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Abstract
In this thesis I present a framework for intelligent software agents to manage risk in elec-

tronic marketplaces using Option Derivatives. To compare the performance of agents that

trade Option Derivatives with agents not using them, I create a simulation of a financial

marketplace in which software agents are vested with decision rules for buying and selling

assets and Options. The motivation of my work is the need of risk management mecha-

nisms for those Multi–Agent Systems where resources are allocated according to a market

mechanism. Autonomous agents participating in such markets need to consider the risks to

which they are exposed when trading in them, and to take actions to manage those risks.

This thesis considers the hypothesis that software agents can benefit from trading Option

Derivatives, using them as a tool to manage their exposure to uncertainty in the market.

The main contributions of this thesis are: First, an abstract framework of an Option

trading market is developed. This framework serves as a foundation for the implementa-

tion of computational Option trading mechanisms in systems using Market–Based resource

allocation. The framework can be incorporated into existing Market–Based systems using

the traded resources as the underlying assets for the Option market. Within the framework,

four basic Option trading strategies are introduced, some of which reason about the risks

exposed by their actions. These strategies are provided as a foundation for the develop-

ment of more complex strategies that maximise the utility of the trading agents by the use

of Options. The second contribution of this thesis is the analysis of the results from simu-

lation experiments performed with the implementation of a software Multi–Agent System

based on the developed Option trading framework. The system was developed in Java using

the Repast simulation platform. The experiments were used to test the performance of the

developed trading strategies.

This research shows that agents which traded Options by choosing actions aiming to

minimize their risk performed significantly better than agents using other trading strate-

gies, in the majority of the experiments. Agents using this risk–minimizing strategy also

observed a lower correlation between the asset price and their returns, for the majority of

the experimented scenarios. Agents which traded Options aiming to maximize their returns

performed better than their peers in the scenarios where the asset price volatility was high.

Finally, it was also observed that the performance differential of the strategies increased as

the uncertainty about the future price of the asset was increased.
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Chapter 1

Introduction

This thesis presents the development of a Multi–Agent Option contracts trading framework

which allows software agents to execute some of the actions performed by traders in real

financial Option markets. The framework contains the definition of an underlying asset;

agents trade this type of asset as the main commodity, and can trade Option contracts gener-

ated from the asset. The Option trading framework is extended with several Option trading

strategies that can be used by the agents to trade assets and Option contracts.

The objective of this framework is to show that autonomous software agents can man-

age risk using Option Derivatives in software marketplaces with similar features to those

composing real Option markets. To compare agents using Options with agents not using

them, I create a simulation of a financial marketplace, in which software agents are vested

with decision rules for buying and selling goods and Options.

1.1 Motivation and Objectives

The motivation of this work arises from the need for risk management in Market–Based

Multi–Agent systems with limited resources, such as resource allocation in Grid computing

[39]. Agents trading in such markets face the possibility of resources not being available

when needed. Agents also face the possibility of not being able to acquire the resources

even when they are available, due to high prices. As computational resource allocation

systems become increasingly common, participants will require agents able to reserve future

resources on their behalf, and hedge against future risks. As these computational systems

become more common, the need for autonomous traders which consider the risks in their

decisions will also be required. For the agents to be able to act given their perceived risks

in such markets, mechanisms for the management of those risks must be available.

Financial Derivatives are economic securities whose values depend on the performance

1
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of another security or asset [52]. In real world markets, Derivatives are used to manage

the risk inherent from the participation in the market. Option contracts are one type of

Derivatives in which the buyer of the Option obtains the right to buy or sell an asset at

a future price and time established in the contract. Options allow agents to prevent high

losses due to the variability of the price and also allow them to profit from this variability

even when they do not own the assets. In [3], Arnoldi proposes that derivatives can be seen

as virtual assets which take their value from other assets. This derived value allows the

valuation of the intangible concept of risk and its trading in markets similar to other asset

markets. It is this property of Options (and Derivatives in general) that provides agents

with the possibility of quantitatively analysing those risks and hedge them by the use of the

provided instruments.

The main issue under analysis in my research is to find out if it is possible to create a

software market with a structure similar to a real Option trading market; where intelligent

software agents trade Option contracts with similar elements to those in real world Option

markets. To achieve this this, an abstract framework of an Option market is defined and an

implementation is developed. Using this Option market framework, I aim to create software

agents that can trade both Option contracts and the underlying asset in the market; to detect

the scenarios where these agents have better performance than software agents that are able

to trade only the underlying asset; and to test whether agents can use Option contracts to

decrease their losses caused by the exposure to uncertain future states of the market (i.e.,

caused by risk).

To address those issues, the following research questions are then considered:

1. Can software agents benefit from the exchange of Options in the software market?

2. Is it possible to characterise specific cases where software agents trading Options

have a better performance than those agents not using them?

3. Are agents trading Options less susceptible to price variations than those not using

Options?

4. What is the difference in the performance among the developed Option trading strate-

gies?

The answers to these questions will be constrained to the created model. That is, I

do not aim find the answers to the stated questions for all possible cases (which may not

be feasible with a simulation study) but to identify and study cases where the answer to

such questions would benefit a Market–Based system. This study is done to identify the
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benefits that trading Options would provide to the agents; and to establish a basis of Option

trading mechanisms for the management of risk in Multi–Agent Systems, where resources

are allocated with a Market–Based mechanism.

1.2 Thesis Outline

In this thesis I present the developed Option trading framework and a set of Option trading

strategies; a computational implementation of this framework; and a set of experiments

designed to test the performance of the strategies under different proposed scenarios. The

work is separated in the following chapters:

• Chapter 1 Introduction: This chapter, where the general objectives of the research are

described.

• Chapter 2 Background: Where the relevant background research is presented and

discussed.

• Chapter 3 Option Trading Model: Presents the abstract Option trading framework de-

scribing the Option and asset trading market; the trading strategies and the forecasting

functions.

• Chapter 4 Implementation: Describing the computational implementation of Option

market framework, including the verification and validation of the system.

• Chapter 5 Design of Experiments: Presents the parameters used to setup the simula-

tion experiments for the study.

• Chapter 6 Experimental Results: Presenting the outcome of the simulation study.

Discussing the results obtained from the resulting data.

• Chapter 7 Future Work and Conclusion: Presenting the conclusions of my work and

the possible ways how it can be extended.

Additionally, three appendices are provided:

• Appendix A Statistics Background: Containing an introduction to some of the statis-

tical concepts used along the thesis.

• Appendix B Normality Statistical Analysis Data Tables: Containing the detailed val-

ues from the Normality test performed to some data used in Chapter 6.
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• Appendix C Trading Volume Analysis Data Tables: Containing the detailed values of

the trading volume analysis used in Chapter 6.

The following sections provide a summary of the work described throughout the chap-

ters of this thesis.

1.2.1 Background

The research starts on Chapter 2 where the background of the different fields related to this

work is presented. The work in this thesis is based on the field of Financial Economics.

Option Derivatives and the used concepts related to them are presented in this chapter. Sim-

ilarly background on Multi–Agent Systems is described, as the developed framework is

modelled as a set of agents interacting in the market environment. The fields of Agent–

Based Computational Economics and Market Based Control are also visited; they are two

related fields relevant for this work which share several research lines but aim at different

objectives. Much of the current research done on computational models of Derivatives can

be classified as Agent–Based Computational Economics. In contrast, the research devel-

oped in my thesis is aimed to the Market–Based Control field; such a difference will be

analyzed on Chapter 2.

1.2.2 Option Trading Model

After presenting the relevant background research, Chapter 3 presents the abstract Option

trading framework. The elements that comprise a market where agents are capable of trad-

ing Options is described, presenting the model of the Exchange (the place where the agents

gather to trade) and of the trading agents. A definition of agents that are capable of trading

Options is described; providing them with the minimal properties which will allow them to

trade in the defined Option market. The agents are provided with different strategies; some

of the strategies allow the agents to trade Options using information from the market and

reasoning about the risk of their possible actions. Other defined strategies allow the agents

to only trade assets. Finally, two forecasting mechanisms are defined to allow the agents to

obtain information about the future state of the market. The obtained information may be

used by the agents to formulate a model of the future and obtain a measurement of the risk

that each of the available actions will expose. Some of the work presented in Chapter 3 is

published in [10].
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1.2.3 Implementation

Chapter 4 describes the implementation of the Option market model into a computer pro-

gram. This implementation is developed to run a series of simulation experiments to answer

the thesis research questions. The software engineering considerations related to the imple-

mentation are discussed, and the development methodologies adopted for the development

of the system are described. The chapter also shows the verification and validation tests

that were carried out to achieve the accreditation of the implementation. Part of the work

presented in Chapter 4 is published in [9].

1.2.4 Design of Experiments

The description of the simulation experiments executed with the implementation are de-

scribed in Chapter 5. The values of the different parameters to be used in the defined test

cases are presented. Of special relevance are the values used for the price series of the asset.

These price series represent different market conditions in which the agents will be trading,

defining the changes occurring in each scenario through time. The experiments are focused

on the comparison of the performance between the developed strategies. Therefore, sets of

agents using the same strategy are created and a summary of their performance will be com-

pared to the performance of other strategies. Also described in Chapter 5 are the analyses

that will be performed on the data obtained from the simulation. These analyses will define

the performance metrics used to compare the outcomes among the strategies. Some of the

work presented in Chapter 5 is published in [9].

1.2.5 Experimental Results

The results obtained from the experiments are presented in Chapter 6. The outcomes of the

strategies are compared using the performance metrics defined in Chapter 5 after analysing

the experimental data. The tests are based on different statistical analyses on the returns

and quantity of offers (both cleared or non–cleared by the market) made by the use of the

different strategies. The results are compared to the established research questions and the

conclusions obtained from the analysis are presented.

1.2.6 Future Work and Conclusion

The research work in this thesis ends with Chapter 7 where I present the the concluding

remarks of the developed research. The chapter then presents a discussion of the possible

domains in which my developed Option trading framework can be applied to provide the
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systems with a risk management mechanism. The chapter concludes with a description of

the improvements that can be performed to the model.

1.2.7 Statistics Background

Appendix A presents an introduction to the statistical concepts that are used throughout

the thesis. This statistics background is included because the presented work makes use of

probability and statistics concepts.

1.2.8 Tables

Tables with detailed results obtained form the analysis of the experimental data in Chapter

6 is presented in Appendix B and Appendix C. A summary of the values in the tables is

used for the presentation of the results throughout Chapter 6.

1.3 Contributions

The contributions of this thesis are the following: First, an abstract model of an Option

trading market is developed. This aims to serve as foundation for the implementation of

computational Option trading markets for systems that are controlled with a Market–Based

mechanism. The Option Trading model is created in such a way to allow a market designer

to attach the created Option trading market into existing Market–Based software systems

without much difficulty, using the resource (or resources) traded in such market as the un-

derlying asset for the Option market. Thus, for example, the Option trading modules could

be readily added to software agents active in a computational Grid marketplace. In addi-

tion to the model, four basic Option trading strategies are introduced: the OTMinR strategy,

which chooses its actions aiming to minimize the magnitude and probability of its possible

losses; the OTMaxW strategy, which chooses its actions aiming to maximize the magni-

tude and probability of its possible profits; the OTMix strategy, which chooses between the

OTMinR and OTMaxW depending on a detected trend in the market price; and the OTRnd

strategy which chooses actions randomly. The developed strategies provide the founda-

tional elements for the development of more complex strategies that maximise the utility of

the trading agents by the combined use of Options and assets.

The second contribution of this thesis comprises the results from simulation experi-

ments performed with the implementation of a software Multi–Agent System based on the

developed Option trading framework. The results from these experiments show that it is
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possible to create an Option trading software market with a structure similar to real Op-

tion Exchanges. This is an advance on the current published work where Option trading

agents are always guaranteed to have a matching offer for every offer they submit. Using

this market, it is shown that it is possible to develop agents that trade Option contracts and

which also outperform other agents which do not trade Options. A relevant contribution is

the development of Option trading strategies that reason about their measurement of risk

and uncertainty to choose the best offer to submit to the market. The use of strategies that

evaluate the risks of their actions should be considered when aiming to implement soft-

ware agents that make use of Options, given that Option derivatives were developed as an

instrument to quantify such risks.

Therefore, the work presented in my thesis is aimed at the field of Market–Based Con-

trol of distributed systems with the objective of using Option Derivatives as tools for risk

management. It is not my objective to demonstrate the theoretical utility of Option contracts,

as this has been shown elsewhere, as in [16, 63, 64]; instead, I make use of the properties

of Option contracts which are already known. This is achieved by developing a framework

where autonomous agents can trade Option contracts, using the Option contracts’ properties

to manage risk in software markets which implement the presented framework.

Part of the work presented in this thesis is published in the following peer–reviewed

articles:

1. Baqueiro Espinosa, O., van der Hoek, W. and McBurney, P., Designing Agents for

Derivatives Markets. A preliminary Framework, in P. Gmytrasiewicz and S. Parsons,

ed., IJCAI-05 Workshop on Game-Theoretic and Decision-Theoretic Agents. 2005.

2. Baqueiro Espinosa, O., McBurney, P. and van der Hoek, W., The Performance of

Option-Trading Software Agents: Initial Results, in Andrea Consiglio, ed., Artifi-

cial Markets Modeling. Methods and Applications, Lecture Notes in Economics and

Mathematical Systems, Vol. 599, Springer. 2007.
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Chapter 2

Background

This chapter presents a review of the concepts that serve as the theoretical foundation for the

research developed in this thesis. The chapter discusses the previous research that has been

done related to the research subject and explains the concepts that need to be considered in

order to address the research problem.

Because of the interdisciplinary nature of the research problem tackled in this thesis, it

is necessary to draw concepts and definitions from a number of different fields. My work

is based on research from fields such as Multi-Agent Systems, Finance, Econometrics and

Software Engineering with the aim of making a contribution mainly aimed at the Computer

Science field with a focus on Market Based Control of computational systems.

The present chapter first addresses the definition and background of Agent–Based mod-

elling of complex Systems used in the thesis in Section 2.1. In Section 2.2, the description of

the relevant background concepts in the field of Financial Economics used in this research

is detailed. Afterwards, a discussion of the relevant research from the field of Agent-based

Computational Economics is reviewed in Section 2.3. Similarly, Section 2.4 discusses the

relevant research in the field of Market Based Control. Finally, Section 2.5 presents a sum-

mary of this chapter.

Although this chapter discusses the background research on which the theoretical model

developed in this thesis is based, the description of the background related to Software En-

gineering used in this research is left for Chapter 4 where the computational implementation

of the model is described.

2.1 Agent–Based Modelling

Computer based modelling and simulation of complex systems has been one of the driving

forces in the development of computer systems. A general definition of a simulation is

9
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the imitation of the operation of a process or a real world system through time [8]. A

computational model is the representation of a real system through a computer program,

represented by a set of algorithms and mathematical formulas implemented as code in a

programming language.

In contrast with pure mathematical models, the objective of computational models is not

usually to obtain analytical solutions to specific questions. Instead, computational models

allow the design of experiments to test the developed models under different scenarios.

These experiments are carried out with the objective of testing the behaviour of the modelled

systems under a certain set of assumptions [8]. This experimentation allows the designer to

obtain insight of certain aspects of a complex system which would not be possible to detect

using mathematical analysis, or for problems for which there is no tractable mathematical

representation.

As a complex system modelling paradigm, Agent Based Modelling (ABM) and simu-

lation have been used to model real systems in a diversity of domains such as Biology [22],

Manufacturing [82], Computing [21] and Economics [12] among others. This variety of

uses demonstrates the acceptance of ABM as a useful system modelling approach to gain

knowledge about complex systems in such domains.

In [7], Banks cites three reasons for the importance of Agent Based Modelling for social

sciences: first, that other approaches have been proved not suitable for the modelling of

these systems; second, that the agent based approach is a natural representation of many

social systems and third that the emergence property in agent based models is not easily

achieved with other approaches.

In ABM, a system is modelled as a set of autonomous entities which are named Agents.

Each of these agents is positioned in an environment (either virtual, or real) from which the

agent obtains information by the use of sensors and makes decisions based on its perceived

state of the environment and his objectives. These decisions are then reflected as actions

performed to modify the state of the environment (either direct actions to the environment,

communication with other agents or further reasoning).

The behaviour of the agent may be modelled by sets of rules representing its reasoning

engine. The model of such behaviour is often done by representing the agents’ mental state

by Beliefs, Desires and Intentions (known as BDI software agents) [77]. According to [77],

in a BDI model, Beliefs represent the information known by the agent, Desires (also called

Goals) are the objectives that the agents want to fulfil and Intentions are a subset of those

Desires which the agent has chosen to achieve (that is, to execute a plan in order to achieve

the goals).
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An agent can have different behaviours according to the system it populates [98]. Agents

also have three basic properties such as reactivity (the ability to respond to events in the en-

vironment), pro-activity (the ability to demonstrate some behaviour determined by its par-

ticular objectives, taking the initiative to satisfy its necessities) and sociability (the ability to

interact with other agents and humans to fulfil its objectives) [100]. These properties give

Agent Based Systems a great versatility in comparison with typical object based systems by

providing a new type of abstraction for the representation of problem domains.

2.2 Financial Economics Background

Derivatives are economic securities whose values depend on the performance of another

security or asset. There are different types of Derivatives which vary in the terms of the

agreement between the parties negotiating the contracts. Future contracts (or Futures) and

Option contracts (or Options) are two of the most common Derivatives; they are used by

investors to hedge the risk of an investment and to increase their wealth [52]. To hedge is

defined by the Encyclopedia Britannica as:

To protect oneself financially: as a) to buy or sell commodity futures as a

protection against loss due to price fluctuation b) to minimise the risk of a bet.

In both Futures and Options the traders engage in a contract to trade some commodity

which is called the underlying asset. The use of Derivatives has increased since its creation,

currently there are Derivative markets that allow to trade contracts for diverse kinds of assets

ranging from physical goods like animals and grains to intangible assets like market stock

shares and even other Derivative contracts.

In [3] it is proposed that Derivatives can be seen as virtual assets which take their value

from other assets. This derived value is a function of the perceived volatility of the asset

price and allows the valuation of the intangible concept of risk and its trading in markets

similar to other asset markets.

2.2.1 Futures Contracts

A Future contract is an agreement to buy or sell an asset for delivery in a specific place and

time in the future[52]. Some futures do not lead to delivery of goods because the traders

close their positions (selling the previously acquired contract) before the time of expiration.

Future contracts are usually traded in an exchange. The first established exchange was

Chicago Board Of Trade (CBOT),1 which was established in 1848. Futures markets are
1The web site of the CBOT is accessible via the URL http://www.cbot.com/ (January 20, 2008).
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widely known by economists today, they are centralised markets for buyers and sellers

from around the world. Future contracts are the securities traded in these markets. Futures

markets are characterised by a central regulatory body who states policies in which the

Futures can be traded by the participants. These are policies such as the prices and dates of

the futures contracts [23].

The most important difference between Future and Option contracts is that when trading

a Future contract, both traders become obliged to fulfil their part of the contract. In contrast,

when trading Option contracts one of the traders gets the ability to decide if the exchange

of the underlying assets in the contract will be executed. The other participant has the

obligation of fulfilling the contract if it is executed.

2.2.2 Option Contracts

In Economics, Option contracts are one of the most widely used financial instruments for

risk management. The definition of an Option is a contract between two agents, a holder

and a writer. The terms holder and writer are used when referring to the agent that buys

the Option and the agent that sells it, respectively. The terms buyer and seller refer to the

agent that buys and sells goods accordingly. This differentiation is done in order to avoid

confusion between transactions of Options and assets. The Option contract gives the holder

the right, but not the obligation, to buy or sell an asset at a future time at a price (the exercise

price) agreed at the time of the contract [23].2 An Option that gives the holder the possibility

to buy goods at a later time is called a call Option, likewise an Option that gives the agent

that holds the Option the possibility to sell goods at a later time is called a put Option. The

quantity of goods to be traded in an Option defines the volume of the Option.

The action of choosing to trade the assets as established in the Option contract for the

corresponding prices is called to exercise an Option; thus, an agent that holds an Option can

choose whether or not to exercise it. If exercised, the writer of the Option has the obligation

to trade the assets at the agreed prices (i.e., at the exercise price), even if such action incurs

a loss for this agent.

Similarly to Future contracts, Options contracts are usually traded in an Exchange which

establishes the trading rules as well as the Option exercise prices. Each Option is composed

of the exercise price, indicating the price at which the underlying assets will be traded; the

expiration time, which defines at what time in the future the Option has to be exercised; the

volume, which indicates the number of assets that are traded in each Option contract; and

2The terms asset and good are used interchangeably to refer to the underlying commodity that is exchanged
in the market.
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Element Description
Holder The trader that acquires the right to exercise the Option.
Writer The trader that acquires the obligation to trade the assets if

the holder chooses to exercise the Option.
Underlying assets The assets that are traded when the Option is exercised.
Volume The quantity of assets that are traded when the Option is

exercised.
Expiration time Time when the Option life ends and has to be exercised or

discarded.
Exercise price Price to pay for the assets if the Option is exercised.
Call Option An Option where the holder buys the underlying assets

when exercising the Option.
Put Option An Option where the holder sells the underlying assets

when exercising the Option.
Option premium The price that the holder must pay to the writer in order to

acquire the Option.

Table 2.1: Main elements of an Option contract.

the type of the Option, which can be can be call if the underlying assets are to be bought

by the holder of the Option or put, indicating that the underlying assets will be sold by the

holder of the Option.

The ability to choose whether or not to exercise a Option comes at a price to the Option

holder. This holding price, also called the Option premium, is the price that must be paid to

hold the Option. This amount will be paid to the writer of the Option who will acquire the

obligation of honouring the contract if the holder decides to exercise it. The main elements

of an Option contract are summarised in Table 2.1.

Option contracts can be classified according to the time when they can be exercised.

The two most common types are American Options and European Options. American Op-

tions can be exercised at any time after they have been exchanged and until their expiration

time arrives. European Options can only be exercised at their expiration time [52]. Euro-

pean Options are the type of Options used in my research in order to simplify the model

of the Option contracts and the agents’ strategies. Option Exchanges usually set the expi-

ration time of Options with a standard time separation, usually of 3 months, between the

Options expiration date. Therefore, an Option created to be traded in the month of January,

it would either expire on April, July or October. Similarly, an Option created to be traded

in April, would have an expiration time in the month of July, October or January of the

following year. A similar approach to this standardisation of the separation time is used in

my implementation of the Option trading model to generate Option contracts.
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As Option contracts derive their value from the value of some underlying asset, it is

necessary to consider the market of the underlying asset when trading Options. The choices

whether or not to hold or write Options are performed considering the information available

from the underlying asset, such as the history of the asset price and the variance of the price.

It is this analysis what provides traders with information to choose whether to trade Options

or trade the underlying assets directly in the market.

2.2.2.1 Option Trading Analysis

In [93], Options are visualised as separators of the good and the bad parts of owning an

asset. For example, a call Option (gives the right to buy assets), will allow the holder to

limit its potential loss if the price of the asset increases in the future, therefore the bad

part of the market is cut from an unlimited loss to a limited loss defined by the cost of

the Option (the premium). The following analysis of the outcomes of the different asset

and Option trading outcomes is based on the essential speculative behaviour of the trading

agents. Elements such as dividends and interest rates are not considered for the sake of

simplicity. Also, external agent constraints such as the need to own specific numbers of

assets or specific amounts of money at any time point is not considered in this analysis. If

agents are faced with such constraints, the outcome of some of the actions may be preferred

even when they lead to incurring in a loss.

The analysis is started by looking at the scenarios where agents buy or sell the underly-

ing asset in the market. Figure 2.1 shows the two possible outcomes when an agent buys an

asset in the market. If the price increases after the agent buys the asset, the agent will obtain

a profit from the buy. If the price decreases, then the agent will lose wealth after buying the

asset. When the agent sells an asset (shown in Figure 2.2), it will obtain a profit if the price

of the asset decreases after the trade. However, if the price of the asset increases then the

agent will make a loss from the sell of the asset.

Thus, the theoretical potential profit and loss from executing the simple buy and sell actions

is unlimited. In the case of buying an asset, a loss will be incurred if the price of the asset

decreases after buying it. In the case of selling an asset, a loss will happen if the price of

the asset increases after selling it.

There are four basic possible actions that an agent can execute when trading Options.

Each action gives the agent the possibility to limit the potential magnitude of profits or

losses, given an increment or decrement of the price of the asset in the future. The outcome

of the scenarios is summarised in Table 2.2, where X is the exercise price (the price to

pay for the assets according to the Option contract), to is the time when the Option expires
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Figure 2.1: Profit and Loss potential when buying an asset directly in the market.

Figure 2.2: Profit and Loss potential when selling an asset directly in the market.
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and has to be exercised, p(to) is the market price of the assets at time of expiration and

po is the price of the Option. These potential unlimited profits and losses come from the

possibility (for the holder) of choosing to trade assets at the most convenient price (i.e.,

choosing between paying X and p(to)). Therefore, the higher the difference between the

exercise price X and the price of the asset p(to), the higher the profits or losses will be.

For each scenario, a profit-loss diagram is shown in Figures 2.3 to 2.6. Each figure

presents the scenario when an agent executes an action (writing or holding, a call or put

Option). The horizontal axis represents the price of the asset at expiration time p(to). The

vertical axis represents the profit or loss that will be incurred by the agent after executing

the action being analysed.

For example, to read Figure 2.3 it is assumed that the agent chose to write a put Option.

The figure then shows the two possible outcomes. The first outcome is when at expiration

time, the price of the asset is lower than the exercise price (i.e., when p(to) < X) which

is the segment of the horizontal axis to the left of the exercise price X point. The second

outcome is when at expiration time, the price of the asset is higher than the exercise price

(i.e., when p(to) > X) which is the segment of the horizontal axis to the right of exercise

price X point. The combination of actions and type of Options provide different limits in

the profits and losses for the agents.

Figure 2.3: Profit and Loss potential writing a put Option. The writer must buy assets if the Option is exercised.

In the scenario when an agent writes a put Option (shown in Figure 2.3), the writer will

acquire the obligation to buy assets at the exercise price. The first outcome of this scenario

is when the price of the asset at expiration time is higher than the exercise price (i.e., when
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p(to) > X). Under this outcome, the writer will be exposed to a maximum profit equal

to the Option premium po, as the Option holder would prefer to sell the assets at the price

of the market p(to), choosing not to exercise the Option (losing the premium). The second

outcome is when the price of the asset at expiration time is lower than the exercise price (i.e.,

when p(to) < X). Under this outcome the agent will be exposed to a potential unlimited

loss given by X − p(to) − po, as the Option holder would prefer to sell the assets at the

exercise price X .3 The profit and loss of an agent choosing to write a put Option can be

defined as:4

Profit = Min(0, p(to)−X) + po (2.1)

Loss = Max(0, X − p(to))− po (2.2)

As the price of the asset at expiration time p(to) gets lower than the agreed exercise price

X , the writer will lose more wealth when buying the assets at the higher exercise price X .

The second scenario is when an agent writes a call Option (shown in Figure 2.4). In

this scenario the writer will acquire the obligation to sell assets at the exercise price X . The

first outcome of this scenario is when the price of the asset at expiration time is lower than

the exercise price (i.e., p(to) < X). Under this outcome, the writer will be exposed to a

maximum profit equal to the Option premium po, as the Option holder would prefer to buy

the assets at the price of the market p(to), choosing not to exercise the Option (losing the

premium). The second outcome is when the price of the asset at expiration time is higher

than the exercise price (i.e., p(to) > X). Under this outcome the agent will be exposed to a

potential unlimited loss given by p(to)−X − po, as the Option holder would prefer to buy

the assets at the exercise price X . The profit and loss of an agent choosing to write a call

Option can be defined as:

Profit = Min(0, X − p(to)) + po (2.3)

Loss = Max(0, p(to)−X)− po (2.4)

As the price of the asset at expiration time p(to) gets higher than the agreed exercise price

X , the writer will lose more wealth, having to sell the assets at the lower exercise price X .

The third scenario is when an agent holds a call Option (shown if Figure 2.5), acquiring

the right to buy an asset. The first outcome of this scenario is when the price of the asset at
3Although the loss is limited to the case when p(to) = 0, this type of loss is treated as unlimited throughout

the finance literature (see [23] and [52]).
4In equations 2.1 to 2.8, a negative profit denotes a loss and a negative loss denotes a profit.
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Figure 2.4: Profit and Loss potential when writing a call Option. The writer must sell assets if the Option is
exercised.

expiration time is lower than the exercise price (i.e., when p(to) < X). Under this outcome,

the agent will be exposed to a limited loss equal to the Option premium po, as it would prefer

to buy the assets at the price of the market p(to) and will choose not to exercise the Option

(losing the premium). The second outcome is when the price of the asset at expiration time

is higher than the exercise price (i.e., when p(to) > X). Under this outcome the agent has

the possibility to obtain potential unlimited profits given by p(to) −X − po by buying the

assets at the exercise price X . The profit and loss of an agent choosing to hold a call Option

can be defined as:

Profit = Max(0, p(to)−X)− po (2.5)

Loss = Min(0, X − p(to)) + po (2.6)

As the price of the asset at expiration time p(to) gets higher than the exercise price X , the

holder will gain more wealth buying the assets at the lower exercise price X .

The last scenario is when an agent holds a put Option (shown in Figure 2.6), acquiring

the right to sell an asset. The first outcome of this scenario is when the price of the asset

at expiration time is higher than the exercise price (i.e., when p(to) > X). Under this

outcome, the agent will be exposed to a limited loss equal to the Option premium po, as

it would prefer to sell the assets at the price of the market and will choose not to exercise

the Option (losing the premium). The second outcome is when the price of the asset at

expiration time is lower than the exercise price (i.e., p(to) < X). Under this outcome the
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Figure 2.5: Profit and Loss potential when holding a call Option. The holder may buy assets if it chooses to
exercise the Option.

agent has the possibility of obtaining potential unlimited profits given by X − p(t)− po by

selling the assets at the exercise price X . The profit and loss of an agent choosing to hold a

put Option can be defined as:

Profit = Max(0, X − p(to))− po (2.7)

Loss = Min(0, p(to)−X) + po (2.8)

As the price of the asset at expiration time p(to) gets lower than the agreed exercise price

X , the holder will gain more wealth being able to sell the assets at the higher exercise price

X .

Action Type of Option
Call Option Put Option

Hold Limited loss when X > p(to) Limited loss when X < p(to)
the Option Unlimited profit when X <

p(to)
Unlimited profit when X >
p(to)

Write Limited profit when X >
p(to)

Limited profit X < p(to)

the Option Unlimited loss when X <
p(to)

Unlimited loss when X >
p(to)

Table 2.2: Option trading actions and their possible outcomes

As an illustrative example, consider a call Option with an exercise price of X = 10, a

premium of po = 1, and an expiration time of to = 2. If an agent holds such Option at
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Figure 2.6: Profit and Loss potential when holding a put Option. The holder may sell assets if it chooses to
exercise the Option.

time t = 1, it will have the opportunity of buying assets at time t = 2 for the exercise price

X = 10. One possible scenario is when the price of the asset in the market at t = 2 is

p(2) = 15 (higher than X). In this scenario the agent may choose to exercise the Option

and buy the assets for the price X . From Equation 2.5, the profit obtained by the agent after

exercising the Option is given by:

Profit = Max(0, p(to)−X)− po (2.9)

= Max(0, 15− 10)− 1

= 5− 1

= 4

An alternative scenario is when the price of the asset in the market at t = 2 is p(2) = 5. In

this scenario the agent may do better by not exercising the Option and instead, buying the

asset at the market price of 5. According to Equation 2.6, the loss incurred by the agent in

this case will be:
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Loss = Min(0, X − p(to)) + po (2.10)

= Min(0, 10− 5)) + 1

= 0 + 1

= 1

which will be equal to the Option premium po = 1.

Consider now an agent writing a put Option with the same expiration time and same

exercise price. In the scenario when the market price of the asset at expiration time is

p(2) = 15, the writer of the put Option will not have to buy the goods at the exercise price

X because the holder will sell them at the higher market price p(2) = 15. Therefore, from

Equation 2.1 the writer will obtain a profit given by:

Profit = Min(0, p(to)−X) + po (2.11)

= Min(0, 15− 10) + 1

= 0 + 1

= 1

This profit will be equal to the Option premium po = 1. On an alternative scenario when

the market price of the asset at time t = 2 is p(2) = 5, the writer will have to buy the goods

from the holder at the exercise price X = 15 incurring in a loss given by (From Equation

2.2):

Loss = Max(0, X − p(to))− po (2.12)

= Max(0, 10− 5))− 1

= 5− 1

= 4

2.2.2.2 Option Trading Strategies

Option trading strategies range from the most simple to a combination of trading actions

with different objectives. The most simple strategies are the writing and holding of single
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Option contracts in order to make use of their limiting properties. Other more complex

strategies combine different types of Option contracts and asset trading to achieve specific

market positions limiting different factors.

Option holding can be used to assure the availability of assets at a specific price in a

future time. This is accomplished holding call Options and choosing to exercise it. Option

writing can be used to obtain profits when aiming to buy assets at an undefined future

time. Instead of directly buying the assets in the market, it is possible to write put Options.

In such a scenario, there are two outcomes: the first outcome is that when the Option is

exercised, the writer will obtain the assets it wanted; the second outcome is if the Option is

not exercised in which case, the writer will profit from the premium of the Option and may

still obtain the assets at the market price or continue writing put Options until one of them

is exercised.

An Option writer will also benefit from a price which is persistently close to the exercise

price. This can be seen from Figures 2.3 and 2.4: When the exercise price is slightly less

than or equal to the asset price at the time of expiration and an agent wrote a put Option

(depicted in Figure 2.3), then the writer will obtain obtain a profit equal to the value of

the premium. Similarly, when the exercise price is slightly greather than or equal to the

asset price at the time of expiration and an agent wrote a call Option (depicted in Figure

2.4), then the writer will obtain a profit equal to the value of the premium. The strategy of

writing Options can thus be beneficial in a market with low price volatility (where the prices

variations are small).

In this thesis I focus on the research of the use of simple Option trading strategies such

as single hold and write offers to trade call or put Options, focusing on the performance

obtained by the trading of these single Option contracts.

2.2.2.3 Option Pricing

In order to make an Option contract available for trading in the market, the premium or

price to pay to hold the Option needs to be calculated. Before describing the Option pricing

models the term arbitrage must be defined. According to [52], arbitrage is the ability to

obtain a profit from a transaction in a market without being subject to any risk. That is, if

an agent can trade an asset in two different markets which have different prices for the same

asset, then the agent can make a direct profit without any risk by buying assets in the market

with the lower price and selling them immediately in the market where the price of the asset

is higher.

There are two main models used to calculate the price of an Option, the Binomial Option
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Pricing model and the Black-Scholes Option pricing model. Both models determine the

equilibrium price of an Option aiming to calculate a fair price that minimises arbitrage

opportunities. To calculate the equilibrium price of an Option the models are based on the

valuation of a theoretical portfolio containing an Option, and deriving the price of such

Option from the model. Also, both models obtain the valuation of Options considering

stock shares as the underlying asset.

The Black-Scholes model was firstly presented by Fischer Black and Myron Scholes in

[15]. The model was developed by these two authors in cooperation with Robert Merton.

A discussion of the model of Black and Scholes is given in [14]. For the creation of the

Black-Scholes model, Myron Scholes and Robert Merton received the Nobel in Economics

in 1997.5

The binomial Option pricing model was presented by John Cox and Mark Rubinstein in

the article [28] in 1979. The main difference between the Binomial and the Black-Scholes

model is that, to obtain the fair price of an Option, the binomial model assumes discrete

finite time periods whereas the Black-Scholes model assumes a continuous time interval

partitioned in to infinitely small periods. Hence, the binomial model is a discrete model that

converges to the Black-Scholes model as the number of periods periods increase and the

length of such periods is infinitesimally short [52]. Pricing an Option using the binomial

Option pricing model is slower than with the Black-Scholes formula. The complexity of

the calculation of an Option price using the binomial model increases with the number

of periods used. However, using small number of periods would yield a wrongly priced

Option.

I chose to use the Black-Scholes pricing model to calculate the Option prices because

it is generally accepted as a good method for pricing European Options and because it has

been used in other works that modelled Option contracts for markets simulation, specifically

in [56], [87] and [36]. Although a complete derivation of the formula is out of the scope

my thesis, following, I provide a brief description of the Black-Scholes model and its main

properties are presented.

Black-Scholes Pricing Model The Black-Scholes pricing model is based on five main

assumptions which are: The variance of the returns of the stock is constant through the life

of the Option contract; the risk free interest rate is constant through the life of the Option;

there are no dividends paid for the stock; the returns of the stock prices are log-Normally

distributed, that is the natural logarithm of the returns are Normally distributed; finally, there

5Fischer Black was not eligible as recipient because he died in 1995.



24 CHAPTER 2. BACKGROUND

are no transactions costs when trading stocks or Options (such as taxation). The model is

affected by four factors: The current stock price; the exercise price; the expiration time and

the risk free rate of return.

The value of a call (c) and a put (p) Option under such assumptions as described in [15]

is:

c = sΦ(d1)−Xe−rT Φ(d2) (2.13)

p = Xe−rT Φ(−d2)− sΦ(−d1)

where c is the price of a call Option and p is the price of a put Option; s is the current price

of the stock; X is the strike price of the Option; r is the interest rate; and T is the duration

of the Option (time to expiration). Φ(·) is the standard Normal cumulative distribution

function (c.d.f.) and the terms d1 and d2 are defined as:

d1 =
ln (s/X) + (r + 1/2σ2)T

σ
√

T
(2.14)

d2 = d1 − σ
√

T (2.15)

finally, σ2 is the variance of the historic return of the stock.

The returns of the stock at time step t are defined by the formula:

R(t− 1, t) = ln
( p(t)
p(t− 1)

)
(2.16)

This return is also called the rate of return and indicates a rate of profit or loss generated by

the stock for the price movement observed in the period [t− 1, t].

It is possible to understand the model if the Equation 2.13 is split in two sections. The

first section is sΦ(d1) and represents the expected benefits obtained from buying the un-

derlying asset in the market. The second part Xe−rT Φ(d2) derives the value of paying the

exercise price of the Option at the expiration time. Thus, the fair market value of the Option

is calculated by obtaining the difference between these two sections.

2.2.3 Option contracts as a risk management mechanism

The reasons for choosing Option contracts for risk management in markets are described

now. As has been shown in previous sections, Option contracts can be used to guarantee

the availability of a resource at a future time. Option contracts also allow traders to ensure
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that the resources will be obtained at a specific price. These two properties make the use of

Option an attractive alternative for risk management.

However, one of the main issues arising from the management of risk in Market-Based

distributed systems is that, the risk and uncertainty in market systems cannot be reduced, but

only transferred [37]. Therefore, a mechanism that allows agents to manage their risk must

provide the means to transfer such risks between the agents participating in the system.

Such risk transference can be achieved by the use of different Derivatives such as Future

contracts, Option contracts and Swaps. However the trading of Swaps and Future contracts

require that both parties trading the derivative have an external motive to enter into a contract

(e.g. when trading a forward, one party must want to buy the assets at the predefined price

and the other party must want to sell it at the same price). Whereas agents who trade Option

contracts can obtain some benefit by using a speculative strategy (e.g. when trading a call

Option, the holder may want to buy the assets at the predefined price while the writer may

just want to obtain a profit from the premium). This property of Options may lead to a

higher participation of agents in the market.

Another advantage of using Options for risk management is that the transference of risk

can be performed among the agents that participate in the markets as peers. This is, in

contrast to having a central authority (like a bank) which will try to absorb the risk of the

agents. This type of pattern can be observed in companies that sell processing time which

is consumed at different peak intervals. Such companies must maintain the availability of

resources at all times (potentially spending in costs related to energy and administration of

the infrastructure), even when resources are not being used. A solution to such a problem

was proposed by the use of one type of Swing Options in [51].

2.2.4 Forecasting

In order to take advantage of the use of Options, traders need to formulate a belief about the

future prices of the assets. Specifically, the forecasting of price series needs to be used. In

Economics, price forecasting is generally performed by means of time series analysis [80].

Forecasting is performed by the analysis of the statistical properties of the historic prices

(such as mean and variance) and then trying to limit the possible range of future prices based

on the data obtained from the statistical analysis.

There are two main models used for statistical analysis of time series: auto-regressive

models and moving averages. In both models the forecasted values are obtained as a func-

tion of a defined range of values obtained from previous values in the time series. In auto-

regressive models each previous value is multiplied by a coefficient whereas in moving
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averages the average of the previous values is obtained [67].

2.2.4.1 Moving Average

A moving average is one technique used to analyse time series; it consists of calculating the

average of the n last values of the time series in order to obtain a value that can indicate the

direction of the trends that the data series observe. In some moving average formulas more

weight is given to the most current values in order to detect trend changes more accurately.

In economics, moving averages are often applied to stock prices, used to smooth out short-

term fluctuations to highlight long-term trends. The threshold between short-term and long-

term depends on the application.

The idea behind the use of moving averages is that they behave like trend lines that

follow the movement of a stock. They are not restricted to being straight lines but may

become rather curved and turn up or down, depending on the variation of the market price

[80].

Simple Moving Average A Simple Moving Average (SMA) is the unweighted mean of

the previous n data points. For a price series in which prices at time t are denoted by p(t),

the SMA can be obtained with the formula:

SMA(n, t) =
∑n

i=0 p(t− i)
n

(2.17)

assuming that t− n > 0.

An example of a 10, 50 and 100 period (where n = 10, 50 and 100 respectively) simple

moving averages for a price time series is shown on Figure 2.7. In this Figure it can be seen

that the smoothing of the curve increases as the number of periods in the moving average is

increased.

Using the moving average of a price series it is possible to detect trends that the time

series is carrying. These trends can then be used as information to obtain a forecast of the

future value of the time series according to the observed trends.

The SMA is used in this thesis as the basis for one forecasting mechanism. There ex-

ist other more accurate models for price forecasting (such as auto-regression models) [45].

However, the SMA is used to create simulation scenarios where agents trade using a fore-

casting mechanism used in real markets with low accuracy to have agents with different

views of the future price. An alternative forecasting mechanism is developed in this thesis,

allowing the experimentation with specific levels of forecasting accuracy including per-
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Figure 2.7: Example of the 10, 50 and 100 period simple moving averages of a price series.

fect forecasting. This mechanism is called α-Perfect forecasting and is covered in Section

3.2.2.2.

2.2.5 Risk and Uncertainty

In order to be able to deal with risk first a definition of it has to be adopted. As discussed

in [50], there are many published efforts in establishing a definition of risk. One of the

most important works on the definition of risks was carried out by Frank Knight in his

work presented in [57] on 1921 where he establishes a difference between measurable and

unmeasurable uncertainty:

It will appear that a measurable uncertainty, or ”risk” proper, as we shall use

the term, is so far different from an unmeasurable one that it is not in effect an

uncertainty at all. We ... accordingly restrict the term ”uncertainty” to cases

of the non-quantitative type. (Paragraph 26, Chapter I, Part I)

defining the presence of risk when a probability can be assigned to future events, and uncer-

tainty to those events for which no probability can be calculated. However, it was until 1944

that John von Neumann and Oskar Morgenstern work in [95] that uncertainty and risk was

formally incorporated to economic decision theory. In this work, the authors model risk as

probability values assigned to the different choices that are available for an agent.

Risk is usually defined in terms of uncertainty, which is the state of not knowing if a

proposition is true or false. However, even if an agent observes some level of uncertainty
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against a specific proposition, that does not make the agent exposed to some risk. Hence, a

second component, that of exposure needs to be considered when defining risk. Therefore,

the definition of risk I use in this thesis is the one discussed in [50]:

If someone has a personal interest in what transpires, that person is exposed.

Second, People don’t know what will happen. ... the outcome is uncertain. ...

Risk, then, is exposure to a proposition of which one is uncertain.

Risk and uncertainty are important concepts to address to support decision making [78].

Managing the risks arising from exposure to unwanted outcomes can be achieved either by

hedging or insurance. This involves guaranteeing future exchange rates or ensuring that

losses from adverse movements are compensated by other gains [78]. However what these

actions achieve is the transmission of certain risks to other entities which are willing to take

such risks. This thesis deals with the risk arising from the fluctuations of the price of the

asset (called market risk).

Market risk, is defined as the risk of losing wealth from the fluctuations in the price

of a resource [78]. When an agent is exposed to a loss due to market fluctuations, there

is a probability that the agent will lose large amounts of money. In order to reduce the

magnitude and probability of such loss, agents can make use of financial instruments such

as Derivatives.

Agents are exposed to this type of risk every time they trade in a market. However,

agents are also exposed to risks derived from the specific system application. For example,

in a Grid Multi-Agent System where agents bid and ask for specific resources, they face the

risk of not obtaining some required resource at the time they need it. Or, as the demand and

supply of resources varies, agents face the risk of having to pay very high prices in order to

acquire a resource at the required time.

2.3 Agent Based Computational Economics

One of the many applications of Agent Based Modelling is the modelling of economic

systems and the processes that develop in them. The study of such complex systems falls

under the term Agent Based Computational Economics (ACE) [91], a methodology which

is used to research the behaviour of economic systems modelled by systems composed of

autonomous agents which develop through time.

One of the main objectives of ACE is the study of the self organisation phenomenon

that arises from the interaction of the different agents participating in markets. The main
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concern is to realise how such patterns arise from the apparent non organised interaction

that happens in such markets [90].

As with other uses of computational modelling, ACE allows the investigation of dif-

ferent phenomena in the modelled systems by permitting the experimentation of controlled

scenarios which are relevant to the established hypotheses. Using this kind of experimen-

tation, researchers can design experiments to see the behaviour of the system under certain

scenarios that could not easily be tested in real markets (for example, it would be not practi-

cal if possible at all, to fix the number of traders in the real New York Stock exchange to test

other factors in the market). Furthermore, it has been argued [4] that using ACE enables

the investigation of the behaviour of markets without requiring the assumption of market

equilibrium , or the assumption that agent choices will be rational.

There have been major research advances in the processes of Auctions and Stock Mar-

kets; specially in modelling the dynamics among the different entities that participate in

those markets. Modelling these systems as Multi-Agent Systems is a sound approach given

the complexity of the trading markets. The interaction among the individual entities can

be represented as the interaction of different agents within their environment in accordance

with a set of protocols.

2.3.1 Market Modelling

In order to develop an Option market, a market where the underlying asset is traded must

be implemented first. There have been several efforts to model agent based stock markets,

some of them are reviewed by Hakman, et al. in [44] which presents a survey of numerous

approaches to model stock markets with Multi-Agent Systems. The authors give a char-

acterisation of a stock market agent model. The proposed parts of the model consist of a

set of independent agents that trade stocks or assets and cash. The model requires some

mechanism which allows the agents to trade among them. The trading mechanism can be

implement through a central clearing mechanism or using specialised clearing agents. In the

same work, the authors characterise the agents participating in the market as having some

decision process used to determine the actions of the agents. These agents base their de-

cision on information they obtain. The information can be obtained from the market itself

(like the historical prices of the assets) or from some type of estimation about the future

states of the market (a forecasting). The majority of the models surveyed in the work of

Hakman observe such properties, differing in the specific implementations of the compo-

nents in the model.

One of the most famous models of artificial stock markets is the Santa Fe artificial stock
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market developed by Brian Arthur et al., which is described in [5, 59, 71]. Their work

studies the success of technical traders which attempt to predict the future price of the stock

by analysing past market trends. To achieve this, the work relies on learning techniques such

as genetic algorithms to improve the agents forecasting ability. Their work however, does

not address the factors of risk management and hedging. The work I present in this thesis is

partially based on the Santa Fe stock market. Specifically, my model of the underlying asset

is a modification from the model proposed in their work described in [71]. However, in this

thesis I do not use any kind of evolving algorithm for the decision process of the agents.

Instead, I develop strategies that base their decisions in the expected utility obtained from

executing an action, considering the probability of losing wealth by executing such action

(i.e., risk).

2.4 Market Based Control

In contrast to ACE, research in Computer Science has been trying to adopt the mechanisms

used by markets to control aspects of distributed computational systems such as resource

allocation. This area of research has been coined Market Based Control (MBC) [26]. The

idea of using market mechanisms for the control of computational systems has been re-

searched since 1968 [88]. The use of distributed systems was first addressed by Miller et

al. [66], where they argue that markets can promote efficient and cooperative interactions

among agents with diverse knowledge, capabilities and goals. Moreover, they theorize that

it is possible to use economic markets as a paradigm for the modelling of computer systems,

exploiting the advantages of such a paradigm.

Market Based Control of distributed systems offers advantages over standard systems

like self emergent behaviour [26]. Moreover if a distributed system problem is modelled as

a Market Based resource allocation problem, it will be possible to use economic theory for

the maximisation of resource allocation efficiency (among agents or traders participating in

the markets) [26].

However, it has not been until recently that the processing power of computers has

allowed the simulation of such systems to experiment with diverse market mechanisms.

One of the most researched market mechanisms for the use in MBC is the auction. Auctions

have played a very important role in free market models. The auction model dates back to

500B.C., when men used to bid for women, whom they wanted to marry on the streets of

Babylon.6 Auctions have changed constantly over years. The arrival of computers and the

6Described by Herodotus of Halicarnassos in the first book of his work named The Histories [48].
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Internet bring new possibilities to auctions, as online auctioning services like e-bay and

Yahoo! Auctions have had major impact on the trading of goods and services.

The auctioning model of trading resources has been applied to a wide range of com-

puting problems such as grid resource allocation [21], adaptive sensor networks [96] and

supply chain management [68]. Such works have demonstrated that there are advantages in

the use of MBC mechanisms for the control of the modelled systems. It is argued in [84] that

one of the main issues faced by Market Based resource allocation systems is the establish-

ment of virtual or imaginary currencies, which are difficult to relate to real costs. The use

of closed monetary systems allow the market traders to prevent real losses in the events of

system errors. However, as systems become increasingly used to trade real world resources,

there will be a need to map the traded resources to real money. This in consequence will

bring the necessity of risk control over such monetary systems.

2.4.1 Software Models of Derivatives Markets

There has been little published efforts in the use of Financial Derivatives as a tool for MBC

or in the computational modeling and simulation of those markets. One of the first research

to use Derivatives to control computational systems is the work by Sutherland, published

in [88]. In this work the author presents an experiment where users of a PDP computer

system reserved slots of processing time in the future using an auction. This approach can

be compared to Futures contracts. However, the work presented in [88] deals only with the

model of the process–time allocation (i.e., the market mechanism) and it did not made any

attempt to create software components which automatically participated in the market.

The work presented in [31] describes a series of experiments with a market that sim-

ulates a Futures Markets with non-rational trading agents. In this work they use genetic

algorithms to evolve simple strategies to trade Future contracts. One point of interest for

my thesis is that the authors provide a 10 day moving average as part of the information

available for the trading agents. This moving average is used by the agents to calculate the

fair price of the Future contract in order to make a bid in the market. The market model

deals with Future contracts which expire one day after they are traded. The agents will

choose to buy if their calculated fair price is higher than an equilibrium price (calculated

from the agents fair prices, to balance the number of buyers and sellers); if the calculated

fair price is lower than the equilibrium price then the agents will sell.

In [56], Alan King et al. describe a model of Derivatives markets. The work in [87]

describes those experiments with more detail. The work presented by King et al. comprises

a Multi-Agent model of a Derivatives market comprised of two types of agents which trade
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Option contracts. The first type of agents are called brokers which are created specifically

to fulfil the requests made by the investors which are the second type of traders. The broker

agents are responsible for setting the price of the Options and have an unlimited number of

assets to provide to the investors. The price is based on the Black-Scholes model for Option

pricing. The investor agents are further divided in to two main sets that are differentiated

by their position in the market according to some external constraints, the ones that aim to

provide the underlying asset and others which will need to acquire the asset. The investors’

actions are obtained as the result of a portfolio optimisation process where agents aim to

maximise their utility measured by the present and possible future values of their portfolios.

The work by King et al. is relevant to my research because they make an approach to

Option modelling. However, the work I present differs in several points. First, unlike King’s

work, the research I present in this thesis bases the model of the stock market in real Option

Exchanges; thus, instead of using broker agents, the price of the Options are provided by the

central market (similarly to how it is done in real world Exchanges). Also in my presented

model, the number of assets are limited; for this reason, not all of the offers made by agents

may be fulfilled. This constraint is implemented because I argue that, in Market Based

distributed systems, resources are limited. Thus an agent trading in such markets must

consider the availability of the resources when making a decision. Another difference is

that, one of the objectives of the work I present is to compare the performance of Option

trading agents against asset only trading agents in order to characterize scenarios where

trading Options make sense; whereas in the work by King, et al., there is no comparison of

the agents’ performance, but instead, the comparison is made among the difference in the

positions taken by the trading agents.

The work presented by Sabrina Ecca et al., in [36] investigates the impact that the use of

Option Derivatives has in the agents’ wealth and in the behaviour of the underlying market.

In their approach, the market model consists of an underlying market in which four sets

of agents trade with different strategies; these traders are: random traders, which submit

offers to buy or sell assets randomly to the market; fundamentalist traders which establish

their position depending on the difference between an equilibrium price and the market

price of the asset; momentum traders are speculators that follow the trend of the markets

directly (if the asset price is increasing then the agents will believe that it will continue to

do so in the future); finally, contrarian traders which speculate that the direction of the

price movement will change (the opposite of the momentum traders). Some of these agents

are allowed to trade Options in addition to trading assets. This allows the authors to test

different strategies used in real markets such as covered positions (trading an Option each
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time an asset is traded in order to ”cover” their risk) or straddles (an Option trading strategy

consisting of obtaining a put and a call Option contract at the same time).

In the work by Ecca et al., the model makes use of a central bank which is in charge

of fulfilling all the offers submitted by the agents. Thus, similarly to the work by King et

al.[56], all the agents’ offers will be matched and cleared. One of the objectives of their

research is to test the difference in the performance of the agents in a market where prices

are characterised by a mean reverting behaviour where the price varies among a predefined

mean. Their results show that when using the strategies which they consider appropriate

for the asset price behaviour (contrarian and fundamentalist traders), the use of Options

does not benefit the traders, whereas agents that use strategies which are not adequate for

the price behaviour will increase their performance when using Options. Their results also

suggest that the use of Options decreases the volatility of the price of the underlying asset.

The work by Ecca et al. shares several concepts with the work presented in my thesis

like the use of random trading agents and the use of speculators. However in my work

the reasoning mechanism of the speculator strategy uses a different mechanism to choose

the action to execute. Their work also intends to compare the difference between Option

trading and asset only trading, but as mentioned before, the fact that all the submitted offers

are cleared by a central bank makes their model fundamentally different from the work that

I present in this thesis.

2.4.2 Relation With Previous Work

The work by Ecca et al. is focused on the study of the interaction between their stock Option

market and the underlying stock market, whereas in my research the main interest lies in

the comparison between the performance of agents that trade Options and agents that do not

trade Options. Although they make use of agents with different strategies, these strategies

are hard coded in the sense that they are constrained to execute a specific action (like, buy

an asset and a call Option at each step) without performing any reasoning in their decision

mechanism.

In contrast to my work, the work by King et al. [56] focuses on finding the performance

of Option trading agents which have external constraints. Their experiments focuses on the

comparison of the positions taken by Option trading agents that participate in the market

with the different predefined external constraints. Their work does engage in the valuation

of the agents portfolios with a combination of assets and goods. However, due to the com-

plexity of the simulation of the agents decision mechanism, their results are based on the

information obtained from 2 or 3 periods in the market.
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The majority of the models surveyed focus in the modelling of Derivatives markets with

the objective of researching their financial properties. Therefore, they can be classified as

part of the ACE research effort. There has been very little effort in investigating the use of

Derivatives as tools to manage the trading of resources in distributed computational systems

(which is the aim of MBC). Moreover, none of the surveyed models attempt to represent

the agents’ uncertainty or risk, and therefore do not provide the agents with a mechanism

to make their decisions based on the agents’ perception of the future states of the market,

considering probability. In this thesis, the decision of the agents are based on their perceived

probability over different outcomes and a valuation of the utility of the possible actions

(including trading Options) considering the uncertainty in the market. It is claimed that in

order to make a successful use of Options, agents must consider the market risk in their

strategies. The work described in my thesis focuses on the modelling of an Option trading

Market and the development of strategies which reason about their risk in order to trade

Option contracts. I do this research with the aim of looking for the possible applications of

Option contracts as a tool for the management of risk in distributed computational systems.

2.4.3 Option Trading and Multi–Agent Resource Allocation

Multi–Agent Resource Allocation (MARA) is the field that studies the process of distribut-

ing items amongst a number of agents [24]. One of the most important issues when address-

ing a MARA problem is the mechanisms used to distribute the resources among the agents

in a system. Auctioning is a type of mechanism that deals with the allocation of the items. In

the last few years, auction mechanisms have been sucessfuly used as Market–Based control

mechanisms for resource allocation in Multi–Agent Systems [42, 79].

Several of such auction mechanisms focus on finding the equilibrium or fair price of a

resource at which agents will agree to trade it, according to a predetermined set of rules (the

auction protocol) and to the agents’ preferences.

Such auctioning frameworks can be extended with Derivatives trading mechanisms

where agents trade contracts according their preferences. Using parallel Derivative mar-

kets such as Options will provide the agents a richer set of strategies for the maximization

of their utility. This would allow the use of Derivatives such as Options in order to ensure

the availability of the resources at future times and, secondly, in order to hedge the risk

given by the variations of the fair price of the resources traded in the auction market.

The basic properties that need to be available in order to run an Option market model

is an underlying market where some resource is traded. Such resource must have an equi-

librium price, as this is the price from which the Option price will be obtained. There must
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be a measure of risk–free interest rate. Evidently, the market for the underlying asset must

provide a definition of cash, or a common manner to identify (between the participants) the

general value of the resource being traded. Although different agents may obtain different

utility values for a specific resource, they must be able to specify such values in terms of an

amount of cash, in order to exchange the resource in the market.

Under these assumptions, the development of the parallel Option market will provide

agents with a value of the guarantee of trading assets at a future time, in terms of the same

generic unit (i.e. the cash). This quantification is convenient because the agents will then

be able to include in their decision mechanisms the possibilities provided by the Option

market, comparing it with the possibilities available in the market of the resource.

2.5 Summary

In this Chapter, a survey of the concepts of the fields related to the current thesis were

discussed. The research presented in this thesis makes use of advances in Financial Eco-

nomics, Agent-Based Computational Economics and Market Based Control to extend the

field of Computer Science with the development of a Market Based Control mechanism that

will allow the management, through hedging or insurance, of the risks that are generated in

artificial markets.

This work borrows heavily from the Financial field but does not pretend to be a deep

study of the subjects it adopts, instead, the research tries to investigate what are the ad-

vantages and disadvantages that the proposed approach will bring to Market Based Control

systems which implement the proposed framework.

The research presented in this thesis makes a contribution to Market Based Control in

providing an Option market framework. This framework allows autonomous agents partici-

pating in an electronic market to trade Options in order to hedge the risk inherent to trading

in such electronic markets. My work also contributes to MBC by providing the strategies

that allow autonomous agents to consider Option trading reasoning about the market risk

exposed by their possible actions.

Although this thesis is not particularly aimed at Agent Based Computational Economics,

my work also provides ACE with a model of an Option market which is comprised by suf-

ficient properties to mimic a real Exchange market. My provided model can be extended to

experiment with scenarios in which different types of Options are traded (such as American

or Swing Options), by integrating a suitable Option pricing model.
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Chapter 3

Option Trading Model

This chapter describes the theoretical model of the Option trading framework. In Section

3.1, the chapter first describes the asset and Option market mechanisms where agents will

be able to submit offers to trade. The definition of the agents as well as the developed

strategies and forecasting mechanisms used by the agents are described on Section 3.2.

Finally, Section 3.3 presents a summary of the chapter.

3.1 The Option Exchange Market

In order to define the Option trading market, the market for the underlying asset must be

defined first. The market of the underlying asset is the basis of the Option market. It is from

the information in the market of the underlying asset that the Option contracts are defined.

My model is a simplified version of the market created by Palmer, et al. described in

[71]. My model considers goods or assets instead of stock; the goods cannot be divided

and I only consider one type of good. It is also assumed that no dividends are distributed

among agents, given that the distribution of dividends is a particular property of stocks and

the present model is meant to be used for computing resources. These simplifications are

established in order to use the minimal properties of a simple market that allows trading.

As will be shown later in this chapter, the used definition of the market is rich enough to be

the basis for the Option trading framework.

The market is composed by a set of agents A = {A1, A2, A3, .., AN}. The sub-index

i is used to refer to a specific agent in the set (i.e., Ai ∈ A denotes an agent from the set),

therefore the variables that include a sub-index i correspond to values that are specific for

one agent. A is composed of two subsets. The set of agents that can only trade goods is

denoted by Ag. The set of agents that can trade assets as well as Option contracts is denoted

by Ao.

37
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The life of the market is defined by discrete time steps t = {0, 1, 2, 3, ..., T}, the mini-

mum unit of time in the market is a period, which is defined as:

Definition 1. Period: The events that happen in the market between two consecutive time

steps [t, t + 1].

At the beginning of each step t, each agent Ai has a number of goods gi(t) and an

amount of cash ci(t). The total number of goods in the model is fixed, being
∑

i gi(t) = G

for all t. Each agent also has an Option portfolio Oi(t) which is composed by the Option

contracts the agent holds Oh
i (t) and the Options it wrote Ow

i (t).

An Option o is defined by the tuple:

〈Xo, to, vo, τ o〉 (3.1)

Where Xo is the exercise price of that Option (the price agreed to pay for each good at

expiration time); to is the expiration time (the time when the Option has to be exercised);

vo is the volume (the quantity of goods to trade when exercising that Option) and τ o is the

type of Option (either call or put), specifying if the holder is going to buy or sell the assets

traded in the Option.

For every Option o there is a a corresponding premium po. This is the price an agent

has to pay to hold the Option. This premium is calculated at the time when the Option is

defined.

At each step in time, the market provides a set of Option templates to trade. These

templates, denoted by O(t), define the Option contracts available to trade at step t. Each

template provides the values of Xo, to, vo and τ o available for trading. Agents are only

allowed to submit offers to hold or write Options which match any of the Option templates.

Given these assumptions, there can be more than one identical offer submitted by different

agents in the same step.

Finally, there is an interest rate of return associated to the market, this rate is defined as

r and is applied to the cash owned by the agents at the end of a period. The rate r has the

range [0, 1].

3.1.1 Pricing Mechanism

The price of the goods is defined as a set P where p(t) ∈ P is the price of one good at

time t. This price is obtained form an exogenous source. The model does not define a

specific mechanism to calculate the price of the asset, and it is treated as a random time

series. The only assumption about the asset price made by the model is that the market and



3.1. THE OPTION EXCHANGE MARKET 39

the agents are capable of accessing the history of past prices of the asset for a defined time

horizon. The historic asset prices are required by the market and the agents to calculate

statistical properties of the asset prices. The specific used statistical information will be

described later. Treating the asset price series as an exogenous variable allows the asset

market mechanism to be independent from the Option market.

The price of the Option contracts po is calculated each step using the Black-Scholes

model for Option pricing (described in Section 2.2.2.3). To calculate the price of an Option

the formula takes the form:

po = F (p(t), σ2
R(t), Xo, τ o, r) (3.2)

The parameters used as input for the Black-Scholes formula are: The price of the good

at the current step p(t); the value of the strike price of the asset (Xo) and type of Option

defined by τ o; the risk free interest rate of return r; and the variance of the price returns for

the elapsed steps in the market defined as σ2
R(t). Specifically, if tini is the first step in the

market and t is the current step, then the variance is defined as:

σ2
R(t) =

∑t
k=tini

(R(k)− µ)2

t− tini
(3.3)

where µ is the mean of the returns for the specified steps defined by:

µ =

∑t
k=tini

R(k)
t− tini

(3.4)

R(k) is the rate of returns (defined in Section 2.2.2.3) of the asset at time k.

3.1.2 Market Time line

Each period of time starts when the market publishes the new price for the asset. Then

the Option clearing phase starts, where the market receives instructions from the agents to

exercise any Option that expires at this time. The agents holding any expiring Option must

either decide to exercise the Option or choose to let it expire without exercising. All the

Options that expire at this time are removed from the set of the agents’ held Options Oh
i and

the corresponding written Options are removed from the sets Ow
i of the agents. When an

Option is exercised, the agents clear the Option by immediately trading the corresponding

assets at the Option established exercise price Xo. Next, the market publishes the new

Option templates to trade on the present period and the trading phase begins, where the

agents submit their offers to buy and sell assets or hold and write Options. Next, the market



40 CHAPTER 3. OPTION TRADING MODEL

tries to randomly match the buy and sell offers. To do this, the market will first randomize

the order of the set of all the offers to buy goods Vb(t) and also randomize the order of the

offers to sell goods Vs(t). if |Vb(t)| < |Vs(t)| then the market will clear the offers to sell

assets Vs(t) until there are no more offers to buy assets Vb(t). Likewise, if |Vb(t)| > |Vs(t)|,
the market will clear all the offers to buy assets until there are no more offers to sell.

Similarly, the market will try to match the hold and write offers. This is done by ran-

domizing the order of the offers to write Vw(t) and the offers to hold Vh(t) Options, and

subsequently traversing the list of offers to hold Options (Vh(t)) until it is not possible to

match any offer. The cleared Options are added to the agents’ Option set (Oi(t)) and the

Options not matched will be ignored. A graphical representation of the time line is shown

in Figure 3.1. Using this clearing mechanism not all the agents may be able to clear their

offers but the market will ensure a fair (although inefficient) allocation of the goods.

Figure 3.1: Timeline for one time step of the market

3.2 Trading Agents

The definition of an agent used in my model is a general definition described in [99] which

defines an agent as a software computer program with the four basic properties of auton-

omy, social ability, reactivity and pro-activeness. The agents in my model are said to be

autonomous because they will choose their course of action depending only on their strate-

gies and their perceived state of their environment (the market). The agents have social

ability given that they interact with other agents by trading Options and assets through the

market. Agents are reactive as they use the changes in the state of their environment to

select their next actions. Finally, the created agents are pro-active given that their actions

are guided by their specific objective which depends on the strategy they use.
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An agent Ai trading in the market is formally defined by the tuple:

〈gi, ci, wi,Oi, Si,Fi〉 (3.5)

At time t, the term gi(t) is the number of goods the agent owns; ci(t) denotes the

quantity of cash the agent has. The term wi(t) denotes the wealth of the agent which is

obtained by the equation:

wi(t) = p(t)× gi(t) + ci(t) (3.6)

The agent also owns a set of Option contracts Oi(t) either written or held at previous time

steps and that will expire at a future time. The term Si is the agent’s strategy used to select

actions to perform at each step. Finally, Fi is the forecast function used by the agents to

obtain a forecast of the price of the asset at future times.

For each agent Ai with a wealth wi(t) at time t, the wealth return is also defined as:

Ri(t) = ln
(wi(t + 1)

wi(t)
)

(3.7)

Indicating a rate of profit or loss obtained by the agent in the period [t, t + 1]. The wealth

return is similar to the stock returns described in Section 2.2.2.3. However, while the stock

returns represent the rate of profit or loss observed in the stock or asset price, the returns on

the agents measure the particular profit or loss observed by a specific agent.

3.2.1 Actions

At each step t, the agent has to decide on what Options to exercise during the Option clear-

ing phase and what action to execute in the trading phase . The action is chosen from a set

of actions, and the Options to exercise are the subset of the agent’s held Options Oh
i (t) that

expire at t.

3.2.1.1 Option Exercise

After obtaining the price of the asset for the new period, the agent will choose which Options

to exercise from the set of held Options Oh
i (t). The rules used to choose to exercise an

Option are:

(τ o = call ∧ to = t) ⇒ (exercise(o, t) ⇔ Xo < p(t)) (3.8)

(τ o = put ∧ to = t) ⇒ (exercise(o, t) ⇔ Xo > p(t))
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That is, an agent will only exercise a call Option if the price it will pay for the assets

by trading the Option is lower than the current price of the assets in the market (i.e., if

Xo < p(t)). Doing this, the agent will buy assets from the Option writer at a price which is

lower than the current market price, making a profit of p(t)−Xo. Similarly, the agent will

only exercise a put Option if the exercise price is higher than the current asset price in the

market (i.e., when Xo > p(t)). Doing this, the agent will sell assets to the Option writer at

a price which is higher than the current market price, making a profit of Xo − p(t).

3.2.1.2 Market Trading

After the Option clearing phase is finished, agents enter the trading phase. There are five

basic actions that an agent can perform during the trading phase. These actions denote

offers submitted to the market. The set of actions an agent can execute are listed in Table

3.1.

Action Description
buy(g, t) Make an offer to buy an asset at time t.
sell(g, t) Make an offer to sell an asset at time t
hold(o, t) Make an offer to hold an Option o at time t
write(o, t) Make an offer to write an Option o at time t
pass(t) Do not make any offer

Table 3.1: Available actions for the agents during the trading phase at time t.

The buy(g, t) and sell(g, t) actions denote an offer to buy g number of assets in the

market at step t accordingly. The hold(o, t) and write(o, t) actions denote an offer to hold

or write an Option o in the market at time t. Finally, the pass(t) action denotes that the

agent will not submit any offer to the market at time t.

The buy(g, t) and sell(g, t) actions are not strictly part of the Option market. These

actions can be omitted from the model when the market of the underlying asset is modelled

separately from the Option market. However, the actions are added in the current model to

allow agents to trade assets without the use of Options.

3.2.2 Forecasting

Agents are provided with a forecasting function Fi which they use in order to formulate a

belief about the future state of the market. Two forecasting mechanisms are developed, the

SMAn forecasting function and the α–Perfect forecasting function. The agents make use

of these functions in some of the trading strategies described in Section 3.2.4.
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3.2.2.1 Simple Moving Average Forecasting

The first forecasting function is based on the Simple Moving Average function described

in Section 2.2.4.1. Prices at future times are obtained by first calculating the SMA for an

interval window of [t − n, t] as SMA(n, t), where t is the present time step. Then the

forecasted price of agent Ai at future time step t + m is obtained by extrapolating the price

at current time using the formula:

SMAn(t + m) = p(t) + m× (p(t)− SMA(n, t)) (3.9)

Where SMAn(t + m) is the agent’s forecasted price for time t + m and p(t) is the mar-

ket price at time t. The Simple Moving Average forecasting function is then denoted by

SMAn(m).

3.2.2.2 α–Perfect Forecasting

In the second forecasting function, the α–Perfect forecasting, agents obtain the future prices

from the actual price series. This forecasting function can only be used when the price of

the asset is known for all future time steps. The real asset price is modified multiplying it

by a noise factor bounded by the parameter α. The forecasted price is calculated as:

pi(t + m) = p(t + m)× (1 + kα) (3.10)

Where pi(t + m) is the resulting agent’s forecasted price at t + m, p(t + m) is the real

market asset price at time t + m and kα is a uniformly distributed pseudo–random number

within the range [α − 1, 1− α], being α within the range of [0, 1]. Using this function it is

possible to provide an agent with complete knowledge of future asset prices making α = 1.

As it is clearly seen, it may not be possible to use the α–Perfect forecasting function

in real electronic markets, given that the future price of the asset is usually unknown to the

market. However, the α–Perfect forecasting function is developed to test the performance

of the trading strategies under different known degrees of uncertainty. By varying the value

of α it is possible to provide the trading agents with different degrees of uncertainty about

the future price.

3.2.3 Perceived Risk

Following the definition described in 2.2.5, risk is modelled as the probability that the agent

loses wealth when it carries out a specific action. To calculate this probability, it is assumed

that price changes are distributed according to a Normal distribution N(µ, σ). Under this
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assupmtion, an agent defines the probability distribution of the prices using a forecasted

price pi(t′) (obtained using one of the previously described forecasting functions) for some

future time t′ as the mean of the distribution µ. The standard deviation of the Normal

distribution is then given by the standard deviation of the historic asset price series σP ,

which is formally defined as:

σP =

√∑t
k=tini

(p(k)− µP )2

t− tini
(3.11)

Where µP is the mean of the historic asset prices within the range [tini, t], tini is the first

price in the history of the asset prices and t is the current price of the asset. As a re-

sult, the agent will formulate a model of the future of the market price with with the form

N(pi(t′), σP ).

The probability of losing wealth after executing an action a at a step t (i.e., the risk that

comes from the exposure to the uncertainty by executing action a) is then defined as:

P
[
wi(t′) < wi(t)|a;N(pi(t′), σP )

]
(3.12)

Denoting the probability that the agent’s wealth at time t′ is less than the wealth at time t

(represented by w(t′) < w(t)) given that the agent executes action a, and given the distri-

bution N(pi(t′), σP ). The probability of losing wealth is then calculated using the standard

Normal cumulative distribution function (c.d.f.) Φ(z),1 and because the probability of los-

ing wealth depends on the action the agent executes, the value of z will depend on the

action for which the probability is being calculated. In the case of asset trading, z will be

the standardized value of the asset price at the current time step t. Alternatively, in the case

of Option trading, the value of z will be the standardized value of the exercise price and the

Option premium Xo ± po, depending on the type of the Option (the specific cases will be

described later in this chapter).

With this model an agent is able to calculate, with basis on its model of the volatility of

the asset price (given by the Normal distribution), the probability that the execution of an

action will lead to a loss of wealth.

Using the calculated probability, an agent then calculates the risk loss factor ρL which

is a combination of the probability of losing wealth and the magnitude of the loss that the

agent can incur after executing an action. The general definition of ρL is:

Definition 2. The risk loss factor ρL is the product of the probability that after executing an

action, an agent loses wealth due to a change of the asset price multiplied by the maximum
1The definition of the standard Normal c.d.f. is shown in Appendix A.
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possible magnitude of the loss. That is:

ρL = P
[
wi(t′) < wi(t)|a;N(pi(t′), σP )

]
×Maximum Possible Magnitude of the Loss

(3.13)

In a similar way to ρL, a measure of the probability of gaining wealth in each action is

calculated. This is used to obtain the risk gain factor2 ρG, which is defined as:

Definition 3. The risk gain factor ρG is the product of the probability that after executing an

action, an agent gains wealth due to a change of the asset price, multiplied by the magnitude

of the possible gain. That is generally:

ρG = P
[
wi(t′) > wi(t)|a;N(pi(t′), σP )

]
×Maximum Possible Magnitude of the Profit

(3.14)

To obtain the Maximum Possible Magnitude of Loss and Maximum Possible Magnitude of

Profit, an approximation is used in the cases where the real magnitude would be either

positive of negative infinity; considering that although the maximum wealth an agent can

lose or gain may tend to infinity, the probability of obtaining such wealth is very low.

The maximum magnitude of the profit or loss is then bounded considering that accord-

ing to the properties of the Normal distribution, 99.7% of the values in the distribution will

lie within 3σP (at three standard deviations of the mean) in the Normal probability density

function (p.d.f). Therefore, it is considered that the Maximum Possible Magnitude of Loss

and from Maximum Possible Magnitude of Profits Equations 3.13 and 3.14 is equal to 3σP .

As stated before, the value of the parameters for the standard Normal c.d.f. Φ(z) depend

on the evaluated action. For the action pass(t), the ρL and ρG values are both equal to 0,

given that the valuation of the risk is based on the change in the amount of cash and assets

of the agent between two steps in the market relative to doing nothing. The definitions of

the parameters used to calculate the risk factors for the rest of the actions are described next.

3.2.3.1 Buying An Asset

When the action a is buy(g, t), the c.d.f. parameter z is defined as:

z =
p(t)− pi(t + 1)

σP
(3.15)

And ρL is calculated with the function:

ρL = Φ(z)× 3σP (3.16)
2Although my used definition of risk is the probability of losing wealth, I chose to use the name risk gain

factor to make clear that there is a relation between ρL and ρG as it will be shown later.
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(a) (b)

Figure 3.2: Graphical representation of the probability of wealth loss when buying an asset given a forecasted
price pi(t + 1) for (a) pi(t + 1) > p(t) and (b) pi(t + 1) < p(t).

where σP is the standard deviation of the historic prices of the asset; p(t) is the current price

of the asset and pi(t + 1) is the agent’s forecasted price for time t + 1.

The term Φ(z) in Equation 3.16 is used to obtain the probability that pi(t + 1) < p(t),

that is, the cumulative probability from [−∞, p(t)]. The value of z is the standardized value

of p(t) in order to obtain the equivalent probability P [pi(t + 1) < p(t)] using the standard

Normal c.d.f Φ(z).

Figure 3.2 shows a graphical representation of two possible outcomes of Φ(z) when

executing the action buy(g, t). The grey area under the curve in Figure 3.2a represents

the probability of wealth loss in the case when, according to the agent’s forecast, the state

of the world at the next step will be pi(t + 1) > p(t). The grey area under the curve in

Figure 3.2b represents the probability of wealth loss when the agent’s forecast is such that

pi(t + 1) < p(t).

The term 3σP in Equation 3.16 represents the maximum amount of cash that an agent

can lose if its forecasting is wrong. In the case of buying an asset, the agent can theoreticaly

lose an infinite amount of wealth, for this reason the approximated magnitude of wealth loss

is used.

To obtain the value of ρG for the action of buying an asset, the value of 1−Φ(z) is used

as the probability of gaining wealth due to buying an asset. The value of ρG is calculated

as:

ρG = (1− Φ(z))× 3σP (3.17)

The value of z will be the same as the one used to calculate ρL for the same action. The

probability of gaining wealth will be the complement of the probability of losing wealth.

This can be seen in Figure 3.2, where the white area under the curve represents the proba-

bility of gaining wealth.
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(a) (b)

Figure 3.3: Graphical representation of the probability of wealth loss when selling an asset given a forecasted
price pi(t + 1) for (a) pi(t + 1) > p(t) and (b) pi(t + 1) < p(t).

3.2.3.2 Selling An Asset

When the action a is sell(g, t), the c.d.f. parameter z is defined as:

z =
p(t)− pi(t + 1)

σP
(3.18)

And ρL is the calculated with the function:

ρL = (1− Φ(z))× 3σP (3.19)

where σP is the standard deviation of the asset price series; p(t) is the current price of the

asset and pi(t + 1) is the agent’s forecasted price for time t + 1. In this case, 1 − Φ(z)

is used to obtain the probability that pi(t + 1) > p(t), that is, the cumulative probability

within the range [p(t),∞].

Figure 3.3 shows the graphical representation of two possible outcomes of 1 − Φ(z)

when executing the action sell(g, t). The grey area under the curve in Figure 3.3a represents

the probability of wealth loss in the case when according the agent’s forecast, it believes that

the state of the world at the next step will be such that pi(t + 1) > p(t). Alternatively, the

grey area under the curve in Figure 3.3b represents the probability of wealth loss when the

believes that pi(t + 1) < p(t).

Similarly to the function to calculate ρL when buying an asset, 3σP represents the mag-

nitude of wealth that an agent can lose if its forecasting is wrong; as well as the magnitude

of wealth that an agent can gain.

To obtain the value of ρG, Φ(z) is used as the probability of gaining wealth due to

selling an asset. The value of ρG is calculated as:

ρG = Φ(z)× 3σP (3.20)



48 CHAPTER 3. OPTION TRADING MODEL

3.2.3.3 Holding An Option

When the action a is hold(o, t), the value of ρL depends on the type of the Option τ o. When

τ o = call, the value of ρL is calculated as:

ρL = Φ(z)× po (3.21)

where po is the price of the Option o. The value probability of losing wealth can be derived

from Equation 2.6, from this equation we know that the loss of an agent holding a call

Option is given by Loss = Min(0, X − p(to)) + po. Therefore, an agent will loss wealth

when:

X − pi(to) + po > 0 or (3.22)

pi(to) < X + po

Then, to obtain the probability that the agents incurs in a loss it is necessary to obtain

P [pi(to) < X + po]. Under this assumptions, the variable z is defined as:

z =
(Xo + po)− pi(to)

σP
(3.23)

where Xo is the Option strike price and pi(to) is the agent’s forecasted price for time to (the

time when the Option expires) and σP is the standard deviation of the asset price series.

Equation 3.21 may be analysed in two separated sections. First, Φ(z), is used to obtain

the probability that pi(to) < Xo + po, that is, the cumulative probability in the range

[−∞, X + po], assuming that the price follows a Normal distribution with a mean of p(to)

and a standard deviation of σP . The value of z is the standardized value of Xo +po in order

to obtain the equivalent probability P [pi(to) < Xo + po] using the standard Normal c.d.f.

Φ(z).

Figure 3.4 shows the graphical representation of two possible outcomes of Φ(z) when

executing the action hold(o, t), with τ o = call. The grey area under the curve represents the

probability of losing wealth on each scenario. Figure 3.4a presents the case when according

to the agent’s forecasted price, it believes that pi(to) > Xo + po. Similarly, Figure 3.4b

presents the case when according to the agent’s forecasted price, it believes that pi(to) <

Xo + po.

The second part of Equation 3.21, which is po, represents the maximum amount of cash

that an agent can lose if its forecasting is wrong. In contrast to the actions of buying and

selling assets, the maximum loss an agent can incur when holding an Option is the Option

premium po.
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(a) (b)

Figure 3.4: Graphical representation of the probability of wealth loss when holding a call Option given a
forecasted price pi(t

o) for (a) pi(t
o) > Xo + po and (b) pi(t

o) < Xo + po.

To calculate the value of ρG, the value of 1−Φ(z) is used as the probability of gaining

wealth. In the case of holding an Option, the value of ρG is obtained using the equation:

ρG = (1− Φ(z))× 3σP (3.24)

In the case of ρG, the magnitude of gaining wealth is bounded to 3σP given that the agent’s

maximum wealth gain is theoretically infinite.

If the type of the Option to hold is τ o = put then it is possible to calculate the

value of ρL from Equation 2.8 which defines the loss of holding a put Option as Loss =

Min(0, p(to)−X) + po. Therefore, an agent will incur in a loss if:

pi(to)−X + po > 0 or (3.25)

pi(to) > X − po

And the probability of losing wealth in this scenario is given by P [pi(to) > X − po] with z

defined as:

z =
(Xo − po)− pi(to)

σP
(3.26)

Under this assumptions, the value of the risk loss factor ρL is calculated as:

ρL = (1− Φ(z))× po (3.27)

and the value of ρG for the put Option will be:

ρG = Φ(z)× 3σP (3.28)

The difference between the magnitudes of wealth gain (3σp) and wealth loss (po) arising

from holding an Option exposes the possibility of an agent to obtain high profits while

limiting its losses (thus, having low risk).
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3.2.3.4 Writing An Option

When the action a is write(o, t), the value of ρL depends on the type of the Option τ o.

When τ o = call, the value of ρL is calculated as:

ρL = (1− Φ(z))× 3σP (3.29)

where σP is the standard deviation of the asset price series; po is the price of the Option o.

The probability of losing wealth when writing a call Option can be derived from Equation

2.4 which defines a loss as Loss = Max(0, p(to)−X)−po. Therefore, an agent will incur

in a loss if:

p(to)−X − po > 0 or (3.30)

p(to) > X + po

The probability of losing wealth in this scenario is then given by P [p(to) > X + po] and z

will be defined as:

z =
(Xo + po)− pi(to)

σP
(3.31)

where Xo is the Option strike price and pi(to) is the agent’s forecasted price for time to (the

time when the Option expires).

Figure 3.5 shows the graphical representation of two possible outcomes of 1 − Φ(z)

when executing the action write(o, t), with τ o = call. The grey area under the curve

represents the probability of losing wealth on each scenario. Figure 3.5a presents the case

when according to the agent’s forecasted price, it believes that pi(to) > Xo +po. Similarly,

Figure 3.5b presents the case when according to the agent’s forecasted price, it believes that

pi(to) < Xo + po.

To calculate the value of ρG, the value of Φ(z) is used as the probability of gaining

wealth. In the case of holding an Option, the value of ρG is obtained using the equation:

ρG = Φ(z)× po (3.32)

If the type of the Option to write is τ o = put then it is possible to calculate the

value of ρL from Equation 2.2 which defines the loss of holding a put Option as Loss =

Max(0, X − p(to))− po. Therefore, an agent will incur in a loss if:

X − p(to)− po > 0 or (3.33)

p(to) < X − po
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(a) (b)

Figure 3.5: Graphical representation of the probability of wealth loss when writing a call Option given a fore-
casted price pi(t

o) for (a) pi(t
o) > Xo + po and (b) pi(t

o) < Xo + po.

The probability of losing wealth in this scenario is given by P [p(to) < X − po] and z will

be defined as:

z =
(Xo − po)− pi(to)

σP
(3.34)

Under this assumptions, the risk loss factor ρL is calculated with the formula:

ρL = Φ(z)× 3σP (3.35)

and the value of the risk gain factor ρG is:

ρG = (1− Φ(z))× po (3.36)

3.2.4 Trading Strategies

To select the offer to submit to the market at one time step, an agent generates a set with the

possible actions available for the present time step. The available actions at time t are the

offers to buy and sell goods and the offers to write and hold the Option contracts that are

published by the market for that time. Figure 3.6 shows an example of the possible actions

available in the set at a time t.

Each element in the set is composed by the action a that the agent will execute, the new

state of the agent after executing the action (the number of goods and cash as well as the set

of Options) and the risk factor ρL and ρG corresponding to that action.

The available actions in the list are constrained by the following formulas:

g(t + 1) ≥ 0

c(t + 1) ≥ 0 (3.37)
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If an action does not fulfill any of these constraints then it is not added to the set of actions.

These constraints make sure the agent has enough resources to execute the actions in the

action set. The set of possible actions is used by different strategies to select the next offer

to submit to the market.

Figure 3.6: Example of possible action choices for an agent for a time step t.

There are six trading strategies developed for the market. Two strategies allow agents

to trade only assets and are called Asset Trading Strategies (ATS) and four strategies allow

agents to trade assets as well as Options; these strategies are named Option Trading Strate-

gies (OTS). The ATS are the ATSpec strategy and the ATNoise strategy; the OTS are are

OTMinR, OTMaxW, OTMix and OTRnd.

3.2.4.1 Asset trading strategies

Agents using the ATNoise strategy will select to buy assets, sell assets or pass according to

a uniform random distribution function. The strategy will select one action at every step

which will be the offer submitted to the market. The strategy is formally defined as:

Si(t) = RND({buy(g, t), sell(g, t), pass(t)}) (3.38)

where RND(·) is a uniform random distribution function that returns one of the actions

from the set of possible actions selecting randomly. The number of assets in each offer is

g = 1.

Using the ATSpec trading strategy, agents can select among buying an asset, selling an

asset and passing depending on their forecast of the next time step. In this way they are

able to speculate about the price of the asset and make an offer to the market trying to profit

from their forecast. The strategy is formally defined as:

Si

(
p(t), pi(t + 1)

)
=


buy(g, t) if p(t) < pi(t + 1)
sell(g, t) if p(t) > pi(t + 1)
pass(t) if p(t) = pi(t + 1)

(3.39)
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where p(t) is the current price of the asset in the market and pi(t+1) is the agent’s forecasted

price.

3.2.4.2 Option Trading Strategies

With the OTRnd trading strategy, an agent will select one of of the actions available at a

time t in the actions set using a uniform random function. The actions can be to trade assets

as well as trade any of the Option contracts available at time t. The selection function is

formally defined as:

Si(t) = RND
(
{buy(g, t), sell(g, t), pass(t),

hold(o1, t), write(o1, t), ...hold(ok, t), write(ok, t)}
)

(3.40)

where RND(·) is a random uniform distribution function and k is the number of Option

templates (O(t)) available for trading at time t. Similarly to the ATSpec strategy, the number

of assets in each offer is equal to 1.

With the OTMinR strategy, an agent will choose the action that has the minimum value

of ρL from the actions set. The selection function is defined as:

Si(t) = {a ∈ K|∀k ∈ K, ρL(a) ≤ ρL(k)} (3.41)

where K is the set of all the possible actions to execute at step t, excepting the action

pass(t). This strategy is based on the premise of choosing actions in which the agent is less

exposed to the risk of losing wealth, minimising its risk. If there is more than one action

with the same ρL(·) value then an action is chosen randomly from the subset of actions from

that set using the function in Equation 3.40.

When using the OTMaxW strategy, an agent will choose the action which has the max-

imum value of ρG from the actions set. The selection function is defined as:

Si(t) = {a ∈ K|∀k ∈ K, ρG(a) ≥ ρL(k), } (3.42)

where K is the set of all the possible actions to execute at step t, expecting the action

pass(t). Contrarily to the OTMinR strategy, the objective of the OTMaxW strategy is to

choose the actions in which there is a higher probability of obtaining higher profits. If there

is more than one action with the same ρG(·) value then an action is chosen randomly from

the subset of actions from that set using the function in Equation 3.40.
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The OTMix strategy is a combination of the OTMinR and OTMaxW strategies. An

agent using this strategy is able to choose which of the two strategies to use to select the

next action. To choose the strategy the agent will use the equation:

Si =
{

OTMinR if SMA(10, t) > p(t)
OTMaxW if SMA(10, t) < p(t)

(3.43)

where SMA(10, t) is the 10 period Simple Moving Average of the asset price calculated

using the asset prices in the range [t − 10, t]. This function is used to select the OTMinR

strategy when the agent detects that the price of the asset is decreasing and will use the

OTMaxW strategy if it detects that the price of the asset is increasing. Table 3.2 provides a

summary of the designed strategies.

Strategy Used Information Objectives
ATSpec p(t), pi(t + 1) Buy if believes that asset price will increase. Sell

if believes that asset price will decrease. Pass if
believes that the price will not change.

ATNoise None Select to buy or sell assets or pass randomly.
OTMinR ρL Choose the action that presents the minimum risk

loss factor.
OTMaxW ρG Choose the action that presents the maximum

risk gain factor
OTMix [p(t− 10), p(t)] Choose to use the OTMinR if the asset price is

decreasing and OTMaxW if the asset price is in-
creasing.

OTRnd None Select any action randomly.

Table 3.2: Summary of strategies developed to trade in the Option market model.

3.3 Summary

This chapter described the elements of the developed market where agents are able to trade

goods and Option contracts for those goods. To model a market where agents are able

to trade Option contracts, a market where the underlying asset is traded was first defined.

After defining the market mechanism, a description of the agents that populate the Option

trading market was provided. these agents are grouped in two main sets, agents that can

trade Options and assets and agents that can only trade assets. This division is established

to compare the performance between agents able to trade Options against agents that can

only trade assets. To trade in the market agents were equipped with forecasting functions

and trading strategies. The strategies available to trade in the market were presented and
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the agents’ decision making process was explained. The SMAn and α–Perfect forecasting

functions were defined as well as the ρG and ρL factors used to make decisions by some of

the strategies.

The elements of the defined model are considered sufficent to create a basic mecha-

nism that enables software agents to trade Option contracts. Several considerations such

as dividends and transaction costs were omitted from the model for simplicity. However I

believe that even without the inclusion of those elements, the proposed model is sufficient

to demonstrate the possibility of Option trading for Multi–Agent systems. The next chapter

describes the details of the computational implementation of the model.
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Chapter 4

Implementation

The present chapter details the implementation of the Option trading market model as a

computer program. This implementation is performed with the objective of performing ex-

periments doing several market simulations. The experiments are done to test the hypothe-

ses established in Chapter 1. To implement the created model into a computer program, a

Multi–Agent modelling framework is used as the basis of the implementation. There are

several available frameworks to perform Multi–Agent Simulations. To select a framework,

a survey of some available frameworks was carried out. The result of this survey is pre-

sented in Section 4.1, evaluating the frameworks on a set of predefined properties which

were desired for the implementation of the model.

After selecting a suitable framework, the details of the implementation of the model

are described in Section 4.2. In this section, the description of the design approach used

and software development process are shown. Section 4.3 details the processes carried

out to verify and validate the implementation. A discussion of the issues arising from the

validation and verification of Agent-Based simulations is also presented. Finally, Section

4.4 presents a summary of the work described in this chapter, discussing some of the issues

that arose during the implementation of the model.

4.1 A Survey of ABM Frameworks

There are currently several frameworks available which allow the development of Multi–

Agent Systems; In order to implement the developed model, a survey of some of the avail-

able frameworks needed to be performed. Most of the commonly used Agent–Based Mod-

eling (ABM) platforms follow the “framework and library” paradigm, providing a set of

standard guidelines for designing and describing agent based models along with a software

library implementing the framework and providing simulation tools [75].

57
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To select a suitable MAS framework, a set of required properties defining the criteria

for the selection of the model is first defined. For the implementation of the Option trading

market model, the following are the properties relevant for the selection of the development

framework. A suitable framework to implement the model needs to satisfy certain specific

properties:

P1 Robustness: The simulation framework must be mature in its implementation and

have been sufficiently tested to have a firm base to build the framework.

P2 Documentation availability: The framework should have good documentation avail-

able describing the framework functionality to facilitate the implementation of the

model.

P3 Validation Tools: The framework should provide tools (or allow independent tools to

interact) to test the validity of the model.

P4 Extensibility: The framework should allow the implementation and use of external

libraries to extend the model or if required the framework itself.

P5 Programming Language: The framework must allow the development of the Multi–

Agent System in either Java or C++ language.

P6 Focus on Simulation: The framework should be tailored to the simulation of Multi–

Agent systems and should provide tools for the simulation of discrete event simula-

tions and markets.

P6 Access to source code: The source code of the framework should be freely available

for analysis.

Another property considered in the selection of the framework, was the popularity of

the framework in the simulation of Agent Computational Economics and Market Based

Control systems. The frameworks considered for evaluation were JADE, NetLogo, Jason,

3APL, Swarm and Repast.

4.1.1 The JADE Framework

Created by the Telecom Italia Lab, Jade1 (Java Agent DEvelopment Framework) is a soft-

ware framework implemented in the Java programming language. It allows the implemen-

1Available at http://jade.tilab.com/ February 10, 2008.
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tation of Multi–Agent systems by providing a FIPA2 compliant middleware that provides

the definition of the communication protocols between the agents according to the FIPA

standards. It includes a set of graphical tools that support the debugging and deployment

phases. The agent platform can be distributed across machines and the configuration can

be controlled via a remote interface. The source code of Jade is freely available and is

distributed under the GNU LGPL3 License [13].

Being a MAS development framework, Jade contains a full set of tools that help through

the development of the application. It provides tools to analyze the state of the agents when

the application is running as well as tools to analyze the messages exchanged by the agents.

Being implemented in Java it also enables the use of the extensive set of Java libraries

available.

Jade is a robust framework which has been used to implement several full scale applica-

tions; it contains a very good collection of online documentation and an active mailing list.

However it is not aimed at simulation building but rather at the development of operational

Multi–Agent Systems; hence it lacks mechanisms for coordination (like clock timing) or

visualization of the environment, which must be implemented by the developer.

4.1.2 The NetLogo Framework

NetLogo4 was conceived as an educational tool; its primary design objective is ease of use.

Its programming language is based in the Logo language and includes many high level

structures and primitives aimed to reduce programming complexity. For this reason, the

programming language provided for the agents interactions does not provide all the control

and structuring capabilities of a standard programming language.

Netlogo also provides an extensive amount of documentation. NetLogo was designed

to model concurrently–acting mobile agents based on a grid space; this is achieved using a

parallel processing paradigm. Given such properties, modelling a discrete event simulation

may be difficult [76]. Finally, NetLogo does not provide an application programming in-

terface (API) to interact with other third party software libraries or programs developed in

other languages [94]. The software is released as freeware but does not provide any source

code.

2FIPA (Foundation for Intelligent Physical Agents is an IEEE standard committee that maintains a specifi-
cation of Multi–Agent systems. Its website is accessible at http://www.fipa.org/, February 2, 2008.

3LGPL is the GNU Lesser General Public License. The text of the license is available at
http://www.gnu.org/licenses/why-not-lgpl.html, February 10, 2008.

4NetLogo is available at http://ccl.northwestern.edu/netlogo/, February 10, 2008.
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4.1.3 The Jason framework

Developed by R. Bordini and J. Hbner, Jason5 is a Java-based interpreter for an extended

version of AgentSpeak. AgentSpeak is a programming language aimed at the specification

of agents defining their Belief, Desires and Intentions. AgentSpeak is itself a simplification

of PRS and dMARS [34] reasoning systems. Jason provides an interpreter for a improved

version of AgentSpeak, including speech-act based agent communication [18].

Jason allows for the development of BDI-reasoning agents providing a reasoning engine

which allows the agents to make decisions based on sets of predefined rules. As a MAS

framework Jason provides almost no development tools. The development environment

offered is as a plugin of the JEdit6 text editor. Given the nature of the BDI AgentSpeak

language, the agents decision rules and their set of beliefs must be specified before running

the program. As the program is running, the agents will reason using such rules until they

fulfill their objectives. This feature require that each decision rule must be known and hard

coded beforehand. The Jason framework documentation is heavily lacking; it consists of

one small manual and a Frequently Asked Questions information page. The documentation

leaves the developer with no choice but to learn from trial and error. There is also a user

mailing list with almost no activity. At the time of surveying, a book on the use of Jason

[19] was being written by the developers of the framework.

A preliminary implementation of the Option market model was done in Jason. The

trading strategies were modelled as Beliefs, Desires and Intention rules. However, there

were several setbacks that prevented the completion of the implementation. The issues

encountered were: firstly, the difficulty to mix the calculus of the probability for the agents’

risk assessment; secondly, the lack of the possibility to modify the agents decision rules once

the program is running; finally, the lack of documentation complicated the implementation

of the model.7 The Jason source code is released under the LGPL Open Source license.

4.1.4 The 3APL Framework

3APL8 was developed and maintained at the University of Utrecht in the Netherlands. It

allows the specification of cognitive agent behaviour using actions, beliefs, goals, plans,

and rules. It also permits agent communication using FIPA-like semantics [49].

5Jason is available at http://jason.sourceforge.net/, February 10, 2008.
6JEdit text editor is available at http://www.jedit.org/ February 10, 2008
7I must thank Rafael Bordini for his patience and the information about Jason that he kindly provided me.

It was partly from this information that I could make an informed choice of a suitable framework.
83APL is available at http://www.cs.uu.nl/3apl/, February 10, 2008.
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The 3APL platform has a visual interface for the monitoring and debugging of agents

being run, and a source code editor. It has been released as Java-based software, which

comes with some Java interfaces that can be used to develop Java-based plug-ins and li-

braries. A 3APL platform has the ability to be used in client–server architectures, allowing

connections of client or server roles to other 3APL instances running across a network. This

allows communication among 3APL agents on each platform. The language to implement

agents under 3APL is BDI–oriented and consists of a combination of Prolog facts which

acts as beliefs of the agents along with other 3APL specific keywords that allow the defini-

tion the agents plans, goals and beliefs. The 3APL platform has very little documentation

available, consisting of an incomplete programming manual. At the time of the survey,

the development and maintenance of the 3APL platform has been abandoned in favour of

the development of a new framework named 2APL [30]. The source code of the 3APL

framework is not available.

As with Jason, a preliminary implementation of the Option trading market was at-

tempted in 3APL; however, due to the same reasons as in the Jason implementation (the

difficulty in mixing the probability based reasoning in these logic based frameworks), the

implementation of the market was not continued using 3APL. In the case of 3APL, another

problem was the difficulty of implementing the Market section of the model in the provided

language.9

4.1.5 The Swarm Framework

Swarm10 was designed as a general language and toolbox for Agent Based Models, intended

for widespread use across scientific domains. Swarm was designed before Java was a mature

language and is developed in Objective-C. It has an extensive amount of documentation

available online [92]. Even though there is a library which allows the usage of some of

the functions of Swarm in the Java language, it does not permit to use the complete set of

properties available as when using the Objective-C version [75]. Given that the framework

programming language is Objective-C, the framework was not considered further.

4.1.6 The Repast framework

The initial objective of Repast11 was to implement a similar functionality to Swarm using

the Java language. Repast is intended to support the social science domain in particular
9I have to thank Mehdi Dastani, one of the creators of 3APL, for his insight in the use of 3APL. It was he

who informed me that 3APL was being superseded by the new 2APL framework.
10Swarm is available at http://www.swarm.org, February 10, 2008.
11Repast is available at repast.sourceforge.net/, February 10, 2008
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and includes tools specific to this domain [70]. Repast provides tools to aid in the devel-

opment of the simulations, such as a built-in simple model which can be used as the basis

for the implementation of other models. Menu driven interfaces and Python code can be

used to simplify the creation of the model. The developing language used in Repast is the

Java language and the source code is released in the Open Source BSD license.12 Repast

has been regarded as one of the best frameworks for Agent Based Modelling [92]. And Fi-

nally, Repast has been used for several Market Based Control simulations such as the ones

described in [68] and [72].

4.1.7 Selection of Framework

Table 4.1 summarises the results of the survey for the different frameworks; the columns in

the table indicate to what degree (low, medium or high) each of the surveyed frameworks

fulfilled the established criteria.

After looking at the different frameworks and after developing some preliminary im-

plementations in some of them, the Repast framework was selected for the implementation

of the Option Market model. Repast was selected because it provides the flexibility for the

implementation of the model and because it fulfills the established criteria better than the

other surveyed frameworks.

Property JADE Netlogo Jason Swarm 3APL Repast
P1 Robustness High High Medium High Medium High
P2 Documentation High High Low High Low Medium
P3 Validation High Low Low High Low Medium
P4 Extensibility High Low Medium Medium Medium High
P5 Language High Medium Medium Low Medium High
P6 Simulation Low Medium Medium High Medium High
P7 Source Code High Low High High Low High

Table 4.1: Resulting scores for the surveyed Agent Modelling frameworks.

4.2 Model Implementation

The implementation of the Option market model was done in the Java programming lan-

guage using the Repast Java framework for agent based simulation. A copy of the Java

source code of the developed model along with the required libraries and parameter files to

replicate the presented experiments are available at http://www.csc.liv.ac.uk/

˜omar/optionmarket/.
12BSD is the Berkeley Software Distribution license. The text of the license is available at

http://www.opensource.org/licenses/bsd-license.php, February 10, 2008.
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4.2.1 Design Overview

As in any non-trivial software development project, it is important to use a specific software

development process. A software development process defines the actions performed to

develop the software and specifies the order in which such actions are executed [86].

One of the most accepted development processes is the Spiral Development Process

in which several iterations of the steps of analysis, design implementation and testing

are performed during the life of the software development project until the application is

finished[86]. The Spiral Development Process was chosen for the computational imple-

mentation of the model. With the Spiral Development Process, software is developed in an

iterative approach; starting with a basic prototype of the system and extending it until all the

desired requirements are implemented. For each prototype, the analysis, design, coding and

and testing steps are performed. Figure 4.1 shows the different steps performed for each

iteration in the development.

Figure 4.1: The Spiral Software Development Process, figure adapted from [32].

The Spiral Software Development process is suitable for the development of research

software given that this type of software is never finished in the same way as commercial

software. Software created for research is constantly being updated with new requirements.

In the case of the Option market model, some first strategies were developed along with

the minimal market mechanism. Afterwards, more strategies were implemented and then

the logging and parameter configuration facilities. It was at the the final iteration of the
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development process that the graphical interface of the system was created.

Complementary to the development process, the Gaia methodology described in [101,

103] was used as the design approach given that Gaia is specifically aimed at the design of

Agent-Based Systems.

Gaia comprises several engineering techniques suitable for hierarchical systems of het-

erogeneous agents. It offers techniques for the analysis of the application. Gaia also as-

sumes that the properties of the agents are fixed during the system run time and separates

the definition of the environment model from the agents. Usually the environment is rep-

resented as a set of variables which can be sensed (i.e., can be read during the life of the

system) by the agents. For the description of the entities that interact with the environment

Gaia defines organisations and roles. An organisation is a set of roles which are associ-

ated among them. The roles define the different tasks that every entity will adopt according

to a set of responsibilities, permissions, activities and protocols. The roles defined for the

system are Option Trader, Asset Trader and Market.

For the implementation of the model, the market is designed as the environment of the

agents. Figure 4.2 shows a graphical representation of the market; different types of agents

are able to sense a distinct number of variables from their environment, such as the asset

price information and the Option contracts templates.

Figure 4.2: A graphical representation of the asset and Option trading market.

4.2.2 Market

The market is the controller of the simulation; it is defined as a module which contains the

information that is needed to run the simulation. The market is in charge of the control

of the flow of the overall system; and is in charge of querying for the agents offers and for

updating the state of the environment at each step. Specifically, the market has the following
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responsibilities:

• Update and publish the available Option templates and the asset price to be traded by

the agents for each time step.

• Register valid assets and Option trading offers from the agents.

• Match and clear Option and asset trading offers made by the agents.

• Clear the exercised Option contracts.

4.2.3 Trading Agents

Agents are represented by a main abstract interface which is adopted by specific modules for

the Option trading agents and for the Asset only trading agents. The agents are composed

of four main modules: the Sensing module, used to obtain the market state at each step;

the Actuator module, used to execute the chosen actions according to the agent reasoning

process; the Forecasting module which uses the information about the market to generate

a forecast of future market states; and the Decision support module, which uses the strat-

egy of the agent to select the actions to perform in the market. The Decision support and

Forecasting module together conform the agent reasoning mechanism. Figure 4.3 shows

the representation of these modules and their respective high level interaction relationships.

Figure 4.3: Diagram of modules composing a trading agent and their interaction.
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Similarly to the market, agents are also modelled according to a set of responsibilities,

each type of agent is defined by a set of responsibilities. The responsibilities of each asset

trading agent are:

• Obtain the price of the asset for the current time step from the market.

• Maintain its portfolio of goods and cash.

• Choosing the action to take at each step depending on its objectives (defined by its

strategy).

• Submit its selected offers to the market.

• Maintain a model for the price of the asset to obtain forecasted prices.

The Option Trading agents have the same responsibilities as the asset trading agents. In

addition, each agent that trades Options has the following Option–trading related responsi-

bilities:

• Obtain the set of available Option templates for the current time step from the market.

• Choose whether to exercise expiring Options.

Figure 4.4 shows the main modules related to the trading agents, including the strategies

and forecasting functions.

Figure 4.4: Class diagram showing the main operations and properties of the Trading Agents.

The agent reasoning mechanism is simulated using a step function to execute the agent’s

actions at each time step. This function is executed by each agent on each time step and it

is inside this function where the agent makes its decision to participate in the market.
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4.2.4 Strategies

Strategies are defined as independent modules that can be attached to the market traders.

The six trading strategies defined in Section 3.2.4 were implemented.

4.2.5 Forecasting Functions

Forecasting functions are implemented as modules that can be attached to the market traders.

The two forecasting functions defined in Section 3.2.2 were implemented.

4.2.6 Market Life

The flow of the market time line is controlled from the market module. At the beginning

of each simulation the market is configured according to the parameters specified in a pa-

rameter file. The parameter file defines the initial state of the market including the name of

the file containing the price series for the asset. Figure 4.5 presents a high level sequence

diagram depicting the actions performed by the market and the agents at each time step.

The life of the market begins on the first step of the simulation with the market publish-

ing the current price of the asset and generating the Options templates that will be available

in that step. The market then queries the agents for any expiring Options to be exercised.

Agents choose whether to exercise any expiring Options and submit their instructions to the

market. The market then proceeds to clear any exercised Options. Afterwards, the market

publishes the available Option templates and queries each agent for trading offers. Each

agent then submits an offer which is collected by the market in two lists, the Option offers

and the asset offers. After obtaining all the offers, the market will randomize the offers lists

and try to find matching offers to clear. At the end of each period, the market will provide

the agents with the cash earned by the risk free rate. This sequence of activities will be

repeated for each time step until the end of the simulation (defined in the parameters).

4.2.7 Parameters

Simulations are configured using a parameter file which is created as an XML file. The

parameter file contains the initial values of the variables needed to run a simulation. There

are two types of parameters: the first type is the market parameters that describe the con-

figuration of the asset and Option market; the second type of parameters are the agents

parameters that define the initial conditions and behaviour of the agents. Agents are defined

in sets, allowing to create several agents with identical starting properties; the properties

defining each agent set depend on the type of agent (asset only trader or Option and asset
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Figure 4.5: Sequence diagram for one step in the trading market.
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trader) and the selected strategy for the agent set. Table 4.2 contains the list of available

market parameters and their description; similarly, Table 4.3 describes the parameters used

for the agents.

Parameter Description Range
PriceSeriesFile Determines the source file for

the asset price series data.
Text string

OptionNumber The number of generated Op-
tion contracts at each step.

[0, 2.14× 109]

OptionStep Determines the time separation
between each generated Option

[0, 2.14× 109]

StrikePriceMultiplier Determines the range for the
strike price generation

[0, 100]

RiskFreeRate The market risk free interest
rate

[0, 100]

SimulationTime The number of steps the simu-
lation will be run

[0, 2.14× 109]

Table 4.2: Description of market parameters available for the simulation configuration.

The PriceSeriesFile parameter is used to specify the file containing the time series to

be used for the price of the asset. Parameter OptionNumber specifies the number of Option

contract templates that will be available in the market at each time step. For each Option

contract a template for a call and a put Option will be created sharing the strike price,

expiration date and volume. The OptionStep parameter is used to define the expiration time

of each Option; the OptionStep parameter specifies how many time steps of separation will

be between the expiration of each Option (i.e., if OptionStep has a value of 2, then the

first generated Option will expire at t + 2, the second t + 4, the third at t + 6 and so on).

The parameter StrikePriceMultiplier defines the maximum percentage that will be added

or subtracted from the asset price in order to establish the Option strike price; its range

is [0, 100]. When creating an Option, a number between 0 and the StrikePriceMultiplier

parameter is randomly obtained (using a Uniform random distribution function), the current

price of the asset is then multiplied by the obtained value to generate the Option strike

price. The RiskFreeRate parameter establishes the market risk free interest rate, its range

is [0, 100]. Finally, the parameter SimulationTime determines the number of steps that the

simulation will be run. The simulation will stop either when the last asset price has been

read from the price series file or when t = SimulationTime.

For the agent parameters, MinCash and MaxCash specify the limits used when pro-

viding agents with the initial amount of cash for the simulation. If these two values are



70 CHAPTER 4. IMPLEMENTATION

Parameter Description Range
MinCash Minimum amount of cash at the

start of the simulation
[0, 1.7× 10308]

MaxCash Maximum amount of cash at
the start of the simulation

[0, 1.7× 10308]

MinGoods Minimum amount of goods at
the start of the simulation

[0, 2.14× 109]

MaxGoods Maximum amount of goods at
the start of the simulation

[0, 2.14× 109]

Type The type of the agents in the set
(asset-only or Option and asset
traders)

Text string

Number The number of agents in the set [0, 2.14× 109]
PlanStrategy Defines the strategy used by the

agents in the set
Text string

PlanStrategy The strategy used by the agents
in the set

Text string

ForecastFunction The forecasting function used
by the agents in the set

Text string

AlphaFactor The value of α for the α–
Perfect forecasting function

[0, 100]

MA-steps The value of n for the SMAn

forecasting function
0, 500]

Table 4.3: Description of agent parameters available for the simulation configuration.
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different, then a random value between the two will be chosen for each agent. If the value

of MinCash is equal to MaxCash then every agent in the set will have the same specific

initial amount of cash. The parameters MinGoods and MaxGoods function in the same way

as the MinCash and MaxCash parameters, specifying the number of initial goods for the

agents. This makes possible to provide all the agents in one set with different initial wealth.

The Type parameter is used to specify whether agents in the set will be trading assets only

or assets and Options. Parameter Number defines the quantity of agents that are created

in the corresponding set. The PlanStratregy parameter is used to specify the strategy that

will be used by the set of agents. The parameter ForecastFunction specifies the forecasting

mechanism that will be used by the agents in the set; either the SMAn forecasting function,

defined in Section 3.2.2.1 or the α–Perfect forecasting function, defined in Section 3.2.2.2.

When the chosen forecasting function is α–Perfect, the AlphaFactor parameter is used to

specify the certainty value α for the function. Similarly when the SMAn function is used,

the MA− steps parameter is used to specify the size of the window for the Simple moving

average (parameter n of the SMA(n, t) formula.

4.2.8 Auxiliary Functions

In addition to implementing the general functionality of the Option trading market model,

three packages providing auxiliary functionality for the simulation were created.: The user

interface, unit testing and logging packages. Each package provides a functionality which

is external to the developed model but nevertheless is useful for the simulation experiments.

4.2.8.1 User Interface

The user interface package comprises the modules created to allow the graphical visualiza-

tion of the simulation in real time. A sample screen shot of a running simulation is shown in

Figure 4.6. This kind of visualization is provided to allow the user to see the development

of the market, however for the purpose of experimentation it is possible to run the market

without any graphical output to increase the speed of the simulation.
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4.2.8.2 Logging files

Whenever the simulation is executed a set of six files are created to log the information about

the state of the model throughout the life of the simulation. There are two types of logging

files, the agent logging files and the strategy logging files. The agent logging files are

used to gather the detailed information of the actions and the state of each agent during the

simulation. The strategy logging files are used to summarize the state and actions for each

strategy. Table 4.4 lists the names of the logging files and a summary of their description.

File Name Description
ActionCount Logs the actions executed by the agents (the offers

made to the market).
MarketCount Logs information of the cleared offers performed by the

market as well as the exercised Options.
AgentWealth Logs the number of goods and amount of cash of the

agents.
StrategyActionCount Logs the sum of actions executed by a specific strategy.
StrategyMarketCount Logs the sum of cleared offers performed by the market

and the sum of exercised Options for each strategy.
StrategyWealth Logs the average wealth for each strategy.

Table 4.4: List of log files generated during a simulation.

4.2.8.3 External Libraries

In addition to the Repast Framework, other external libraries were used for the implemen-

tation of some functionalities in the program. The use of preexisting libraries decreases the

possibility of errors in the code implementation as the used libraries are already tested and

verified by several third parties; given that, for libraries which are provided with an Open

Source license it is also possible for anyone to inspect the source code to detect possible

errors. The used external libraries were JSci13 for the implementation of the Normal distri-

bution models and functions; the RngPack library14, to generate pseudo-random numbers

using an implementation of the the Merssene Twister generator presented in [61]; and the

JDom15 library for the manipulation of the XML configuration files.

13Developed by Mark Hale, available at http://jsci.sf.net (5-February-2008).
14Available at http://www.honeylocust.com/RngPack/ (5-February-2008)
15Available at http://www.jdom.org/ (2-February-2008)
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4.3 Verification and Validation

One of the main issues inhibiting researches from fields outside Computer Science to ac-

cept ABM as a tool for the modelling of systems is the lack of verification and validation

methodologies available. In fact, verification and validation of Multi–Agent simulations is

a concept which has been investigated only in conjunction with the development of spe-

cific models. It has only been in recent times that researchers have engaged in independent

development of techniques for verification and validation [65, 102, 97].

Verification and validation are two independent actions that need to be performed in

order to achieve the accreditation of a simulation [6]. Verification aims to test whether the

implementation of the model is an accurate representation of the abstract model. Hence, the

accuracy of transforming a created model into the computer program is tested in the verifi-

cation phase. Model validation is used to check that the implemented model can achieve the

proposed objectives of the simulation experiments. That is, to ensure that the built model

is the right representation of the modelled phenomena to simulate. In contrast with models

which use analytical equations, there is still no consensus among the scientific community

on the appropriate methods for verifying and validating an Agent–Based simulation [65].

However, part of the reason for the lack of formalisms which validate Agent–Based simula-

tions is the inherent complexity that these systems try to represent. Some of the verification

methods discussed in [65] are source code analysis, automatic theoretic verification and fi-

nite state verification. However, there is still some debate in the Agent–Based Modeling

community on whether formal proofs of systems are useful [43]. Similarly, there is some

debate on whether the verification of complex models with many parameters is possible

[83].

In this section, some of the validation and verification techniques commonly used are

applied to the implementation of the model. These techniques are applied with the intention

of accrediting the simulation as an acceptable representation of the model defined in Chapter

3.

4.3.1 Model Verification

As described before, the verification process is used to ensure that the implementation of the

model is accurate, therefore it is necessary to test the application looking for malfunctions

or errors that could make the model behave differently than desired.

In order to verify the implementation of the model different Software Engineering test-

ing techniques were used. First, static code analysis was performed to verify the complexity
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of the program; secondly unit testing and debugging was performed to verify that each of

the modules in the implementation of the model was working as expected.

It must be noted that the process of verification was performed at different times as the

program was being developed (required by the spiral development process), given that the

implementation of new functionality can lead to new bugs. The process of verification ends

when the warnings obtained from the analysis are verified and corrected in the case of actual

errors.

4.3.1.1 General Static Code Analysis

Static code analysis is the analysis of the application source code in order to find sections of

code with potential errors. Two kinds of static code analysis were performed, general static

code analysis and software metrics analysis.

The general static code analysis was performed using the FindBugs16 and JLint17 appli-

cations. Table 4.5 lists some of the different tests performed by such applications18.

Test Name Test Description
Bad Use Of Return Value Method checks to see if result of String.IndexOf is

positive.
Badly Overridden Adapter Class overrides a method implemented in super class

Adapter wrongly
Check Immutable Annotation Check that the fields of immutable classes are final.
Clone Idiom Class implements cloneable but does not define or

use clone method.
Comparator Idiom Comparator does not implement serializable.
Confusion Between Inherited And
Outer Method

Ambiguous invocation of either an inherited or outer
method.

Do Inside DoPrivileged Method invoked that should only be invoked inside
a doPrivileged block.

Don’t Catch Illegal Monitor Excep-
tion

Dubious Catching of IllegalMonitorStateException.

Dropped Exception Method might drop or ignore exception.
Dumb Method Invocation Code contains hard coded reference to absolute path

name.
Find Bad Cast Questionable cast to concrete collection, abstract

collection or unconfirmed cast.
Infinite Loop Apparent infinite loop.
Infinite Recursive An apparent infinite recursive loop.

Table 4.5: Tests performed for the static test analysis.

16Version 1.2, available at http://findbugs.sourceforge.net/ . February 20, 2008.
17Version 3.1, available at http://jlint.sourceforge.net/. February 20, 2008.
18For a complete list and description of the 276 tests refer to the application documentation page at

http://findbugs.sourceforge.net/bugDescriptions.html. February 20, 2008.
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4.3.1.2 Software Metrics Analysis.

The software metrics analysis was performed using the Eclipse Metrics plug-in19. The test

output in Table 4.6 shows different measured metrics and the score value of them. The first

column contains the name of the tested metric; the second column contains the average of

the metric for all the classes in the model; the third column contains its standard deviation

and the fourth column contains the value of the method or class with the highest score;

the last column contains the the totals of the sum for the NOM and NORM metrics. The

definition of the metrics are taken from [47].

Metric Name Mean Std.Dev. Max. Total
Number of Overridden Methods
(NORM)

1.476 2.481 10 31

Number of Methods (NOM) 9.571 8.556 37 201
Depth of Inheritance Tree (DIT) 1.476 1.139 6 N/A
Specialization Index (SIX) 0.202 0.344 1.25 N/A
McCabe Cyclomatic Complexity 1.888 1.946 14 N/A
Lack of Cohesion of Methods 0.456 0.352 0.978 N/A
Afferent coupling (CA) 4.714 3.692 11 N/A
Efferent coupling (CE) 2.286 1.030 4 N/A
Instability (RMI) 0.369 0.130 0.6 N/A

Table 4.6: Results of source code metrics analysis.

The NORM metric specifies the number of redefined operations, which plays a role in

the specialization of the class. Too many overridden operations implies too big a difference

with the parent class and inheritance then makes less sense. The NOM metric indicates the

number of methods on each class. The DIT metric indicates the number of base classes

for a specific class. The SIX provides an the Specialization Index average which specifies

the overall specialization of a class; very specialized classes are undesirable because of

complexity and increased maintenance, this metric is calculated as Equation 4.1.

SIX =
NORM ×DIT

NOM
(4.1)

The McCabe Cyclomatic Complexity measures the number of linear independent paths

through a method. This provides a measure of the number of possible paths that the applica-

tion can take when the simulation is running. There are a set of predefined threshold values

to evaluate the model implementation using this score.20 An acceptable score implying a

19Available at http://metrics.sourceforge.net/. February 20, 2008.
20See http://www.sei.cmu.edu/str/descriptions/cyclomatic body.html#table4
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low complexity and risk of errors is in the range of [1, 10] , an intermediate score implying

moderate complexity and risk of errors is within the range of [11, 20]. A Cyclomatic com-

plexity value of more than 20 may indicate a highly unstable application with high risk of

errors.

In the case of the implemented model the average complexity is within the low com-

plexity range. The maximum complexity value is obtained from the step method inside

the OptionMarketModel class which is in charge of controlling each step on the over-

all simulation. Even so, the score for this maximum value is still within the moderate risk

range with a value of 14.

The Lack of Cohesion of Methods metric is a measure for the cohesiveness of a class.

According to [33] every object should have a single role and its services should be aligned

with that responsibility. A score greater than one is considered to be above the accepted

threshold (see [47]), the maximum score in the implementation of the model was below this

threshold.

The Afferent Coupling metric measures the number of classes outside a package that

depend on classes inside the package, similarly the Efferent coupling metric measures the

number of classes inside a package that depend on classes outside the package. These

metrics are used to obtain the Instability (RMI) metric which indicates the model’s tolerance

to change; it is defined in Equation 4.2. The range for this metric is within [0, 1] with 0

indicating a completely stable program and 1 indicating a completely unstable program. In

the case of the implemented model the average metric was below the medium of the range,

indicating that the model implementation is highly stable. However the maximum score

was obtained by the logging mechanism. This score seems reasonable as almost all of the

classes in the model depend on the logging classes to log the simulation results.

RMI =
CE

CE + CA
(4.2)

4.3.1.3 Unit Testing

To verify that the modules implemented in the system behaved as defined in the theoretical

model a set of unit testing modules were implemented. Unit testing is a software quality

assurance technique used to test the correct functionality of an isolated module [53]. Each

module in the system is tested using independent test cases with a range of input values.

The output values or behaviour of the tested modules is then analyzed to verify that they

correspond to a set of expected values or an expected behaviour.

Unit tests were developed and performed for the forecasting function implementations
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(SMAn and alpha–Perfect), for the implemented strategies and for the Option contract

pricing mechanisms.

4.3.2 Model Validation

Model validation is performed to make sure that the implementation of the model is a cor-

rect representation of the phenomena that is being modelled. In [102], validation is sepa-

rated into two different tasks, conceptual validation and operational validation. Conceptual

validation tries to assure that the fidelity of the model is enough to achieve the desired ob-

jectives with the simulation. Operational validation is used to test whether the simulation

output data is accurate enough and sufficient to yield the desired objectives of the simula-

tion. The three main techniques used for operational validation are graphical comparisons,

confidence intervals and hypothesis testing [102].

4.3.2.1 Conceptual Validation

In order to validate the model, conceptual validation tests needed to be performed. For

the purposes of this research the objective of the simulations is to test the behaviour of

the Option trading agents against the behaviour of non–Option trading agents as defined in

Chapter 1. Therefore, the developed model should consist of an abstraction of the processes

carried out in the real financial Option markets allowing the trading of Options and assets

in the market.

Hypothesis 1. The model of the market will be valid for our purposes if it provides enough

instruments to let the Agents trade assets and Option contracts on the assets.

Claim 1. The market model contains the four main features necessary for an Option market

as defined in [52].

These features are:

• An underlying asset.

• A specification (policy) of the Option contracts to trade.

• A risk free interest rate for the underlying asset.

• An Option pricing formula to provide a fair price.

In addition to those features, the market model contains also an Exchange which is in

charge specifying the valid configurations (templates) for the Options at each step in time

and is also in charge of setting the Options’ strike price.
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However, the model does not include features such as market makers, offsetting orders,

commissions, taxation among others which were seen unnecessary to replicate the basic

properties of an Option market.

Hypothesis 2. The agents participating in the market will be valid for our purposes if they

are capable of trading assets and Option contracts using some reasoning mechanism to

make a decision to adopt a position in the market.

Claim 2. The agents are provided with a basic mechanism to trade assets and Options.

Some agents also have a reasoning mechanism which allows them to discriminate among

the different possible actions based on their perceived risk using a strategy.

Thereupon, the agents are able to trade Options in the market to reason about the relevant

properties that make the use of Options important in the model.

One of the features that the agents (and consequently the market) lack is the possibility

of executing more than one type of trading at each time step. This would presumably allow

for more complex behaviour of the agents and would make possible to model combination

strategies.

Given that the market has the needed features to allow the trading of Options and assets

and that the agents are capable of trading in the market, it is concluded that the conceptual

validation test of the implementation is passed positively.

4.3.2.2 Operational Validation

The operational validation of the model is achieved in two steps: firstly by assuring that

the data collected in the log files is enough to extract the information to achieve the exper-

iments objectives; and secondly by testing the model with different formulated scenarios

with hypotheses on the results and examining the results to verify the hypotheses.

In order to ensure that the collected data from the simulation is relevant for the achieve-

ment of the objectives, a comparison among the experiment research questions and the data

must be done. This allows us to detect if there is certain data which should be added to the

log files and also if certain data in the log files will not be used.

The main research questions (defined in Chapter 1 to answer from the information ob-

tained by the experiments are:

1. Can software agents benefit from the exchange of Options in the software market?

2. Is it possible to characterise specific cases where software agents trading Options

have a better performance than those not using them?
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3. Are agents trading Options less susceptible to price variations than those not using

Options?

4. What is the difference in the performance among the developed Option trading strate-

gies?

Tables 4.8, 4.7 and 4.9 show a comparison between the different types of data gathered

in the log files and the research questions for the experiments; the columns marked with a

check mark indicate that the data can be used to answer the corresponding question.

Time Source Agent Action Destination Agent
Q.1
Q.2 X X X X
Q.3
Q.4 X X X X

Table 4.7: Comparison between research questions and Market Trading log file.

Time Price Agent Goods Cash Wealth
Q.1 X X X X
Q.2 X X X X
Q.3 X X X X X X
Q.4 X X X X

Table 4.8: Comparison between research questions and Agents Wealth log file.

Time Agent Action
Q.1 X X X
Q.2
Q.3
Q.4

Table 4.9: Comparison between research questions and Agents Actions log file.

4.3.2.3 Option Pricing Validation

The implementation of the Black-Scholes Option pricing model was validated by comparing

the generated Option prices to a different set of predefined prices. First, a set of Option

contracts and its corresponding prices were obtained from Hull [52] and Cuthbertson [29].

These Option contracts were valuated with the implementation of the Black-Scholes model

to compare both prices. Next, a set of Option contracts was defined and their prices were
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calculated using the Numa21 Option pricing calculator and the Hoadley22 Option pricing

calculator. Table 4.10 shows a comparison between Option Prices obtained from Hull and

Curtbertson and the prices obtained in the model for the same Options. In this tables, p

denotes the price of the asset, X is the exercise price, r denotes the risk free interest rate, σ

is the volatility, T is the time to expiration and τ is the type of the Option contract.

Option 1 Option 2 Option 3 Option 4
p 45 45 42 42
X 43 43 40 40
r 0.1 0.1 0.1 0.1
σ 0.2 0.2 0.2 0.2
T 182 days 182 days 182 days 182 days
τ call put call put
Price from Hull [52] and
Cuthbertson [29]

5.00 0.90 4.76 0.81

Implemented Black-
Scholes function price

4.99 0.90 4.75 0.81

Table 4.10: Comparison between predefined Option contracts and prices from Hull [52] and Cuthbertson [29],
and the prices obtained with the implemented Black-Scholes function

Similarly, Table 4.11 contains a comparison of the prices for different Option contracts.

The table contrasts the prices obtained form the Numa calculator, the Hoadley calculator

and used the implementation of the Black-Shcoles formula.

The data in the table shows that the prices of the Options obtained by the implementation

of the Black-Scholes formula (last column in Table 4.11) is close to the prices obtained by

the two independent Option price calculator. A statistical analysis between the sets of prices

demonstrates that the differences in the prices are not statistically significant (F = 1 with

p = 0.99 and t = 0 with p = 0.99).

4.3.2.4 Agent Behaviour Validation

Two tests were executed to validate that the data produced by the simulation and the be-

haviour of the agents was consistent. For each test, a specific scenario was defined and a

hypothesis was formulated on that specific scenario. A range of expected results were also

defined and compared to the results obtained after running the simulation.

Hypothesis 3. In a market where all the agents trade with identical initial conditions and

21Available online at http://www.numa.com/derivs/ref/calculat/option/calc-opa.htm.
February, 2006.

22Available at http://www.hoadley.net/options/optiongraphs.aspx?. February, 2006.
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p X r σ T τ Numa Hadley Model
100 150 0.05 0.6 50 days call 0.38 0.39 0.38
100 150 0.05 0.6 50 days put 49.39 49.36 49.36
100 150 0.05 0.6 70 days call 0.91 0.91 0.91
100 150 0.05 0.6 70 days put 49.52 49.48 49.48
100 150 0.05 0.6 90 days call 1.56 1.57 0.91
100 150 0.05 0.6 90 days put 49.77 49.73 49.48
150 100 0.05 0.6 50 days call 51.00 51.01 51.01
150 100 0.05 0.6 50 days put 0.33 0.33 0.33
150 100 0.05 0.6 70 days call 51.70 51.73 51.73
150 100 0.05 0.6 70 days put 0.77 0.77 0.77
150 100 0.05 0.6 90 days call 52.51 52.53 52.53
150 100 0.05 0.6 90 days put 1.31 1.31 1.31

Table 4.11: Comparison between the prices of predefined Option contracts calculated with the Numa calculator,
the Hoadley calculator and with the implemented Black-Scholes function.

using any of the non-random strategies, no asset or Option trading will be performed as all

the agents will make the same decisions.

To evaluate this hypothesis the following test simulation was performed. The market

was initialized with the parameters (defined in Section 4.2) shown in Table 4.12. The Ran-

domA price series was generated pseudo-randomly, more detail about the price series will

be described in Section 5.3. The agents were initialized with the parameters as specified in

Table 4.13 (defined in Section 4.2). The test was repeated providing the agents with each

of the non-random trading strategies. For each test, 50 runs were made and the results were

averaged.

Parameter Initial value
Price series RandomA
Simulation duration 1000
Number of available Option templates 6
Steps among available Options 10
Strike Price multiplier 15
Risk free rate 0.002
Initial price variance 1
Total number agents 50

Table 4.12: Initial parameters for the market in first validation test

The resulting data obtained form this test showed that the number of offers cleared by

the market was 0. Given that all the agents in the market had the same strategy. Agents

that have the same strategy and the same forecasting function will generate the same type
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Parameter Initial value
Planning strategy OTMaxW

OTMinR
OTMix
ATSpec

Initial cash 1000
Initial goods 100

Forecast strategy Simple Moving Average
Forecast strategy steps 10

Table 4.13: Initial parameters for the agents in the first validation test

of offer at each time step. Table 4.14 summarizes the number of offers submitted by the

agents and the cleared offers obtained for each of the experiments. Also, Figure 4.14 shows

charts with the history of submitted offers for the tests using the four different strategies.

Submitted Offers Cleared Offers
Strategy Buy Sell Hold Write Buy Sell Hold Write
OTMinR 100 0 14100 35850 0 0 0 0
OTMaxW 50 0 0 49950 0 0 0 0
OTMix 100 0 2200 47750 0 0 0 0
ATSpec 28150 21900 N/A N/A 0 0 0 0

Table 4.14: Summary of the total number of submitted and cleared offers for the first validation test.

Hypothesis 4. In a market where agents trade with the same initial conditions and using

different trading strategies, the agents will submit different types of offers to the market and

some of these will be matched and cleared, producing asset and Option trading.

To evaluate this hypothesis another simulation test was conducted. The objective was to

verify that by populating the modelled market with agents trading with the different Option

trading strategies the agents would make different types of offers, some of which would be

matched by the market to perform asset and Option trading.

For this test, the market was initialized with the parameters shown in Table 4.15 and six

sets of agents were established in the market, each one using one of the designed trading

strategies. The agents were initialized with the parameters shown on Tables 4.16. The

experiment was run using the RandomA price series series as the price of the asset. The

simulation was repeated 50 times and the results were averaged.

Table 4.17 summarises the total number offers submitted by the agents and the number

of those offers that were successfully matched and cleared by the market for the different
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Parameter Initial value
Simulation duration 1000
Number of available Option templates 6
Steps among available Options 10
Strike Price multiplier 15
Risk free rate 0.02
Total number agents 300
Number of agents using OTMaxW strategy 50
Number of agents using OTMinR 50
Number of agents using OTMix strategy 50
Number of agents using OTRnd strategy 50
Number of agents using ATSpec 50
Number of agents using ATNoise 50

Table 4.15: Initial parameters for the market in second verification test.

Parameter Initial value
Initial cash (ci(0)) 1000

Initial goods (gi(0)) 100
Forecast strategy (Fi) Simple Moving Average

Forecast strategy steps (tFi) 10

Table 4.16: Initial parameters for the different set of agents in the second validation test.

Submitted Offers Cleared Offers Exercised
Strategy Write Hold Buy Sell Write Hold Buy Sell Offers
OTMinR 21550 28400 100 0 655 706 28 0 385
OTMaxW 40450 9500 100 0 1195 151 27 0 110
OTMix 25529 24417 104 0 483 493 39 0 313
OTRnd 22215 21809 1970 2087 12557 13540 872 1354 4817
ATSpec N/A N/A 1866 23500 N/A N/A 6175 6016 N/A
ATNoise N/A N/A 15710 17315 N/A N/A 10837 10930 N/A

Table 4.17: Summary of the total number of submitted and cleared offers for the second validation test.
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strategies participating in the market. The resulting data form this experiment is an het-

erogeneous market with agents making different types of offers. Some of these offers are

matched and cleared by the market.

4.4 Summary

This chapter has presented the computational implementation of the Option Trading Mar-

ket model developed to perform simulation experiments. Although the developed software

is a simulation framework, its development requires the use of software development tech-

niques. The developing process used during the implementation of the model was described

as well as the adopted agent-based methodology.

To ensure the accreditation of the implementation and the accuracy of the simulation,

verification and validation processes were carried out. There are no standard procedures

for the verification and validation of agent based models; therefore, the verification and

validation procedures carried out were borrowed from Software Engineering and object-

oriented simulation systems.

Although Multi–Agent Systems share several similarities to typical object–oriented sys-

tems, MAS contain the element of complex and possibly dynamic interactions between the

agents. On the one side, this complexity is a desired property of MAS, and is what char-

acterize them from other modelling approaches; on the other side, there are no established

methodologies to verify or validate such complex interactions between the agents partici-

pating in a Multi–Agent system.

Another characteristic of MAS simulations is the generation of high amounts of data.

This data must be processed and analyzed in order to extract relevant information from it.

Besides the necessity of the use of databases for the storage of the data (something which

was wrongfully omitted from the present Option Market model implementation), data min-

ing methodologies [58] could be to used to detect patterns that arise from the generated time

series. Such patterns may be used to compare the behaviour of similar Multi-Agent systems

at a higher level; allowing the validation process to focus on the comparison of generic pat-

terns among different implementations, instead of focusing on specific data values which

may vary between specific MAS implementations.

The next chapter presents the configuration of the simulation parameters to design the

experiments that were run in order to test the hypotheses established on Chapter 1.
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Chapter 5

Design of Experiments

This chapter describes the methodology used to run the experimental simulations to test

the developed Option Trading model. The configuration of the different tested scenarios is

also described. The experiments are designed to obtain information that allows the testing

of the hypotheses stated in Chapter 1 using the Option trading framework described in

Chapter 3 and implemented as shown in Chapter 4. While Chapter 4 is concerned with

the details of the software implementation of the model, the present chapter focuses on the

description of the configuration of the model as well as the techniques of data analysis used

for the experimentation phase. Therefore, the present chapter addresses the issue of the

designation of the values for the different parameters and variables described in Chapter 4

for the simulation experiments. This chapter also addresses the definition and description

of the data analyses that are performed on the data resulting from the experiments.

The experiments are divided in two main sets according to the type of forecasting func-

tion used by the agents. The first set of experiments, using the α-Perfect forecasting func-

tion, is designed to observe the behaviour of the agents when they have different levels of

uncertainty about the price. Testing under different levels of uncertainty allows the obser-

vation of the performance of the different strategies and the comparison of their behaviour

under such conditions. The objective of the second set of experiments, using the SMAn

forecasting function, is to observe the behaviour of the agents with a forecasting mechanism

often used in the analysis of real market price series.

The data obtained from the tests is analysed using three different performance metrics.

First, the performance of each strategy is evaluated as the relative returns obtained among

the different strategies; next an analysis of the correlation between the price and the agents’

wealth is performed; and finally an analysis concerning the difference between the volumes

of agents’ offers and actual market cleared offers is executed.

87
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A simulation run for the model requires the specification of parameters which are grouped

in two sets, the global parameters and the agents parameters. The global parameters define

the initial state of the underlying asset market as well as the properties of the Option market

during each run. The global parameters also contain other initial properties of the market

such as the risk free rate. The agent parameters correspond to the initial properties of the

agents that will participate in the market such as the definition of their trading strategy and

forecasting function. A detailed definition of each parameter can be found in Section 4.2.7.

The structure of this chapter is the following. Section 5.1 describes the initial value of

the parameters that are used to configure the initial global conditions for each experiment.

In Section 5.2 the values of the parameters used for the initialisation of the agents are de-

scribed. The price series used as input for the underlying asset are described in Section 5.3.

Section 5.4 describes the pre-processing performed on the data obtained from the simula-

tions. This pre-processing is performed in order to obtain data with a format suitable for the

subsequent analyses. Finally, Section 5.5 defines the metrics that are used in the analysis of

the data obtained from the experiments to compare the performance of the strategies under

the experimented scenarios.

5.1 Global Parameters

The global parameters are the values that define the properties of the exchange where the

agents make their offers to buy or sell assets and hold or write Options. Table 5.1 lists the

market parameters that remain fixed for all the experiments. Each run has 1000 time steps

to allow the testing of the long run development of the market.

Initial parameters for the market
Parameter Initial value
Simulation duration (T ) 1000
Number of available Option templates (|O|) 6
Steps between available Options (Os) 1
Strike Price multiplier (SPk) 15
Risk free rate (r) 0.001
Option volume (vo) 1

Table 5.1: Initial market parameters for the experiments

The number of available Options templates (|O|) for each time step provides agents

with a total of 12 possible Option contract choices, 6 call Option contracts and 6 put Option

contracts. The time between Options expiration (Os) is set to 1, this makes each generated

Option expire one step later than the last one, starting at t + 1. The strike price multiplier
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(SPk) is set to 15, making the strike price of the goods fall in the range [p(t) × (1 −
0.15), p(t) × (1 + 0.15)]. This range is selected because the strike price of an Option is

typically among the±15% range from the price at the time when the Option is created [23].

The risk free interest rate (r) is set at 0.001 giving the agents an increase of 0.1%

interest in their cash (ci(t)) at each time step. This rate is also used throughout the life of

the simulation as one of the parameters to calculate the price of the Option contracts (See

Section 3.1.1).

The experimentation phase is split into two main sets of experiments. In experiments

A, the agents are equipped with the α–Perfect forecasting function described in Section

3.2.2.2. The market is tested for six values of α as α = 0(0.2)1. For each value of α, the

market is tested using five different price series as the price of the underlying asset. The

series will be described in Section 5.3.

In experiments B the agents are provided with the Simple Moving Average forecasting

function SMAn described in Section 3.2.2.1 with n = 15(15)90. The simulations are run

using the same price series used in experiments A as the price of the underlying asset.

Table 5.2 summarises the complete range of values for the market parameters that de-

fines the set of experiments. The first column lists the name given to the experiment set;

the second column shows the name of the forecasting function used by the agents for each

experiment; the third column shows the values of the forecasting function parameters used

by the agents in each experiment. The group of the forecasting function parameters α and n

is named ζ, making ζ = {n, α}. This notation is adopted for convenience and is used later

on. The last column contains the name of the price series that will be used as input for the

asset price in the market.

Experiment Set Forecasting Function Price series
Function Parameter (ζ)

A α–Perfect α ∈ {0, 0.2, 0.4, p ∈ {Microsoft,Dell,
0.6, 0.8, 1} IBM, RandomA,RandomB}

B SMAn n ∈ {15, 30, 45, p ∈ {Microsoft,Dell,
60, 75, 90} IBM, RandomA,RandomB}

Table 5.2: List of parameters modified for the different experiments.

After having defined the global parameters it is now possible to define the minimal unit

of simulation that provides with the necessary data to extract information of interest for the

thesis. This unit is called a test case.

Definition 4. A test case is a simulation of the Option trading market comprising 50 runs of

the market under the same initial conditions; fixing the Foreacasting Function, the value
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of the ζ parameter for the corresponding forecasting function (α or n) and Price series
parameter P into specific values.

The analysis that will be performed in the next chapter will be based in the comparison

of the data obtained in the different test cases. For this analysis, the first 100 steps of the

results obtained from each test case is removed in order to minimise any initialisation bias.

5.2 Agents Parameters

For every experiment the market is populated with six sets of agents. Each set contains 50

agents with their parameters initialised as the values shown in Table 5.3. Each set of agents

is characterised by the use of one of the six trading strategies described in Section 3.2.4

(OTMinR, OTMaxW, OTMix, OTRnd, ATSpec and ATNoise).

Parameter Values
Strategy OTMinR

OTMaxW
OTMix
OTRnd
ATSpec
ATNoise

Number of Agents 50 per strategy
Forecasting function SMAn

(depending on the set of experiment) α–Perfect
Initial cash (ci(0)) 1000
Initial goods (gi(0)) 100

Table 5.3: Initial agents’ parameters used in the experiments

To avoid any variability in the initial wealth conditions among the agents, the amount of

cash ci(0) and number of goods gi(0) is set to be the same for all the agents at the beginning

of each simulation run; thus making the wealth wi(0) equal among all the agents trading

in the market. This is also done to facilitate the comparison of the performance among the

agents. Each agent is provided with one of the two forecasting functions (SMAn or α–

Perfect) as described in Section 5.1. The initial wealth of the agent is established to provide

them with enough resources to initially participate in the market.

5.3 Price Series

5.3.1 Description

Different price series are used for the experiments to test the performance of the agents

under different market conditions. The price series are divided in two categories: stock

prices series, which are obtained from the closing prices of different stocks on the NASDAQ
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(Dell, Microsoft) and NYSE (IBM) stock markets for the period from January 2, 2001 to

December 27, 2004; and random prices which are generated from a Normally distributed

pseudo–randomly generated random walk process. Statistical information of the price series

is summarised in Tables 5.4.1

Figure 5.1: Time plot and frequency histogram of the Dell stock market price series used as price input for the
experiments

Figure 5.2: Time plot and frequency histogram of the Microsoft stock market price series used as price input
for the experiments

The Dell, Microsoft and IBM price series is obtained from the stock prices of the corre-

sponding companies. Time plots of these price series are shown in Figures 5.1, 5.2 and 5.3

along with the histogram of the frequencies of their returns.
1The used stock prices are freely available on line at http://finance.yahoo.com/, February 06,

2006.



92 CHAPTER 5. DESIGN OF EXPERIMENTS

The Dell price series is characterised by an average price of 29.58 and a standard devi-

ation of 4.94. These values indicate that the Dell price series corresponds to a a low asset

price in relation with the agents initial wealth (see Section 5.2).

With an average price of 43.34 and a standard deviation of 16.58, the Microsoft price

series characterises a medium asset price relative to the agents initial wealth. The IBM price

series represents a high asset price with an average price of 91.76 and a standard deviation

of 13.48.

Figure 5.3: Time plot and frequency histogram of the IBM stock market price series used as price input for the
experiments

The Random A and Random B price are pseudo–randomly generated as a random walk

using a Mersenne twister algorithm and consecutively Normalising the obtained random

numbers applying the Box-Muller transformation [20].2 The Random A price series is com-

posed of T = 1000 pseudo–random numbers with a seed of s = 171, 281. The random

walk starts with p(t0) = 130 and the differences in the price at each step is within the

range [−10, 10] representing a high volatility price series in relation with the agents’ initial

wealth. The Random B price series is composed of T = 1000 pseudo–random numbers

with a seed of s = 171, 281. The random walk starts with p(t0) = 130 and the differences

in the price at each step is within the range [−30, 30] to represent a price series with very

high volatility.

The use of stochastic variables as prices for the underlying asset has been frequently

applied in several Multi–Agent Models of derivatives markets such as [35] and [56]. Mod-

elling the changes of the stock price as a stochastic process is an established procedure of

2The random sequences where generated using the RngPack library available at
http://www.honeylocust.com/RngPack/, March 15, 2006.
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Figure 5.4: Time plot and frequency histogram of the Random A price series used as price input for the experi-
ments.

Figure 5.5: Time plot and frequency histogram for the Random B price series used as price input for the
experiments.
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computational finance [67].

5.3.2 Statistical Analysis of Price Series

The objective of using different price series as the input price for the underlying asset is to

test how the differences in the underlying market conditions affect the performance of the

Option Trading agents. In this section, the statistical properties of the used price series will

be compared to assess the differences that using each of the price series represents to the

the market in the experiments.

As stated before, it is generally accepted that the price of an asset in the stock market

follows a random walk process. This means that at each step in time, the price of the asset

will be given by the function:

p(t + 1) = p(t) + ε (5.1)

where ε is a random disturbance term. It is also safe to assume that ε is distributed according

a the Normal distribution function [67]. For the experiments, it is important to look at the

characteristics of the random walk processes followed by the price series, that is, at the

nature of its randomness. This is achieved by obtaining different statistical measures of the

price returns at each time step. The results of the relevant statistical analysis are listed in

Table 5.4 from where it can be seen that the mean and median of all the price series are

approximately equal to 0. The differences in the series are the standard deviation, skewness

and minimum and maximum statistics. The minimum and maximum statistics indicates

how expensive or cheap will be the price in the price series compared to the initial wealth of

the agents. As the standard deviation measures how varied are the price values around the

mean, the price series with a high standard deviation (Random A and Random B) represent

markets with high risk (according to the used definition of risk), whereas the price series

with low standard deviation such as Dell represent markets with low risk. The Microsoft

and IBM price series represent markets with moderate risk.

The skewness of a distribution (γ1) is used to measure the asymmetry of a distribution

around the mean. Specifically, it shows if the left tail of a distribution is significantly longer

than the right tail (indicated by a negative skewness) or if the right tail is longer than the left

tail (indicated by a positive skewness). This measures are in comparison with the Normal

distribution. A test to verify if the skewness of a distribution is high enough to be relevant

can be done by comparing the absolute value of skewness to a standard error of skewness

ses; the absolute value of the skewness must be greater than two times the standard error of
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skewness which is defined as:

ses =

√
6
N

(5.2)

where N is the total number of samples [89]. In this case N = 900 and 2× ses = 0.163.3

Therefore if the absolute value of skewness of the returns is greater than 0.163 (|γ1| >

0.163) the skewness is considered significant.

The analysis of the returns shows that the Microsoft prices series (second column of

Table 5.4) has a skewness of −6.18 which absolute value is greater than 0.163, this means

that the distribution of the returns has a long tail on the left of the mean. Specifically, the

high negative skewness in the Microsoft series shows that there are certain periods when

the magnitude of the decrement in the prices are very high compared to the other the steps

in the price series. This can be seen in plot of the Microsoft series chart shown in Figure

5.2 where there is a sudden high decrement in the price. This decrement can be considered

as a market crash, a very high decrement in the price of the asset in a small number of

consecutive periods of time.

Dell Microsoft IBM Random A Random B
Mean (µ) -0.02 -0.02 0.01 0.07 0.2
Median 0 -0.01 0 -0.02 -0.05
Standard Deviation (σ) 0.73 1.34 1.78 2.95 7.86
Skewness (γ1) 0.21 -6.18 -0.50 0.02 0.02
Minimum -3.86 -22.63 -13.34 -8.82 -23.51
Maximum 3.07 6.49 11 9.64 25.71

Table 5.4: Descriptive statistics of the returns of the price series used as the price of the underlying asset.

Similarly, for IBM |γ1| = 0.5, thus |γ1| > 0.163 indicating that the price returns are

significantly skewed to the left side of the normal Normal distribution. This pattern is caused

by a decrease in the market price which is much higher than the average in the IBM price

series. It is possible to observe in Figure 5.3 the decrease in the price at t = 314 which

corresponds to the minimum price for the same price series listed in Table 5.4.

The Dell price series has a skewness of γ1 = 0.21 indicating that as |γ1| > 0.163, the

returns are significantly right skewed. This can be observed in the histogram of the Dell

prices depicted in Figure 5.1 where the maximum price drift corresponds to the maximum

value listed in Table 5.4 for the same price series.

Both the Random A and Random B price series have a skewness value of γ1 = 0.02

which is lower than 0.163 indicating that the returns of these series are not significantly

3Recall that the number of data samples is set to 900 after removing the data from the first 100 steps from
the simulation.
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skewed.

5.4 Output Data Pre–Processing

To obtain the relevant data for the different analyses the log files resulting from the exper-

iments are pre-processed. In this section the different processing steps applied to the raw

data log files are described.

5.4.1 Average of Wealth per Strategy

With the objective of calculating the relative returns for each strategy (described in Sec-

tion 5.5.1) and the returns–price correlation (described in Section 5.5.2), the average of the

returns at each time step for every set of agents is calculated.

Let AS be the set of agents using strategy S. Let also i ∈ AS be one agent in AS and

let wi(t) be the wealth of agent i at time t. The average wealth for strategy S at time step t

is:

wS(t) =

∑
i∈AS

wi(t)
|AS |

(5.3)

Time Option Traders Asset Trader
step OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise.
105 11757.1 10751.3 10854.8 10872.0 11159.8 11028.2
106 11958.7 11047.2 11144.2 11160.1 11442.8 11304.3
107 12119.3 11282.1 11374.3 11388.9 11667.2 11523.6
108 12269.6 11501.9 11589.8 11603.3 11877.2 11729.0
109 12319.0 11569.4 11656.4 11669.5 11942.5 11792.8

Table 5.5: Snapshot of a section of a resulting file after processing the strategy wealth average. Each cell
contains the average wealth of all agents using the same trading strategy for each time step.

The obtained data then is averaged through the 50 runs executed per each test case.

The result of this process is one table for each test case containing the time series with the

mean wealth of each strategy. Each table contains information with a similar structure to

the one shown on Table 5.5. Each row in this table represents one simulation step and each

column contains the mean wealth for each strategy. Using this average, the results of the

experiments are analysed considering the performance of each strategy. Through the rest

of the thesis, the terms strategy returns, strategy performance and strategy wealth are used

referring to the measures obtained from the average of the corresponding results across the

set of agents using the strategies (i.e., OTMinR returns refers to the mean of the returns

obtained by the set of agents that used the OTMinR strategy).
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5.4.2 Agent Offers and trading Volume Count

To calculate the trading volume analysis ratios which are defined later in Section 5.5.3,

first it is necessary to obtain the quantity of each type of offers submitted to the market.

This is calculated by counting the types of offers submitted through each test case from the

ActionCount and MarketCount log files (described in Section 4.2.8.2).

a) Agents Offers volume count data for OTMinR and OTMaxW strategies.
Time OTMinR OTMaxW
step Write Hold Buy Sell Pass Write Hold Buy Sell Pass

19 1 14 12 15 8 14 23 0 13 0
20 1 19 18 10 2 16 16 0 18 0
21 2 17 17 5 9 12 22 0 16 0
22 2 21 7 15 5 19 17 0 14 0

b) Agents Offers volume count data for OTMix and OTRnd strategies.
Time OTMix OTRnd
step Write Hold Buy Sell Pass Write Hold Buy Sell Pass

19 0 22 6 12 10 21 21 4 3 1
20 16 16 0 18 0 0 28 12 8 2
21 23 22 0 5 0 23 22 0 5 0
22 9 27 0 14 0 9 27 0 14 0

a) Agents Offers volume count data for ATSpec and ATNoise strategies.
Time ATSpec ATNoise
step Buy Sell Pass Buy Sell Pass

19 20 30 0 17 17 16
20 23 26 1 13 21 16
21 21 27 2 16 20 14
22 30 19 1 13 16 21

Table 5.6: Snapshot of a section of a data file after processing the agents offers’ volume count. Each cell
contains the sum of offers made by each strategy for a specific type of offer and time step.

The result of this process is a table containing the different strategies and their corre-

sponding offers for each step in one test case, as depicted in Tables 5.6.

The resulting data obtained after processing the ActionCount log files are the number of

offers made by the agents while the results obtained from the MarketCount log files account

for the number of those offers which where cleared by the market and actually traded by the

agents.

Finally, the trading volumes for the different strategies are calculated by adding the of-

fers made for all the steps in time. The obtained volumes are volOH(S, p, ζ), volOW (S, p, ζ),

volCH(S, p, ζ), volCW (S, p, ζ) and volHE(S, p, ζ). These are formally defined defined as:
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volOH(S, p, ζ) =
1000∑

t=100

|OH(t, S, p, ζ)| (5.4)

volOW (S, p, ζ) =
1000∑

t=100

|OW (t, S, p, ζ)| (5.5)

where |OH(t, S, p, ζ)| and |OW (t, S, p, ζ)| are respectively the number of submitted offers

to hold and to write Options by the strategy S at each step t in the test case where the price

of the asset is p and the forecasting function parameter is ζ.

volCH(S, p, ζ) =
1000∑

t=100

|OCH(t, S, p, ζ)| (5.6)

volCW (S, p, ζ) =
1000∑

t=100

|OCW (t, S, p, ζ)| (5.7)

where |OCH(t, S, p, ζ)| and |OCW (t, S, p, ζ)| are respectively the number of submitted of-

fers to hold and to write Options which were cleared by the market. This volume is also

calculated for strategy S at each step t in the test case where the price of the asset is p and

the forecasting function parameter is ζ.

volHE(S, p, ζ) =
1000∑

t=100

|OHE(t, S, p, ζ)| (5.8)

where |OHE(t, S, p, ζ)| is the number of cleared offers to hold Options which where exer-

cised by the strategy S at each step t in the test case where the price of the asset is p and the

forecasting function parameter is ζ.

5.5 Performance Analysis Description

To compare the performance of the different strategies three different analyses are done to

the experimental data. The relative returns, returns–price correlation and trading volume.

This section describes the different performance metrics used in these analyses and the

process to obtain their values from the simulation data.

5.5.1 Relative Returns as a Performance Metric

Because we wish to compare the difference in performance among the strategies, a relative

performance metric among the performance of all the strategies is used. This is achieved by
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measuring the strategies’ relative returns. The relative returns are calculated obtaining the

mean of the returns among all strategies and subtracting it from the returns of each strategy;

thus obtaining a comparative measure of performance among the strategies.

Let S be the set of all strategies participating in a test case; according to [54] the returns

(also called logarithmic rate of returns) obtained by a strategy S ∈ S for the step [t − 1, t]

are calculated by the following formula:

RS(t− 1, t) = ln
( wS(t)
wS(t− 1)

)
(5.9)

and the sum of returns RS obtained by strategy S in one test case are calculated by the sum

of the returns obtained through all the steps with:

RS =
1000∑

t=100

RS(t− 1, t) (5.10)

The relative returns ∆RS for strategy S are defined as:

∆RS = RS −
∑

k∈S Rk

|S|
(5.11)

Therefore, if the returns of a strategy (RS) are higher than the average returns obtained by

all the strategies (i.e.,
P

k∈S Rk

|S| ) then it will have a positive value of ∆RS . A higher ∆RS

value indicates that this strategy is performing comparatively better than the other strategies.

This performance metric allows for the comparison of the rate at which each strategy

profits or loses wealth during the life of the market. In the modelled market, the wealth of

each agent is the measure of their utility, therefore, strategy that obtains higher returns at

the end of the simulations is considered better than the other strategies participating in the

market.

5.5.2 Returns–Price Correlation as a Performance Metric

Another performance metric used is the comparison of the correlation between the returns

of the asset price (obtained using Equation 2.16 from Section 2.2.2.3) and the wealth re-

turns obtained by the use of each strategy through the simulation time steps (obtained using

equation 5.9). This analysis allows the comparison of the difference in the correlations

among the different strategies and the identification of the circumstances under which the

difference is significant.

The correlation coefficient indicates the strength and direction of a linear relationship

between two random variables [40]. To calculate the correlation between two values the
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Pearson correlation coefficient can be used. The Pearson correlation (p) is obtained using

the equation:

p =
cov(X, Y )

σXσY
(5.12)

where X and Y are the data sets to be tested which have the same number of items N , σX

and σY are the standard deviation of the X and Y data series and cov(X, Y ) is the covari-

ance of the two data series. The resulting coefficient p is within the range of [−1, 1]. A

coefficient closer to p = −1 means that there is a strong negative linear relation between

the variables; a coefficient closer to p = 1 indicates that there is a strong positive linear

relation between the variables. A value close to 0 may indicate the absence of linear corre-

lation among the variables, however the variables may still be correlated with a non linear

function.

5.5.3 Trading Volume Analysis as a Performance Metric

With the objective of measuring the quantity of Option contracts being traded during each

experiment, an analysis of the trading volumes (Option contracts or assets) is performed.

This analysis measures the relation between the number of offers submitted to the market

by agents using a strategy and number of offers from this agents that are cleared by the

market at each step in time. This allows the measurement of the rate at which offers made

by the agents are successfully matched and the amount of Options that are exercised.

Three different trading volume ratios are obtained; RC
H , RC

W and RH
E . Each ratio is

calculated for each strategy participating in each test case.

Definition 5. RC
H(S, p, ζ) is defined as the ratio of successful offers to hold Options for

strategy S in the test case where the price of the asset is p and the forecasting function

parameter is ζ:

RC
H(S, p, ζ) =

volCH(S, p, ζ)
volOH(S, p, ζ)

(5.13)

the RC
H ratio allows the determination of the proportion of the number of offers to hold

Option contracts that the agents make in relation with the number of those offers that are

cleared by the market. If all the offers to hold Option contracts are matched by the market

then RC
H = 1, whereas RC

H = 0 denotes that none of the offers were cleared in the market.

If the agent does not make offers to hold Options then RC
H is not defined.

Definition 6. RC
W (S, p, ζ) is defined as the ratio of successful offers to write Options for

strategy S in the test case where the price of the asset is p and the forecasting function
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parameter is ζ:

RC
W (S, p, ζ) =

volCW (S, p, ζ)
volOW (S, p, ζ)

(5.14)

the RC
W ratio allows to determine the proportion of the volume of offers to write Option

contracts that the agents make in relation with the volume of those Options that are cleared

by the market. If all the offers to write Option contracts are matched by the market then

RC
W = 1, whereas RC

W = 0 denotes that none of the offers to write Options were cleared.

If the agent does not make offers to write Options then RC
W is not defined.

Definition 7. RH
E (S, p, ζ) is defined as the ratio of exercised hold Options for strategy S in

the test case where the price of the asset is p and the forecasting function parameter is ζ:

RH
E (S, p, ζ) =

volHE(S, p, ζ)
volCH(S, p, ζ)

(5.15)

the RH
E ratio represents the proportion of Options that agents hold in relation with the num-

ber of these Options that are exercised. If all the hold Option contracts are exercised by the

agents then RH
E = 1. Respectively, if none of the hold Options are exercised then RH

E = 0.

If the agent does not make offers to hold Options then RH
E is not defined.

5.6 Experiments Platform Setup

The experiments were carried on a 15 node cluster which provided the possibility of per-

forming each simulation in parallel over the 15 available nodes. All the nodes in the cluster

shared similar hardware specifications. A summary of the hardware configuration in the

cluster nodes is shown on Table 5.7.

Property Value
Operating system Fedora Core release 6
Kernel version Linux Kernel 2.6.18-1.2798.fc6
Processor Intel Core 2 CPU 6400
Processor speed 2.13 GHZ
Processor cache size 2048 KB
Installed RAM memory 3 GB

Table 5.7: Hardware configuration used for the simulation experiments.
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5.7 Conclusion

In this chapter the methodology of the simulation experiments has been presented. The

configuration of the different scenarios to be tested has been described and the methodology

for the analysis of the obtained results has been defined.

The analysis of the performance of the agents trading in the Option market requires the

use of performance metrics used for the evaluation of real financial markets such as the

log-returns [54]. This type of analysis is adopted to perform a quantitative evaluation of the

strategies participating in the market

The next chapter describes the results of the experiments presented in this chapter, de-

tailing the results from the analysis of the simulation and comparing the performance of the

different strategies under the proposed scenarios.



Chapter 6

Experimental Results

This chapter details the analysis of the data obtained from the experiments designed in

Chapter 5. The chapter aims to compare the performance between the different strategies

in the market and between the defined scenarios. The obtained data is analysed using the

performance metrics specified in Section 5.5. This analysis is augmented with a discussion

of the relation between results of the experimentation and the research objectives specified

in Chapter 1 to demonstrate the relevance of the results.

The present chapter is structured in the following manner. First, in Section 6.1 a data

analysis is performed to the data obtained from the experiments, comprising the test of the

assumption of Normality and an analysis of the differences in variance among the data se-

ries. The test of Normality is used to know if the subsequent analyses can be done assuming

that the data series follow a Normal distribution. The analysis of differences in variance is

performed to ensure that the differences in the data series compared throughout the subse-

quent tests are statistically significant.

The results from the analysis of the relative returns for the different strategies are pre-

sented in Section 6.2. The results from the analysis are presented separately for each of the

two defined sets of experiments. First, Section 6.2.1 presents the results for the set of exper-

iments A (defined by the use of the α–Perfect forecasting function). Next, the results for the

set of experiments B (defined by the use of the SMAn forecasting function) are presented

in Section 6.2.2. The results obtained from the variation of the respective forecast parameter

ζ (α in the case of the α–Perfect forecasting and n in the case of SMAn forecasting) are

reported for each of these set of experiments. Subsequently, in Section 6.2.3, a summary

of the results obtained from this analysis is provided with a discussion of the relation and

significance of the results to the research objectives.

Section 6.3 contains the results from the analysis of correlation between the price re-

103
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turns and the returns obtained by each strategy. These results are obtained performing the

statistical test described in Section 5.5.2. Results are presented grouped by the agents fore-

casting function; for α–Perfect forecasting in Section 6.3.1, and for SMAn forecasting in

Section 6.3.2. This analysis is used to compare the difference in the correlations between

the strategies’ returns and the returns of the asset price series used in the market. Later, a

discussion of the results for this analysis is developed in Section 6.3.3 where the link be-

tween the results of the analysis of correlation and the research objectives is established and

discussed.

Results of the trading volume analysis defined in Section 5.5.3 are presented in Section

6.4, where the three Option trading volume ratios (RC
H , RC

W and RH
E ) are obtained for

each Option trading strategy on each test case. The section is split in three sub–sections;

Sections 6.4.1 and 6.4.2, contain the trading volume analysis for the α–Perfect and SMAn

sets of experiments respectively, describing the results and comparison of the different ratios

under the experimented scenarios. Section 6.4.3 contains the summary, a comparison of the

results from the trading volume analysis and the relevance of such results in relation with

the research objectives is discussed.

In Section 6.5, a summary comparison of the results obtained from the analysis per-

formed in the previous sections from this chapter is presented and a discussion of the rel-

evance of these results in relation to the research objectives is offered, contrasting the re-

search objectives with the experimental results presented in the chapter. Finally, in Section

6.6 the conclusions drawn from the results presented in this chapter are provided.

6.1 Generic Data Analysis

This section focuses on the description of the general statistical analysis of the data series

containing the wealth returns obtained by the strategies (RS(·)) from the experiments. The

objective of this analysis is to verify that these returns can be considered as statistically

different data among them. If the returns are statistically different among them then any

comparison made between them will be significant. Also in this section, the test of Nor-

mality will be performed to the returns data series. After knowing if the data series follow

a Normal distribution, the adequate statistical tests can be chosen in order to perform the

analyses of the subsequent sections. The results of these tests are presented grouped into

the two sets of experiments: set A for the experiments using α–Perfect and set B for the

experiments using SMAn forecasting.

The data to be analysed are the returns obtained by the use of each strategy for each test
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case (i.e., RS(t− 1, t) from t = 100 to t = 1000 for each strategy S). The returns are first

tested for Normality to select the test of correlation to use for the Analysis of Correlation

performance test.1 The Normality test results are also used to select a suitable variance

test.2

Afterwards, the variance among the returns obtained by each strategy is analysed. For

this, a test for heterogeneity of variances is performed among the returns obtained by the

strategies in each test case. The results of this test are used to verify whether the differences

among the data series are statistically significant.

6.1.1 Test of Assumption of Normality

To perform the assumption of Normality test, the Shapiro-Wilk [81] test is used. Let S

stand for the data series containing the returns obtained by one strategy in one test case.

The Shapiro-Wilk Test is performed with the null hypothesis H0 and alternative hypothesis

H1 of:

H0 : S is Normally distributed (reject at p < 0.01) (6.1)

H1 : S is not Normally distributed,

therefore, if the null hypothesis is not rejected then the data S is assumed to be Normally

distributed. Otherwise, H0 is rejected in favour of the alternative hypothesis H1, and it is

assumed that S is not Normally distributed.

A summary of the results for the test of assumption of Normality is presented in Table

6.1. Each cell in the table shows the result of the test for the data series of one strategy,

indicating whether the data is assumed to be Normally distributed or not.

6.1.1.1 α–Perfect Forecasting Experiments

The results from this analysis (shown in Table 6.1) indicate that for the majority the test

cases, the resulting p-values are less than the predefined significance level established at

0.01. Consequently, the hypothesis H0 is rejected in favour of H1 and the returns of the

agents are treated as non Normally distributed data series. Therefore subsequent statistical

1The Pearson’s correlation coefficient [11] is used when the samples to be tested are Normally distributed.
If this is not the case then another correlation test such as Spearman’s rank correlation needs to be used as it
does not require the assumption of Normality of sample data.

2If the returns are Normally distributed then it is possible to use a parametric test (which assumes Normality
of the data), else a test that does not assumes Normality must be used. In the latter case, the Fligner-Killeen test
will be used as it is one of the most robust tests against deviation from Normality according to [27].
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tests applied to the data series avoid using methods that assume the Normality of the data.

The p-values resulting from the application of the Shapiro-Wilk Test to the returns data

series for the α–Perfect set of experiments are presented in Appendix B.

Only in the Random A price series was used, some strategies returns observed a p-

value greater than the predefined significance level, indicating that the returns are Normally

distributed. Given this outcome, statistical tests that do not assume the Normality of the

data series will be used for the test of difference of variance performed later in this section

and for the test of returns–price correlation with performed in Section 6.3.

6.1.1.2 SMAn Forecasting Experiments

The results from this analysis also show that for the majority of the test cases, the p-values

are less than the established significance level of 0.01. Therefore, the hypothesis H0 is

rejected in favour of H1 and the returns of the agents are treated as non Normally distributed

data series. The resulting p-values from the Shapiro-Wilk statistical test applied the returns

data series for the SMAn forecasting set of experiments are shown in Appendix B.

Only in the Random A price series was used, some strategies returns observed a p-value

greater than the predefined significance level, indicating that the returns are Normally dis-

tributed. As with the α-Perfect forecasting experiments, statistical tests that do not assume

the Normality of the data series will be used for the test for variance difference performed

later in this section and for the test of correlation with price performed in Section 6.3.

a) Experiments using α–Perfect forecasting, for all values of α.
Price Series OTMinR OTMaxW OTMix OTRnd ATNoise ATSpec
Microsoft Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal
Dell Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal
IBM Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal
Random A Normal Normal Normal Normal Normal Normal
Random B Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal

b) Experiments using SMAn forecasting, for all values of n.
Price Series OTMinR OTMaxW OTMix OTRnd ATNoise ATSpec
Microsoft Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal
Dell Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal
IBM Non Normal Normal Normal Normal Normal Normal
Random A Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal
Random B Non Normal Non Normal Non Normal Non Normal Non Normal Non Normal

Table 6.1: Summary of results for the Shapiro-Wilk test of assumption of Normality for the returns obtained by
the different strategies.

6.1.2 Test of Heterogeneity of Variance

The heterogeneity of variance test is performed using the Fligner-Killeen Test for Homo-

geneity of Variance [38] between the returns of the different strategies data series. This test
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is a distribution–free test which does not require the assumption that the data samples are

Normally distributed. Because the majority of the tested data series were not Normally dis-

tributed (according to the results from the Normality test presented in the previous section),

the Fligner-Killeen test is used to analyse all the data series including the returns from the

Random A and Random B which are Normally distributed.

Let S1, S2...Sn represent the data series containing the returns of the different strategies

in one test case. Also, let σ1, σ2, ...σn be the standard deviations of such data series. The

Fligner-Killeen Test is performed with the null H0 and alternative hypothesis H1 of:

H0 : σ1 = σ2 = ... = σn (reject at p < 0.01) (6.2)

H1 : σi 6= σj ;∀i, j.

Therefore if the null hypothesis is accepted it is considered that the variance of the returns

obtained by the different strategies for each test case are not significantly different. If the

p–values are lower than the predefined significance level, the null hypothesis is rejected

in favour of the alternative hypothesis and the variances of the returns may be considered

significantly different among themselves.

If the variances of two data series are different, then it is safe to assume that the data

series come from different distributions [40]. If this is the case, we will proceed with the

assumption that the returns of the strategies are different.

6.1.2.1 α–Perfect Forecasting Experiments

Table 6.2 contains the resulting p-values and Fligner-Killeen statistics obtained from the

test. The results suggest that the hypothesis H0 can be rejected for all the test cases as the

p–values for all are lower than the predefined significance level (that is p < 0.01). Therefore

H0 is rejected in favour of H1 and the variances of the data series are considered different.

This indicates that the data series can be treated as coming from different distributions.

6.1.2.2 SMAn Forecasting Experiments

The data in Table 6.3 contains the resulting p–values and the statistic for the Fligner-Killeen

Test of homogeneity of variances. The results show that for all the experiments, the p–

values are less than the established significance level of 0.01. Therefore the hypothesis

H0 is rejected in favour of the H1 hypothesis and the returns are considered significantly

different among themselves.
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α Microsoft Dell IBM Random A Random B
0 p = 8.1× 10−192 p = 1.4× 10−312 p = 9.4× 10−198 p = 1.1× 10−215 p = 6.9× 10−235

s = 897.77 s = 1455.40 s = 925.20 s = 1008.01 s = 1096.71
0.2 p = 1.4× 10−190 p = 1.6× 10−306 p = 3.1× 10−198 p = 4.0× 10−229 p = 1.4× 10−224

s = 892.03 s = 1427.44 s = 927.42 s = 1070.10 s = 1049.17
0.4 p = 2.6× 10−187 p = 1.2× 10−290 p = 4.6× 10−185 p = 5.5× 10−221 p = 5.8× 10−202

s = 876.91 s = 1354.17 s = 866.57 s = 1032.51 s = 944.63
0.6 p = 6.4× 10−173 p = 5.2× 10−247 p = 1.4× 10−153 p = 1.5× 10−181 p = 1.8× 10−98

s = 810.43 s = 1152.69 s = 720.99 s = 850.37 s = 465.92
0.8 p = 3.8× 10−40 p = 5.8× 10−216 p = 1.5× 10−19 p = 1.6× 10−35 p = 9.9× 10−22

s = 194.72 s = 1009.31 s = 97.84 s = 173.08 s = 108.19
1 p = 8.4× 10−37 p = 8.5× 10−213 p = 2.4× 10−09 p = 8.0× 10−10 p = 5.0× 10−21

s = 179.09 s = 994.69 s = 48.81 s = 51.17 s = 104.88

Table 6.2: Resulting p-values and statistics for the Fligner-Killeen Test for homogeneity of variance among
returns. Results obtained from the α–Perfect forecasting experiments.

SMAn n Microsoft Dell IBM Random A Random B
15 p = 5.3× 10−35 p = 3.5× 10−233 p = 2.7× 10−10 p = 1.8× 10−11 p = 1.2× 10−24

s = 170.6 s = 1088.8 s = 53.4 s = 59.2 s = 121.9
30 p = 7.0× 10−36 p = 2.4× 10−233 p = 3.5× 10−12 p = 1.3× 10−11 p = 9.4× 10−23

s = 174.7 s = 1089.6 s = 62.5 s = 59.9 s = 113.0
45 p = 1.0× 10−36 p = 1.9× 10−228 p = 8.3× 10−13 p = 9.6× 10−12 p = 9.1× 10−23

s = 178.7 s = 1066.9 s = 65.6 s = 60.5 s = 113.0
60 p = 6.6× 10−38 p = 4.3× 10−221 p = 4.0× 10−11 p = 5.8× 10−10 p = 2.7× 10−23

s = 184.2 s = 1032.9 s = 57.4 s = 51.8 s = 115.5
75 p = 2.1× 10−41 p = 4.0× 10−219 p = 3.1× 10−12 p = 3.7× 10−08 p = 3.8× 10−23

s = 200.6 s = 1023.8 s = 62.8 s = 42.9 s = 114.8
90 p = 5.9× 10−42 p = 2.8× 10−216 p = 9.9× 10−14 p = 1.4× 10−08 p = 4.3× 10−24

s = 203.1 s = 1010.7 s = 70.0 s = 45.0 s = 119.3

Table 6.3: Resulting p-values and statistics for the Fligner-Killeen Test for homogeneity of variance among
returns. Results obtained from the SMAn forecasting experiments.
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6.2 Strategy Returns Performance Analysis

This section describes the results of performing the analysis of returns described in Section

5.5.1 to the data series obtained from the experiments.

6.2.1 α–Perfect Forecasting

Tables 6.4, 6.5 and 6.6 contain the relative returns of obtained by the strategies in the set

of experiments A. Each row contains the relative returns of the strategies for one test case.

The first column is the asset price series used in the corresponding test case. From the

second column, each column contains the relative returns for the different strategies that

participated in the market. For each row, the highest return is highlighted. The test cases in

the tables are grouped by the value of the forecasting parameter α.

The results from the stock market price series (Microsoft, Dell and IBM price series)

show that the OTMinR strategy obtains higher returns than the other strategies participating

in the market. The OTMinR strategy also obtains higher returns than the other strategies in

most of the test cases where the Random A price series is used as the asset price.

When the Random B price series is used as the asset price, the OTMaxW strategy out-

performs the other strategies in most of the test cases. The test case when α = 0.6 is the

only case (using the Random B price series) where the OTMix strategy outperforms the OT-

MaxW. The only test case where the ATSpec strategy outperforms the other strategies is

when the Random A price series is used and α = 1.

It is of special interest, the fact that for the test cases of the Microsoft asset price, the

performance of the OTMinR is more than 100% higher than the average for the experiments

with high and uncertainty (when α = 0, 0.2) shown in Figure 6.4, and medium uncertainty

(when α = 0.4, 0.6) shown in Figure 6.5.

It should be recalled that, the Microsoft price series is characterized by a market crash

where the price decreases abruptly in one time step. Considering this fact along with the

high returns of the agents gives the intuition that the agents using the OTMinR strategy

were able to prevent much losses due to the market crash. This phenomena is investigated

furtherly in Section 6.3.

In the same way, the IBM price series is characterized by a similar market crash where

the price decreases by a high in one time step. This may be the reason of why the returns of

the OTMinR are more than 50% higher than the average.

From Table 6.5, it is possible to see that the advantage of the OTMinR strategy decreases

when the forecasting accuracy is high (i.e., when α = 0.8, 1). And in the case of the Random
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A price series, it is outperformed by the ATSpec strategy.

a) Relative returns when α = 0
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.231 -0.131 0.096 -0.046 -0.084 -0.066
Microsoft 1.165 -0.530 0.280 -0.054 -0.430 -0.430
IBM 0.655 -0.232 0.037 -0.090 -0.186 -0.184
Random A 0.191 -0.060 -0.037 -0.036 -0.027 -0.032
Random B -0.324 0.162 -0.087 0.042 0.113 0.093

b) Returns when α = 0.2
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.225 -0.126 0.086 -0.043 -0.083 -0.060
Microsoft 1.166 -0.522 0.265 -0.062 -0.431 -0.417
IBM 0.665 -0.230 0.047 -0.093 -0.195 -0.194
Random A 0.230 -0.066 -0.035 -0.042 -0.041 -0.045
Random B -0.324 0.158 -0.026 0.028 0.095 0.069

Table 6.4: Relative Returns of the different strategies for the experiments with different price series using
α–Perfect forecasting with α = 0 and α = 0.2. The highest values for each row are emphasised.

Further information is obtained by comparing the dispersion of the relative returns for

one test case. This comparison is done obtaining the standard deviation of the relative

returns for each test case (denoted by each row from Tables 6.4 to 6.6). The standard devia-

tions are shown in Table 6.7. From these standard deviations it is possible to see that, in the

test cases where the forecasting accuracy is high (when α = 0.8 and α = 1) the dispersion

of the relative returns is lower than in the experiments where the forecasting accuracy is

medium (α = 0.4 and α = 0.6) and when it is low (α = 0 and α = 0.2). This pattern

indicates that as the uncertainty decreases in the market (i.e., as α → 1), the difference

between the returns obtained by the use of the strategies is lower and consequently agents

may have fewer opportunities to profit from the market. This may be due to the fact that as

the forecast accuracy increases, all the agents will tend to make offers that lay on the same

side of the market.

The differences in the returns of the Option trading strategies shown so far suggest that

under the experimented conditions, trading Option contracts may provide an advantage to

an agent by yielding higher returns than the non-Option trading strategies. Specifically,

when the traders face more uncertainty in their forecasting (i.e., as α → 0), trading Options

can give greater advantage over non trading Options. Figure 6.1 shows a chart with the stan-

dardised relative returns (scaling the values from Tables 6.4, 6.5 and 6.6 to make their mean

0 and standard deviation 1) for each strategy under the experimented scenarios. The results

are grouped by the price series used as the price of the asset. For each group, the horizon-

tal axis in the figures represents the standardised relative returns obtained by the strategies

participating in the market. The vertical axis represents the different values of α. From this

figure it is possible to see that the returns of the agents follow certain trends as the value
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a) Relative returns when α = 0.4
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.214 -0.123 0.066 -0.035 -0.070 -0.051
Microsoft 1.174 -0.498 0.200 -0.050 -0.418 -0.408
IBM 0.637 -0.219 0.029 -0.079 -0.185 -0.183
Random A 0.235 -0.068 -0.027 -0.041 -0.048 -0.051
Random B -0.349 0.154 0.069 0.029 0.059 0.038

b) Returns when α = 0.6
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.187 -0.124 0.022 -0.024 -0.034 -0.026
Microsoft 1.177 -0.461 0.027 -0.011 -0.375 -0.357
IBM 0.570 -0.191 -0.005 -0.053 -0.160 -0.161
Random A 0.154 -0.060 0.005 -0.025 -0.034 -0.040
Random B -0.289 0.150 0.156 0.008 -0.014 -0.010

Table 6.5: Relative Returns of the different strategies for the experiments with different price series using
α–Perfect forecasting with α = 0.4 and α = 0.6. The highest values for each row are emphasised.

a) Relative returns when α = 0.8
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.157 -0.135 -0.020 -0.010 0.009 -0.001
Microsoft 0.775 -0.465 -0.436 -0.003 0.084 0.046
IBM 0.268 -0.138 -0.095 0.031 -0.030 -0.036
Random A 0.043 -0.028 0.035 0.003 -0.022 -0.031
Random B -0.260 0.152 0.149 -0.007 -0.018 -0.016

b) Returns when α = 1
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.174 -0.139 -0.043 -0.002 0.020 -0.009
Microsoft 0.759 -0.468 -0.447 -0.026 0.129 0.054
IBM 0.205 -0.142 -0.131 0.043 0.010 0.017
Random A -0.001 -0.012 -0.008 0.015 0.021 -0.016
Random B -0.264 0.154 0.153 -0.006 -0.013 -0.024

Table 6.6: Relative Returns of the different strategies for the experiments with different price series using
α–Perfect forecasting with α = 0.8 and α = 1. The highest values for each row are emphasised.

α Microsoft Dell IBM Random A Random B
0 0.59 0.12 0.30 0.08 0.16

0.2 0.58 0.12 0.31 0.10 0.15
0.4 0.57 0.11 0.29 0.10 0.16
0.6 0.55 0.09 0.26 0.07 0.14
0.8 0.41 0.08 0.13 0.03 0.13
1.0 0.41 0.09 0.11 0.01 0.14

Table 6.7: Standard deviations of the relative returns for each test case in the α–Perfect forecasting experiments.
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of α is varied among experiments. Specifically, the OTMinR strategy is the top performing

strategy in the experiments using the Microsoft, IBM and Dell price series. In the same

experiments, the OTMaxW strategy is the worst performing strategy. Also, the performance

of the ATSpec strategy (asset-only trading speculator) improves as the uncertainty decreases

(i.e., as α → 1).

Figure 6.1: Standardised Relative returns of the different strategies for the α–Perfect forecasting experiments.

In the test cases where the Random B price series is used, the OTMinR performs worse

than all the other strategies. However, in this same case, both the OTMaxW and the OTMix

strategy have the best performance.In the cases where Random A price series is used, the

OTMinR strategy performs better than the other strategies for the high and medium uncer-

tainty test cases, however in the cases where the uncertainty is low, the difference between

the returns of all the strategies is very low.

6.2.2 SMAn Forecasting

The results for the analysis of relative returns in the experiments using the SMAn fore-

casting function is described now. It must be remembered that the variation of the SMAn

forecasting parameter n does not directly imply a better or worse forecast; instead, the n

parameter is used to define the number of values in the past that are considered to calculate

the mean of the price for the forecasting. For this reason, the results obtained from the set

of experiments B may not have well defined patterns due to the variation of this parameter.

The relative returns obtained by the strategies for the experiments SMAn experiments
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are shown in Tables 6.8, 6.9 and 6.10. From the obtained data it is possible to see that the

OTMinR strategy outperforms the other strategies in the test cases where the Dell, Microsoft

and IBM stock prices are used as the price of the asset.

a) Relative returns when n = 15
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.171 -0.136 -0.042 0.007 -0.051 0.050
Microsoft 0.741 -0.468 -0.450 0.009 -0.021 0.188
IBM 0.217 -0.140 -0.133 0.049 -0.058 0.065
Random A 0.006 -0.012 -0.012 0.019 -0.019 0.019
Random B -0.285 0.153 0.133 0.020 -0.040 0.019

a) Relative returns when n = 30
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.165 -0.133 -0.034 0.014 -0.103 0.092
Microsoft 0.749 -0.466 -0.445 0.026 -0.093 0.230
IBM 0.217 -0.140 -0.133 0.045 -0.041 0.052
RandomA 0.006 -0.012 -0.013 0.017 0.001 0.000
RandomB -0.286 0.150 0.139 0.020 -0.023 0.000

Table 6.8: Relative Returns of the different strategies for the experiments with different price series using
SMAn forecasting with n = 15 and n = 30. The highest values for each row are emphasised.

a) Relative returns when n = 45
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.164 -0.134 -0.032 0.015 -0.116 0.103
Microsoft 0.736 -0.470 -0.446 0.014 0.073 0.094
IBM 0.213 -0.140 -0.131 0.042 -0.023 0.039
Random A 0.008 -0.013 -0.015 0.015 0.022 -0.017
Random B -0.287 0.144 0.129 0.010 0.059 -0.054

a) Relative returns when n = 60
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.162 -0.133 -0.031 0.017 -0.121 0.105
Microsoft 0.729 -0.470 -0.443 0.021 0.065 0.099
IBM 0.216 -0.140 -0.131 0.042 -0.047 0.059
RandomA 0.002 -0.016 -0.018 0.014 0.035 -0.017
RandomB -0.301 0.140 0.126 0.011 0.091 -0.067

Table 6.9: Relative Returns of the different strategies for the experiments with different price series using
SMAn forecasting with n = 45 and n = 60. The highest values for each row are emphasised.

In the cases where the Random B price series is used, the OTMaxW strategy outperforms

the other strategies. In the same cases, the OTMix strategy also outperform the rest of the

strategies and its relative returns are very close those of the OTMaxW strategy.

It is possible to see from the resulting data that the OTRnd strategy gets the highest

returns in the cases where the Random A price series is used and n = 15 and 30 (shown in

Figure 6.8). Finally, the ATSpec strategy obtains the highest returns in the cases where the

asset price series is Random A and n = 45, 60, 75 and 90 (Figures 6.9 and 6.10).

Figure 6.2 contains charts with the standardised relative returns from the experiments.

The horizontal axis represents the standard relative returns and the vertical axis represents

the different value used for the SMAn n parameter which represents the number of steps
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a) Relative returns when n = 75
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.159 -0.132 -0.028 0.018 -0.129 0.112
Microsoft 0.736 -0.467 -0.441 0.013 0.133 0.027
IBM 0.225 -0.139 -0.129 0.044 -0.056 0.056
RandomA -0.007 -0.019 -0.019 0.016 0.046 -0.017
RandomB -0.316 0.139 0.132 0.017 0.095 -0.068

a) Relative returns when n = 90
Price Series OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise
Dell 0.155 -0.133 -0.022 0.019 -0.139 0.119
Microsoft 0.739 -0.466 -0.442 0.019 0.089 0.061
IBM 0.230 -0.138 -0.124 0.043 -0.064 0.053
RandomA -0.001 -0.021 -0.021 0.014 0.051 -0.023
RandomB -0.321 0.138 0.126 0.023 0.103 -0.070

Table 6.10: Relative Returns of the different strategies for the experiments with different price series using
SMAn forecasting with n = 75 and n = 90. The highest values for each row are emphasised.

used for calculating the moving average. The results are grouped by the price series used as

the asset price.

Figure 6.2: Standardised Relative returns of the different strategies for the SMAn forecasting experiments.

The results in the figure show that for the experiments where the Dell, Random A and

IBM series are used, the differences in the relative returns among the strategies are similar

regardless of the value of n. However, in the cases where the Random B and Microsoft

series are used, the performance of the ATNoise and ATSpec strategies varies depending on

the value of n.

Another characteristic from the results when using the Random B price series (as shown
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in shown in Figure 6.2) is that the OTMinR strategy performs worse than the other strategies

for all the tested values of n. Also in the same case and in the case where the Random A

price series is used as the price of the asset, the ATSpec strategy performance increases with

the number of steps for the SMAn forecasting.

6.2.3 Discussion

The results obtained from the analysis of the returns of the different strategies strongly

suggest that the the agents using an Option trading strategy obtained higher returns than

those not using such strategies in the majority of the experimented scenarios. The specific

scenarios where agents trading Option contracts did not obtain higher returns than those

not trading Options are in few cases when using the Random A price series and when the

Random B price series is used as the price of the underlying asset. For the experiments

where the asset price was not the Random B series, the OTMinR strategy performed better

than the other strategies. The OTMaxW strategy performed better than the other strategies

in all the test cases where the Random B price series was used in the SMAn experiments.

Relevant issues from the results of the experiments using α–Perfect forecasting are that

not all the strategies using Options have a better performance than the strategies not us-

ing Options; notably, the OTMaxW Option trading strategy performed worse than both the

ATSpec and the ATNoise asset trading strategies in almost every case, excepting the experi-

ments using the Random B price series as the price of the asset. Given the definition of the

OTMaxW strategy, an agent using that strategy will select the action for which there is more

probability of obtaining positive returns. Therefore, the agent always adopt a speculator–

like strategy according to its model of the risk in the market and its forecasting. From this

result then, it is possible to conclude that using Options does not guarantee a better out-

come than not using Options in all possible scenarios. Moreover, it shows that a bad Option

trading strategy can cause a reduced performance.

The OTMix strategy, which is a strategy that combines the OTMinR and OTMaxW strate-

gies has a good performance compared to the other strategies (excepting the OTMinR strat-

egy). While the returns of the OTMix strategy are not as good as the returns of using only

the OTMinR strategy, it still outperforms the asset only trading strategies in the experiments

where uncertainty is high and medium (α = 0, α = 0.2, α = 0.4 and α = 0.6). More-

over, the OTMix strategy has a better performance than OTMinR in the scenarios where the

Random B price series is used as the asset price. This, due to the use of the OTMaxW-like

strategy.

From the results of the experiments using SMAn forecasting, it is possible to conclude
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that the OTMinR strategy also performs remarkably better than the other strategies in the

experiments where the asset price is one of the stock market price series. However, for

both of the randomly generated price series, the OTMinR strategy is outperformed by other

strategies.

The fact that the OTMinR strategy performs bad in all the cases when Random B price

series is used and in both set of experiments (when using α–Perfect forecasting or SMAn

forecasting) may indicate that this strategy is not good for scenarios where the variance of

the price is as high as in the Random B price series. However, in these type of scenarios it

is still possible for Option-trading agents to perform better than agents not trading Options

as can be seen from the performance of the OTMaxW strategy, which outperforms the other

strategies in the Random B cases.

Recapitulating the hypothesis established in Chapter 1, this analysis has shown that

agents can indeed benefit from trading Options in the market; the analysis also shows that

agents benefit most from trading Options in the cases where the asset prices are based on

real price series. However, the performance of the Option-trading agents using the OTMinR

strategy seems to degenerate in markets where the volatility is high (such as the markets

represented in the two randomly generated price series). In this cases, the use of other

Option trading strategies can still outperform asset-only traders.

Given that the forecasting model of the Option trading agents assumes Normally dis-

tributed price series (See section 3.2.2.1), it could be argued that the performance of the

Option trading strategies should be expected to be higher than the non-Option trading strate-

gies in the randomly generated price series. This because the Option-trading strategies base

their valuation of the utility of the actions as a function of the Normal distribution. As the

generated price series are more Normal (as shown in Section 5.3) than the stock market

price series, it is possible to argue that the Option-trading agents’ forecast should be more

accurate. However, the difference in the performance in this cases is not as large as in the

cases where the stock market prices are used.

The reason why the performance of the Option-trading agents is better in the stock

market based price series may be caused by several factors. One of these factors is that in

the cases of the Microsoft and IBM price series, there are some single steps where there

is a high decrement in the price. This is demonstrated by the skewness of the price series

(shown in Section 5.3) which is −6.18 for the Microsoft price series and −0.50 in the case

of the IBM price series. Negative skewness indicates that there are more steps in time where

the price is decreased compared to what is expected in a Normal distribution. In the case

of the Microsoft price series, the Option trading agents may be protected from such high
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decrement in the price by holding Options.

The difference in the performance among the created Option-trading strategies is also

well defined, given that the OTMinR strategy outperforms all the other Option Trading

strategies in the majority of the experiments. However, the fact that the performance of

the OTMinR strategy is very low in the two generated price series (Random A and Random

B) indicates that it may be sensible to use the OTMinR strategy in combination with the

other asset-only strategies depending on the price model.

The fact that the Option-trading strategies performed well in the experiments using the

SMAn price forecasting function indicates that agents can benefit from the trading of Op-

tions even if they have only a rough approximation of the price. This result is promising,

because as it was explained in 2.2.4, the Simple Moving Average is a tool used in real mar-

kets to forecast prices which is not very accurate. Further tests with a better forecasting

mechanism may improve the strategies performance.

The returns obtained by the OTMix strategy in both set of experiments are closer to those

obtained by the OTMaxW than to the returns obtained by the OTMinR. This suggests that

the OTMaxW is dominant for the OTMix strategy. Therefore, it may be possible to modify

the heuristic of the OTMix strategy to make a better choice of strategies.

6.3 Correlation with Price Analysis

This section presents the results of the analysis of correlation between the agents strategies’

returns and the asset price returns for the data obtained in the experiments. The background

and description of this analysis is detailed in Section 5.5.2. First, the general results of the

statistical correlation is developed and then the relation between the returns and the asset

price returns is discussed in more detail.

While looking at the results of this analysis, it is important to keep in mind that because

the wealth of the agents is defined as a linear function of the asset price (see Section 3.2), it

is expected that the correlation between the returns of the agents and the corresponding price

returns is going to be strong and direct. However, the aim of this analysis is to see whether

the use of Option contracts has an impact on this correlation. The analysis of correlation

is extended with the presentation and discussion of scatter plots for selected experiments

results as a reinforcement of the obtained results.
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a) Correlations when α = 0
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.49 0.99 0.99 0.99 0.99 0.99
Microsoft 0.50 0.99 0.99 0.99 0.99 0.99
IBM 0.63 0.99 0.99 0.99 0.99 0.99
Random A 0.60 0.99 0.99 0.99 0.99 0.99
Random B 0.52 0.99 0.99 0.99 0.99 0.99

b)Correlations when α = 0.2
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.50 0.99 0.94 0.99 0.99 0.99
Microsoft 0.50 0.99 0.99 0.99 0.99 0.99
IBM 0.62 0.99 0.99 0.99 0.99 0.99
Random A 0.55 0.99 0.99 0.99 0.99 0.99
Random B 0.54 0.99 0.99 0.99 0.99 0.99

Table 6.11: Correlations between the strategy returns and the price returns when α = 0 and α = 0.2. The
lowest correlation for each row is emphasised.

6.3.1 α–Perfect Forecasting

The results from the analysis of correlation between the returns obtained by the strategies in

the market and the returns of the asset price for the α–Perfect forecasting experiments are

presented in Tables 6.11, 6.12 and 6.13. Each row in each table refers to a particular price

series and each column refers to a specific trading strategy.

The value at each cell of the tables is the correlation coefficient obtained by applying

the correlation function to the price returns data series and the strategies returns data series

for the corresponding price and trading strategy.3 The correlation coefficient has a range of

[−1, 1] where a value close to 1 indicates that there is a strong positive linear correlation

and a value close to −1 would indicate a strong negative linear correlation. A value closer

to 0 may indicate that the two data series are not linearly correlated [40].

Comparing the correlations among the different strategies for one row (i.e., one test

case), it is apparent that the returns of the agents using the OTMinR strategy are the only

ones that observe a significantly lower correlation with the price in every experiment. Also,

contrasting the correlation of the OTMinR strategy between the experiments using the same

price series but different values of α, it is possible to see that the correlation decreases as

the uncertainty about the price increases (i.e. as α → 0). This suggests that in an uncertain

market (where agents face more risk), the use of Options may provide the means necessary

to stabilize their wealth when prices fluctuate in unwanted directions.

From the tables, it is possible to observe that neither use of the OTMix, OTMaxW and

OTRnd strategies provokes a decrease in the correlation in any of the experimented scenar-

ios. In the case of the OTMaxW strategy this performance is explained by the behaviour

of the agents; as specified in Section 3.2.4, the OTMaxW strategy is similar to a speculator
3The calculated values are statistically significant at a level p = 0.01.
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a) Correlations when α = 0.4
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.52 0.99 0.95 0.99 0.99 0.99
Microsoft 0.51 0.99 0.99 0.99 0.99 0.99
IBM 0.67 0.99 0.99 0.99 0.99 0.99
Random A 0.56 0.99 0.99 0.99 0.99 0.99
Random B 0.64 0.99 0.99 0.99 0.99 0.99

b) Correlations when α = 0.6
Dell 0.60 0.99 0.98 0.99 0.99 0.99
Microsoft 0.54 0.99 0.99 0.99 0.99 0.99
IBM 0.77 0.99 0.99 0.99 0.99 0.99
Random A 0.68 0.99 0.99 0.99 0.99 0.99
Random B 0.92 0.99 0.99 0.99 0.99 0.99

Table 6.12: Correlations between the strategy returns and the price returns when α = 0.4 and α = 0.6 The
lowest correlation for each row is emphasised.

a) Correlations when α = 0.8
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.75 0.99 0.99 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

b) Correlations when α = 1
Dell 0.81 0.99 0.99 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

Table 6.13: Correlations between the strategy returns and the price returns when α = 0.8 and α = 1 The lowest
correlation for each row is emphasised.
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strategy choosing the action that yields most returns.

The use OTMix strategy (which itself uses the OTMinR strategy) may still yield a de-

crease in the correlation between returns and the price, as can be seen in Tables 6.11b and

6.12 on the cases when the Dell price series is used as the price of the asset. In this cases

the correlation between the returns of the OTMix returns and the price returns is lower.

Figure 6.3: Scatter plot chart of the strategies’ returns against the asset price returns for the experiment using
Dell price series and α = 0.6.

Figures 6.3 and 6.4 show scatter plots of the returns obtained by the different strategies

against the returns of the asset price used in the corresponding experiments. The figures

reinforce the fact that the strategies’ returns increase or decrease in direct correlation with

the price as indicated by the statistical analysis in the Tables 6.11 to 6.13. That is, when

the price has a positive return (i.e. when it increments from one time step to the next),

the wealth of the agents will increase and similarly, when the price observes a negative
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return (i.e. when it decrements from one step to the next), the agents’ wealth will decrease

(negative returns).

Figure 6.3 shows the scatter plots for the different strategies for a single test case (using

the Dell price series and α = 0.6). While the ATNoise, ATSpec, OTMaxW and OTRnd

strategies observe a very strong linear relationship as all the points in the respective plots

are aligned forming a straight line, the OTMinR strategy does not follow the same pattern.

Instead, the OTMinR strategy observes a reduction in the magnitude of the positive and

positive returns under the same price returns. Lastly, the OTMix strategy follows a linear

relationship similar to the other strategies, however it can be seen that some of the points

lay outside the linear pattern. This is caused by the choice of actions similar to the use of

the OTMinR strategy.

Figure 6.4 shows the scatter plots for the OTMinR strategy in the experiments where

the market price the Random A price series under different values of α. The data in the

figure shows how as the value of α increases, the points in the plots become more aligned

to a linear correlation. The data in this figure demonstrates the effect of the differences in

the knowledge of the future price over the outcome of the strategy. In the scenarios where

there is high uncertainty (when α = 0 and α = 0.2) the agents using the OTMinR strategy

can hedge the risk, thus minimizing the losses which is reflected by the spread of the prices

in the charts. However as the accuracy of the information about the price increases, the

number of cleared Options will decrease (such pattern is shown afterwards in Section 6.4).

A decrease in Option trading causes the agents’ wealth to be more dependent on the price

variations.

6.3.2 SMAn Forecasting

The results from the application of the analysis of correlation to the data series obtained

from the experiments using the SMAn forecasting function are detailed in Figures 6.14 to

6.16.

The data in the results show that a significant difference in correlation is observed when

using the Dell price series as the price of the asset. In this case, the OTMinR strategy is the

only strategy on which the correlation between the returns of the strategies and the price

returns is decreased. This correlation increases as as the value of the window parameter n

is increased.
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Figure 6.4: Scatter plot chart of the returns for the OTMinR strategy with different values of α against the asset
price returns for the experiments using the Random A price series.
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a) Correlations when n = 15
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.73 0.99 0.99 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

b) Correlations when n = 30
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.77 0.99 0.94 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

Table 6.14: Correlations between the strategy returns and the price returns when n = 15 and n = 30. The
lowest correlation for each row is emphasised.

a) Correlations when n = 45
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.80 0.99 0.99 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

b) Correlations when n = 60
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.82 0.99 0.94 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

Table 6.15: Correlations between the strategy returns and the price returns when n = 15 and n = 30. The
lowest correlation for each row is emphasised.

a) Correlations when n = 75
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.83 0.99 0.99 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

b) Correlations when n = 90
OTMinR OTMaxW OTMix OTRnd ATSpec ATNoise

Dell 0.85 0.99 0.94 0.99 0.99 0.99
Microsoft 0.99 0.99 0.99 0.99 0.99 0.99
IBM 0.99 0.99 0.99 0.99 0.99 0.99
Random A 0.99 0.99 0.99 0.99 0.99 0.99
Random B 0.99 0.99 0.99 0.99 0.99 0.99

Table 6.16: Correlations between the strategy returns and the price returns when n = 75 and n = 90. The
lowest correlation for each row is emphasised.
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6.3.3 Discussion

A notable pattern from the returns of the OTMinR agents can be observed in the cases where

the correlation of the strategies’ returns with the price is lower than 0.99. In such cases there

are steps in the market where the price decreases but the agents using the OTMinR strategy

still obtain positive returns. This demonstrates that that the use of the OTMinR strategy

has prevented the agent from losing wealth in the case of a price fall, and in consequence

indicates that the strategy can be used to hedge the risk of losing wealth in such cases.

However, it must also be noted that in the same cases where the OTMinR returns are

lowly correlated with the price returns, there is also a decrease in the profits obtained from

the positive returns in the price. This behaviour is presumably caused by the nature of the

OTMinR strategy that always chooses the action which presents the lowest risk of losing

wealth according to its beliefs. This behaviour makes the agents choose less risky actions

which at the same time may provide lower returns.

6.4 Trading Volume Analysis

6.4.1 α–Perfect Forecasting

The results from the trading volume analysis (which is described in Section 5.5.3) for the α–

Perfect forecasting experiments are presented next. The analysis is divided in three sections:

First, the resulting RC
H ratios (the proportion of hold offers made by the agents against those

cleared in the market) for the different experiments using α–Perfect forecasting is described;

next, the resulting RC
W ratios (the proportion of write offers made by the agents against those

offers cleared in the market) for the same experiments are presented; finally, the RH
E ratios

(the proportion of offers to hold owned by the agents against the number of exercised offers)

are analysed.

6.4.1.1 Cleared Hold Offers Ratio

As defined in Section 5.5.3, RC
H represents the proportion of the volume of offers to hold

Options made by the different strategies (volOH(·)) compared to the number of those of-

fers that are cleared by the market and therefore traded by the agents (volCH(·)). Charts

depicting the results of this analysis for the α–Perfect forecasting experiments are shown in

Figure 6.5.4 The data in this figure is grouped by the price series used as the price of the

asset. For each group, the different test cases with the corresponding α values experimented

4The tables containing the data used to generate these charts can be found in Appendix C.
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are listed. Figure 6.5a shows the number of offers made by the strategies and Figure 6.5b

shows the RC
H ratios corresponding to the same experiments.

The data in the figures shows that volume of offers submitted by the OTMaxW and the

OTMix strategies observe a similar pattern indicating that the OTMix strategy adopts the

OTMaxW strategy with more frequency in the experiments. Also, as expected, the OTRnd

strategy submits a similar number of offers for all the test cases. For the experiments where

the asset prices are the Random B, Microsoft and Dell price series, the OTMinR submits less

offers to hold Options than any other agent.

a) b)

Figure 6.5: For the different strategies: a) Total of hold offers submitted to the market (volOH(·)). b)RC
H ratios.

Results from the α–Perfect forecasting experiments.

For the same experiments which use the Random B, Microsoft and Dell price series,

the volume of offers submitted by the OTMinR strategy (volOH(·)) to the market increases

as the forecast uncertainty increases (α → 0), and the the ratio of cleared offers (RC
H )

decreases as the forecast accuracy increases. (α → 1). Considering this behaviour along
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with the returns analysed in Section 6.2.1, it is possible to see that the OTMinR strategy

effectively used Option contracts to increase its profits. Moreover, as it can be concluded

from the data in Figure 6.5b, the number of hold offers cleared in the market decreases as the

uncertainty about the future price decreases. This pattern arises because as the forecasting

of the prices becomes more accurate for all the agents, the agents will make similar offers

to the market (offers which provide the best performance according to their forecasts), and

therefore the market will not be able to find matching offers to trade.

6.4.1.2 Cleared Write Offers Ratio

The RC
W ratio represents the proportion of the volume of offers to write Options made by

the different strategies (volOW (·)) compared to the number of those offers that are cleared

by the market and therefore traded by the agents (volCW (·)). Figure 6.6 shows the results

of this analysis for the α–Perfect forecasting experiments.5 Figure 6.6a contains the the

number of offers to write made by the different strategies and Figure 6.6b shows the RC
W

ratios corresponding to the same test cases. The test cases are grouped by the series used as

the price of the asset under different values of α tested.

The results obtained from the RC
W analysis indicate that, contrary to the pattern ob-

served in the hold offers, the volume of offers to write Options (volOW (·)) increases as the

forecasting accuracy increases (that is, as α → 1). This pattern may be explained consider-

ing that, as Option trading agents have a more accurate forecast, the possibility of profiting

with the premium obtained from writing an Option which will not be exercised in the future

offers the best benefits for the agents in terms of the combination of risk and their returns.

In a similar way as the offer to hold Options, the number of cleared offers to write Op-

tions decreases as the certainty about the price increases (shown in Figure 6.6b), suggesting

that agents are submitting similar types of offers to the market.

6.4.1.3 Exercised Hold Options Ratio

The results from Figure 6.7 suggest that, as the price forecasting certainty increases (i.e., as

α → 1) the ratio of exercised Options increases (Figure 6.7b). This pattern is also observed

with the average of the RH
E ratios among the strategies. The average of these ratios across

the test cases is shown in Table 6.17. Each column in the table contains the average (across

the four Option trading strategies) of RH
E ratios for the experiments using the price series

specified in the first column. Results for the different experimented α values are shown on

each row of Table 6.17.
5The tables containing the data used to generate this charts can be found in Appendix C.
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a) b)

Figure 6.6: For the different strategies a) Total of write offers submitted to the market (volOW (·)). b)RC
W ratios.

Results from the α–Perfect forecasting experiments.
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a) b)

Figure 6.7: For the different strategies a) Total of hold offers cleared by the market (volCH(·)). b)RH
E ratios.

Results from the α–Perfect forecasting experiments.
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The results in Table 6.17 indicate that in a scenario with low forecasting uncertainty,

the few Options contracts held by the agents were offered as a result of a more accurately

informed choice by the agents. That is, the agents which traded such Options are more

certain that they will exercise them. In these scenarios, any time the strategy leads to an

action to hold an Option, it is more probable (due to the fact that the model of the future

price is accurate) that the agent will exercise the Option at a future step.

α Dell Microsoft IBM Random A Random B .
0 0.37 0.37 0.39 0.41 0.41
0.2 0.37 0.36 0.38 0.39 0.41
0.4 0.38 0.37 0.39 0.39 0.45
0.6 0.40 0.41 0.42 0.42 0.53
0.8 0.54 0.49 0.45 0.44 0.56
1.0 0.55 0.54 0.50 0.46 0.58

Table 6.17: Average RH
E ratios for the experiments using the α–Perfect forecasting function.

A decrease in the volume of market cleared offers to hold Options (volCH(·)) as the

agents’ forecasting certainty increases (i.e., as α → 1) can be seen throughout Figure 6.7a.

This suggest that as the uncertainty in the future price decreases, the forecasts of the agents

will become increasingly similar, provoking them to submit the same offers to the market.

Therefore, the market would not be able to clear such offers due to the lack of matching

offers. However, in this experiment some offers will always be cleared due to the presence of

agents using a random offering strategy implemented as the OTRnd and ATNoise strategies.

6.4.2 SMAn Forecasting

The results obtained from the trading volume analysis for the experiments which used the

SMAn forecasting function are described now. As with the α–Perfect forecasting experi-

ments results, the analysis is divided in three sections: The first section contains the analysis

of the RC
H ratios; in the second section, the analysis of the RC

W ratios is presented; finally,

the last section contains the analysis of the RH
E ratios,

6.4.2.1 Cleared Hold Offers Ratio

Figure 6.8 presents graphical results of the analysis of hold offers for the SMAn experi-

ments.6 Figure 6.8a depicts the number of offers to hold Options submitted by the different

strategies to the market and Figure 6.8b shows the RC
H ratios, which is the proportion of

those offers submitted against the number of those Options which were cleared by the mar-

ket.
6The data used to generate these figures can be found in Appendix C
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In Figure 6.8a, the horizontal axis represents the volume of offers submitted to the

market (volOH(·))and the vertical axis denotes the number of steps used in the SMAn

forecasting function. The test cases are grouped by the series used as the price of the asset.

Similarly in Figure 6.8b, the horizontal axis denotes the RC
H ratios while the vertical axis

represents the number of steps used for the SMAn forecasting.

(a) (b)

Figure 6.8: For the different strategies a) Total of hold offers submitted to the market (volOH(·)). b)RC
H ratios.

Results from the SMAn forecasting experiments.

From the graphs presented in Figure 6.8, it is possible to see that the OTRnd strategy has

similar volume of offers (Figure 6.8a) and a similar RC
H ratio in all test cases. This pattern

is explained if it is considered that the random choice of the agents using such strategy is

not affected by any of the parameters varied for the agents.

For the three non-random trading strategies, the results show that for all the test cases

the OTMinR strategy has a lower volume of offers to hold Options than the OTMaxW and

OTMix. Specifically:

volOH(OTMinR, p, n) < volOH(OTMix, p, n) < volOH(OTMaxW, p, n) (6.3)
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for any price series p and any number of steps n used for the SMAn forecasting strategy.

Similarly, the resulting RC
H ratios for these strategies are characterised by the formula:

RC
H(OTMinR, p, n) < RC

H(OTMix, p, n) < RC
H(OTMaxW, p, n) (6.4)

also for any price series p and any number of steps n used for the SMAn forecasting

strategy.

6.4.2.2 Cleared Write Offers Ratio

Similarly to the hold offers, the results of the analysis of hold offers for the SMAn exper-

iments is shown in Figure 6.9.7 Figure 6.9a depicts the number of offers to hold Options

submitted by the different strategies to the market and Figure 6.9b shows the RC
W ratios

which is the proportion of those offers submitted against the number of those Options which

were cleared by the market.

In Figure 6.6a, the horizontal axis represents the number of offers submitted to the

market and the vertical axis denotes the number of steps used in the SMAn forecasting

function. The test cases are grouped by the series used as the price of the asset. Similarly in

Figure 6.9b, the horizontal axis denotes the RC
W ratios while the vertical axis represents the

number of steps used for the SMAn forecasting.

From the data presented in the figure, it is possible to see that the OTRnd strategy has

similar number of offers (Figure 6.9a) and a similar RC
W ratio in all test cases. This pattern

is explained considering that the random choice of the agents using the OTRnd strategy is

not affected by any of the parameters varied for the agents. This is the same behaviour as

observed for the volume of offers to hold Options described previously.

In contrast with the volumes obtained from the offers to hold Options for the three non-

random trading strategies, the results show that for all the test cases the OTMinR strategy

has a higher volume of offers to write Options than the OTMaxW and OTMix. The observed

pattern can be formalised as:

volOW (OTMinR, p, n) > volOW (OTMix, p, n) > volOW (OTMaxW, p, n) (6.5)

for any price series p and any number of steps n used for the SMAn forecasting strategy.

Similarly, the resulting RC
W ratios for these strategies is characterised by the formula:

RC
W (OTMinR, p, n) > RC

W (OTMix, p, n) > RC
W (OTMaxW, p, n) (6.6)

7The data used to generate this figures can be found in Appendix C
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a) b)

Figure 6.9: For the different strategies a) Total of write offers submitted to the market. b)RC
W ratios. Results

from the SMAn forecasting experiments.
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also for any price series p and any number of steps n used for the SMAn forecasting

strategy.

Finally, comparing the data in Figures 6.8a and 6.9a it is possible to see a relation

between between volume of offers to hold Options (volOH(·)) and the volume of offers to

write Options (volOW (·). The volume of offers to hold Options inversely proportional to the

volume of offers to write Options. That is, in the cases where volOH(·) is high, volOW (·)
is lower and vice versa.

6.4.2.3 Exercised Hold Options Ratio

The results of the analysis of exercised hold offers for the SMAn experiments is shown

in Figure 6.10.8 Figure 6.10a depicts the number of offers to hold Options which where

cleared by the market and Figure 6.10b shows the RH
E ratios which is the proportion of

those offers cleared offers against the number of those Options which were exercised by the

agents.

In Figure 6.7a, the horizontal axis represents the number of cleared offers submitted to

the market and the vertical axis denotes the number of steps used in the SMAn forecasting

function. The test cases are grouped by the series used as the price of the asset. Similarly in

Figure 6.7b, the horizontal axis denotes the RH
E ratios while the horizontal axis represents

the number of steps used for the SMAn forecasting.

The number of cleared offers for the OTRnd strategy is similar across all the test cases

(6.10a). The same pattern is observed for the RH
E ratios of the OTRnd. The reason of this

pattern is that agents using this strategy will make a similar total number of offers in every

test case (as the agents choose the offers from a Uniform random distribution). It is possible

to see that the RH
E ratios for the OTRnd strategies are close to 0.5 which means that half of

the cleared Options offers submitted by the agents are exercised. This is explained if it is

considered that from the possible Option offers available to the agents, one half are offers

to write Options while the other half are offers to hold Options. Therefore, when the offers

are cleared in the market, there is the a 50% probability that the offer chosen is an offer to

write an Option, and the same probability that the offer chosen is to hold an Option.

Another observation from the exercise hold analysis is the fact that the OTMinR strategy

yields a low volume of cleared offers to hold (Figure 6.10a). This result is consistent with

the data in Figure 6.8 which shows low RC
H ratios. However, the ratio of exercised holds

(RH
E ) for this strategy is higher than any of the other strategies as shown in Figure 6.10b,

which may indicate that the majority of offers to hold Options cleared by the market were

8The data used to generate these figures can be found in Appendix C
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a) b)

Figure 6.10: For the different strategies a) Total of hold offers cleared by the market; b)RH
E ratios. Results from

the SMAn forecasting experiments.
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exercised by the agents using this strategy.

The volume of cleared offers for the OTMaxW strategy is higher than the other two non-

random strategies. However, the RH
E ratio is lower in every test case. This may indicate that

the agents using this strategy do not need to exercise all the Option contracts which they

hold.

Similarly to the results from the RC
H and RC

W analysis, the volume of cleared hold offers

and the RH
E ratios of the OTMix strategy have values that lie between the values obtained

by the OTMinR and the OTMaxW strategies. Such a pattern confirms expected behaviour

according to the design of the OTMix strategy which switches between the use of both the

OTMinR and OTMaxW strategies.

6.4.3 Discussion

The results obtained from the volume analysis show that the OTMinR strategy (which ob-

tained the best returns in the majority of experiments according to the analysis in Section

6.2 ) achieved its performance by submitting more offers to write Options than offers to hold

Options. However, the ratios of cleared offers to write Options (RC
W ) were low compared to

the ratios of cleared offers to hold Options (RC
H ). Generally, when all the non-random Op-

tion trading strategies submitted a high number of similar offers to market (in the α–Perfect

forecasting experiments when α = 0.8 and 1), the clearing ratios were low. This is due to

the fact that the only matching offers were provided by the random Option trading strategy

OTRnd.

The results from the experiments using the α–Perfect forecasting function showed that

there are differences in the submitted offers among the three non-random Option trading

strategies. These results also demonstrate the differences in the effects that the degree of

forecast accuracy has in the offer volumes of the strategies.

The analysis of volume for the SMAn forecasting demonstrates that there are differ-

ences between the number of offers made by the different strategies when using this type

of forecasting function. Similarly as in the α–Perfect forecasting experiments, the number

of cleared offers to write form the OTMinR strategy are higher than the number of cleared

offers to hold. This may indicate that the action of writing Options is used by agents to

obtain higher returns even when the price of the asset is decreasing.
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6.5 Discussion

The results of the experiments show that there are differences in performance between the

agents which trade Options to those not trading Options in the three performed analyses.

Specifically the results of the analysis of returns presented in Section 6.2 shows that the

agents which used the OTMinR Option trading strategy (allowing them to trade Options)

performed better than those not trading Options in 41 of the 60 experimented scenarios

(that is, in 68.3% of the test cases). Also, the OTMaxW trading strategy performed better

than the asset–only trading strategies in 11 of the experimented scenarios in which the

OTMinR strategy did not. This makes a total of 52 of 60 experimented scenarios (or 86% of

the test cases) where Option trading strategies outperformed asset–only trading strategies.

Therefore, it is possible to conclude that in these cases Option trading offered a benefit over

simple asset trading in the market.

The second important result obtained from this section is the comparison of the different

Option trading strategies. The OTMinR strategy outperforms all of the other strategies in

the majority of the cases, whereas the OTMaxW strategy performs very poorly. It is only

in the experiments where the asset price observed very high volatility (using the Random B

price series) that the performance of the OTMinR strategy decreased dramatically and the

OTMaxW strategy performed better.

It could be expected that because the OTMix strategy uses both the OTMinR and OT-

MaxW strategies to participate in the market, this strategy should perform better than each

of the other two strategies. However the obtained results from the analysis in this chapter

indicate that the heuristic used to mix the strategies is not optimum and in some cases it

reduces the performance obtained by the use of those strategies as standalone strategies.

The results of the correlation analysis demonstrated that the price-returns correlations

obtained by the OTMinR strategy are lower than for the other strategies in 22 of 30 of

the test cases using the α–Perfect forecasting function and in 6 of the 30 test cases where

the SMAn forecasting function was used. The price–returns correlation of the OTMinR

strategy did not decrease in the test cases where agents uncertainty low (i.e., when α = 0.8

and α = 1) when using the α–Perfect forecasting function.

Further examination of the data also showed that as the traders get more accurate infor-

mation, the effect of Option trading is decreased. This is due to the decrease in offered and

cleared Options. However, even in those cases where the agents had perfect knowledge,

the Option-trading agents can outperform non Option-trading agents in some of the exper-

iments. The correlation analysis also shown that Options may also be used to reduce the
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agents’ loss of wealth due to the negative fluctuations of the asset price.

The results from the volume analysis gave further insight into the trading patterns of

the different strategies. The high volume of Option-trading indicates that the Option trad-

ing strategies make use of such possible actions. It is of special interest that some of the

profits obtained by the agents were caused due to Option writing (selling Option contracts).

This result indicates that both Option trading positions can be used to obtain a better per-

formance.

As the market constrained the number of assets possible to trade to one asset per trans-

action, the magnitude of the benefits and disadvantages of trading the different strategies

was reduced. This constraint also avoided the use of more complex Option–trading strate-

gies which are commonly used in real markets to gain more control over the risk of trading

or to take advantage of the beliefs about the future price.

In summary, these experiments showed that agents using Option trading can perform

better in the cases where there is more uncertainty about the price in the market. However,

a very high volatility in the market may also cause very high Option prices, making them

unattractive to the agents. The results obtained also shown that agents trading Options can

be less susceptible to price variations; however, this does not equate to a better performance

as the use of Options can decrease the returns obtained from positive price fluctuations. This

result agrees with the theory of risk and returns [62] which states that more risky investments

tend to yield higher returns. The use of Options would therefore be suggested in scenarios

where there is uncertainty about the asset price in the market and that the volatility of the

asset price makes the prices of Options appealing in comparison to the prices of the asset.

Trading Options is not a good strategy when there is perfect forecasting in the market as

a simple asset speculating strategy will perform better. However, if other conditions of the

market are changed, such as a market with heterogeneous forecasting accuracy or allowing

the trading of more than one good and Option contracts at each step, the use of Options

could still be beneficial in the aforementioned cases.

Finally, the proper design of the strategy to trade Options is one of great importance.

The results from the experiments showed that trading Options using an unsuitable strategy

will result in higher losses than for agents not trading Options. Further research should

be done focusing on the design of strategies which make use of trading a combination of

Options and assets and the implementation of search heuristics and genetic algorithms to

optimise the choice of the actions.

Future price forecasting is another issue which spawns a separate research area. Al-

though the presented model only dealt with the forecasting of the asset price, it is unlikely
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that such forecasting accuracy is possible in real markets. However, a combination of asset

price forecasting and the forecasting of the future volatility of the market might improve the

utility of Option trading.

It is possible to argue that given an agent with perfect forecasting function (when α =

1), the best strategy would be to buy or sell assets at the present time because holding an

Option will always incur a price overhead in the premium. However, it should be noted that

in the model developed, the asset’s future price is not the only source of information in the

agents’ model of the future state of the market; the agents also considers the volatility of

the asset price in order to make an informed judgement of how risky each action will be

according to the forecasted price.

In view of this fact, it would be possible for an agent to behave as in the speculator-like

strategy (selling assets when their price is decreasing and buying assets when their price is

increasing) if given a perfect forecast (when α = 1), the agent knew that such forecasting

was exact and in consequence ignored or modified the value of its perceived volatility of

the market. This can be achieved modifying the action valuation function of the Option

trading strategies by reducing the agent’s perceived variance of the price when evaluating

the outcome of each possible action.

In markets where real resources are being traded, it is difficult for an agent to obtain

such information. Such cases were experimented with the SMAn forecasting function. In

those cases, the agent could improve its action valuation function by detecting decrements

in the volatility and therefore decreasing its perceived variance of the price. With the cur-

rent strategies, the agents perceived variance is calculated using the complete price returns

beginning from the first time step. With the proposed modification, the agents would drop

some of the past prices and only consider the variance of the price returns from the t − k

steps for some predefined value of k.

Moreover, as was demonstrated in the experiments, Option trading agents can also use

their knowledge about the future price to write Options which (according to their price

forecast) will not be exercised at expiration time. They write these Options in order to profit

from the price of the Option (the premium).

In summary the outcome from the analysis can be summarised by the following claims:

• Trading Options can be beneficial to an agent by preventing it from losing wealth by

negative trends in the market.

• It is possible for an agent to decrease the dependency of its wealth to the asset price

by using Options.
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• Using the wrong Option trading strategy can lead to a performance which is worse

than not trading Options.

• Trading Options are more beneficial to the agents in scenarios where the forecasting

accuracy is low.

• Agents can hedge the risk caused by price fluctuations inherent in a market by trading

Options.

6.6 Summary

In the present Chapter the results of the simulation experiments performed to test the created

Option trading model were presented. The analysis of the obtained data using the three

performance metrics given in Section 5.5 was detailed and the results were discussed with

reference to the objectives of this research. The outcomes of the strategies were compared

for the different test cases and several conclusions about the performance of the strategies

were drawn from the performed analysis.

From the results, it is possible to conclude that the framework created provides enough

tools for agents to trade Options and obtain a benefit from the trading of these Options by

decreasing the risk of losing wealth. The results also showed that from all the designed

Option trading strategies the OTMinR strategy performed best.

The experimental results demonstrated that using some of the novel developed strategies

it is possible for agents to benefit by the use of Option contracts. Moreover, the interactions

in the system indicate that the designed Option market is liquid enough to allow agents to

trade Options and benefit by trading them. A novel result is the fact that even though the

market is closed and agents have to compete for the assets and the Option contracts, there

was enough trading in the market to provide significant advantage for a particular strategy.

It is also clear that one of the drawbacks of the model is the constraint in the volume

of offers to trade Options or assets that can be submitted at each step and the number of

goods that can be traded at each time step. These constraints reduced the complexity of the

strategies available for the agents to single actions. The ability to make a combination of

offers would make possible different Option trading strategies such as covered call (when

the trader buys a call Option and at the same time buys assets) [23]. These kind of strategies

may provide the agents with a better management of the risk of the market.



140 CHAPTER 6. EXPERIMENTAL RESULTS



Chapter 7

Future Work and Conclusion

Option Derivatives have been used as a mechanisms for risk management for some time in

real markets. In my thesis I have created an Option trading model and a software framework

that allows autonomous software agents to trade in online software Option markets. This

framework has been developed with two objectives in mind: first, to demonstrate that it is

possible for software agents to trade in a market which is similar to real world Exchanges

and secondly, to create an Option trading framework which can be used for risk management

in distributed software systems.

Throughout the thesis I have shown the properties of my proposed Option trading model.

I have also described the development of a software implementation of the proposed model.

This implementation was used to perform several experiments to test the hypotheses estab-

lished at the beginning of the thesis.

My research has shown that it is possible to develop a software market with a struc-

ture similar to the one used in real Exchanges where Options are traded. This result is an

advancement from the current Option trading models reviewed in Section 2.4.1 where the

markets clear all the offers submitted by the agents.

7.1 Addressing the Research Questions

The results obtained from the simulation experiments shall now be used to answer the re-

search questions previously established. From Chapter 1:

1. Can software agents benefit from the exchange of Options in the software

market?

The experimental results shown that agents which used the OTMinR strategy obtained

higher returns than agents using all of the other strategies on 23 of the 30 test cases when
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using the α–Perfect forecasting function. Similarly, agents using the OTMinR strategy ob-

tained higher returns on 18 of the 30 test cases when using the SMAn forecasting function.

This result shows that the agents using such strategy gained a significant advantage from

using Options against agents using other strategies.

2. Is it possible to characterise specific cases where software agents trading

Options have a better performance than those not using them?

From the experimental results, it is possible to see that the Option trading strategies

consistently outperformed the asset–only trading strategies in the cases where the prices

based on real stock prices (i.e., the Microsoft, Dell and IBM price series) were used. The

Option trading strategies were outperformed in some of the cases where the generated price

series were used (i.e., the Random A and Random B price series). One of the differences

between the generated and the stock–based price series is the sudden high increments and

decrements in the price (i.e. a high skewness of the distributions) present in the stock–based

price series. Agents using the OTMinR strategy reduced the loss caused by such decrements;

this reduction resulted in higher returns. Hence, in the test cases when the Microsoft and

IBM price series were used (which have a skewness higher than the other price series), the

OTMinR strategy had higher relative returns than in the other test cases.

3. Are agents trading Options less susceptible to price variations than those

not using Options?

Although not all the strategies allowing agents to trade Options showed a decrease in the

correlation of their returns with the price, agents that used the OTMinR strategy observed

a significant decrease in correlation. During the analysis of correlation it was observed

that the reduction of the correlation sometimes affected the positive returns of the agents;

although this behaviour is not necessarily desired, it was observed due to the design of the

OTMinR strategy. A better strategy may aim to minimize only the correlation which causes

negative profits. The analysis of correlation shown some patterns indicating that Options

can be used to prevent losses due to negative price variations. Thus, and according to the

used definition of risk, some agents used Option contracts to manage their risk effectively.

4. What is the difference in the performance among the developed Option

trading strategies?

From the four designed Option trading strategies (i.e., the OTMinR, OTMaxW, OTMix

and OTRnd), the OTMinR strategy performed better than the others. The OTMaxW strategy
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performed very poorly in the majority of the test cases. However, an interesting result is

that in the test cases where it performed well, the OTMinR strategy performance was poor.

Of the two strategies used in the OTMix (which used the OTMinR and OTMaxW strategies),

the OTMix strategy performance was always better than the worst performing strategy but

not as good as the better performing strategy. This demonstrates that the algorithm for

the selection of the strategy is not optimal. However, with the current selection algorithm,

the agents still have some benefit from trading Options. Finally, the OTRnd strategy was

mostly within the average of the other strategies’ performance (that is, the relative returns

were close to 0).

7.2 Model Architecture

My research has shown that the developed market framework can be used as a market for

Option trading. Although the implemented market and strategies allow agents to trade the

underlying resource, it is possible to add such mechanism without much effort, in order to

use the Option market in parallel with an exfisting Market–Based system.

Similarly, the developed trading strategies can be used as a foundation for more complex

strategies which allow agents to make more better choices. The use of the risk loss factor

can be extended to consider combinations of actions to perform more complex strategies.

The results show that agents using the OTMinR strategy were successful in outperforming

agents using the asset only trading strategies by using Options. However, the performance

of such Option trading agents could be increased by developing strategies that make a better

use of the positive changes in the underlying asset.

One of the main assumptions made for the used model of risk is that the underlying as-

set follows a Normally distributed random-walk stochastic process. Under this assumptions,

the agents create a probabilistic model of the price series with the objective of quantifying

the risk exposed by the available actions. The accurate valuation of the actions’ risk is

then dependent on the accuracy of the agent model. In the developed strategies, the com-

plete history of prices was used to estimate the variance of the Normal distribution model.

This approach may be improved by allowing the calculation of such variance considering a

smaller number steps in the past. This would allow an agent to detect when a market price

has stabilized, providing it a more accurate model of the present state of the market.
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7.3 Lessons learnt

As in every research project, several issues were raised during the development of the Op-

tion trading framework and the simulation experiments. First, an intended logic–based

approach to model the agents’ reasoning mechanism was unsuccessful. This was due to the

nature of the probability modelling. The main issue against modelling the reasoning engine

of the agents using production rules is that, to represent all the possible reasoning paths

available to the agent would take a huge number of rules. Secondly, the decision mecha-

nism would have to be hard–coded in the agents, with the decisions of the different actions

being selected by the agent creator at design time.

The second issue raised was related to the implementation of the framework. The cur-

rent implementation provides logging mechanisms that output information to plain data

files. Although convenient at the time of programming, this is not beneficial when trying

to analyse the obtained data. A better approach would have been to implement logging

mechanisms to output data to a data base engine. With such an approach, the data would be

structured and readily available for its processing.

Finally, given the structure of the RepastJ ABM framework, the code of the graphical

interface for the Option Market had to be mixed with the code containing the logic of the

market. This kind of software practice is not desired and can be prevented by using a

Model–View–Controller [41] approach to the design of a software system.

7.4 Framework Extensions

Two main lines of further research could be performed. First, the framework can be ex-

tended to allow agents to trade more than one asset at each time step. To achieve this the

strategies will have to be modified to consider a portfolio of assets. In this case, the max-

imisation of the agents’ performance could be based on portfolio theory considering risk

and Option based portfolios. This might be solved using tools such as Value at Risk [54].

The strategies can also be extended to provide the means for the agents to consider external

constraints. This, in order to allow agents to impose specific objectives of the number of

assets and cash that must be available at future times.

Although the developed framework is focused on the trading of European Option con-

tracts, it should be possible to use a similar approach to provide other kind of Derivatives to

Market–Based systems. This can be achieved by using a parallel market approach, where

the software market where the Derivatives are traded is treated as a separate market from

the primary market where the resources are traded.
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Using this kind of parallel market mechanism it should be possible to develop markets

where contracts such as Swaps and Futures are traded using similar auctioning mechanisms

as in typical Market–Based systems which are based on auctions. An interesting addition

would also be the creation of agent’s coalitions which join efforts for maximising a portfolio

of resources by trading on different markets. With this coalition approach, each agent would

be able to concentrate its efforts in only one market.

Finally, although this thesis did not addressed the issue of the measuring of efficieny in

the allocation of the resources among the market system, it contributed several strategies

and the model of the mechanism for a parallel market where Derivatives are traded. Such

strategies may be considered by a designer when modelling mechanisms for the automatic

allocation of resources. For this, the utility and preferences of the available actions will

have to be established depending on the concrete mechanism to model. However, the work

presented in this thesis provides the basic Option trading mechanism to use.

7.5 Application Domains

The second possible extension to my work is the implementation of my Option trading

model into a Multi–Agent System application. This may be done to test the benefits and

drawbacks of using Option contracts in specific domains. There are several domains where

the created framework can be used. However, one of the main limitations of my model is

that the underlying system must use a Market–Based mechanism and as such, the system

must use the concept of cash, goods (or resources) and wealth. Some of the possible appli-

cation domains will be briefly described here and the use of the Option trading framework

in such domains will be discussed.

As the main objective of the Option trading framework is the management of risk in

Multi–Agent systems, it may be possible to use it in any conceivable domain where a group

of agents share resources. From a computational point of view, it is interesting to apply this

framework to agent based applications where uncertainty is a factor in the decisions of the

agents.

7.5.1 Supply Chain Management

One of the possible domains for the application of my Option framework is in Agent–Based

supply chain management systems. Supply Chain Management (SCM) has an evident need

to control well defined risks. Also, there have been several research studies undertaken

about risk management of SCM and modelling of supply chains as Multi–Agent systems.
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The management of risk in supply chains has been previously studied in [1], where a model

which introduces intermediaries was proposed; these intermediaries provide Option like

contracts to the retailers in order to minimise their risk. However, when using intermediaries

there is the need to modify the supply chain by introducing another player in the chain,

moving the risk management problem to this special type of agent.

The work presented in [2] discusses the management of risk in a chemical manufactur-

ing supply chain. In this work, the authors propose a model for the risk management of

supply chains based on the Economic theory of risk of investment and rate of returns. The

authors propose the use of a risk premium or the increase in expected return in exchange

for a given amount of variance as a measure used for risk management. This approach can

be used as part of a risk management strategy for agents trading in an Agent–Based supply

chain.

From the Market–Based Control point of view, a supply chain has been modelled as

a series of markets where different agents trade resources [69]. This model of a supply

chain can be used as an underlying market where my developed Option trading framework

could be attached. If a supply chain is modelled as a series of markets, then it is possible to

enhance each market by attaching the developed Option trading model to allow the agents

to trade Option contracts on the underlying assets. This would provide the agents with an

alternative market to trade Options to hedge the risks exposed by the supply chain.

7.5.2 Grid Resource Allocation

Grid resource allocation is another domain that would benefit from the use of Option trad-

ing. The modelling of distributed resource allocation with Market–Based mechanisms has

been widely researched (as for example in [21, 25, 26, 85]). One of the approaches used

when modelling Grid systems as Multi–Agent systems is the use of auctioning mecha-

nisms for the distribution of resources. In using this approach, the systems are modelled as

markets where agents gather to trade resources. This approach makes the addition of my

proposed Option trading framework very straightforward. In fact, the use of Derivatives in

Grid systems has been previously proposed in [55] where the use of Futures and Options to

commercialise Grid resources is proposed.

7.5.3 Sensor Networks

Sensor networks present a special type of distributed resource allocation scenario. A sensor

network consists of a set of autonomous sensors distributed among some physical envi-

ronment [74]. The sensor network aims to monitor specific properties of the environment,
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making each sensor cooperate in a coordinated manner. In order to improve the efficacy of

sensor networks, the allocation of resources such as bandwidth and time must be considered.

However, sensor networks usually present the difficulty of having to consider energy con-

straints. Market–Based models of sensor networks have been recently proposed in works

like [60] and [96]. In these works, each sensor in a sensor network is modelled as an agent

which trades some of the required resources according to its objectives. As traders partici-

pating in a market, the agents acting in such sensor networks are also subject to market risks.

Thus my developed Option trading framework could be used to provide a risk management

mechanism for such sensor agents.

7.6 High Order Beliefs

In a market where different agents trade Options for different objectives, it may be useful

to provide agents with the ability to form beliefs about the beliefs of other traders. Includ-

ing such analysis in the agents’ reasoning mechanism may give advantages to the agents;

first in knowing the expectations of other participants in the market and thus being able to

form a prediction of the demand at future times (which may affect the price of the assets);

second, when creating a model about the other traders in the market it may be possible to

make advantage of the use of Options. A game theoretic analysis of Option contracts has

been addressed previously (see [17, 104]) by separating the decision process when trading

Options into the valuation of the payoffs and the analysis of strategic interactions. This

approach may be useful for trading agents which have interest in forming coalitions when

participating in the market (such as for example, in a Supply Chain).

7.7 Final Remarks

In general, it may be possible to adapt my Option trading framework to any system that

can be modelled as a market where some resource is traded. Although the constraints in

the presented model did not allow more complex agent behaviour, the development of more

complex strategies and better reasoning mechanisms can increase the utility of my proposed

model. However, the developed Option market allowed me to address the stated research

questions.

Although the developed framework is focused on the trading of European Option con-

tracts, it should be possible to use a similar approach to provide other kind of Derivatives to

Market–Based systems. This can be achieved by using a parallel market approach, where



148 CHAPTER 7. FUTURE WORK AND CONCLUSION

the software market where the Derivatives are traded is treated as a separate market from

the primary market where the resources are traded.

Using this kind of parallel market mechanism it should be possible to develop markets

where contracts such as Swaps and Futures are traded using similar auctioning mechanisms

as in typical Market–Based systems which are based on auctions. An interesting addition

would also be the creation of agent’s coalitions which join efforts for maximizing a portfolio

of resources by trading on different markets. With this coalition approach, each agent would

be able to concentrate its efforts in only one market. y Chain Management and the different

problems which will try to be corrected by using the Option Trading framework. A review

of the current research into the solution of such problem will be developed.



Appendix A

Statistics Background

This appendix contains a revision of some of the concepts of Statistics that are used through-

out this thesis. The aim of this appendix is to provide a brief introduction of these concepts

for the reader who is not familiar with the statistic concepts used throughout this thesis. The

majority of the information presented in this appendix was obtained from [40, 46, 73, 89].

A.1 Central Moments

When the values of a random variable X have a strong central tendency (i.e., they tend to

cluster around some particular value), the variable can be described by a set of numbers

called the central moments.

The most common central moments are the mean and the variance of a distribution.

These central moments will be described now, along with the skewness.

A.1.1 Mean

The arithmetic mean of a distribution X is its first central moment. It is also called the

expected value E[X] of the distribution. The arithmetic mean of a discrete distribution X

for xi ∈ X and N is the total number of elements in X can be obtained with the formula:

x̄ =
1
N

N∑
i=1

xi (A.1)

The arithmetic mean is a measure of central tendency. The unit of the arithmetic mean is

the same as the units of the elements in the distribution. The arithmetic mean is greatly

influenced by outlier values (values that lie very far away from the central tendency). Those

values can be characterized by higher moments shown next.
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A.1.2 Variance

The variance of a distribution X is its second central moment. The variance indicates the

width or variability of the values around the mean. The variance σ2 of a discrete finite

distribution can be obtained with the formula:

σ2 =
1
N

N∑
i=1

(xi − x)2 (A.2)

for a distribution X with N total elements, a mean of x.

The variance is used to describe how spread are the values of a distribution around its

mean. However, the unit of measurement of the variance is the square of the original units

of the distribution. Therefore, usually the standard deviation σ is used as the most common

measure of statistical dispersion. The standard deviation σ is calculated as:

σ =

√√√√ 1
N

N∑
i=1

(xi − x)2 (A.3)

for a distribution X with N total elements, a mean of x.

A.1.3 Skewness

The skewness of a distribution is its third central moment. The skewness measures the

asymmetry of the distribution around its mean. The skewness is a non–dimensional value

which is used to characterise the shape of the distribution. That is, it is not measured in any

specific types of units as the mean, variance or the standard deviation.

The skewness γ of a distribution X with N total elements, a mean of x and a standard

deviation of σ is calculated with the formula:

γ =
1
N

N∑
j=1

[
xj − x

σ

]3

(A.4)

A positive value of skewness indicates that the tail of a distribution extends to the right of

the x axis and a negative skewness indicates that the tail of a distribution extends to the left

of the x axis (see Figure A.1).

.

A.2 Uniform Distribution

A random variable X is said to follow a Uniform distribution when all its values are equally

probable. That is, when picking randomly one of the values of the distribution, all the
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Figure A.1: Graphical representation of a histogram with (a) Negative skewness and (b) Positive skewness

values that conform the distribution have the same probability of being chosen. A uniform

distribution is characterised by a location parameter a and a scale parameter b. The location

parameter indicates the minimum value of the distribution and the scale parameters indicates

the maximum value. Thus, the probability density function (p.d.f.) of a Uniform distribution

X with a range of values [a, b] is:

P [x] =
1

b− a
(A.5)

for any value of x ∈ X .

A.3 Normal Distribution

The Normal distribution or Gaussian Distribution is a family of continuous probability dis-

tributions. Each member of the family is defined by two parameters, the mean µ and the

variance σ2 (the square of the standard deviation σ). The Normal distribution which has a

mean of µ = 0 and a variance of σ2 = 1 is called the standard Normal distribution. Under

these assumptions, a real-valued random variable X ∈ R is said to be Normally distributed

with mean µ (also called the expected value) and variance σ2 using the formula:

X ∼ N(µ, σ2) (A.6)

A.3.1 Probability Density Function

The probability density function (p.d.f.) of a Normal distribution is called the Gaussian

function.1 The function is defined as:

ϕµ,σ2(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ R (A.7)

1After the mathematician Carl F. Gauss.
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The graphical representation of this function is the bell curve which is shown in Figure A.2.

The p.d.f of the standard Normal distribution is defined as:

ϕ(x) = ϕ0,1(x) =
1√
2π

e−
x2

2 , x ∈ R (A.8)

The integral of the Normal p.d.f. ϕµ,σ2(x) over the Real line is equal to 1, specifically:∫ ∞

−∞
ϕµ,σ2(u) du = 1 (A.9)

This is, the area under the curve of the Normal distribution function (depicted in Figure

A.2) will be equal to 1.

Figure A.2: Graphical representation of the Normal Probability Density Function.

A.3.2 Cumulative Distribution Function

The cumulative distribution function (c.d.f) of a Normal probability distribution denoted by

Φµ,σ2(x) and evaluated at x, indicates the probability that a random variable X with such

distribution has a value of less or equal to x, that is:

P [X ≤ x] = Φµ,σ2(x) (A.10)

when X is a random variable which follows a Normal distribution with mean µ and variance

σ2. The value of Φµ,σ2(x) is obtained with the formula:∫ x

−∞
ϕµ,σ2(u) du = 1 (A.11)

that calculates the area under the curve within the range of [−∞, x] of the Normal distribu-

tion function (the grey area in Figure A.3).
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Figure A.3: Graphical representation of the Normal cumulative distribution function.

A.3.2.1 Standard Normal Cumulative Distribution

The c.d.f of a variable X that follows the standard Normal distribution (with µ = 0 and

σ2 = 1) is called the standard Normal c.d.f. and is defined as:

Φ(x) = Φ0,1(x) (A.12)

The complement of the standard Normal c.d.f. is defined as 1 − Φ(x) and represents the

complement of the cumulative probability obtained by Φ(x). That is

if Φ(x) = P [X ≤ x] (A.13)

then 1− Φ(x) = P [X > x]

Thus if Φ(x) is the grey area under the curve in Figure A.3 then 1−Φ(x) will be the white

are under the curve of the same figure.

A.3.2.2 Distribution Standardization

When looking for the probability value of P [X ≤ y] in the cumulative density function of

the variable X that is different to the standard Normal c.d.f., the value can be standardised

to obtain the probability value using the standard Normal c.d.f. The standardised value of y

is obtained with the formula:

z =
y − µ

σ
(A.14)

Where µ is the mean of the non-standard Normal distribution function and σ is is the square

root of its variance (i.e., its standard deviation). After doing this, then it is possible to obtain

the value of the probability P [X ≤ y] using the standard Normal c.d.f. Φ(z).
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A.3.3 Confidence Intervals

When working with random data samples it is useful to adopt a level of confidence. This

confidence interval indicates that when measuring the random variable several times and es-

timates are made from these samples, the resulting values will lie within the true population

in the established confidence level.

In a random variable X that follows a Normal distribution, 68% of all the values will

like within one standard deviation 1σ, similarly 95% of the values will lie within 2σ and

99.7% of the values will lie within 3σ.

A.3.4 Log–Normal Distribution

A log-Normal distribution is a distribution whose natural logarithm is Normally distributed.

That is, a real-valued random variable X is said to be log–Normally distributed if ln(X) is

Normally distributed.



Appendix B

Normality Statistical Analysis Data
Tables

This appendix presents the detailed results of the Shapiro-Wilk statistical test used to anal-

yse the returns of the strategies obtained from the simulation experiments.

Each table details the Shapiro-Wilk analysis results of the experiments for a different

price series. For each Table, each row in the tables groups the statistics for an specific test

case with the forecasting parameter specified in the first column; the rest of the columns

show the p–value for test and the and the W Shapiro-Wilk statistic, a higher p–value indi-

cates that there is more probability that the tested data series is Normally distributed.
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Shapiro-Wilk test results for the test cases using Microsoft asset price.
OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise

α = 0 p-value 2.38× 10−42 3.39× 10−45 3.27× 10−40 4.64× 10−41 5.50× 10−42 3.40× 10−42

W 0.568 0.477 0.627 0.605 0.579 0.572
α = 0.2 p-value 2.38× 10−42 4.05× 10−45 3.11× 10−40 3.64× 10−41 5.71× 10−42 3.35× 10−42

W 0.568 0.479 0.627 0.602 0.579 0.572
α = 0.4 p-value 2.54× 10−42 7.14× 10−45 1.70× 10−40 2.77× 10−41 4.18× 10−42 2.69× 10−42

W 0.569 0.488 0.62 0.598 0.575 0.569
α = 0.6 p-value 2.82× 10−42 1.48× 10−43 1.66× 10−41 2.04× 10−41 2.25× 10−42 1.63× 10−42

W 0.57 0.531 0.592 0.595 0.567 0.563
α = 0.8 p-value 1.71× 10−42 4.53× 10−37 1.27× 10−42 1.43× 10−41 4.89× 10−41 2.58× 10−41

W 0.564 0.703 0.56 0.59 0.605 0.598
α = 1.0 p-value 1.72× 10−42 1.58× 10−37 1.44× 10−42 1.13× 10−41 1.44× 10−40 1.83× 10−41

W 0.564 0.692 0.561 0.588 0.618 0.593
Shapiro-Wilk test results for the test cases using Dell asset price.

OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise
α = 0 p-value 1.08× 10−17 4.39× 10−47 6.58× 10−29 1.42× 10−16 9.73× 10−16 1.95× 10−15

W 0.945 0.408 0.843 0.952 0.956 0.958
α = 0.2 p-value 1.37× 10−17 7.30× 10−47 1.86× 10−28 1.97× 10−16 2.06× 10−15 1.52× 10−15

W 0.946 0.416 0.849 0.953 0.958 0.957
α = 0.4 p-value 1.08× 10−17 3.25× 10−46 6.40× 10−27 1.84× 10−16 4.81× 10−15 2.12× 10−15

W 0.945 0.441 0.867 0.952 0.96 0.958
α = 0.6 p-value 2.35× 10−18 1.09× 10−43 3.33× 10−22 1.88× 10−16 1.38× 10−14 1.25× 10−15

W 0.941 0.527 0.914 0.952 0.962 0.957
α = 0.8 p-value 2.17× 10−18 2.72× 10−38 2.56× 10−14 2.16× 10−16 8.90× 10−18 5.64× 10−18

W 0.941 0.675 0.963 0.953 0.945 0.944
α = 1.0 p-value 2.21× 10−18 7.42× 10−36 1.07× 10−13 1.55× 10−17 8.47× 10−18 2.62× 10−18

W 0.941 0.728 0.966 0.946 0.945 0.942
Shapiro-Wilk test results for the test cases using IBM asset price.

OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise
α = 0 p-value 2.86× 10−21 2.40× 10−41 4.10× 10−24 2.01× 10−21 3.21× 10−21 2.85× 10−21

W 0.921 0.597 0.897 0.92 0.921 0.921
α = 0.2 p-value 2.78× 10−21 1.48× 10−41 2.07× 10−24 2.43× 10−21 2.94× 10−21 2.69× 10−21

W 0.921 0.591 0.894 0.921 0.921 0.921
α = 0.4 p-value 2.54× 10−21 3.33× 10−40 8.73× 10−24 2.77× 10−21 2.30× 10−21 2.07× 10−21

W 0.921 0.628 0.9 0.921 0.92 0.92
α = 0.6 p-value 2.09× 10−21 8.16× 10−37 3.40× 10−22 4.23× 10−21 2.10× 10−21 2.02× 10−21

W 0.92 0.708 0.914 0.922 0.92 0.92
α = 0.8 p-value 2.24× 10−21 5.68× 10−22 1.74× 10−21 4.34× 10−21 5.72× 10−21 3.96× 10−21

W 0.92 0.916 0.919 0.922 0.923 0.922
α = 1.0 p-value 2.00× 10−21 7.49× 10−21 1.85× 10−21 3.52× 10−21 9.76× 10−21 1.93× 10−21

W 0.92 0.924 0.92 0.922 0.925 0.92

Table B.1: Results of applying the Shapiro-Wilk normality test to the returns obtained from the α-Perfect
forecasting set of experiments using the Microsoft, Dell and IBM price series as the price of the asset.
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Shapiro-Wilk test results for the test cases using Random A asset price.
OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise

α = 0 p-value 0.544 1.57× 10−37 0.029 0.464 0.521 0.544
W 0.998 0.692 0.996 0.998 0.998 0.998

α = 0.2 p-value 0.551 1.04× 10−39 0.001 0.511 0.556 0.566
W 0.998 0.64 0.994 0.998 0.998 0.998

α = 0.4 p-value 0.551 4.74× 10−39 0.002 0.548 0.567 0.577
W 0.998 0.657 0.994 0.998 0.998 0.998

α = 0.6 p-value 0.520 6.07× 10−33 0.163 0.595 0.503 0.514
W 0.998 0.782 0.997 0.998 0.998 0.998

α = 0.8 p-value 0.506 1.82× 10−04 0.628 0.554 0.649 0.650
W 0.998 0.993 0.998 0.998 0.999 0.999

α = 1.0 p-value 0.523 0.699 0.534 0.327 0.777 0.434
W 0.998 0.999 0.998 0.998 0.999 0.998

Shapiro-Wilk test results for the test cases using Random B asset price.
OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise

α = 0 p-value 1.19× 10−33 6.04× 10−43 6.47× 10−21 1.83× 10−26 6.30× 10−29 1.21× 10−29

W 0.77 0.55 0.924 0.872 0.842 0.833
α = 0.2 p-value 4.43× 10−34 2.28× 10−42 1.55× 10−26 1.65× 10−27 1.23× 10−29 1.81× 10−30

W 0.762 0.567 0.872 0.86 0.833 0.821
α = 0.4 p-value 5.41× 10−35 2.42× 10−39 3.94× 10−35 2.70× 10−29 1.47× 10−29 1.37× 10−30

W 0.745 0.65 0.742 0.838 0.834 0.819
α = 0.6 p-value 5.50× 10−35 4.58× 10−23 8.61× 10−35 4.82× 10−27 5.85× 10−26 3.32× 10−28

W 0.745 0.906 0.749 0.866 0.878 0.852
α = 0.8 p-value 4.05× 10−35 1.11× 10−09 4.60× 10−35 1.69× 10−24 8.16× 10−18 8.35× 10−22

W 0.743 0.98 0.744 0.893 0.945 0.917
α = 1.0 p-value 2.21× 10−35 1.38× 10−09 2.43× 10−35 6.60× 10−25 2.40× 10−16 3.38× 10−23

W 0.738 0.981 0.738 0.889 0.953 0.905

Table B.2: Results of applying the Shapiro-Wilk normality test to the returns obtained from the α-Perfect
forecasting set of experiments using the Random A and Random B price series as the price of the asset.
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Shapiro-Wilk test results for the test cases using Microsoft asset price
OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise

n = 15 p-value 1.73× 10−42 1.28× 10−37 1.51× 10−42 1.12× 10−41 2.34× 10−40 1.35× 10−41

W 0.564 0.69 0.562 0.587 0.624 0.59
n = 30 p-value 1.70× 10−42 1.10× 10−37 1.44× 10−42 1.34× 10−41 1.45× 10−40 1.84× 10−41

W 0.564 0.689 0.561 0.59 0.618 0.593
n = 45 p-value 1.67× 10−42 9.66× 10−38 1.36× 10−42 1.11× 10−41 5.37× 10−39 2.20× 10−42

W 0.563 0.688 0.561 0.587 0.658 0.567
n = 60 p-value 1.65× 10−42 9.11× 10−38 1.27× 10−42 1.38× 10−41 7.17× 10−40 9.71× 10−42

W 0.563 0.687 0.56 0.59 0.636 0.586
n = 75 p-value 1.61× 10−42 8.71× 10−38 1.21× 10−42 1.23× 10−41 1.49× 10−39 7.88× 10−42

W 0.563 0.687 0.559 0.589 0.644 0.583
n = 90 p-value 1.59× 10−42 7.12× 10−38 1.20× 10−42 1.32× 10−41 7.64× 10−40 1.29× 10−41

W 0.563 0.685 0.559 0.589 0.637 0.589
Shapiro-Wilk test results for the test cases using Dell asset price

OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise
n = 15 p-value 2.23× 10−18 4.54× 10−39 1.34× 10−13 4.90× 10−18 3.87× 10−15 1.49× 10−20

W 0.941 0.656 0.966 0.943 0.959 0.927
n = 30 p-value 2.40× 10−18 2.70× 10−37 1.94× 10−13 2.95× 10−18 4.38× 10−13 3.25× 10−23

W 0.941 0.698 0.967 0.942 0.968 0.905
n = 45 p-value 2.50× 10−18 5.46× 10−36 1.41× 10−13 3.08× 10−18 2.07× 10−13 3.58× 10−23

W 0.942 0.725 0.966 0.942 0.967 0.905
n = 60 p-value 2.63× 10−18 4.62× 10−35 9.79× 10−14 3.22× 10−18 5.44× 10−14 2.58× 10−22

W 0.942 0.744 0.966 0.942 0.964 0.913
n = 75 p-value 2.54× 10−18 2.00× 10−34 6.24× 10−14 3.42× 10−18 3.85× 10−14 2.69× 10−22

W 0.942 0.756 0.965 0.942 0.964 0.913
n = 90 p-value 2.33× 10−18 1.13× 10−33 5.81× 10−14 3.43× 10−18 1.35× 10−14 6.11× 10−22

W 0.941 0.77 0.965 0.942 0.962 0.916
Shapiro-Wilk test results for the test cases using IBM asset price

OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise
n = 15 p-value 2.04× 10−21 7.35× 10−21 1.94× 10−21 3.12× 10−21 2.63× 10−20 5.68× 10−22

W 0.92 0.924 0.92 0.921 0.928 0.916
n = 30 p-value 2.04× 10−21 8.21× 10−21 1.91× 10−21 3.13× 10−21 5.70× 10−21 9.77× 10−22

W 0.92 0.925 0.92 0.921 0.923 0.917
n = 45 p-value 2.03× 10−21 9.34× 10−21 1.82× 10−21 2.55× 10−21 3.65× 10−20 1.69× 10−22

W 0.92 0.925 0.92 0.921 0.929 0.911
n = 60 p-value 2.01× 10−21 9.56× 10−21 1.82× 10−21 1.58× 10−21 1.77× 10−18 8.94× 10−24

W 0.92 0.925 0.92 0.919 0.941 0.9
n = 75 p-value 2.02× 10−21 6.73× 10−21 1.80× 10−21 1.63× 10−21 2.13× 10−18 6.28× 10−24

W 0.92 0.924 0.92 0.919 0.941 0.898
n = 90 p-value 2.03× 10−21 4.01× 10−21 1.73× 10−21 1.38× 10−21 4.61× 10−18 3.18× 10−24

W 0.92 0.922 0.919 0.919 0.943 0.896

Table B.3: Results of applying the Shapiro-Wilk normality test to the returns obtained from the SMAn fore-
casting set of experiments using the Microsoft, Dell and IBM price series as the price of the asset.
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Shapiro-Wilk test results for the test cases using Random A asset price
OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise

n = 15 p-value 0.513 0.789 0.517 0.329 0.789 0.086
W 0.998 0.999 0.998 0.998 0.999 0.997

n = 30 p-value 0.512 0.799 0.515 0.330 0.694 0.011
W 0.998 0.999 0.998 0.998 0.999 0.996

n = 45 p-value 0.511 0.747 0.510 0.351 0.692 0.006
W 0.998 0.999 0.998 0.998 0.999 0.995

n = 60 p-value 0.515 0.735 0.491 0.341 0.701 0.002
W 0.998 0.999 0.998 0.998 0.999 0.995

n = 75 p-value 0.512 0.769 0.486 0.352 0.732 3.20× 10−04

W 0.998 0.999 0.998 0.998 0.999 0.993
n = 90 p-value 0.509 0.745 0.473 0.354 0.771 1.55× 10−04

W 0.998 0.999 0.998 0.998 0.999 0.992
Shapiro-Wilk test results for the test cases using Random B asset price

OTMaxW OTMinR OTMix OTRnd ATSpec ATNoise
n = 15 p-value 2.83× 10−35 1.30× 10−09 4.59× 10−35 1.56× 10−25 8.80× 10−15 7.20× 10−25

W 0.74 0.98 0.744 0.882 0.961 0.889
n = 30 p-value 3.51× 10−35 1.88× 10−09 3.87× 10−35 1.85× 10−26 3.49× 10−11 8.40× 10−30

W 0.742 0.981 0.742 0.872 0.975 0.831
n = 45 p-value 3.61× 10−35 1.97× 10−09 3.78× 10−35 1.57× 10−26 1.46× 10−11 4.50× 10−30

W 0.742 0.981 0.742 0.872 0.974 0.827
n = 60 p-value 3.87× 10−35 2.56× 10−09 3.99× 10−35 8.80× 10−27 3.74× 10−11 1.08× 10−30

W 0.742 0.981 0.743 0.869 0.976 0.818
n = 75 p-value 3.79× 10−35 3.53× 10−09 3.93× 10−35 2.05× 10−27 2.20× 10−10 2.77× 10−32

W 0.742 0.982 0.742 0.861 0.978 0.793
n = 90 p-value 3.63× 10−35 5.16× 10−09 3.84× 10−35 1.01× 10−26 2.65× 10−10 2.12× 10−33

W 0.742 0.982 0.742 0.869 0.978 0.774

Table B.4: Results of applying the Shapiro-Wilk normality test to the returns obtained from the SMAn fore-
casting set of experiments using the Random A and Random B price series as the price of the asset.
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Appendix C

Trading Volume Analysis Data Tables

This appendix contains the tables with the data used to generate the figures used in Section

6.4 for the trading volume analysis. The tables show the values of the RC
H , RC

W and RH
E

ratios which are defined in Section 5.5.3. Table C.3 shows the ratios obtained from the set

of experiments A, which used the α-Perfect forecasting function. Table C.6 shows the ratios

obtained from the set of experiments B, which used the SMAn forecasting function. The

data is included as an appendix because it forms the basis of the presented results.
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Offers volumes for the experiments using the Microsoft price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

α = 0 7558 8669 27300 6664 15387 9666 22433 21978
α = 0.2 8579 11085 30269 5937 16935 11043 22426 21968
α = 0.4 10884 15856 35082 4829 19389 14080 22411 21983
α = 0.6 15700 21877 41560 3370 22248 19123 22423 21974
α = 0.8 38895 10910 48087 1800 40575 9302 22507 21852
α = 1 41154 8796 49248 702 42514 7436 22602 21776

Offers volumes for the experiments using the Dell price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

α = 0 5458 8091 24508 6388 15051 8014 22251 22176
α = 0.2 6226 9717 29293 4534 18024 7893 22253 22181
α = 0.4 7800 12863 34887 2009 21729 8238 22236 22198
α = 0.6 12029 19265 41984 244 26925 10975 22255 22192
α = 0.8 21129 27078 49346 27 32748 16351 22212 22232
α = 1 23063 26937 49950 50 34124 15876 22205 22240

Offers volumes for the experiments using the IBM price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

α = 0 5439 5881 13616 14676 7623 12520 22717 21571
α = 0.2 5688 7182 15763 15806 8412 14376 22844 21468
α = 0.4 6332 9454 17217 16757 8990 16617 22862 21410
α = 0.6 8635 14332 19528 18903 10446 21087 22905 21378
α = 0.8 14502 32337 23707 25139 16729 31577 22626 21725
α = 1 12814 37186 22850 27150 16872 33128 22499 21876

Offers volumes for the experiments using the Random A price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

α = 0 4931 5500 10096 14639 5797 12037 22838 21440
α = 0.2 5160 6493 11421 17185 6123 14485 22948 21333
α = 0.4 5845 8147 11849 20786 6196 17814 23026 21210
α = 0.6 7473 12150 11133 25373 6030 22969 23017 21227
α = 0.8 8086 32430 11431 35024 6883 37482 22748 21583
α = 1 5081 44919 10660 39340 7350 42650 22508 21876

Offers volumes for the experiments using the Random B price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

α = 0 13094 10150 30407 7243 19349 12238 24943 18793
α = 0.2 15690 11626 33048 6797 21233 13415 25170 18559
α = 0.4 21492 11628 36290 6465 25536 13286 25590 17998
α = 0.6 30705 10501 40270 6320 32976 11508 25312 18339
α = 0.8 40439 9439 43793 6164 40726 9227 24430 19456
α = 1 42019 7981 44248 5752 42528 7472 24587 19256

Table C.1: Values of the volumes of offers submitted by the Option-trading strategies in set of experiments
using the the α-Perfect forecasting function.
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Cleared offers volumes for the experiments using the Microsoft price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

α = 0 4051 8100 2255 14318 5599 2465 6284 8732 2833 12644 14867 6397
α = 0.2 4564 10381 2886 16249 5068 2290 6744 10007 3132 12651 14754 6372
α = 0.4 5732 14571 3928 19707 4158 2123 7422 12395 3615 12724 14461 6370
α = 0.6 7351 18970 4685 23932 2864 1820 7252 15556 4234 12936 14081 6415
α = 0.8 5829 9978 3607 9823 1529 1362 5498 8163 3443 12443 13921 6812
α = 1 4479 7986 2747 7574 279 279 4125 6448 2479 12381 13845 6751

Cleared offers volumes for the experiments using the Dell price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

α = 0 2837 7509 2444 11373 4374 1475 5779 6507 2568 13213 14811 6411
α = 0.2 2889 9200 2975 12569 3091 974 6017 6681 2533 12674 15177 6413
α = 0.4 3370 12202 4005 14322 1374 501 6594 7260 2748 12071 15522 6509
α = 0.6 5003 17627 5441 17484 197 100 8239 9198 3467 11807 15511 6661
α = 0.8 6879 22454 4522 19574 7 6 9444 10917 4297 12210 14729 6752
α = 1 3314 17381 3233 16809 2 2 5599 7566 3779 12876 13649 6516

Cleared offers volumes for the experiments using the IBM price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

α = 0 4875 4288 1516 12181 10488 3970 6575 9194 3429 13848 13508 6244
α = 0.2 5152 5243 1726 14126 11059 3988 7078 10418 3668 13761 13396 6184
α = 0.4 5776 6667 2256 15381 10975 4229 7365 11390 4167 13730 13221 6142
α = 0.6 7439 9308 3452 16621 10501 4509 7877 12727 5084 13725 13127 6135
α = 0.8 8713 14511 5282 16086 8222 4441 9738 12396 5226 13635 13043 6267
α = 1 4047 11225 2999 10221 1997 1692 5271 6879 2697 13477 12914 6206

Cleared offers volumes for the experiments using the Random A price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

α = 0 4593 3383 1260 9447 9035 3598 5330 7633 2993 13868 13187 6157
α = 0.2 4923 3829 1298 10822 9749 3724 5650 8599 3177 13836 13053 6066
α = 0.4 5635 4436 1472 11255 9924 3850 5664 9119 3344 13798 12873 5974
α = 0.6 7041 5521 2102 10169 8831 3881 5157 9108 3730 13798 12704 5942
α = 0.8 6734 8604 3056 9458 5888 2892 5185 8202 3491 13844 12527 6011
α = 1 2258 6753 1828 6029 1654 1131 3078 4266 1688 13795 12488 6042

Cleared offers volumes for the experiments using the Random B price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

α = 0 5677 8714 3442 13898 5494 2389 6754 10362 4192 12055 13814 5438
α = 0.2 6241 9909 3991 14629 4891 2158 6728 11201 4547 11987 13585 5379
α = 0.4 6441 9823 4363 13663 4353 2148 6422 10969 4956 11755 13136 5320
α = 0.6 6404 8682 4406 10562 3946 2683 6190 9249 4925 11828 13107 5487
α = 0.8 5222 6932 3407 6903 2659 2106 4981 6316 3281 12080 13279 5782
α = 1 2994 4839 2081 4708 808 774 2992 3993 1979 12034 13088 5672

Table C.2: Values of the volumes of cleared offers and exercised hold Options by the Option-trading strategies
in set of experiments using the the α-Perfect forecasting function.
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Ratios for the experiments using the Microsoft price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

α = 0 0.54 0.93 0.28 0.52 0.84 0.44 0.41 0.90 0.32 0.56 0.68 0.43
α = 0.2 0.53 0.94 0.28 0.54 0.85 0.45 0.40 0.91 0.31 0.56 0.67 0.43
α = 0.4 0.53 0.92 0.27 0.56 0.86 0.51 0.38 0.88 0.29 0.57 0.66 0.44
α = 0.6 0.47 0.87 0.25 0.58 0.85 0.64 0.33 0.81 0.27 0.58 0.64 0.46
α = 0.8 0.15 0.91 0.36 0.20 0.85 0.89 0.14 0.88 0.42 0.55 0.64 0.49
α = 1 0.11 0.91 0.34 0.15 0.40 1.00 0.10 0.87 0.38 0.55 0.64 0.49

Ratios for the experiments using the Dell price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

α = 0 0.52 0.93 0.33 0.46 0.68 0.34 0.38 0.81 0.39 0.59 0.67 0.43
α = 0.2 0.46 0.95 0.32 0.43 0.68 0.32 0.33 0.85 0.38 0.57 0.68 0.42
α = 0.4 0.43 0.95 0.33 0.41 0.68 0.36 0.30 0.88 0.38 0.54 0.70 0.42
α = 0.6 0.42 0.91 0.31 0.42 0.81 0.51 0.31 0.84 0.38 0.53 0.70 0.43
α = 0.8 0.33 0.83 0.20 0.40 0.26 0.90 0.29 0.67 0.39 0.55 0.66 0.46
α = 1 0.14 0.65 0.19 0.34 0.03 1.00 0.16 0.48 0.50 0.58 0.61 0.48

Ratios for the experiments using the IBM price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

α = 0 0.90 0.73 0.35 0.89 0.71 0.38 0.86 0.73 0.37 0.61 0.63 0.46
α = 0.2 0.91 0.73 0.33 0.90 0.70 0.36 0.84 0.72 0.35 0.60 0.62 0.46
α = 0.4 0.91 0.71 0.34 0.89 0.65 0.39 0.82 0.69 0.37 0.60 0.62 0.46
α = 0.6 0.86 0.65 0.37 0.85 0.56 0.43 0.75 0.60 0.40 0.60 0.61 0.47
α = 0.8 0.60 0.45 0.36 0.68 0.33 0.54 0.58 0.39 0.42 0.60 0.60 0.48
α = 1 0.32 0.30 0.27 0.45 0.07 0.85 0.31 0.21 0.39 0.60 0.59 0.48

Ratios for the experiments using the Random A price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

α = 0 0.93 0.62 0.37 0.94 0.62 0.40 0.92 0.63 0.39 0.61 0.62 0.47
α = 0.2 0.95 0.59 0.34 0.95 0.57 0.38 0.92 0.59 0.37 0.60 0.61 0.46
α = 0.4 0.96 0.54 0.33 0.95 0.48 0.39 0.91 0.51 0.37 0.60 0.61 0.46
α = 0.6 0.94 0.45 0.38 0.91 0.35 0.44 0.86 0.40 0.41 0.60 0.60 0.47
α = 0.8 0.83 0.27 0.36 0.83 0.17 0.49 0.75 0.22 0.43 0.61 0.58 0.48
α = 1 0.44 0.15 0.27 0.57 0.04 0.68 0.42 0.10 0.40 0.61 0.57 0.48

Ratios for the experiments using the Random B price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

α = 0 0.43 0.86 0.39 0.46 0.76 0.43 0.35 0.85 0.40 0.48 0.74 0.39
α = 0.2 0.40 0.85 0.40 0.44 0.72 0.44 0.32 0.83 0.41 0.48 0.73 0.40
α = 0.4 0.30 0.84 0.44 0.38 0.67 0.49 0.25 0.83 0.45 0.46 0.73 0.40
α = 0.6 0.21 0.83 0.51 0.26 0.62 0.68 0.19 0.80 0.53 0.47 0.71 0.42
α = 0.8 0.13 0.73 0.49 0.16 0.43 0.79 0.12 0.68 0.52 0.49 0.68 0.44
α = 1 0.07 0.61 0.43 0.11 0.14 0.96 0.07 0.53 0.50 0.49 0.68 0.43

Table C.3: Values of the RC
W , RC

H and RH
E ratios obtained by the Option trading strategies in set of experiments

using the the α-Perfect forecasting function.
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Offers volumes for the experiments using the Microsoft price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

n = 15 40062.56 9687 48639 1111 42041 7709 22512 21873
n = 30 38956.22 10444 47813 1587 41029 8371 22509 21878
n = 45 37919.34 11131 47035 2015 40156 8894 22517 21870
n = 60 36858.92 11941 46476 2324 39068 9732 22486 21908
n = 75 35771.48 12479 45701 2549 38066 10184 22443 21937
n = 90 35086.56 12663 45050 2700 37586 10164 22452 21934

Offers volumes for the experiments using the Dell price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

n = 15 21607.66 28392 49455 545 35867 14133 22236 22209
n = 30 21603.68 28395 49079 921 35452 14548 22236 22219
n = 45 21302.14 28696 48510 1490 34654 15346 22218 22234
n = 60 21730.28 28266 47925 2075 33853 16147 22205 22238
n = 75 21045.96 28948 47187 2813 33039 16961 22212 22238
n = 90 20842.34 29149 46504 3496 32289 17711 22222 22236

Offers volumes for the experiments using the IBM price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

n = 15 13394.88 36605 22679 27321 16794 33206 22543 21814
n = 30 13415.68 36584 22489 27511 16690 33310 22554 21795
n = 45 13620.56 36379 22462 27538 16743 33257 22614 21734
n = 60 13836.92 36113 22623 27327 16916 33034 22586 21753
n = 75 13159.28 36291 22131 27319 16177 33273 22605 21754
n = 90 11784.28 36866 20987 27663 14802 33848 22639 21708

Offers volumes for the experiments using the Random A price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

n = 15 6422.26 43578 10681 39319 7772 42228 22500 21866
n = 30 6758.94 43241 10792 39208 7944 42056 22568 21798
n = 45 6842.18 42758 10582 39068 7904 41746 22554 21795
n = 60 6635.40 41715 10192 38758 7525 41425 22607 21744
n = 75 7113.44 39437 10326 38074 7879 40521 22659 21689
n = 90 7498.80 37101 10606 37394 8485 39415 22693 21635

Offers volumes for the experiments using the Random B price series
OTMaxW OTMinR OTMix OTRnd

volOW volOH volOW volOH volOW volOH volOW volOH

n = 15 41614.92 8385 44346 5654 41869 8131 24444 19461
n = 30 41236.22 8764 43529 6471 41621 8379 24424 19474
n = 45 40371.70 9228 42369 7281 40685 8965 24327 19611
n = 60 39135.54 9214 41263 7687 39708 9242 24336 19588
n = 75 37162.56 9387 40145 8255 38741 9659 24393 19521
n = 90 35086.00 9514 39068 8932 37583 10317 24220 19744

Table C.4: Values of the volumes of offers submitted by the Option-trading strategies in set of experiments
using the the SMAn forecasting function.
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Cleared offers volumes for the experiments using the Microsoft price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

n = 15 4541 8608 2855 7874 418 410 4447 6404 2551 12431 13863 6783
n = 30 4658 8930 2964 8140 480 465 4597 6596 2631 12454 13842 6770
n = 45 4536 9091 2935 8341 459 435 4582 6594 2623 12495 13811 6763
n = 60 4666 9452 2897 8847 416 389 4629 7007 2611 12533 13799 6734
n = 75 4739 9707 2957 9083 403 365 4698 7188 2663 12555 13777 6738
n = 90 4651 9724 2994 8990 400 364 4663 6987 2697 12556 13749 6724

Cleared offers volumes for the experiments using the Dell price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

n = 15 2798 17507 3223 17454 11 8 5578 7641 3780 12923 13595 6423
n = 30 2717 16789 3166 16740 18 12 5333 7358 3700 12934 13559 6419
n = 45 2631 16202 3099 16111 27 20 5141 7071 3663 12931 13514 6399
n = 60 2787 15778 3099 15746 42 29 4946 7096 3651 12942 13505 6402
n = 75 2655 15653 3031 15535 56 36 4923 6894 3611 12981 13491 6412
n = 90 2720 15522 3020 15294 73 49 4866 6816 3618 12994 13464 6401

Cleared offers volumes for the experiments using the IBM price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

n = 15 4623 11121 3343 10347 2480 2006 5542 7481 3078 13479 12910 6216
n = 30 4492 10880 3258 10214 2453 1952 5452 7405 3032 13476 12895 6187
n = 45 4392 10606 3146 10022 2414 1879 5279 7270 2928 13471 12875 6180
n = 60 4305 10461 3113 9907 2339 1844 5194 7186 2899 13453 12872 6176
n = 75 4420 10639 3203 10110 2329 1836 5194 7355 2947 13481 12881 6183
n = 90 4489 10809 3258 10339 2302 1787 5194 7580 3003 13505 12837 6166

Cleared offers volumes for the experiments using the Random A price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

n = 15 3156 6587 2323 6024 2382 1564 3561 5071 2228 13785 12487 6065
n = 30 3270 6521 2369 5980 2429 1573 3589 5170 2263 13779 12498 6084
n = 45 3115 6129 2279 5512 2261 1447 3298 4799 2125 13751 12487 6053
n = 60 3095 5937 2172 5273 2161 1367 3049 4590 2001 13761 12490 6036
n = 75 3511 6091 2179 5207 2346 1428 3181 4692 2027 13726 12495 6024
n = 90 3592 6101 2245 5046 2447 1496 3374 4650 2105 13717 12530 6046

Cleared offers volumes for the experiments using the Random B price series
OTMaxW OTMinR OTMix OTRnd

volCW volCH volHE volCW volCH volHE volCW volCH volHE volCW volCH volHE

n = 15 3620 5581 2419 5308 1180 946 3490 4595 2265 12102 13165 5813
n = 30 3560 5428 2405 5075 1263 954 3478 4422 2243 12131 13132 5772
n = 45 3729 5588 2513 5256 1387 1058 3555 4620 2321 12183 13128 5792
n = 60 3919 5818 2613 5540 1511 1183 3752 4959 2480 12214 13138 5789
n = 75 3991 5869 2649 5692 1691 1319 3973 5226 2644 12214 13085 5751
n = 90 3974 5859 2669 5733 1721 1333 4099 5407 2718 12315 13135 5838

Table C.5: Values of the volumes of cleared offers and exercised hold Options by the Option-trading strategies
in set of experiments using the the SMAn forecasting function.
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Ratios for the experiments using the Microsoft price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

n = 15 0.11 0.89 0.33 0.16 0.38 0.98 0.11 0.83 0.40 0.55 0.63 0.49
n = 30 0.12 0.86 0.33 0.17 0.30 0.97 0.11 0.79 0.40 0.55 0.63 0.49
n = 45 0.12 0.82 0.32 0.18 0.23 0.95 0.11 0.74 0.40 0.55 0.63 0.49
n = 60 0.13 0.79 0.31 0.19 0.18 0.93 0.12 0.72 0.37 0.56 0.63 0.49
n = 75 0.13 0.78 0.30 0.20 0.16 0.91 0.12 0.71 0.37 0.56 0.63 0.49
n = 90 0.13 0.77 0.31 0.20 0.15 0.91 0.12 0.69 0.39 0.56 0.63 0.49

Ratios for the experiments using the Dell price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

n = 15 0.13 0.62 0.18 0.35 0.02 0.75 0.16 0.54 0.49 0.58 0.61 0.47
n = 30 0.13 0.59 0.19 0.34 0.02 0.67 0.15 0.51 0.50 0.58 0.61 0.47
n = 45 0.12 0.56 0.19 0.33 0.02 0.75 0.15 0.46 0.52 0.58 0.61 0.47
n = 60 0.13 0.56 0.20 0.33 0.02 0.68 0.15 0.44 0.51 0.58 0.61 0.47
n = 75 0.13 0.54 0.19 0.33 0.02 0.64 0.15 0.41 0.52 0.58 0.61 0.48
n = 90 0.13 0.53 0.19 0.33 0.02 0.67 0.15 0.38 0.53 0.58 0.61 0.48

Ratios for the experiments using the IBM price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

n = 15 0.35 0.30 0.30 0.46 0.09 0.81 0.33 0.23 0.41 0.60 0.59 0.48
n = 30 0.33 0.30 0.30 0.45 0.09 0.80 0.33 0.22 0.41 0.60 0.59 0.48
n = 45 0.32 0.29 0.30 0.45 0.09 0.78 0.32 0.22 0.40 0.60 0.59 0.48
n = 60 0.31 0.29 0.30 0.44 0.09 0.79 0.31 0.22 0.40 0.60 0.59 0.48
n = 75 0.34 0.29 0.30 0.46 0.09 0.79 0.32 0.22 0.40 0.60 0.59 0.48
n = 90 0.38 0.29 0.30 0.49 0.08 0.78 0.35 0.22 0.40 0.60 0.59 0.48

Ratios for the experiments using the Random A price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

n = 15 0.49 0.15 0.35 0.56 0.06 0.66 0.46 0.12 0.44 0.61 0.57 0.49
n = 30 0.48 0.15 0.36 0.55 0.06 0.65 0.45 0.12 0.44 0.61 0.57 0.49
n = 45 0.46 0.14 0.37 0.52 0.06 0.64 0.42 0.11 0.44 0.61 0.57 0.48
n = 60 0.47 0.14 0.37 0.52 0.06 0.63 0.41 0.11 0.44 0.61 0.57 0.48
n = 75 0.49 0.15 0.36 0.50 0.06 0.61 0.40 0.12 0.43 0.61 0.58 0.48
n = 90 0.48 0.16 0.37 0.48 0.07 0.61 0.40 0.12 0.45 0.60 0.58 0.48

Ratios for the experiments using the Random B price series
OTMaxW OTMinR OTMix OTRnd

RC
W RC

H RH
E RC

W RC
H RH

E RC
W RC

H RH
E RC

W RC
H RH

E

n = 15 0.09 0.67 0.43 0.12 0.21 0.80 0.08 0.57 0.49 0.50 0.68 0.44
n = 30 0.09 0.62 0.44 0.12 0.20 0.76 0.08 0.53 0.51 0.50 0.67 0.44
n = 45 0.09 0.61 0.45 0.12 0.19 0.76 0.09 0.52 0.50 0.50 0.67 0.44
n = 60 0.10 0.63 0.45 0.13 0.20 0.78 0.09 0.54 0.50 0.50 0.67 0.44
n = 75 0.11 0.63 0.45 0.14 0.20 0.78 0.10 0.54 0.51 0.50 0.67 0.44
n = 90 0.11 0.62 0.46 0.15 0.19 0.77 0.11 0.52 0.50 0.51 0.67 0.44

Table C.6: Values of the RC
W , RC

H and RH
E ratios obtained by the Option trading strategies in set of experiments

using the the SMAn forecasting function.
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