Model Checking GDL through MOCHA: A Case Study

Ji Ruan Wiebe van der Hoek Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 3BX, UK

Abstract

The Game Description Language (GDL) is a special purpose declarative language for defining
games. GDL is used in the AAAI General Game Playing Competition, which tests the ability of
computer programs to play games in general, rather than just to play a specific game. Software
participants in the competition are provided with a game specified in GDL, and then required
to play this game, interpreting the GDL specification for themselves in order to determine the
rules of the game. However, not all GDL specifications correspond to games, let alone mean-
ingful, non-trivial games. We address the problem of verifying that games specified in GDL
satisfy appropriate conditions, defining not just games, but meaningful games; we refer to these
as playability conditions. Our approach is based on model checking formulae of Alternating-time
Temporal Logic (ATL) over GDL specifications. Following an introduction to GDL and ATL, we
present GDL2RML, a tool enabling model checking ATL formulae over GDL specifications using
MOCHA - an ATL model checker. We illustrate the approach by a case study with experimental
results.

Keywords: Game Description Language, Alternating-time Temporal Logic, Specification, Model
checking

1 Introduction

Game playing competitions, particularly between humans and computers, have long been part of the
culture of artificial intelligence. Indeed, the victory of IBM’s Deep Blue computer over then world
champion chess player Gary Kasparov in 1997 is regarded as one of the most significant events in the
history of Al. However, a common objection to such specialized competitions and dedicated game
playing systems is that they explore only one very narrow aspect of intelligence and rationality. To
overcome these objections, in 2005 AAAI introduced a general game playing competition, intended
to test the ability to play games in general, rather than just the ability to play a specific game [10,
5]. Participants in the competition are computer programs, which are provided with the rules to
previously unknown games during the competition itself; they are required to play these games, and
the overall winner was the one that fared best overall. Note that the participant programs were required
to interpret the rules of the games themselves, without human intervention or interpretation. The
Game Description Language (GDL) is a special purpose, computer processable language, which was
developed in order to define the games played by participant programs. Thus, a participant must be
able to interpret game descriptions expressed in GDL, and then play the game autonomously.

Since GDL is a language for defining games, it seems very natural to investigate the problem
of reasoning about the games defined in GDL. Just as the designer of a computer communications

protocol might want to use model checking tools to investigate the properties of the protocol (ensure
it is deadlock-free, etc [4]), so the GDL game designer will typically want to investigate the properties
of games. In addition to checking protocol-like properties such as deadlock-freeness, the fact that
GDL is used for describing games suggests a whole new class of properties to check: those relating to
the strategic properties of the game being defined.

One formalism for reasoning about games that has attracted much interest is Alternating-time
Temporal Logic (ATL) [2]. The basic construct of ATL is the cooperation modality, {(C)), where C
is a collection of agents, meaning that coalition C can cooperate to achieve ¢; more precisely, that
C have a winning strategy for ¢. ATL has been widely applied to reasoning about game-like multi-
agent systems in recent years, and has proved to be a powerful and expressive tool for this purpose
[2,6,8,9, 14, 13].

In [11], we made a concrete link between ATL and GDL. Specifically, (1) we demonstrated that
GDL can be understood as a specification language for ATL models, and proved that the problem of in-
terpreting ATL formulae over propositional GDL descriptions is EXPTIME-complete; (2) we classified
the playability conditions which characterize when a given GDL description defines a (meaningful)
game.

In this report we explore this topic more practically. Our main contribution is the development
of an automated tool that transforms a GDL description into RML, the model description language for
the MOCHA (an ATL model checker), thereby permitting the use of MOCHA for verifying playability
conditions on the RML description. The report is organized as follows. Section 2 introduces the
background of this work: GDL and ATL. Section 3 presents details on the GDL2RML translator with
its design and evaluation. Section 4 gives a case study and experimental results. Section 5 concludes
the report.

2 Background

In this section, we give the necessary background for understanding this report. For a more extensive
treatment, refer to [11].

2.1 Game Descriptions and Game Models in GDL

GDL is a specialised language, intended for defining games [5, 7]. A game description must define the
states of the game, a unique initial state, and the players in the game (“roles” in GDL parlance). For
every state and every player, the game description must define the moves (a.k.a. actions) available to
that player in that state, as well as the state transition function of the game — how moves transform the
state of play. Finally, it must define what constitutes a win, and when a game is over. The approach
adopted by GDL is to use a logical definition of the game. We introduce GDL by way of an example
(Figure 1): a version of “Tic-Tac-Toe”. In this game, two players take turns to mark a 3 x 3 grid, and
the player who succeeds in placing three of its marks in a row, column, or diagonal wins.

GDL uses a prefix rule notation based on LISP. The Tic-Tac-Toe game in Figure 1 consists of 82
lines. The first two lines, (role xplayer) and (role oplayer), define the two players in this game.
The following init lines (lines 03-12) define facts true in the initial state of the game (all the cells are
blank, and xplayer has the control of the game). The following rule (line 13-15) defines the effect of
making a move: if cell(m,n) is blank (cell 7m ?n b), and xplayer marks it, then in the next state, it
will be true that cell(m, n) is marked by x: (cell ?m ?n x). The next rule (line 28-29) says that if the
current state is under the control of xplayer, then the next state will be under the control of oplayer.

01 (role xplayer) 54 (<= (legal ?w (mark ?x ?y))

(
02 (role oplayer) 55 (true (cell ?x ?y b))
03 (init (cell 1 1 b)) 56 (true (control ?w)))
. 57 (<= (legal oplayer noop)
11 (init (cell 3 3 b)) 58 (true (control xplayer)))
12 (init (control xplayer)) ...
13 (<= (next (cell ?m ?n x)) 6l (<= (goal xplayer 100)
14 (does xplayer (mark ?m ?n)) 62 (true (line x)))
15 (true (cell ?m ?n b))) .
R 77 (<= terminal
28 (<= (next (control oplayer)) 78 (line x))
29 (true (control xplayer))) 79 (<= terminal
30 (<= (row ?m ?x) 80 (line o))
31 (true (cell ?m 1 ?x)) 81 (<= terminal
32 (true (cell ?m 2 ?x)) 82 (not open))
33 (true (cell ?m 3 ?x)))

Figure 1: A fragment of a game in the Game Description Language

Lines 30-33 define what it means to have a row of symbols (we omit a number of related rules). The
legal rule (line 54-56) defines when it is legal for a player 7w to perform a mark action. The goal
rule (line 61-62) defines the aim of the game: it says that the xplayer will get a reward of 100 if it
brings about a line marked by x. The final, terminal rules (line 77-82) define when the game has
ended.

Overall, a GDL description consists of a list of such rules, and the semantics of these rules are
similar to logic programming languages. Certain operators in a GDL description have a special mean-
ing: role (used to define the players of the game); init (defining initial facts); legal (defining
pre-conditions for actions); and goal (defining rewards for agents). An additional operator, true, is
sometimes used, to make explicit that a particular expression should be true in the current state of the
game.

While GDL in [5, 7] permits predicates such as (cell ?m ?n b), we simplify this by allowing only
nullary predicates, i.e., propositions. We can do this via instantiation of the predicates, i.e., replacing
variables with their values. For example, variables like 7m, ?n are replaced by elements in their domain
{1,2,3}. Thus (cell ?m ?n b) is instantiated as (cell 1 1b), (cell 12b), -+, (cell 33 Db). Itis
easy to see that the rule in (line 13-15) is replaced by 9 rules with no predicates, and in general,
there will inevitably be an undesirable blow-up in the number of rules when translating from arbitrary
predicate form; nevertheless, the translation is possible, a point that is implicitly used in what follows.
We refer to (cell 1 1 b) as a nullary predicate, or an atomic proposition. This fragment of GDL will
be referred to as propositional GDL in the remainder of the report.

We now formally define GDL syntax and game descriptions.

Definition 2.1 (GDL Syntax) Let a primitive set of proposition symbols Prim = {p,q---}, a set of
agents Ag, a set of actions Ac, a set of strings S, and a set of integers [0..100]" be given. The set of
atomic propositions of GDL, denoted Atgpy, is defined as the smallest set that satisfies the following
conditions:

e Prim C AtgpL,

e a special atom terminal € Afgp;;

"This set of integers is used to indicate the payoffs of agents in each state, following [7].

e for two strings s1,s2 € S, (distinct s1 s3) € AfgpL;
e forevery agent i € Ag and action a € Ac, (legal i a) € Afgpy;

e for every agent i and a v integer in [0..100]), (goal i v) € Atgpy.

The set of atomic expressions AtExprep. of GDL, is defined as the smallest set that satisfies the fol-
lowing conditions:

e forp € AtgpL, {p, (init p), (next p), (true p) } C AtExpropL;
e for every agent i and action a, { (role i), (does i a)} C AtExprgpy.
LitAtgpy is {p, (true p), (not p), (not (true p)) | p € AtgpL}. LitExprepy is AtExprep. U LitAtgpy .

A game description specifies the atoms from Azgp; that are true, either in the initial state, or as a
result of global constraints, or as the effect of performing some joint actions in a given state.

Definition 2.2 (Game Descriptions) A GDL game description T is a set of rules r of the form >
(<= (h)(e1)...(em)) where h, the head hd(r) of the rule, is an element of AtExpresp. and each e;
(i € [1..m]) in the body bd(r) of r is a literal expression from LitExprepy. If m = 0, we say that r has
an empty body.

We can split every game description I into four different types of rules where:

o ['yo1e contains all claims of the form (<= (role x)). They specify the agents in the game.

o Dinit is a set of constraints of the form (< (init p)). They have an empty body and their
heads represent initial constraints of the game.

o g0 is a set of global constraints, i.e., rules of the form (<= (p) (e1) ... (em)), where p €
Atgpyr and each body e; (i € [1..m]) is from LitAtgpy .

o D'next contains all rules with a (next p) in the head: (< (next p)(e1)...(en)) where each
ei(i € [1..m]) is from LitAtpy or of the form (does 1 a).

Given a GDL game description, we can compute the corresponding game model. In general, a
game model can be seen as a game tree, where we have a set of nodes representing states of the game,
and a labeled edge from one state to another representing a transition from one state to another caused
by the performance of actions/moves by players. For the description of Game Models G, our approach
is equivalent to that of [S]. Instead of roles we will refer to aset Ag = {1, ...,n} of agents or players.

Definition 2.3 (GDL Game Model) Given the set of atomic propositions Atgpr, a GDL Game Model
is a structure:
G= <S7S07Ag7AC17 o 7ACI17 T, 7T>

where S is a finite, non-empty set of game states; so € S is the initial state of G; Ag is a finite,
non-empty set of agents, or players in the game; Ac; is a finite, non-empty set of possible actions or
moves for agent i; T : Acy X -+ X Acy, X S — S is such that T({a1, . ..,a,),s) = u, means that if in
game state s, agent i chooses action a;, (i < n), the system will change to its successor state u — we
require all states, except the initial state, have only one predecessor; and finally, 7w : § — 24 js an
interpretation function, which associates with each state the set of atomic propositions in Atgp, that
are true in that state. We will often abbreviate an action profile (ay, . .., a,) to d.

2We do not allow disjunctions in the body of a GDL rule as done in [7]. A rule like (<= (h)(e1 V e2)) can be replaced
by its equivalence, two rules (<= (h)(e1)) and (<= (h)(e2)).

Note that we do not include the subset 7 C S included in the game models of [5, 7]. This subset is
supposed to denote the terminal states: we can obtain this set in G by simply collecting all the states
that satisfy terminal.

We are able to specify when a GDL game model G is a model for a GDL game description I' (See
[11] for detail). Moreover, a GDL game model can be associated with an ATL game model, enabling
the use of ATL for the reasoning of games in GDL.

2.2 ATL Language and Semantics

We now introduce a logic for reasoning about games defined using GDL. For this, we believe ATL is
ideally suited [2]. The key construct in ATL is ((C))T¢, where C is a coalition, (a set of agents), and
Ty a temporal formula, meaning “coalition C can act in such a way that 7'p is guaranteed to be true”.
Temporal formulae are built using the unary operators O, O, {», and U , where O means “in the next
state”, O means “always”, {>) means “eventually”, and the binary operator &/ means “until”.

Definition 2.4 (ATL Language) The language of ATL (with respect to a set of agents Ag, and a set of
atomic propositions @), is given by the following grammar:

pu=plop Vel (C)O¢ | (C)Be | (ChelU ¢
where p € ® is a propositional variable and C C Ag is a set of agents.

ATL has a number of equivalent semantics; since moves, or actions, play such a prominent role in
game playing, we use Action-based Alternating Transition Systems.

Definition 2.5 An Action-based Alternating Transition System (AATS) is a tuple
A = <Q7 q07Ag7AC17 CIEaE 7Acl17 P, T, q)7 7T>

where: Q is a finite, non-empty set of states; qo € Q is the initial state; Ag = {1,...,n} is a
finite, non-empty set of agents; Ac; is a finite, non-empty set of actions, for each i € Ag, where
AciNAcj = O foralli # j € Ag; p : Acag — 22 is an action precondition function, which
for each action a € Acpg(= U Ac;) defines the set of states p(a) from which a may be executed;
iCAg

T 1 Acy X -+ X Acy X Q — Q is a partial system transition function, which defines the state T(d, q)
that would result by the performance of d from state q — note that, as this function is partial, not all
Jjoint actions are possible in all states (cf. the precondition function above); ® is a finite, non-empty set
of atomic propositions; and 7 : Q — 22 is an interpretation function, which gives the set of atomic
propositions satisfied in each state: if p € 7(q), then this means that the propositional variable p is
satisfied in state q.

In order to be consistent with GDL, we require that AATSs satisfy the following coherence con-
straints: (Non-triviality) agents always have at least one legal action — Vg € Q,Vi € Ag,Ja €
Ac; s.t. g € p(a); and (Consistency) the p and 7 functions agree on actions that may be performed:
Vg,Vd = (a1, ,an),(d,q) € dom 7 iff Vi € Ag,q € p(a;).

Given an agent i € Ag and a state ¢ € Q, we denote the options available to i in g — the actions
that / may perform in ¢ — by options(i,q) = {a | a € Ac;and g € p(a)}. For a coalition C, we
define options(C, q) = |J{options(i,q) | i € C}. We then define a strategy for an agent i € Ag as
a function o; : QO — Ac; which must satisfy the legality constraint that o;(q) € options(i,q) for all

g € Q. In this definition, a strategy is memoryless in the sense that an action is chosen only for states,
not for a history of states. A strategy profile for a coalition C = {iy,... iy} C Ag is a tuple of
strategies (o1, . .., o), one for each agent i € C. We denote by X¢ the set of all strategy profiles for
coalition C C Ag;if oc € Yc andi € C, then we denote i’s component of o¢ by aic. Given a strategy
profile o¢ € X¢ and state g € Q, let out(o¢, q) denote the set of possible states that may result by the
members of the coalition C acting as defined by their components of o¢ for one step from g:

out(oc,q) = {q | 7(d@,q) = ¢’ where (d@,q) € dom 7 and o-(q) = a, fori € C}

Notice that the set out(o4,, g) is a singleton. Also, out(-,-) only deals with one-step successors, and
we interchangeably write out(o¢, q) and out(Acc, q): for the one step future, a strategy carries the
same information as an action. A go-computation is an infinite sequence of states A\ = gg, g1, If
u € N, then we denote by A[u] the component indexed by u in A.

Given a strategy profile o¢ for some coalition C, and a state ¢ € Q, we define comp(o¢, q) to
be the set of possible runs that may occur if every agent i € C follows the corresponding strategy
o;, starting when the system is in state ¢ € Q. That is, the set comp(o¢, q) will contain all possible
g-computations that the coalition C can “enforce” by cooperating and following the strategies in o¢.

comp(oc,q) = {A| A\[0] = gand Vu € N : A[u + 1] € out(oc, A[u])}.

Again, note that for any state ¢ € Q and any grand coalition strategy o, the set comp(cag, g) will be
a singleton, consisting of exactly one infinite computation.

We can now give the rules defining the satisfaction relation “[=p” for ATL, which holds between
pairs of the form A, ¢ (where A is an AATS and ¢ is a state in .A), and formulae of ATL.

Definition 2.6 (ATL Semantics) Given an A, a state q, the semantics of ATL is defined as follows:
Aqlampiffpenlq) (wherep € ®);
A q Ea @ iff A q Far @5
A qEar o VYA g i por A, q = s
A, q Ear. (C)Owp iff Joc € ¢, such that YA € comp(oc, q), we have A, \[1] [Ear @5
A, q Ear (C)Oy iff Joc € X, such that YA € comp(oc, q), we have A, A[u] Ear @ for allu € N;

A, g Ear (CYeUY iff Joc € B¢, such that YA € comp(oc,q), there exists some u € N such that
A, Au) Ear ¥, and for all 0 < v < u, we have A, \[v] Ear. ¢

“« ”

The remaining classical logic connectives (“N”, “—”7, “—”) are assumed to be defined as abbre-
viations in terms of —,V, in the conventional manner. And {(C)){> is defined as ((C)) T U ¢. For
readability, we omit set brackets in cooperation modalities, for example writing (1)) instead of (({1}))
and writing (()) in stead of {({})).

2.3 Linking GDL and ATL

We can see that GDL and ATL are intimately related at the semantic level: GDL is a language for

defining games, while ATL is a language for expressing properties of such games. The difference

between the two languages is that GDL takes a relatively constructive, internal approach to a game

description, essentially defining how states of the game are constructed and related by possible moves.

In contrast, ATL takes an external, strategic view: while it seems an appropriate language with which

to express potential strategic properties of games, it is perhaps not very appropriate for defining games.
We can build a link between GDL and ATL as follows:

e On the semantic level, every GDL description I" has an ATL model associated with it.
e On the syntactic level, every GDL description I" has an ATL theory associated with it.

With this link, we can answer the following question: how complex is it to interpret a property,
represented by an ATL formula, over a game represented by a GDL description?

Theorem 2.1 ATL model checking over propositional GDL game descriptions is EXPTIME-complete.

For the detail of the proof, refer to [11]. Note that, although this seems a negative result, it
means that interpreting ATL over propositional GDL descriptions is no more complex than interpreting
ATL over apparently simpler model specification languages such as the Simple Reactive Systems
Language [12].

3 The GDL2RML Translator

In this section, we describe our work on how to verify the games in GDL using an ATL model checker.
The main purpose of our work is to show a method using existing ATL model checking tools on the
verification of GDL games, rather than developing a model checking tool from the scratch. In this way,
we can add values to the work that has been done by other people.

We built a translator, GDL2RML, from GDL descriptions to representations in the Reactive Mod-
ules Language (RML). RML is the model description language of the ATL model checker MOCHA.
Using GDL2RML, we can verify properties expressed in ATL via MOCHA.

3.1 MOCHA and RML

The ATL model checker we use is MOCHA, which was developed by Alur et al. [3, 1]. The input lan-
guage of MOCHA, Reactive Modules Language (RML), is rich enough to model systems with hetero-
geneous components: synchronous, asynchronous, speed-independent or real-time, finite or infinite
state, etc. Here we briefly introduce RML.

An RML specification consists of a set of modules. A module can be seen as a function; it consists
of a set of variables and a set of rules to define the evolution of the variables that are controlled by the
module. The input variables are called external variables, and the output variables are called interface
variables. A module controls its interface variables and its private variables. Within a module, the
basic construct is an atom. A simple example of an atom is given in Figure 2.

This definition has three parts: 1) a declaration of the variables that are controlled, read, or
awaited; 2) an init part; and 3) an update part. An atom can write the variables thatit controls,
read the ones it reads or it awaits. Awaiting the value of a variable y means it reads the value
that y will receive in the next round, determined by another atom. For instance, in the example, the
next value of x is evaluated using the current value of z, and after the next value of y is specified. The
init part initializes the value of x by a set of guarded commands starting with a *[]’. A guarded
command statement consists of two parts: a guard, that is a boolean expression specifying when the
guarded command can be executed, and a list of commands, used to specify the next value of the
controlled variables. If several guards are true, the system randomly chooses an associated command.
The next part is different to the init in two ways: first, it can repeatedly execute after the first
round, while init only executes in the first round; second, it can take boolean expressions with
variables as guards, while init can only have the guard t rue.

atom xyz
controls x
reads x, z
awaits y

init
[l true —> x’:=0
[1] true -> x’:=1

update
[] y'=true & z = false —> x’:=x+1
[] v/ = true & z = true —> x’':= x
[] y'=false —-> x’':=x-1

endatom

Figure 2: An example of an atom

The state of a system at one time point is completely captured by the valuations of the variables
that the system controls. The evolution of the state of the system is decided by the initial state and the
update commands in each atom.

3.2 Design of the GDL2RML translator

Given a GDL description, how can we obtain a representation in RML which characterizes the same
system (game structure)? Basically, we have to take care of this for a state and the change of a
state. Both in GDL and RML, a state is represented by a set of propositions or variables. And for the
change of a state, GDL uses a set of rules in a logical programming language, while RML uses guarded
commands. GDL rules are different from RML guarded commands in two ways: 1) a GDL rule can
specify the value of one proposition or variable only, but an RML guarded command can specify more
than one; 2) all GDL rules will be executed if their conditions are true, but only one RML guarded
command will be executed within the same atom on any given round.

In RML, we need to specify which propositions or variables belong to which module, where mod-
ules can be seen as agents. So the main tasks of our GDL2RML translator are:

e to specify the roles in GDL as modules in RML,
e to specify the propositions controlled by each module,
e to specify the initial state and the corresponding update mechanism.

We separate a GDL description I into four main parts: I'ro1e, ['init, 'next, I'glon, Where I'ro1e is a
collection of the rules with keyword role, I'ip;+ is a collection of the rules with keyword init, I'jext
is a collection of the rules with keyword next, and I'g1,, contains the rest. Our GDL2RML translator
is written in Java, and processes the rules in these four categories as follows.

Roles For every rule in I'yo1e, We associate it with a module; moreover, we introduce a special
module called Gmaster, which takes the same responsibility as the game master in the General Game
Playing competition (GGP) [5]. The main duties of the Gmaster are: to serve the players with the
current game board state, to read the actions of the players, and to update the board state accordingly.
The behaviour of Gmaster is deterministic, and it will not influence the outcome of a game. In terms
of ATL, we have that, for any coalition C, ((C U {Gm}) O — (C) .

Propositions and Variables Each player module controls their own action variables, and all the rest
are controlled by the Gmaster. In other words, the players decide about their move, and all its conse-
quences are then determined. To be more specific, we use a variable DONE_ X for each player X, and
the scope of this variable is easily identified by the clauses with keywords * does X’ in I'jext. For
example, in the Tic-Tac-Toe game in Figure 1, we have aclause (does xplayer (mark ?m ?n)),
soweadd MARK_1_1,...,MARK_3_3 tothe domain of DONE_XPLAYER, given that the scope of
?m and ?n are determined by the context. The reason to choose a DONE prefix is related to the update
mechanism, which will be introduced shortly.

The propositions for the Gmaster module are directly obtained from the propositions in I'. For
example, we have in Figure 1 a rule (<= terminal (line x)), so we take TERMINAL and
LINE_X as propositions. Theoretically, we can represent the state using only propositions, but to
make our representation more efficient, we choose some variables to have a richer domain. This will
be explained in more detail in the case study in section 4.

The Initial State As we mentioned earlier, a state is a full characterization of the system in a par-
ticular time point. In I';pi¢, GDL specifies the propositions that are true initially, but I';;+ does not
necessarily includes all the propositions that are true initially, because some global rules in I'g1,, can
make some propositions true as well. For example, suppose I'; consists of the following two rules:
(init p) and (<= g p). In the initial state, we first know p is true, and then know that g is true
by the global rule (<= g p). So we need to do some computation, w.r.t I'ipi¢ U I'g10p, to get a
complete picture of the initial state. But RML does not make it possible to do computations for the
initial state, as all the guards in the init part can only be t rue (see Figure 2).

We have two obvious design choices here: either we figure out all the initial values of the variables
and then specify their values directly using [] true —-> x’ :=value in RML, or we add an extra
round to allow the modules’ update part to compute the full initial state. We take the later approach,
as we want to delegate all the work of constructing the game system to MOCHA. Therefore, we
introduce a special variable preinit, the idea being that we make preinit true initially and then
false always afterwards. If we call this special state produced by RML the ‘pre-init’ state, the real init
state is then the computed successor of the pre-init state. In the example of I'; above, p would be true
in pre-init, and p and ¢ in init. We make sure that there is only one init state. In the following, when
we refer to the “init state”, it should be understood that we are not referring to the pre-init state.

The Update Mechanism In RML, state changes are made via the update construction, which is
specified with keyword update. There are two types of update rules in GDL, namely I'g15p, Which
gives constrains globally, and I',e4+, Which talks about the future. Accordingly, we have to deal with
both of them in RML.

For the rules in I'g10,, we add one rule in the atom which has the head of the rule as a con-
trolled variable. And we use primed versions of the variables as they all update in the same round,
and the ones in the guards are updated earlier than those in the commands. The dependency re-
quires that there is no circularity, and this is checked by MOCHA automatically. Here is an example
from Figure 1: for the GDL rule (<= terminal (line x)), we have an update rule in RML:
LINE_X' —-> TERMINAL’ :=true, which says that if LINE_X is true in the next round, then
TERMINAL is true in the next round as well. Note that LINE_ X is an awaited variable.

For the rules in I'yext, We also add one rule in the atom which has the head of the rule as a
controlled variable. For example: a GDL rule

(<= (next(cell 1 1 x)) (does xplayer (mark 1 1)) (cell 1 1 b))

can be translated to an update rule:

CELL_1_1=B & DONE_XPLAYER’=MARK_ 1_1 -> CELL_1_1':=X.

This rule says if the Cell(1,1) is blank currently, and Xplayer marks Cell(1,1), then in the next state,
the Cell(1,1) becomes X.

How does the whole system evolve? In GDL, the players (roles) make a choice and the game
master uses them to update the state, according to the I'g1op and I'pext rules. This continues until a
terminal state is reached. In RML, we will do the same thing, but an important question here is how to
record the players’ actions in a state. For example, suppose in the current state, player X is allowed to
make a move MARK_1_1. Shall we have a proposition DOES_X_MARK_1_1 to indicate that player
X will make this move in next state? No, because (1) this would cause the current state to only have
one successor, and (2) we do not intend to say that X does the MARK_1_1 move in the current state,
but only like to reason hypothetically what would happen if he would make that move. The fact that
X makes a certain move should be recorded in the successor state associated with that move, and not
in the current state. Therefore, we introduce the DONE_ X variable for each player X, to record the
actions made by X in the previous round. The update process in RML starts as follows: all the DONE_ X
variables are given a value in the players’ module, and then the Gmaster module uses the rules from
I'pext to specify the variables in the head of these rules using the update construct, and finally Gmaster
does the same with rules translated from I'g1 0. For instance, the effect of X performing a MARK_1_1
move is captured by the following atom in the module Gmaster.

update

[]DONE_Xplayer’=MARK_1_1 & CELL_1_1=B -> CELL_1_1’:=X

DONE_Oplayer’=MARK_1_1 & CELL_1_1=B -> CELL_1_1':=0
“(CELL_1_1=B) -> CELL_1_1" :=CELL_1_1

" (DONE_Xplayer’=MARK_1_1 | DONE_Oplayer’=MARK_1_1)
& CELL 1 1=B -> CELL_1 1’ :=B

(]
(]
(]

This says that if Xplayer’s chosen action is to mark Cell(1,1), and this cell is currently blank, it
will become marked with X, and similarly for Oplayer and the symbol O. If Cell(1,1) was already
not blank, it keeps its value, and, finally, it stays blank if it was blank and nobody wrote on it in this
round.

3.3 Correctness and Evaluation

How can we ensure the correctness of the GDL2RML translator? Here the ‘correctness’ means that
the original GDL description specifies the same game model as its GDL2RML translation. In the
previous section, we have formally defined the game models for the GDL descriptions. Ideally, we
shall also define the game models of the RML descriptions, and formally prove that the game model
of a GDL description I' corresponds to the game model of the translation of I' in RML. This requires a
formalisation of RML with game semantics, which is out of the scope of this report. But we do have
two approaches to ensure certain degree of the correctness. The first approach is to check whether all
the propositions, variables and the rules have been mapped correctly. We get this level of assurance
by checking the design of the GDL2RML translator. This might still prone to human errors, so we have
a second approach, which is to use the model checker MOCHA to verify properties of the GDL2RML
translations. If the MOCHA results agree with the truth of those properties in the original game, then
we get certain degree of assurance that our translation is correct. Of course when the MOCHA results

10

do not conform the truth of those properties, this approach alone does not tell whether the original
GDL description does not describe the game properly, or the GDL2RML translator is problematic.

As for the evaluation of the GDL2RML translator, we have tested it with a number of examples,
such as Maze, Buttons and Tic-Tac-Toe, from the game depository’ of the General Game Playing
Website. All these examples were translated within several seconds in a Dural-Core Linux Machine,
and the verification results in MOCHA are all as desired. In the next section, we will present a concrete
case study to show that our translation of Tic-Tac-Toe has produced desired results (see Figure 3).
Compared with the programming-oriented brute-force method mentioned in [7], our method has two
advantages. First, we do not need to write a program to expand the game models, as the model
checkers automatically generate the game models from RML descriptions. Second, we can specify the
properties in ATL in a more abstract way than specifying them in a programming language, so that
we do not need to deal with the details in the level of game states. Our GDL2RML translator is still
a prototype tool; in theory, it shall automatically translate any GDL descriptions to RML descriptions,
but in practice we still need to manually add some tags into GDL descriptions to reduce the numbers
of variables in the translation, in order to reduce the model checking time in MOCHA.

4 Case Study and Experimental Results

In this section we do a case study in the context of Tic-Tac-Toe using our GDL2RML translator and the
MOCHA model checker. We briefly introduce the translation from a GDL description for Tic-Tac-Toe
to an RML description. Then we focus on the properties expressed as ATL specifications and verify
them with MOCHA.

For the translation from a GDL description to an RML description, we have illustrated the main
idea in the previous section. The only thing we mention here is the controlled variables for Gmaster.
Most of them are boolean variables, and only a few can take multiple values, e.g., CELL_1_1 €
{B,X, O}. We can also represent this using three booleans: CELL_1_1 B, CELL_1_1_X, and
CELL_1_1_0. Then the equivalent expression of CELL_1_1=Xis

CELL_1 1 B=false & CELL_1 1 X=true & CELL_1_ 1 O=false.

We choose the former representation for the sake of compactness.

4.1 Playability Conditions of Tic-Tac-Toe in MOCHA

The general properties (also referred to as playability conditions) that we want to verify are presented
in [11]. The properties will be expressed precisely and unambiguously as ATL logical formulae. A
GDL game description satisfies such a formal property if and only if the ATL game model that arises
from such description satisfies this property under ATL semantics. Our top-level classification of game
properties distinguishes between properties relating to the coherence of a game and those relating to
fairness. Now we tailor them specifically for Tic-Tac-Toe. We select a few representative properties
and give concrete representations that are accepted by the model checker MOCHA. The purpose is to
show how our work is used in practice. Throughout this report, unless stated otherwise, properties
that we discuss are evaluated in the beginning of the game.

SURL: http://visionary.stanford.edu:4000

11

Coherence Properties The first coherence property we pick is Playability:

() O(—terminal — /\ has_legal_move;) (Playability)
i€Ag

For i = Xplayer, has_legal_move; can be represented as

(LEGAL_X MARK_11 | LEGAL_X MARK 12 | LEGAL_X MARK_ 13
| LEGAL_X MARK 21 | LEGAL_X MARK 22 | LEGAL_X MARK 23
| LEGAL_X MARK 31 | LEGAL_X MARK_ 32 | LEGAL_X_MARK_ 33 | LEGAL_X_NOOP)

The remaining part is straightforward.
The second coherence property is GameOver:

{()3O((terminal \ @) — (())O(terminal A ©)) (GameOver)

Let us look at an instantiation of : suppose ¢ here means that Xplayer wins. Its representation
in MOCHA is

<<>>X (K<>>G ((TERMINAL & GOALX=gl00)=> <<>>G(TERMINAL & GOALX=gl00)))

Note that we have some small notional differences. Here X corresponds to O, G to O, & to A, and
=> to —. The reason to have <<>>X at the beginning is that we have an extra, “pre-initial” initial
state. We have explained the reason to have such state in Section 3.2.

The third coherence property we pick is Turn:

{()O(turn; <« —legal(i, noop)) (Turn)
The case with i being Xplayer is:
<<>>X <<>> G (turn=Xplayer <=> "LEGAL_Xplayer_NOOP)
The last coherence property we pick is Termination:
() Orerminal (Termination)
The MOCHA representation is straightforward: <<>> X <<>> F terminal, where F is the

MOCHA notation for <.

Fairness Properties Now we pick two fairness properties:

\/ (i) Gwin; (Strong Winnability)
i€Ag
and
N (Ag)owin;. (Weak Winnability)
i€Ag

The representations are
<<>>X (<<Xplayer>>F GOALX=gl00 | <<Oplayer>>F GOALO=gl00)
and
<<>>X (<<Xplayer,Oplayer>>F GOALX=gl00 & <<Xplayer,Oplayer>>F GOALO=gl00)

respectively.

12

4.2 Playing Tic-Tac-Toe via Model checking

Although our main motivation in this work is to consider the analysis of games from the view point
of a game designer, it is also worth speculating about the use of our approach to play GDL games via
Model checking. Let us suppose the following situation in Tic-Tac-Toe (Xplayer moves first).

X0
X

Now it is Xplayer’s turn. The questions are:
1. Is there a winning strategy for Xplayer in the current state?
2. If so, which move should Xplayer take?

There is indeed a winning strategy for Xplayer, namely, by marking the Cell(2, 1) (see below). In
that case, no matter how Oplayer responds, Xplayer can mark either Cell(2, 3) or Cell(3, 1) in its next
turn.

X110
XX

0)

We show that we can answer these questions via model checking.

Note that we can express “Xplayer has a winning strategy” in ATL as (Xplayer)) Qwinxpiayer- Its
equivalent MOCHA expression is <<Xplayer>>F GOALX=gl00. Given game model G, and cur-
rent state s, the question 1 amounts to checking whether G, s |=ar. (Xplayer)) Swinxpiayer. In MOCHA,
we can only check a property with respect to the initial state, namely sg, but we can get around us-
ing the following approach. We characterize a state s by a formula ¢(s), so instead of checking
G,s =ar (Xplayer)) Owingpiayer, We can check G, so [=are ()O(@(s) — (Xplayer)) Swinxpiayer).-
For the above example, ¢(s) can be Cell(1,1,X) A Cell(1,2,0) A Cell(2,2,X) A Cell(3,3,0) N
N y—res: Cell(x, y, B). We denote the MOCHA represent of (())0(¢(s) — ((Xplayer)) Swinxpiayer) as
sXWin.

Now, suppose we got a positive answer to the question 1. To answer the question 2, we use an
action variable DONEX to guide the search for a proper move. The idea is to select a legal move for
Xplayer, and then to check whether Xplayer still has a winning strategy under this move. If so Xplayer
shall take it; if not, Xplayer will check the a different legal move; the existence of a winning strategy
guarantees that there is such a move. To be more specific, suppose Xplayer chooses mark(2,1), it is
to check:

G, so Ear ()O(¢(s) — (Xplayer) O (DONEX = MARK 2_1 A (Xplayer)) Owinxpiayer))-

We denote the MOCHA version of this formula as sXWin_by_mark21. If the answer is positive, it means
Xplayer’s move Mark_2_1 is indeed a move leading towards a winning position.

There is of course a question “what if there is no winning strategy in the current position?”.
We believe that we could explore a position evaluation function and and its connection with ATL
properties. But this is out of the scope of this report.

13

Property Results | Time

GameOver passed | 2sec

Turn passed | 0.3sec
Termination passed | 4min49sec
Playability passed | O.4sec

Strong Winnability || failed | 23sec
Weak Winnability || passed | 4minOls
sXWin passed | 1minO6sec
sXWin_by_mark21 || passed | 1min59sec

Figure 3: Verification results of Tic-Tac-Toe

4.3 Experimental results on Tic-Tac-Toe

Here we present experimental results to show that the analysis described above can be done in reason-
able time with moderate computing resources. For these experiments, we ran MOCHA under Linux
kernel 2.6.20 1686 with a Dural-Core 1.8Ghz CPU and 2GB RAM. The table in Figure 3 gives timings
for checking the various properties listed in the previous section. These results indicate that our tool
can generate correct results in a reasonable amount of time.

5 Conclusions

There has been much interest recently in the connections between logic and games, and in particular
in the use of ATL-like logics for reasoning about game-like multi-agent systems. In this report, we
presented an automated tool that transforms a GDL description into an RML specification, so that we
can verify the playability properties on the RML description using an off-the-shelf ATL model checker,
MOCHA. In future research, we will apply our work to formal verification of further GDL descriptions:
the GDL game designer can express desirable properties of games using ATL, and then automatically
check whether these properties hold of their GDL descriptions. The main issues are likely to be the
efficiency and scalability of our automated tools. We believe that there is much room for improvement
with respect to the current results. In particular, it might be useful in future to consider investing some
effort in optimising the translation process from GDL to RML, particularly with respect to the number
of variables produced in the translation. Even moderate optimisations might yield substantial time
and memory savings.

14

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,
and S. Tasiran. MOCHA user manual. University of Berkeley Report, 2000.

R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the
ACM, 49(5):672-713, September 2002.

R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tagiran. Mocha:
Modularity in model checking. In CAV 1998: Tenth International Conference on Computer-
aided Verification, (LNCS Volume 1427), pages 521-525. Springer-Verlag: Berlin, Germany,
1998.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press: Cambridge,
MA, 2000.

M. Genereseth and N. Love. General game playing: Overview of the AAAI competition. Tech-
nical report, Stanford University, Stanford, 2005.

V. Goranko. Coalition games and alternating temporal logics. In J. van Benthem, editor, Pro-
ceeding of the Eighth Conference on Theoretical Aspects of Rationality and Knowledge (TARK
VIII), pages 259-272, Siena, Italy, 2001.

Nathaniel Love, Timothy Hinrichs, and Michael Genesereth. General game playing: Game
description language specification. Technical report, Stanford University, Stanford, April 2006.

M. Pauly. Logic for Social Software. PhD thesis, University of Amsterdam, 2001. ILLC Disser-
tation Series 2001-10.

M. Pauly and M. Wooldridge. Logic for mechanism design — a manifesto. In Proceedings
of the 2003 Workshop on Game Theory and Decision Theory in Agent Systems (GTDT-2003),
Melbourne, Australia, 2003.

B. Pell. Strategy Generation and Evaluation for Meta-Game Playing. PhD thesis, Trinity Col-
lege, University of Cambridge, 1993.

J. Ruan, W. van der Hoek, and M. Wooldridge. Verification of games in the game description
language, 2009. Accepted by the Journal of Logic and Computation.

W. van der Hoek, A.R. Lomuscio, and M.J. Wooldridge. On the complexity of practical ATL
model checking. In Proceedings of the Fifth International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS 2006), pages 201-208. ACM, 2006.

W. van der Hoek, M. Roberts, and M. Wooldridge. Social laws in alternating time: Effectiveness,
feasibility, and synthesis. Synthese, 2007.

W. van der Hoek and M. Wooldridge. Time, knowledge, and cooperation: Alternating-time
temporal epistemic logic and its applications. Studia Logica, 75(1):125-157, 2003.

15

