 rotations using the idea of Claus instances of pcp, see Section 3.2.1

and [28], where two of the rotations (the first and the last one) can be fixed

and used only once.

Corollary 7.8. The vector reachability problem for n×n rational orthogonal

matrix semigroups is decidable when n ≤ 2 and undecidable for n ≥ 4 with

at least 5 matrices in the semigroup generator.

It is not clear whether or not the membership for semigroups of rational

quaternions is decidable and thus we pose the open problem:

Open Problem 7.9. Quaternion Membership Problem - Given a semi-

group of rational quaternions, S , generated by a finite set G ⊂ H(Q), is

membership decidable for S ? I.e. can we decide if x ∈ S for any x ∈ H(Q)?

Another natural question to ask on finitely generated semigroups of ra-

tional quaternions concerns the decidability of the freeness of the semigroup:

Open Problem 7.10. Quaternion Freeness Problem - Given a semi-

group of rational quaternions, S , generated by a finite set G ⊂ H(Q), is S
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free? I.e., is it decidable to determine whether each element of S has a

unique factorisation in terms of elements of G ?

Note that the Problem 7.10 can be formulated instead as a freeness

problem on two-dimensional rational complex matrices since there exists

an injective homomorphism between the two structures. Some decidable

conditions on freeness for two-dimensional rational matrix semigroups were

given in [17] but the case of complex matrices would appear to be more

difficult.

It seems unlikely that the above two open problems would be unde-

cidable since it would almost certainly imply we could simulate universal

computation within a two-dimensional complex matrix semigroup. Since we

know that two separate words cannot be stored and updated by standard

multiplication in two-dimensional complex matrices by the results of [17],

this makes it improbable that universality can be achieved; this is of course

only a conjecture however.



Chapter 8

Conclusion

New Results

In this thesis we explored a wide range of computational decision problems

on matrix semigroups. We were primarily concerned with the computabil-

ity of such problems, i.e., we attempted to derive algorithms which solved

the decision problems for a set of instances or prove that no such general

algorithm could exist. In the introductory chapter we showed how matrices

and matrix semigroups underlie many fields of mathematics and computer

science and thus the decidability of problems on these structures can have

wide ranging consequences in other fields. We do not simply show a set of

undecidable membership problems, but instead try to study fundamental

problems on semigroup structures themselves as we shall outline below.

We presented four distinct variants of “Post’s correspondence problem

(pcp)”, two of which were our own and these allowed us to prove several

undecidability results throughout the thesis. Specifically, we formulated

and proved the undecidability of “Index Coding PCP” and “Fixed Element

PCP”. The definitions and proofs of these two variants are similar, however

the different formulations were essential is the proofs of a set of results

discussed below. We also presented the so called “Claus Instances” of pcp

113
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since they are perhaps not yet widely known, however we did not prove their

undecidability within this thesis, see [20] and [28] for these proofs. We also

gave a standard proof that pcp is undecidable.

The first undecidability proof given was that of membership for a scalar

matrix in a finitely generated 4×4 integral matrix semigroup. We presented

the results of this theorem in [5, 7] and showed the undecidability of the

problem via an embedding of the Index Coding PCP. The problem seems

both natural and fundamental since a scalar matrix has an obvious geometric

meaning, that of scaling an object represented by a set of vectors, by a

fixed amount. The problem would also appear to be connected to the long

standing open problem called the identity matrix membership problem, see

Open Problem 4.3. This problem asks whether the identity matrix is present

in a finitely generated semigroup. The connection between the two problems

seems strong but our technique unfortunately does not work in this specific

case.

We then proved that the “Zero in the Upper Right Corner Problem” is

undecidable for a semigroup generated by a pair of 18-dimensional integral

matrices. This problem has appeared several times in the literature and

we reduced the dimensions needed for undecidability using a new encoding

technique. We presented this result in [6, 8].

Next we considered the problem of determining whether any matrix in

a semigroup is diagonal. This appeared as an open problem in a recent

book “Unsolved Problems in Mathematical Systems and Control Theory”

[14] and we showed it’s undecidability for 4× 4 complex matrix semigroups

by utilising the Fixed Element PCP in [9]. Diagonal matrices are extensively

used in linear algebra and thus determining if any matrix in a semigroup is

diagonal appears to be an important question, see also Open Problem 4.8.

We then study “Vector Reachability Problems” (VRP) on matrix semi-

groups. We show that the VRP on a semigroup generated by five rational

3 × 3 matrices is undecidable. Using the above mentioned Claus instances
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of pcp, we then show how this problem is in fact undecidable even for semi-

groups generated by just two rational matrices of dimension 11 in [6, 7]. The

next result in this section concerns the “Vector Ambiguity Problem”. This

problem asks whether a set of vectors generated by left multiplication of a

specific vector by elements of a semigroup is free. We show that the prob-

lem is undecidable for a finitely generated semigroup of three-dimensional

rational, or four-dimensional integral, matrices in our paper [9].

Next we showed that there exists a specific fixed matrix semigroup such

that determining whether a matrix is present in the semigroup is undecid-

able. This is an interesting result since usually the instance of the member-

ship problem is both a specific matrix M and a set of matrices G comprising

the generator of the semigroup. We show that even if the generator is fixed,

we can still have an undecidable membership problem for varying single ma-

trix M . This proof is achieved via an encoding of a universal Turing machine

within a set of matrices.

We also study the so called “Recurrent Matrix Problem” which asks

whether a specific matrix M has an infinite number of factorisations over

elements of a generator G . We ask the problem for an invertible matrix M ,

since the problem is not so interesting for a singular matrix (the problem

is trivially undecidable from the proof of undecidability of the mortality

problem). These results were also from our recent paper [9].

The testing for emptiness of the intersection of two semigroups of ma-

trices of the same size was studied by A. Markov in 1947 where he showed

the problem is undecidable for four-dimensional unimodular non-negative

matrices [42]. This result was improved by V. Halava and T. Harju to semi-

groups in three-dimensional integral non-singular matrix semigroups. We

prove a slight improvement of this result where we obtain the result for

three-dimensional integral non-singular upper-triangular non-negative ma-

trices by using a different embedding of words into matrices. We also show

that the problem remains undecidable for three dimensions when the ma-
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trices of the generator are unimodular, non-negative and upper-triangular

although this result is over rational numbers rather than integers [4].

The next chapter of the thesis deals with computational decision prob-

lems on quaternion and quaternion matrix semigroups. This is a relatively

unexplored area and we gave a solid justification as to its study in the intro-

duction. This mainly stems from the fact that the quaternions are a superset

of the complex numbers (they are so called hypercomplex numbers) which

still retain the property of associativity (although they lose commutativ-

ity). The next number system in the Cayley-Dickson construction are the

8-dimensional octonions which in fact lose the associativity property. Since

associativity is required by definition in semigroups, the quaternions are the

most abstract number system we may reasonably use in such computational

problems. Furthermore, the quaternions have a natural geometrical inter-

pretation and thus we can derive many corollaries from the algebraic results

we obtain on quaternion semigroup problems.

We prove that most problems are undecidable for quaternion matrix

semigroups in dimension two. Specifically we show that membership, vector

reachability and freeness are all undecidable. We also show semigroup in-

tersection problems are undecidable for dimension 1 and 2 depending upon

the definition. Determining whether any matrix in a finitely generated two-

dimensional quaternion matrix semigroup is diagonal is also shown to be

undecidable. This is in contrast to the same problem being shown to be

undecidable over four-dimensional complex matrix semigroups. It should

be noted that we are required to use completely different proofs for these

two results, one does not follow as a corollary of the other result. We leave

Open Problem 4.8 unresolved, which is the determination as to whether any

matrix in an integral matrix semigroup is diagonal.

We show that membership is decidable for a semigroup of Lipschitz in-

tegers (quaternions with integral components) although we also show semi-

group intersection emptiness problems over Lipschitz integers is undecidable.
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All of the quaternion matrix semigroup results were presented in [10].

Skolem’s problem (or Pisot’s problem) is the decidability status of the

algorithmic determination as to whether or not a given linear recurrent

sequence has a zero. We showed a reduction of this problem to the mortality

problem for a pair of integral matrices and an equivalence with exponential

Diophantine equations in a restricted subclass of instances of the problem.

Finally we examined computational problems from a geometric perspec-

tive. Since quaternions have a geometric meaning, the study of computa-

tional problems on them gives rise to many naturally defined questions from

a real world physical perspective which could have a wide range of appli-

cability in different fields. We mainly study rotation problems; given two

specific points x, y and a finitely generated semigroup of rotations, is it pos-

sible to find a rotation mapping x to y? In three dimensions this problem

can be defined on a robotic arm for example. If the arm can only rotate in a

certain number of ways, can we move the arm to a specific point? The prob-

lems are also interesting from a purely theoretical point of view since they

are reachability problems on algebraic structures as we examine throughout

the thesis.

Open Problems

There is much more work to be carried out in this area and indeed there

exists a number of open problems within the field, some of which we have

highlighted throughout the thesis. Clearly defining the boundary between

decidable and undecidable problems is worthwhile since it can indicate the

necessary conditions for undecidability to be present and help us to under-

stand computability theory to a greater extent.

Some problems appear to be of a more fundamental nature, such as

determining whether the identity element is present within a semigroup.

This is because the presence of the identity matrix has many implications

for other problems. If a product of elements equals the identity element,
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then each element of the product has a multiplicative inverse and it allows

us to determine if a given generator set forms a group rather than just a

semigroup; therefore if the membership problem for the identity matrix is

decidable, so is determining if the semigroup is a group for example.

We shall now collect together and discuss the complete list of open prob-

lems present within this thesis which are all concerned with the decidability

status of decision problems.

Open Problem 4.3 Identity Matrix Membership Problem -

Given a finitely generated matrix semigroup S , does the identity ma-

trix I belong to S ?

This seems to be a very important problem and despite extensive study

by several researchers, it remains unsolved. The problem seems superficially

related to the scalar matrix reachability problem which was shown to be un-

decidable in Theorem 4.1 which is concerned with the membership problem

for a scalar matrix of the form kI where |k| > 1 and I is the multiplicative

identity matrix. However, the property that k must be non-unit appears

intrinsic to the use of the “Index Coding PCP”, since we must ensure a spe-

cific matrix in the semigroup is used only once when we obtain a product

corresponding to a correct pcp solution. Despite many attempts we cannot

use this technique for proving a similar result on the identity matrix.

Open Problem 4.8 Any Diagonal Matrix - Given a finite set of

integral matrices G generating a semigroup S . Does there exist any

matrix D ∈ S such that D is a diagonal matrix?

The problem was posed in [14] and the authors there considered a case for

three-dimensional integral matrices which does not quite work. We showed

the problem to be undecidable in two-dimensions over quaternions matrices
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in Theorem 5.7 and over four-dimensional rational complex matrix semi-

groups in Theorem 4.7. Thus the problem remains open for integral matrices

over any dimension.

Open Problem 6.1 Skolem’s Problem - Given a linear recurrent se-

quence (u0, u1, u2, . . .) ∈ ZN, does there exist some value k ≥ 0 such that

uk = 0?

This is a very famous open problem and has been extensively studied.

We showed a reduction of the problem to the mortality problem for a pair

of integral matrices and a subcase where the problem is reducible to an

exponential Diophantine equation but the decidability of the problem itself,

of course, remains open. The problem is decidable for linear recurrences of

size 5 [29].

Open Problem 6.6 The 2× 2 Mortality Problem - Is the mortality

problem decidable for a semigroup generated by a finite set of 2×2 rational

matrices?

This open problem first appeared in [48] in a slightly different form. The

problem is known to be decidable when we have a semigroup generated by a

pair of 2× 2 rational matrices, see [16], but the decidability for an arbitrary

number of matrices in the generator is unknown. It is an important open

problem since it is related to the controllability of a switched linear system

and has been studied several times, see also [34] and [35].

Open Problem 7.6 3D Point Rotation Problem (PRP(3)) - Given

two points on the 2-sphere, x, y ∈ Q3, and a semigroup of rotations S

generated by a finite set G . Does there exist some rotation R ∈ S such

that R rotates x to y?
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This problem is similar to Problem 7.9 below, but the two problems are

not exactly the same and since this problem is of a strictly geometric nature,

its solvability might have an impact in the real world since it deals with 3-

dimensional space. The decidability status of the problem might also have

an impact on more general algebraic questions on quaternion semigroups.

Open Problem 7.9 Quaternion Membership Problem - Given a

semigroup of rational quaternions, S , generated by a finite set G ⊂ H(Q),

is membership decidable for S ? I.e. can we decide if x ∈ S for any

x ∈ H(Q)?

Since a single rational quaternion may be represented by a two-dimensional

rational quaternion matrix, this problem is a restricted form of the decid-

ability of membership for 2×2 complex matrix semigroups. It is known that

a pair of words cannot be stored in such a semigroup where standard matrix

multiplication is the binary operator, see [17]. The problem posed has addi-

tional constraints, thus is would seem unlikely that it would be undecidable

but we do not know of a decision procedure for it.

Open Problem 7.10 Quaternion Freeness Problem - Given a semi-

group of rational quaternions, S , generated by a finite set G ⊂ H(Q), is it

algorithmically decidable whether S is free? I.e. is it decidable whether

each element of S has a unique factorisation in terms of elements of G ?

This is another problem which naturally arose from our study of quater-

nion matrix semigroup problems. Freeness problems for 2 × 2 matrix semi-

groups were recently studied in [17] but even for upper triangular integral

matrices the problem appears difficult and only some restricted subclasses

are known which are decidable. However, since the quaternions have a dif-

ferent form, perhaps the problem can be tackled with a new technique.
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