A Common Semantic Basis for BDI Languages

Louise A. Dennis, Berndt Farwet, Rafael H. Bordin,
Michael Fishet, and Michael Wooldridge

! Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, University of Durham, UK
Contactl ad@sc. | iv. ac. uk

Abstract. We describe the design of an intermediate language (AIL) for BDI-
style programming languages. AIL is not intended as yet another groging
language, but is meant to provide a common semantic basis for a nwhber
BDI programming languages in order to support both formal verifioadiod the
transfer of concepts and developments. We examine some of thedtayefe of
AlL, unifying a wide variety of structures appearing in the operationalasgtics
of BDI programming languages. In particular, we highlight issues in grarment
of events, goals, and intentions, which are central to the design of thnegeaiges.

1 Introduction

As the concept of an “agent” becomes more popular, so thetyaof programming
languages based upon this concept increases. Huyese-orientedorogramming lan-
guages range from minimal extensions a¥Al through to logic-based languages for
“intelligent” agents [1, 14]. In our work, we are particulaconcerned (at least initially)
with approaches based oational agent theorief28], primarily theBDI theorydevel-
oped by Rao and Georgeff [23]. Such languages not only imcate the autonomous
behaviour required for the agent concept, but also proviginisticated mechanisms
for instigating, controlling, and reasoning about suchavéburs.

Although programming languages based on the BDI approathglcall thes8DI
languagegare increasingly popular, there are several problemsxXample:

1. there aréoo many languages — consider all the varieties described jn [1]

2. many of the languages are similar, yet subtly differertis makes it difficult for
developers to learn more than one language, as they are s@d loa agreed no-
tions/definitions; further, such differences make it difftdo identify precisely the
general mechanisms and to transfer new techniques betaegundges; and

3. despite the fact that many BDI languages have logical s&osaand utilise logical
mechanisms, formal verification tools are rare.

This last aspect is particularly important, since BDI apgttes are increasingly used
in complex, critical applications such as space explongi20, 5, 24].

In our work! we aim to design an intermediate language (called Agent Infras-
tructure Layej for BDI-style programming languages. There are severdlvaiions
for this, including:

* Work supported by EPSRC grants EP/D054788 (Durham) and EP/@852%&erpool).
LSeehtt p: // www. csc. | i v. ac. uk/ ~ni chael / ncapl 06 for details.

— providing a common semantic basis for a number of BDI langaatius clarifying
issues and aiding further programming language developmen

— supporting formal verification by developingr@odel-checkeoptimised for check-
ing AIL programs — existing BDI languages can have langusggsific compilers
for AIL so as to take advantage of its associated model-areekd

— providing, potentially, a high-level virtual machine fdfieient and portable imple-
mentation.

Rather than attempting to cover all BDI languages from tlagt,stve have initially
tackled some of the most popular. Thus, we have principefigrred to the variant of
AgentSpeak [22] used idason[3] and 3APL [18, 8] when designing the semantics for
the AIL, but have also taken Jadex [21] and (Concurrerg)iNTEM [13] into account.
However, we expect that a significant proportion of the @éxggprogramming languages
for multi-agent systems will have mappings into AlL in theute.

The current design for AIL, in the form of an extensive opieral semantics, can
be found in [10]. For the sake of space, in this paper we ordgudis the main aspects of
AlIL and introduce only the most important rules of the opiersl semantics. In order
to model a particular language in AlL it will be necessaryiteate a custom AIL com-
piler for that language. It may also be necessary to provedeescustom AVA classes
for the language although these will, in general, be spetfi particularinterpreter
for the language rather than the language itself. We intentdvide such classes and
compilers for AgentSpeak and 3APL, though this work remainke done. The cor-
rectness of these compilers will then also need to be adetie€me of the reasons why
AlL is to be implemented as aVa library is that we aim to use JPH26] as a target
model checker for programs written in various BDI languages

Sometimes it will prove possible to map only fragments of\vegilanguage into
AlIL. Our expectation is that large and useful fragments ohRDI-style agent pro-
gramming languages will be translatable. In order to accodate the main features of
the primary BDI languages, AIL has some components withlapeing functionality.

The structure of the remainder of this paper is as followsSéation 2, we will
describe the key similarities in the programming languagessidered, which will in
turn provide the basis for AIL. Section 3 then describes tre teatures and operational
semantics of AIL. Within AIL, certain language design démis are required; those
related to plan revision in particular are highlighted irc&n 4. Finally, in Section 5,
we provide concluding remarks, outline future work, andnpod aspects of AIL not
covered in this paper.

2 General Similarities

There are some general concepts that are found in many Biuidaes. We will review
these similarities and discuss the design implicationg\far

Formula Representation. 3APL, AgentSpeak, and KrATEM all use minor variations
on first order literals for the representation of beliefsalgpactions, etc. Jadex uses
an internal dvA representation but fragments of this can be mapped intodidsr
logic [4]. Therefore we have chosen first order literals a&sltasic representation.

Zhttp://javapat hfinder. sf. net

Beliefs. All these languages have the concept betief basegenerally considered as a
set of (belief) formulae. A formula is considered to be bediif it is (unifiable with) a
formula in this set. In some languages there is extra reaganachinery on top of this.
In both AgentSpeak and 3APL this additional machinery is @dgrstyle reasoning
engine which we have therefore adopted for AIL.

Goals. All the BDI languages have the concept of goals — states ofvtrél the agent
is trying to bring about. The precise internal represeotatf goals differs but all the
languages we have considered maintain setsutdtanding goalsin general, the lan-
guages (with the exception of BATEM) also maintain a stack (or set of stacks) of
deeds to be performed in order to achieve these goals — these desdmoiude com-
mitting to the achievement of further sub-goals. Informadin agent’s reasoning cycle
involves either adding new deeds to this stack (triggerethbycreation of a sub-goal)
or removing deeds from the stack (as actions are performeéde@ails achieved).

In [9] goals are categorised into four typeshieve perform maintainandquery;.
When an achieve goal appears in a deed stack it must be belferk it can be
removed. This contrasts with a perform goal which is remaagdoon as new deeds
are added to the stack as a result of generating an intemtond suitable plan. Query
goals are used to query the belief base, usually in order tairolnstantiations for
variables. Maintain goals only trigger plan execution #jltease to be believed.

Terminology and semantics in this area is quite subtle, siome also referring to
events(AgentSpeak, 2APL [6]). In AgentSpeak, events refer botekdmmitment to
achieving goals and changes perceived in the environméeteTare also many ways
of managing the relationship between (outstanding) gaalb;goals, and the deeds
associated with achieving them. Outstanding goals aresttmsvhich the agent has
committed but not yet achieved. This places a design burdeXilg as it must:

— allow outstanding goals to be identified,;

— be possible to link a given outstanding goal with the seqe@iadeeds currently
being pursued in order to achieve it;

— maintain sequences of deeds to be performed (including dttimgrto new goals).

Actions. Actions are performed by an agent in the “outside world”, itlee environ-
ment where the agent is situated. The only effect an actisrohahe working of AIL
is that it may return a unifier for some variables (as thisl@d in some of the lan-
guages, but not all) and, of course, it may be deemed to haeesded or failed. In
some languages, actions have specific effects on the belsef (®.9., 3APlcapabili-
ties); such actions can be modelled as plans (see next point).

Plans. The word ‘plan’ is overloaded among BDI languages and carskd to repre-
sent either something that a programmer writes to descabeparticular goals should
be tackled, or an agent’s internal deed stack of pendingratWe have chosen to use
plansfor the first of these, andeed staclor the second.

% The term “deed” has not been used in the agent programming lankjieageire, to our knowl-
edge, but we have adopted it as a way to refer to the various typeswiloone can typically
have in the body of plans.

4 A 3APL capability is an “internal” action which alters an agent’s beliefs altioeiworld.

BDI languages have plans which are triggered accordingpeds of the agent’s
state, typically the existence of an outstanding goal. $l&hs are of the form
(trigger, guard, body)

where the guard is some set of literals that should be belitarghe plan to be deemed
applicable. If a plan is selected, the plan body is placecenelevant deed stack.

Jasonalso allows plans (and therefore deed stacks) to includefhgddate infor-
mation and so this is also permitted in AIL. This allows us tod®l actions with side
effects (and specifically 3APL capabilities) within our aéion of plans.

It should be noted that we do not intend humans to write n&l\zecode, so we are
able to ignore features which help a programmer concepyudifferentiate between
aspects of the language, as is the case with 3APL plans arabdajes.

As well as having plans triggered by outstanding goals, Ageeak allows plans
to be triggered by changes in the belief base. 3APL allplas revisionrules/plans
which match the prefix of the deed stack and replace it withesalternative. Jadex and
METATEM haveconstraintrules/plans which are triggered by some specific configura-
tion of the belief base alone. In order to represent thegerdiit types of plans within
AIL, we need to make a number of generalisations. We assunat af ;ntentions
each composed, among other things, of a stagvehtgsuch as outstanding goals and
sub-goals or information about belief updates) and a sthdkeds. The structure of in-
tentions will be further explained in Section 3.1 and lat@raplified in Section 3.4. In
this set, what some languages (such as AgentSpeak) calVant"&an be represented
as an AlL intention with an empty deed stack. We assume thatrant intention thus
also acurrent eventaind acurrent deed stagkas been selected from this set.

Each plan in the agent’s plan library is represented by atophsisting of a trigger
event, a deed stack (called theefix), a stack of belief expressions (called tipeard
stack, and a (second) deed stack (calledlioely). The trigger must match the current
event, and the prefix must match the prefix of the current desak $or the plan to
be deemed relevant. The belief expression at the top of thedgtack must also be
believed by the agent. When this happens, the prefix is drofspedthe current deed
stack and replaced with the body. Each new deed is pairedhétborresponding guard
(i.e., belief expression) from the guard stack. Throughute variables in triggers and
empty prefixes, this structure allows us to model many diffietypes of plan.

We use a guard stack in order to model the different semafatioguards. Some
languages (e.g., Jadex) hawmeariant expressionthat must be checked at every stage
during the execution of a deed stack, while others (e.g.nf8meak and 3APL) check
guards only when a plan is to be adopted. When a plan does hameagiant expres-
sion, that expression is paired with every deed on the skmlnaormal plans (i.e., those
with only a guard and no invariants), only the first deed isquhivith the guard expres-
sion; the remaining deeds are simply paired witlf'true’, denoting an empty guard).
Once again, since humans are not expected to write nativepkdhs, the tedium of
repeating the guard multiple times in order to representlexdmvariant is not an issue.

Applicable Plans. Most of the BDI languages employ the concept of generating an
applicableplan for achieving an outstanding goal. This is based onmrajche plan’s
trigger, or prefix (to generatelevant planyand then checking the guard (to generate
applicable plany These BDI languages rely on user-defined methods usectlyttr-

i+ P
applicable plans—7\=/"~.__ select plarp’
7

- I
i @ plan(i) = p’Qplan(i)

select intentiorﬁ handle top of plan
I (extended intention seY)\\ //1 (new intention set)
> e .
handle messa\g‘es\.___ . perception

Inbox, I (extended intention set)

Fig. 1. AlL’s deliberation cycle

preter to seleabneof the appropriate plans from the plan library, which thensed to
generate a new deed stack. HowevegE™TEM generates all possible next states (deed
stacks). In particular, it instantiates all the relevaiaing, in some cases generating sev-
eral potential new deed stacks for a single plan, and theasgsobetween these based,
among other things, on how many outstanding goals are athigy each option. We
adopt this as a more general solution.

3 Agent Infrastructure Layer

AlL’s reasoning cycle may informally be viewed as shown igu¥e 1.

In this cycle, starting at stagk, anintention— which includes a deed stack — is
selected, leading to stad® Using the agent’s plan library and belief base, a set of
applicable plans® in Figure 1) is generated (sta@y. From this, a single applicable
plan is selected and its deed stack joined to the currentstael D). The topdeedin
this stack is then handled in the appropriate way (deperafirige type of formula) and
the set of intentions updated accordindB).(Next, perception takes place, posting new
events (i.e., belief updates), leading to stigét this final stage, agent communication
messages are handled and the reasoning cycles restarts.

When events are generated from perception of the environffient E to F), they
are treated as intentions with empty plans. Agents have aagesinbox” where agent
messages are placed. Any messages received during thgdbstaioe handled just be-
fore another reasoning cycle starts; this may also extemthtbntion set.

Since AlL is designed as a basis for efficient verification aatlas a programming
language to be used in developing agent-based systems,moteeof AIL programs
are essentially syntax-less (e.g., plans are represeméatlylas data structures in AlL).
We summarise AlL in the following sections.

3.1 Intentions: Events, Goals and Deed Stacks

The concept of aintentionis common in BDI languages and is used to represent the
intended meanfr achieving goals — intentions include what we call a dgadks but

may also maintain information about the sub-goal they atenifed to achieve or the
event that triggered them.

In AIL, we treat intentions as a complex abstract data stinectThis data structure
aggregates the information about events, outstandingsgaatl deed stacks used by
the various BDI languages we have considered. As suggeiste® ave use the idea of
events to represent outstanding goals (as, e.g., in Ageak$p

AlL intentions may most simply be viewed as a matrix struetconsisting of four
columns in which we record events, guards, deeds, and uwn(fiespectively). These
columns form an event stack, a guard stack, a deed stack, amfiex stack. There are
as many rows in the matrix as there are deeds (in the bodidé® gflan instances that
have become intentions) and events that have not been d#dalet. Individual rows
in the intention associate a particular deed with the evaithas caused the deed to
be placed on the intention, a guard, and a unifier; new eveatassociated with an
empty deed. An example of the use of this data structure cdouvel in Section 3.4.
The actual implementation of intentions is likely to be mommpact than this — for
instance the commitment to achieving a goal (i.e., an ewetifyenerally cause a stack
of deeds (the plan body) to be joined to the intention’s déacks all of which will get
associated with the same event; that is, each new deed tgham@ew row in the matrix
and the event is repeated in all those rows. Information abatistanding goals can be
extracted from the event stacks of all intentions, whicloré¢he agent’s existing goals
and the sequence of unachieved sub-goals generated intpirtese.

3.2 Interpreter Specifics

We already noted that many interpreters for BDI languagésgdée plan selection to
user-defined methoddasonalso defers intention selection to such methods. We have
chosen to provide simple defaults for such functions (irhezse the default selects the
top of the stack) but allow them to be overridden. In somegasgch as MTATEM,
which has specific phases in which only certain plans arecgipé, it will be necessary

to override these defaults when theoretically modellirglémguage.

3.3 Operational Semantics

In this section we present a simplified outline of the operatl semantics for AlL. The
full semantics is available as a technical report (see [108)here focus on key issues
and semantic rules.

We view an agent as a tuple consisting of an identidigrintentions (including a
current intention), applicable plans, a belief base, plaraty, and a tag indicating the
current stage of the agent’s reasoning cycle. For presentaasons we will only show
those parts of the state directly relevant to a rule.

Suppose we have already selected an intention (i.e., we atageB in Figure 1).
We use the following rule to generate all applicable plans.

P’ = filter(appPlans(ag)) P’ # 0
< ag,P,B >—< ag,P',C>

1)

filter is an AlL function that, by default, is the identity mappirogit can be overridden
by a particular interpreter to remove some of the plans whAithconsiders applicable
(e.g., ones which have already been attempted).

The AIL function appPlans generates the union of two sets.

appPlans(ag) = match_plans(ag) U continue(ag) (2)

Informally match_plans(ag) produces all the plans applicable to the current intention
by inspection of the plan library. In contrasgntinue(ag) produces the plans which
result from continuing to process the current deed stack.

The plans generated yppPlans are tuples consisting of the event, deed stack,
guard stack, and unifier to be added to the current interidomever, they also include
a number ¢), representing a number of rows to be dropped from the cummémtion
before this plan is added (typically, this number would b&Iemove the “no plan
yet” marker; see semantic rule (4)). The need for this isudised further in Section 4.1.

The interpreter then selects one of these applicable piops the specified num-
ber of rows from the current intention, and replaces therh wihew row for each deed
in the plan’s deed stack (paired with the event, unifier, gopt@priate guard as sup-
plied by the plan). In the next semantic rule, the selectiorcfion 'S,1.,," defaults to
selecting the top plan in the stack but may be overriddengtired by a particular
application. We usei' to denote the current intention.

Spian(P) = (< e, ds, gs,0,n >)
< ag,i, P,C >—< ag, (e, ds, gs,0) @drop(n, i)[@hd/e], [,D >

(3)

The topn rows (as specified in the plans generated figmPlans) are dropped from
the intention stackdf op(n, 7)), the top unifier on the unifier stack of this new inten-
tion® is replaced by ([6"9/6]) and the new intention segmefit, p, gs, 6) is joined to
the front of the intention stacka. The set of applicable plans is emptied. The plans
provided to the agent by the programmer remain in its plaiatip

Then the top of the plan is handled by a variety of rules. Thieang rule shows
how to handle an (achieve) sub-goal not yet achieved. R&acatl our discussion of
appPlans that ‘¢’ is a special symbol used to denote “no plan yet”. In our seimamwe
use the syntax-!, g to signify the adoption of an achieve goalfor “achieve”),g. This
is a deed when it appears in the deed stack of an intentionraedest when it appears
in the event stack — its type is determined by context. Whegyy appears in the event
stack of an intention we may say that the agent has committedhieving the goal.
The full syntax for AIL can be found in [10].

ag = gu, agltg
< ag, (e, +ag, gu,0);4,D >—< ag, (+lag, €, T,0); (e, +lag, gu,0); i, E >

(4)

The rule pushes “no plan yet” on top of the intention’s deexdtlst This is associated
with the eventt!,g (i.e., the commitment to achieving and an empty guard. Note
that ‘=’ is used to represent the AlL belief checking process. Thug,= gu” asserts

5 see Section 3.1 for a description of the intention data structure.

that the agent believes the guard to be true, while [~ ¢” asserts that the agent does
not believeg, which can be interpreted as the agent not believing the lgaslbeen
achieved. Belief checking may cause the instantiation olées.

If a goal is achieved, then we remove it from the top of theritite

ag = gu, agkg (5)
< ag,(e,+ag, gu,0);i,D >—< ag,i[#"d©® /g U Hhd()] E >

Because we want to preserve any decisions about unifiersinifier associated with
+!,9 is merged with the top unifier af(the tail of the intention).

It is worth noting here that AIL does not distinguish betweamieveand query
goals. Query goals are easily handled by (5), sikednstantiates variables. AgentSpeak
even allows query goals to act as trigger events and matols lthey do not succeed,
so (4) is also usedPerformgoals can be handled by a simple modification to (4) which
does not leave-!, g on the stack. Onlynaintaingoals need to be treated entirely sep-
arately. In AIL, maintain goals insert a new constraint piarthe library which fires
whenever the goal is no longer believed (details of this @fobnd in [10]).

Beliefs. All the languages we considered allow new beliefs to be teseinto, and
removed from, the agent’s belief base. However, some (&gentSpeak) also allow
new plans to be placed in the plan library. We have therefererlised the concept of
belief to include many aspects of an agent’s internal staieh as the plan library. Belief
updates (i.e., the addition of new beliefs, or the deletiowidbeliefs) are tagged by the
relevant part of the state (e.g-»"’ is an instruction to add to the belief base, while
+pP! is an instruction to adg to the plan library). We have found by this mechanism
that all such updates can be handled essentially by the samehre only difference
being the state component that is selected. Rule (6) shavsgcial version of this
general rule for adding a belief to the belief base

ag = gu 6)
< ag, (e, +b", gu,0);4,1, B,D >—
< ag,i[M"@ /g U PNAD] (+p [¢], T,0); I, BU{b},E >

This causes the top of the current intention to be removed age (5), and also causes
b to be added to the belief base. However, since a belief updayebe a trigger for a
plan, we also place a new intention on the intention staek®®, [¢], T, 0)), which has a
“no plan yet” deed stack. This, recall, is how events areesgmted in AlL.

3.4 Example

We now illustrate the operation of an AlIL agent via a simplaraple. This is loosely
based on a 3APL example available in its user glideobot has a goal to clean rooms.
When the robot believes a room is dirty, the plan is to go torihatn and vacuum clean

5 AlL’s actual semantics allows multiple belief updates of mixed types at oesalting in a
rather complex rule but (6) captures the key idea applied to a single update
"http://ww. cs. uu. nl /3apl / downl oad/ j ava/ user gui de. pdf

it. There is insufficient space here to discuss a translditamn 3APL to AlL although
we will briefly touch on some of the more interesting issues.
The robot possesses the following plans for cleaning roardshanging locations.

PLAN 2:
PLAN 1: trigger +! Cot o(R)
trigger +!,cl ean() prefix [€]
prefix [e] guard stack|pos(P)
guard stack|di rt y(Room) TRUE
TRUE TRUE
body +!,Got o(Roon) body - pos(P)
+!,Vacuun{ Room) +pos(R)
+CGot o(R)

We represent the components plans in table form showingdhmonents introduced
in Section 2. Since 3APL guards are only checked once thedgeainly associated
with the top deed. Note that 3APL goals such-g! ean() are ‘achieve’ goals and it
is expected that the truth of ean() will be established during execution. (In the sequel
we assume all goals to be achieve goals and drop the sulsscript

Plan 2 is derived from a 3APL capability. The semantics obt#ljiies is given in a
Hoare-triple like format, for examplépos(P)} Goto(R) {NOT pos(P), pos(R)}.
The plan shows how this is can be transformed into AlL.

Let us consider the execution of an AlL agent which startsatlt the goak! ean()
and the beliefpos(roon8) anddirty(roontl). We examine the intention stack since
this is of the most interest in understanding the executf@m@IL agent. We represent
individual intentions as a matrix with four columns as dissed in Section 3.1.

Initially there is one intention, and this has one row to aehithe goat! cl ean() .
The event is the start of the program. The guard and unifiekstare initially empty
(left-hand table below). Since the agent does not belieean(), ¢ is placed on top of
the plan according to rule (5) with the trigger event notimg need to achieve ean() .

triggerjdeed [guardunifier (5) trigger [deed [guardunifier
start_ [+Iclean()[T [0 —— +clean()|e T |0
- start +lclean() |T 0

Plan 1 now matches the intention. Theis dropped (since it matches the prefix) and
the plan’s new deed stack is joined to the intention’s reingideed stack. All the deeds
in this new stack are associated with the plan’s trigger.

trigger [deed [guard [unifier

+!I'cl ean() |+! Got o(Room di rty(Room) |Room = roonil
+lclean() |+ Vacuun{Room) |T Room = roont
start +l ¢l ean() T 0

This process then repeats to plan o:

trigger [deed [guard [unifier

+! Got o(R) |- pos(P) pos(P) Room = roontl, P = roon8, R = roondl
+! Got o(R) [+pos(roonl) |T Room = roontl, P = roon8, R = roonl
+1 Got o(R) [+Got o(roont) | T Room = roontl, P = roon8, R = roondl
+! cl ean() |+! Goto(Room |dirty(Room |[Room = roonil

AIL now performs the belief updates on the deed stack. Thesergte new intentions
according to rule (6); let us assume these are not priaditisethe intention selection
process so the intention stack becomes:

trigger [deed [guard [unifier

+! Got o(R) +Got o(R) T Room = roonil, P = roon8, R = roonil
+! cl ean() +! Got o(Roon) di rty(Room) |Room = roonil

+! cl ean() +! Vacuum(Room) | T Room = roonl

start + ¢l ean() T 0

-pos(roonB) |e T 1]

+pos(roont) |e T [0}

When we handle this last belief update the unifier is mergexdtie one for the top of
the first sub-plan, preserving any unifications obtained.

trigger [deed [guard [unifier

+! cl ean() |+! Got o(Room) di rty(Room) |[Room = roontl, P = roonB8, R = roonl
+1 cl ean() |+! Vacuun(Room) | T Room = roont

start +l ¢l ean() T 0

For lack of space we cannot expound on this example any furthe

4 Plan Failure and Plan Revision

In most BDI languages it is assumed, in general, that oncegantéhas committed
to a goal, the goal is not abandoned. However, in realityg #ametimes necessary to
reconsider intentions. Unfortunately, the literature gerg programming languages is
mostly vague about this process.

4.1 Plan Revision

3APL usesplan revision rulego replace the prefix of whole intentions with revisions.
This influenced the design of AIL plans.

Consider an intention to give Jane a present, which has fibtheedeed stack: check
what is in the Harrods department store, go to London, andhaise the gift. So our
intention stack (ignoring guards) is represented as falow

trigger [deed [unifier

+! give(X1, Y1) |+!in_harrods(Yl) Xl = jane, Yl = X
+! gi ve(X1, Y1) |gotol ondon X1 = jane, Y1l = X
+! gi ve(X1, Y1) |purchase(Yl, harrods) X1 = jane,Yl = X
start +lgive(jane, X) 0

Let us suppose that achievimgi n_har r ods(Y1) instantiatey1 to ‘computer’ yielding
the new intention stack:

trigger [deed [unifier

+! gi ve(X1, Y1) |gotol ondon X1 = jane, Y1l X, Y1 = conputer
+! gi ve(X1, Y1) |purchase(Yl, harrods) X1 = jane, Y1l

start + give(jane, X)]

Suppose also that we have a plan revision rule that saysitatid of going to London
and buying a computer in Harrods we should, instead, puecih&®m Dell:

PLAN 3:
trigger Any
prefix got ol ondon

pur chase(conput er, harrods)
guard stack| TRUE
body pur chase(conputer, dell)

The prefix is of length 2 so we drop two items from our intentidhe last trigger of
the dropped section is! gi ve(X1, Y1) so that unifies withrany and we replace the
dropped parts of the stack with the new deed stack:

triggerfdeed [unifier
Any purchase(Yl, dell) X1 = jane,Y1l = X,Y1 = conputer,Any = +!give(Xl, Y1)
start |+! give(jane, X) 1]

This has preserved the unifications already decided upgn {eatvi = conput er)®.

4.2 Plan Failure

The original AgentSpeak specification [23] includes a “dgol” construct in its syn-
tax but its semantics has never been made clear and theiefereften ignored in
attempts to model the language. For instance [17], whicheels\gentSpeak in an
early version of 3APL, ignores this aspect of the AgentSsakantics. Thdasonin-
terpreter [2] for AgentSpeak posts drop goal) events when a plan fails [19]. There
are no default rules for handling these events but it is pts$o write handlers as a
plan, for instance:

-lgitrue <- +lg
which forces backtrackirfgor other plans for handling failure. While there is no deffaul
backtracking behaviour in either AgentSpeak or 3APLE™TEM uses backtracking
as a default revision procedure.

It seemed necessary to provide a mechanism by which therdggigan AIL com-
piler may define plan failure handling behaviour withoutypding unnecessary ad-
ditions to the language. This meant that plan failure hadet@&fined by plans. We
therefore needed to introduce a distinguished syntaalkt r ack’ into our deed syntax
which, if used, causes the execution of the AIL operatiopatantics rules to system-
atically retrace their steps attempting different ingttians and rules, as in traditional
backtracking.

We adopt thelasonidea of posting a drop goal event when applicable plans can-
not be found or actions fail. When this happens the curreggéri event is selected and
posted as a drop goal. A particular AlL interpreter need nsgkect such events for han-
dling. However, if a drop goal eveid selected, then it is matched widil outstanding

8 This does mean that incautious use of plan revision can preserveamegpnifications.
% Note that this backtracking only retries the goal — the programmer mémtcerthe use of a
different plan or this could potentially cycle.

intentions to see if it unifies with an event (i.e., one of tloalg or sub-goals to which
the intention has committed). If it does; is placed on top of the plan for that intention
with —!g¢ as its trigger. We plan to extend the semantics to allow thi@opf unifying
with just one intention. This allows us to model 3APL’s drapagconstruct¥.

Any plans available for dropping goals can then be applieth@&pplicable plan
stage. Possible plans include:

PLAN: Actually drop agoal [PLAN: Retry agoal [PLAN: Traditional backtracking
trigger -lg trigger -lg trigger -lg

prefix € prefix € prefix €

guard stack|TRUE guard stack| TRUE guard stack| TRUE

body -lg body +lg body backt r ack

The first of these will place ¢! on top of the deed stack. We have specified the handling
of a -lg deed in AIL as dropping everything on the goal stack aftet ¢joal was first
committed to. This also drops all unifiers allowing differenles to be used.

ag = gu +lg =events(i)[n] VYm > n.—(+!g =events(i)[m])
< ag,(e,—!g,gu,0);i,D >—< ag,drop.(n,i),E >

(7)

whereevent s(i)[n] is thenth trigger event on the intention stack.
Let us reconsider purchasing the present for Jane, supposeerunable to get to
London. The failure of the actiogot ol ondon will post a new “drop goal” intention:

trigger [deed [unifier

-lgive(X1l, Y1)|e X1 = jane, Y1l = X, Y1l = conputer
+! gi ve(X1, Y1) |gotol ondon X1 = jane, Y1l = X,Y1l = conputer
+! gi ve(X1, Y1) |purchase(Yl, harrods) X1 = jane,Yl = X

start +lgive(jane, X) 0

Assuming this intention is selected a new merged intens@eherated

trigger [deed [unifier
-lgive(X1, Y1) |e X1l = jane,Yl = X,Y1l = conputer
+! gi ve(X1, Y1) |gotol ondon X1 = jane, Yl = X,Y1l = conputer
+! gi ve(X1, Y1) |purchase(Yl, harrods) X1 = jane,Yl = X
start + give(jane, X)]

Upon using the plan “Actually drop a goal” above, we arrive at
trigger [deed [unifier
-lgive(X1, Y1)|-!give(Xl, Y1) X1 = jane, Yl = X, Y1 = conputer
+! gi ve(X1, Y1) |gotol ondon X1 = jane, Yl = X, Y1l = conputer
+! gi ve(X1, Y1) |purchase(Yl, harrods) X1 = jane,Yl = X
start +l give(jane, X) 0

Now, (7) causes us to drop back to the first appearaneegdfve(X1, VY1):

triggerplan |unifier
start [+ give(jane, X) [0

We have lost our commitment to giving Jane a computer (sirisesuich commitments
that may have caused failure).

10 Mehdi Dastani, Personal Communication.

5 Concluding Remarks

This paper provides an overview of oAgent Infrastructure Laye(AlL), capturing
all major features of common BDI languages. The main purpdZ€L is to provide
a common (operational) semantics for large fragments afeth@nguages in order to
aid the transfer of new ideas and techniques and to allowetielopment of common
verification tools and technologies. The development of A#s highlighted several
subtle language design decisions, which we have describdtkeipaper. In this way,
AlL serves a valuable role in clarifying and formalising Bahguage semantics.

In order to provide this semantics, we needed to charaetdréesshared concepts of
beliefs, goals, actions, and plans as well as accountingdisrmon variations such as
the use of events and deed stacks. Thus, our semantics pleeatomplex data structure
to represent intentions associating events (which inctudstanding goals) with stacks
of deeds (which include belief updates) to be performed. #egalised notion of a plan
is developed to be used in this data structure which captaeey of the notions of
plans available in the literature.

While we have described aspects relating to goals, beliefaspetcwithin agents,
AlIL itself covers much more than we addressed in this pap@}. [LThree important
aspects that are omitted are mentioned briefly below.

Constraints. An additional construct within the agent’s state is actuptbvided within
AlL. Constraintsdescribe pre-conditions that must hold before a given actiay be
performed or a goal may be adopted. These preconditionsheeked just like the
guards of plans and it is here that we particularly expecettiended notion of belief
to become useful (so constraints may express that the agsipnticular goals or par-
ticular plans inits library). It is important to note that efeas an agent selectsly one
applicable plan it must satisfgll relevant constraints. The generalised notion of con-
straint allows us to express a wide variety of permissioms@nhibitions. If an action
is prohibited the pre-condition is simply. (false), so it always fails and the action is
never taken (or the goal never adopted). If certain actioe®aly permitted in certain
situations, or to agents who have adopted certain rolesetban also easily be mod-
elled (e.g., an agent can check if it is performing the appgat@role). The operational
semantics of AlL, therefore, forces an agent to check ifafae any constraints and, if
S0, to see that they hold before it takes an action or selgutmna

Communication. Armed with constraints, we are able to describe a wide rarige o
communication protocols. A common concept among BDI laggaas that messages
should contain botbhontentand aperformative(which determines what should be done
with the content). Communication protocols are estabtidheagreeing on constraints
associated with these messages (e.g., which performatwele used in a given stage
of a communication protocol) and associating particulanglto be enacted on their
receipt. Variations on these basic ideas are present ir3[22].

In this model a communication protocol would consist of a&stbn of plans and
constraints osend actions and ecei ved events. Sending messages is treated as an ac-
tion by AIL, and constraints are checked in the same way asatesfor any action. The

last phase of the AIL reasoning cycle is dedicated to hagdtie receipt of messages.

I' = {(+received(ag’,ilf, d), [e], T,0)|
< ag',ilf,¢ >€ In A check_constraints(+r ecei ved(ag’, ilf, ¢)} ®)
<ag,I,In,F >—< ag, I'QI,[],A >

In this rule the intention stack, is extended with a set ofr ecei ved events, one for
each message in the inbox whose relevant constraints aséeshtThese events can
then trigger appropriate plans for reacting to the messtueuse of constraints allows
AlL to filter out certain messages; this allows AL to handémcepts such as the social
acceptability of messages which are important, for exampléason[3].

Organisational Structures. We have designed AIL aiming, in future work, not only
to be able to accommodate a variety of languages but alsactuatfor future devel-
opments of the existing languages. For example, most lgyagueurrently concentrate
on individual agents, so it is likely that those languagelt @ extended to include
constructs to support the social level of multi-agent systeparticularly the notion of
“organisations” [25]. Important common concepts in thisaaare the ability for agents
to form groups which possess and communicate goals, plansjssions, and prohibi-
tions. Furthermore groups of agents need to be able to ag#mmselves into organi-
sations, with specific roles within those organisationsspetific relationships between
roles. All of this implies that such groups adhere to certmimmunication protocols;
[11, 25, 7] all describe variants which rely on these basitsticts as building blocks.
Clearly any machinery for organisation and communicatigtiiw AL needed, at a
minimum, to be able to express these notions and preferagigied to be customisable
to allow variations on their basic forms.

AlL is therefore being designed with simple constructs wahétlow it to model
many of the most obvious developments in this area. Of thel&Rjuages we have ex-
amined, only METATEM has any primitives for describing social organisationagdnts
(all other languages have messaging constructs and maimwastigating frameworks
for describing organisational structures). AlL’s socigjanisations are currently based
on METATEM’s groups which flexibly allow the concepts of organisatenmd role to
be captured [16, 15]. In order to properly express permissand prohibitions it was
necessary to provide AIL with constraints as described ebdfe also needed to anno-
tate aspects of the agent’s internal state with sourcedafmation/goals and define a
concept of the relevance of a constraint or plan to a sitonafibe treatment of groups
of agents as agents in their own right also provides a natueahanism for introducing
concepts of modularity into agent programs.

Space restrictions preclude further discussion of thisoitigmt item, but we note
that it forms a key part of our future work.

Future Work

As mentioned above, a key aim of this work is to provide a bfsishe formal veri-
fication of programs written in BDI-based programming languages. itself still re-
quires refinement, in particular in the communication arghoisation aspects men-
tioned above. Thus, deeper analysis of these aspects wiified out, and appropriate
high-level primitives will be developed.

Also in the short term, planned work revolves around the @m@ntation of AL (in
Java) and the provision of compilers for, at least, significaagiments of AgentSpeak
and 3APL. In the longer term, the correctness of these cengileeds to be addressed
and verification tools for AIL developed. In particular, wienato extend JPF [26] so
that AIL classes are treated as internal classes of JPFhwhimuld provide for efficient
verification of agent programs written in various BDI langas.

An additional aim, within our future work, is to develop a sabof AlL, currently
called AIL", which: captures moseasonableBDI programs, has a very clear and
straightforward semantics, and is easily implementablerehtly, AIL~ is conceived,
in particular, as reducing the number of goal types avadlapld the mechanisms for
handling plan failure. It will also eliminate some of the flality of the current group
structuring mechanisms. AtLwould then provide the basis forlightweight efficient
andverifiableagent programming language.

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editdfulti-Agent Pro-
gramming: Languages, Platforms and Applicationslumber 15 in Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer-Verlag, 2005

2. R. H. Bordini and J. F. Bbner. Jason: A Java-based interperter for an extended version of
AgentSpegk2006. Available fromht t p: / /j ason. sour cef or ge. net .

3. R. H. Bordini, J. F. ldbner, and R. VieiraJason and the golden fleece of agent-oriented
programming. In Bordini et al. [1], chapter 1, pages 3-37.

4. L. Braubach, A. Pokahr, and B. Farwer. On Formalising Jadexsdhal Communication,
January 2007.

5. W. Clancey, M. Sierhuis, C. Kaskiris, and R. van Hoof. AdvantagféBrahms for Spec-
ifying and Implementing a Multiagent Human-Robotic Exploration SystemPrbt. 16th
International Florida Artificial Intelligence Research Society Confere(fleAIRS) pages
7-11. AAAI Press, 2003.

6. M. Dastani. 2APL: A Practical Agent Programming Language. Sliddse Presented at
PLDT-MAS Tutorial at AAMAS conference, 2007.

7. M. Dastani, V. Dignum, and F. Dignum. Role-Assignment in Open A§ecieties. IrProc.
2nd International Conference on Autonomous Agents and MultiageterBygAAMAS)
ACM Press, 2003.

8. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Programmingiiragent systems in
3APL. In Bordini et al. [1], chapter 2, pages 39-67.

9. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Goal Typesgamt Programming. In
Proc. 17th European Conference on Atrtificial Intelligence (EC2006.

10. L. A. Dennis. Agent Infrastructure Layer (AIL): Design ande@ational Semantics v1.0.
Technical Report ULCS-07-001, Department of Computer Sciddicizersity of Liverpool,
2007. Available fromht t p: / / www. csc. | iv. ac. uk/ research/techreports/.

11. J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizatfm Organizational
View of Multi-agent Systems. IRroc. 4th International Workshop on Agent-Oriented Soft-
ware Engineering (AOSEYyolume 2935 oL NCS pages 214-230. Springer, 2003.

12. FIPA. FIPA Communicative Act Library Specification. Technicap@rt FIPA00037, Foun-
dation for Intelligent Physical Agents, 2002.

13. M. Fisher. METATEM: The story so far. IrfProc. 3rd International Workshop on Program-
ming Multiagent Systems (ProMASplume 3862 of-NAI, pages 3—-22. Springer, 2005.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Computatidradics and Agents — A
Roadmap of Current Technologies and Future Tre@asnputational Intelligencen press.
M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Ratidigents. InProc. 4th
International Conference on Computational Logic in Multi-Agent Syst&hBA), volume
3259 ofLNCS pages 849-856. Springer, November 2004.

M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Execut@btaporal Logic. In
Proc. 12th International Symposium on Languages for Intensionaj@roming (ISLIP)
World Scientific Press, 1999.

K. V. Hindricks, F. S. Boer, W. van der Hoek, and J.-J. C. Mey® Formal Embedding
of AgentSpeak(L) in 3APL. IrAdvanced Topics in Artificial Intelligencgolume 1502 of
LNAI, pages 155-166. Springer, 1998.

K. V. Hindricks, F. S. de Boer, W. van der Hoek, and J.-J. CydvleAgent Programming in
3APL. Autonomous Agents and Multi-Agent Syste2(4):357—401, 1999.

J. F. Hibner, R. H. Bordini, and M. Wooldridge. Programming Declaratival&aising
Plan Patterns. IfProc. 4th International Workshop on Declarative Agent Languageb an
Technologies (DALT)pages 65-81, Hakodate, Japan, May 2006.

N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent:dldli8 Go Where
No Al System Has Gone Befordrtificial Intelligence 103(1-2):5-48, 1998.

A. Pokahr, L. Braubach, and W. Lamersdorf. A Flexible BDIMitecture Supporting Exten-
sibility. In Proc. IEEE/WIC/ACM International Conference on Intelligent Agentfietogy
(IAT), pages 379-385, 9 2005.

A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Caiaiple Language. In
Proc. 7th European Workshop on Modelling Autonomous Agents in a MgétitAWorld
(MAAMAW) volume 1038 of. NCS pages 42-55. Springer, 1996.

A. S. Rao and M. Georgeff. BDI Agents: from theory to practice.Pioc. 1st Interna-
tional Conference on Multi-Agent Systems (ICMA&)ges 312-319, San Francisco, CA,
June 1995.

M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Misgperations.
(Seehttp://ic.arc.nasa.gov/ic/publications), 2006.

J. Vazquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagetérsgs Tech-
nical Report UU-CS-2004-015, Institute of Information and Compufiegences, Utrecht
University, 2004.

W. Visser, K. Havelund, G. Brat, and S. Park. Model checking@ms. InProceedings of
the Fifteenth International Conference on Automated Software Engine&®ig'00), 11-15
September, Grenoble, Frangeages 3—-12. IEEE Computer Society, 2000.

M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model €ihgdMultiagent Systems
with MABLE. In Proc. 1st International Conference on Autonomous Agents and MuttitAg
Systems (AAMAS)uly 2002.

M. Wooldridge and A. Rao, editorBoundations of Rational Agencypplied Logic Series.
Kluwer Academic Publishers, Mar. 1999.

