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Preamble: Fibonacci Words

Fibonacci words:

wo = b

w1 = a

wi+2 = wi+1wi

b, a, ab, aab, abaab, aababaab, abaabaababaab . . .

Observation: none of the words contains bb or aaa as the
subword

Question: How to prove it?

Answer: Let’s apply FO logic . . .
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Logic encoding

FO theory FIB:

(x ∗ y) ∗ z = x ∗ (y ∗ z)

R(b, a)

R(x , y)→ R(y , x ∗ y)

Proposition

If w is a Fibonacci word then FIB ` ∃xR(tw , x)

Here tw denote a term encoding of w , i.e. taba = (a ∗ b) ∗ a

Corollary

If FIB 6` ∃x∃z∃yR(z ∗ b ∗ b ∗ y , x) then there is no Fibonacci word
with bb as a subword
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Finite countermodel

Now to show FIB 6` ∃x∃z∃yR(z ∗ b ∗ b ∗ y , x) we are looking for

Finite countermodels for FIB → ∃x∃z∃yR(z ∗ b ∗ b ∗ y , x), or
equivalently, for

Finite models for FIB ∧ ¬∃x∃z∃yR(z ∗ b ∗ b ∗ y , x)

To find a model we apply generic finite model finding procedure,
e.g. impemented in Mace4 finite model finder by W.McCune
(see demonstration)
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A model of size 5 is found in 0.05s. The property is proved!

To show that ′aaa′ is not a subword of any Fib. word a model
of size 11 can be found in ≈ 45s
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From Fibonacci words to Safety Verification

In this talk:
the same idea/approach can be applied to (surprisingly) large
classes of infinite state and parameterized safety verification
problems.
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Reachability as deducibility

Many problems in verification can be naturally formulated in
terms of reachability within transition systems;

We propose to use deducibility (or derivability) in first-order
predicate logic to model reachability in transition systems of
interest;

Then verification can be treated as theorem (dis)proving in
classical predicate logic;

Many automated tools (provers and model finders) are readily
available.
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Reachability as deducibility

Let S = 〈S ,→〉 be a transition system with the set of states
S and transition relation →
Let e : s 7→ ϕs be encoding of states of S by formulae of
first-order predicate logic, such that

the state s ′ is reachable from s, i.e. s →∗ s ′ if and only if ϕs′ is
the logical consequence of ϕs , that is ϕs |= ϕs′ and ϕs ` ϕs′ .

Under such assumptions:

Establishing reachability ≡ theorem proving
Establishing non-reachability ≡ theorem disproving
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Verification of safety

Safety ≡ non-reachability of “bad” states

Verification of safety properties ≡ theorem disproving

To disprove ϕ |= ψ it is sufficient to a find a countermodel for
ϕ→ ψ, or which is the same a model for ϕ ∧ ¬ψ
In general, such a model can be inevitably infinite and the set
of satisfiable first-order formulae is not r.e.

One can not hope for full automation here

Our proposal: use automated finite model finders/builders
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Remarks

For the verification of safety the weaker assumption on the
encoding is sufficient:

s →∗ s ′ ⇒ ϕs ` ϕs′

For the verification of parameterized systems general idea of
reachability as deducibility should be suitably adjusted

depends on particular classes of systems
unary or binary predicates modeling reachabiity can be used
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Origins

The idea of using finite model finders for verification is not
new (thanks to anonymous referees of FMCAD 2010
conference!)

It was proposed and developed in the area of verification of
security protocols in the following papers (at least):

C. Weidenbach Towards an Automatic Analysis of Security
Protocols in First-Order Logic, in H. Ganzinger (Ed.):
CADE-16, LNAI 1632, pp. 314–328, 1999.
Selinger, P.: Models for an adversary-centric protocol logic.
Electr. Notes Theor. Comput. Sci. 55(1) (2001);
Goubault-Larrecq, J.: Towards producing formally checkable
security proofs, automatically. In: Computer Security
Foundations (CSF), pp. 224238 (2008)
Jan Jurjens and Tjark Weber, Finite Models in FOL-Based
Crypto-Protocol Verification. Foundations and Applications of
Security Analysis, LNCS 5511, 2009.
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What is new then?

Countermodel finding based verification methods are
practically efficient for the verification of various classes of
infinite state and parameterized systems:

lossy channel systems
cache coherence protocols
parameterized linear arrays of finite state automata
etc.

Completeness (for lossy channel systems verification)

Relative completeness wrt to regular model checking (RMC);
regular tree model checking (RTMC); tree automata
completion techniques

In many cases no specialized model finding procedures is
needed. Generic MACE4 finite model finder by W.McCune
has been successfully used to verify above systems
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Systems to verify, I

Parameterized linear arrays of automata
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Parameterized mutual exclusion protocol

Taken from the paper Parosh Aziz Abdulla, Giorgio Delzanno,
Noomene Ben Henda, Ahmed Rezine. Monotonic Abstraction:
on Efficient Verification of Parameterized Systems. Int. J.
Found. Comput. Sci. 20(5): 779-801 (2009)

Operates on the parameterized linear array of finite state
automata
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Protocol specification

The protocol is specified as a parameterized system ME = (Q,T ),
where Q = {green, black, blue, red} is the set of local states of
finite automata, and T consists of the following transitions:

∀LR{green, black} : green→ black

black → blue

∃L{black, blue, red} : blue → blue

∀L{green} : blue → red

red → black

black → green

The correctness condition: if the protocol starts with all states
being green it will never get to a state where there are two or more
automata in the red state
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Translation to the first-order logic,I

(x ∗ y) ∗ z = x ∗ (y ∗ z)

e ∗ x = x ∗ e = x

(∗ is a monoid operation and e is a unit of a monoid)

G (e)

G (x)→ G (x ∗ green)

(specification of configurations with all green states)

GB(e)

GB(x)→ GB(x ∗ green)

GB(x)→ GB(x ∗ black)

(specification of configurations with all states being green or

black)
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Translation to the first-order logic,II

G (x)→ R(x)

(initial states assumption: “allgreen” configurations are

reachable)

(R((x ∗ green) ∗ y) & GB(x) & GB(y))→ R((x ∗ black) ∗ y)

R((x ∗ black) ∗ y)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ black) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ blue) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ red) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & G (x)→ R((x ∗ red) ∗ y)

R((x ∗ red) ∗ y)→ R((x ∗ black) ∗ y)

R((x ∗ black) ∗ y)→ R((x ∗ green) ∗ y)

(specification of reachability by one step transitions from T ;

one formula per transition, except the case with existential

condition, where three formulae are used)
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Adequacy of encoding and Verification

If a configuration c̄ is reachable in ME then ΦP ` R(tc̄)

To establish safety property of the protocol (mutual exclusion)
it does suffice to show that
ΦP 6` ∃x∃y∃zR((((x ∗ red) ∗ y) ∗ red) ∗ z).

Delegate the latter task to the finite model finder MACE4
(see demonstration)
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If a configuration c̄ is reachable in ME then ΦP ` R(tc̄)

To establish safety property of the protocol (mutual exclusion)
it does suffice to show that
ΦP 6` ∃x∃y∃zR((((x ∗ red) ∗ y) ∗ red) ∗ z).

Delegate the latter task to the finite model finder MACE4
(see demonstration)

It takes approx. 0.01s to find a countermodel and verify the
safety property!
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Countermodel as Invariant

Take a configuration c̄ of the protocol, consider its term
representation tc̄

The following property is an invariant of the system:

[tc̄ ] ∈ [R]

Here [. . .] denote the interpretation in the (counter)model.
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Model and Invariant

The domain D of the model is a four element set {0, 1, 2, 3}.
Interpretations of constants: [black] = [blue] = 0, [e] = [green] =
1, [red ] = 2. Interpretations of unary predicates: [G ] = {1}; [GB]
= {0, 1}; [R] = {0, 1, 2}.
The interpretation of the binary function ∗ is given by the following
table

0 1 2 3

0 0 0 2 3

1 0 1 2 3

2 2 2 3 3

3 3 3 3 3

Invariant property which holds for any reachable configuration c̄ :

[tc̄ ] ∈ [R] = {0, 1, 2}

Alexei Lisitsa Finite Models for Safety Verification



Relative completeness

Theorem (2010)

If the safety of parameterized linear system of automata can be
demonstrated by monotonic abstraction method then it can be
demonstrated by FCM too.
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Safety for parameterized linear systems

Problem

Given: A parameterized system P = (Q,T ), a set In ⊆ C of
initial configurations, a set B ⊆ C of bad
configurations.

Question: Are there any configurations c ∈ In and c ′ ∈ B such
that c ′ is reachable from c in P, i.e. for which
c →∗P c ′ holds?

A negative answer for the above question means the safety
property (“not B”) holds for the parameterized system.
Further assumptions:

I = q∗o for qo ∈ Q

The set B of bad configurations is defined by a finite set of
words F ⊆ Q∗: B = {c̄ | ∃w̄ ∈ F ∧ w̄ � c̄}, where w̄ � w̄ ′

denotes that w̄ is a (not necessarily contiguous) subword of w̄ ′
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Monotonic abstraction

Abdulla et al 2009
Given a parameterized system P = (Q,T ) and the corresponding
transition relation →P on the configurations within P.
The monotonic abstraction →A

P of →P is as follows. For two
configurations c̄ and c̄ ′ c̄ →A

P c̄ ′ holds iff either

c̄ →P c̄ ′ holds, or

there is a transition t = ∀LJq → q′ in T , c̄ = c̄l q c̄r and
c̄ ′ = reductJ(c̄l) q′ c̄r

there is a transition t = ∀RJq → q′ in T , c̄ = c̄l q c̄r and
c̄ ′ = c̄l q′ reductJ(c̄r )

there is a transition t = ∀LRJq → q′ in T , c̄ = c̄l q c̄r and
c̄ ′ = reductJ(c̄l) q′ reductJ(c̄r )
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Verification via monotonic abstraction

Symbolic backward reachability algorithm Abdulla et al 2009

U0 = B

Ui+1 = Ui ∪ Pre(Ui )

where Pre(X ) = {c̄ | ∃c̄ ′ ∈ X ∧ c̄ →A
P c̄ ′}.

This iterative process is guaranteed to stabilize, i.e Un+1 = Un

for some finite n.

Once the process stabilized the resulting U consists of all
configurations from which some bad configuration can be
reached via →A

P .

Then the check is performed on whether Init ∩ U = ∅. If this
condition is satisfied then the safety is established, for no bad
configuration can be reached from initial configurations via
→A
P and, a fortiori, via →P .
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Important properties of the fixed-point U

If the safety holds then Ū (complement of U) is an invariant
of the system sufficient to prove the safety. Indeed, it
subsumes Init and is closed under reachability.

U has a finite set of generators and therefore is a regular set.
It follows that Ū is a regular set too.
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Regular Invariants

Theorem (on regular invariants)

Given a parameterized system P = (Q,T ) and the set of bad
configurations B = {c̄ | ∃w̄ ∈ F ∧ w̄ � c̄}. Then the following
two conditions are equivalent:
(1)There exists a regular set of configurations Inv such that

Reach ⊆ Inv where Reach = {y | ∃x(x ∈ Init ∧ x →∗P y)}
Inv is closed under reachability, that is
x ∈ Inv ∧ x →P y ⇒ y ∈ Inv

Inv ∩ B = ∅
and
(2) There exists a finite model for ΦP ∧ ¬ΨF

Proof.

Uses an algebraic characterization of regular languages in terms of
inverse homomorphic images of subsets of finite monoids
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Regular Invariants and Relative Completeness

If the safety for P holds and can be shown by the monotonic
abstraction method, then

There exists a regular invariant, which implies

An existence of a finite countermodel for FO encoding of the
problem, which means

Safety can be established by FCM (finite countermodel
method) if a complete finite model building procedure is used
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Subsets of configurations
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Figure: Subsets of configurations in general position
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FCM is stronger than monotonic abstraction

The parameterized system (Q,T ) where Q = {q0, q1, q2, q3, q4}
and where T includes the following transition rules

1 ∀LR{q0, q1, q4} : q0 → q1

2 q1 → q2

3 ∀L{q0} : q2 → q3

4 q3 → q0

5 ∃LR{q2} : q3 → q4

6 q4 → q0

satisfies mutual exclusion for state q4, but this fact can not be
established by the monotonic abstraction method.
Using FCM we have verified mutual exclusion for this system,
demonstrating that FCM method is stronger than monotone
abstraction. Mace4 has found a finite countermodel of the size 6
in 341s.
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Further relative completeness results

Theorem (2010)

If the safety of a linear parameterized system can be demonstrated
by regular model checking method then it can be demonstrated by
FCM too.

Theorem (2011)

If the safety of a tree-shape parameterized system can be
demonstrated by regular tree model checking method then it can
be demonstrated by FCM too.

Theorem (2011, RTA 2012)

If the safety of a term rewriting system can be demonstrated by
tree automata completion technique then it can be demonstrated
by FCM too.
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Why does it work?

In all cases the proofs of relative completeness results rely upon
existence of regular invariants, that is regular sets (of words or
trees) subsuming all reachable states and disjoint with all unsafe
states.
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Systems to verify, II

Parameterized tree-like systems
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Verification of parameterized tree-like systems

Verifcation of safety (a system never goes into a failure state)

Tree-like systems: protocols and algorithms operating in the
networks with tree topology

Systems are specified by tree transducers, initial and unsafe
configurations are specified by tree automata

Parameterized verification: safety holds for all sizes of
networks

Regular Tree Model Checking (RTMC) is a traditional
approach

We show that FCM method using disproving in first-order
logic can be used instead
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Tree Automata and Transducers

Definition

A tree automaton over a ranked alphabet Σ is a triple
A = (Q,F , δ), where Q is a finite set of states, F ⊆ Q is a set of
final states, and δ is a transition relation, represented by a finite
set of rules of the form (q1, . . . , qp)→f q, where f ∈ Σp and
q1, . . . qp, q ∈ Q. A tree automaton over an alphabet Σ2 is called
tree transducer.

The language L(A) of trees accepted by an automaton A is
defined as usual.
For a tree transducer D over an alphabet Σ2 one-step
transition relation RD ⊆ T (Σ)× T (Σ) is defined as
RD = {(T ,T ′) | T × T ′ is accepted by D}.
R i denotes the ith power of R i.e. i compositions of R.
R∗ = ∪i≥0R i .
For any L ⊆ T (Σ) and R ⊆ T (Σ)× T (Σ) we denote by L ? R
the set {y | ∃x(x , y) ∈ L× T (Σ) ∩ R}.
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Regular Tree Model Checking

Regular Tree Model Checking (RTMC) is a general method
for the verification of parameterized systems that have tree
topology [Abdulla et al, 2002]

Regular Tree Model Checking deals with the following basic
verification task.

Problem

Given two tree automata AI and AU over an alphabet Σ and a tree
transducer D over Σ2. Does (L(AI ) ? R∗D) ∩ L(AU) = ∅ hold?

The verification in RTMC proceeds by producing a tree
transducer TR approximating R∗D from above, that is
R∗D ⊆ L(TR), and showing the emptiness of the set
(L(AI ) ? L(TR)) ∩ L(AU)
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From RTMC to First-Order Logic

We show that basic RTMC verification problem can be
reduced to a purely logical problem of disproving a first-order
formula

Assume we are given an instance of the basic verification
problem (over ranking alphabet Σ), that is

a tree automaton AI = (QI ,FI , δI ) accepting a regular set of
initial states;
a tree automaton AU = (QU ,FU , δU) accepting a regular set of
unsafe states;
a tree transducer D = (QD ,FD , δD) representation one-step
transition relation RD .

Now define a set formulae of first-order predicate logic as
follows.
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Vocabulary

constants for all elements of QI t QU t QD t Σ0;

unary predicate symbols Init(1), Unsafe(1);

binary predicate symbols Init2, Unsafe2, R;

a ternary predicate symbol T ;

a p-ary functional symbol fθ for every θ ∈ Σp
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Term translation

Given any tree τ from T (Σ) define its term translation tτ by
induction:

tτ = c for a tree τ with one node labeled by c ∈ Σ0;

tτ = fθ(tτ1 , . . . , tτp) for a tree τ with the root labeled by
θ ∈ Σp and children τ1, . . . τp.
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Frist-Order translation of RTMC problem

Now we are ready to define a translation of RTMC problem,
given by tree automata AI , AU and a tree transducer D to a
set Φ of first-order formulae.

Φ consists of the following formulae. . .
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Translation of the automaton AI

Init(2)(a, q) for every a ∈ Σ0, q ∈ QI and →a q in δI ;

Init(2)(x1, q1) ∧ . . . ∧ Init(2)(xp, qp)→ Init(2)(fθ(x1, . . . , xp), q)
for every (q1, . . . , qp)→θ q in δI ;

∨q∈FI
Init(2)(x , q)→ Init(1)(x);
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Translation of the automaton AU

Unsafe(2)(a, q) for every a ∈ Σ0, q ∈ QI and →a q in δI ;

Unsafe(2)(x1, q1) ∧ . . . ∧ Unsafe(2)(xp, qp)→
Unsafe(2)(fθ(x1, . . . , xp), q) for every (q1, . . . , qp)→θ q in δI ;

∨q∈FI
Unsafe(2)(x , q)→ Unsafe(1)(x);
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Translation of the transducer D

T (a, b, q) for every →(a,b) q in δD ;

T (x1, y1, q1) ∧ . . . ∧ T (xp, yp, qp)→
T (fθ1(x1, . . . , xp), fθ2(y1, . . . , yp), q) for every
(q1, . . . , qp)→θ1,θ2 q in δD ;

∨q∈FD
T (x , y , q)→ R(x , y);

plus reflexive-transitive closure axioms for R:

R(x , x);

R(x , y) ∧ R(y , z)→ R(x , z).
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Adequacy of translation

Proposition

If τ ∈ L(AI ) then Φ ` Init(1)(tτ )
If τ ∈ L(AU) then Φ ` Unsafe(1)(tτ )
If τ ∈ L(AI ) ? R∗D then Φ ` ∃x Init(1)(x) ∧ R(x , tτ )

Corollary

(correctness of the verification method)
If Φ 6` ∃x∃y(Init(1)(x) ∧ R(x , y) ∧ Unsafe(1)(y) then
(L(AI ) ? R∗D) ∩ L(AU) = ∅
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FCM verification method for RTMC

In order to prove safety, that is (L(AI ) ? R∗D) ∩ L(AU) = ∅ it is
sufficient to demonstrate
Φ 6` ∃x∃y(Init(1)(x) ∧ R(x , y) ∧ Unsafe(1)(y)

In the FCM method we delegate this task to the generic finite
model finding procedure, which searches for the finite
countermodels for
Φ→ ∃x∃y(Init(1)(x) ∧ R(x , y) ∧ Unsafe(1)(y).

If a countermodel is found the safety is established!
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FCM vs RTMC

Theorem (relative completeness of FCM)

Given an instance of the basic verification problem for RTMC, that
is two tree automata AI and AU over an alphabet Σ and a tree
transducer D = (QD ,FD , δD) over Σ2. If there exists a regular tree
language R such that (L(AI ) ? R∗D) ⊆ R and R∩ L(AU) = ∅ then
there is a finite countermodel for
Φ→ ∃x∃y(Init(1)(x) ∧ R(x , y) ∧ Unsafe(1)(y)

It follows then that FCM is at least as powerful in establishing
safety as RTMC, provided a complete finite model finding
procedure is used.
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The case study

Parameterized Two-Way Token protocol:

The system consists of finite-state processes connected to
form a binary tree structure

Each process stores a single bit which represents the fact that
the process has a token

During operation of the protocol the token can be passed up
or down the tree.

The correctness condition is that no two or more tokens ever
appear (if started with one token)

In parameterized verification we would like to establish
correctness for all possible sizes of trees.

(see Demo)
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Systems to verify, III

Lossy channel systems
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Lossy Channel Systems (LCS)

Essentially finite state machines equipped with the channels

during transitions the messages can be sent into the channels
during transitions the messages can be read off the channels
the messages can be lost
but the order of the messages can not change

Can be used to specify and verify the protocols on behavioral
level

Due to unbounded channels these are, generally infinite state
systems

Verification of safety is decidable Abdulla, Jonsson, 93
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Lossy channel systems by FCM

Theorem

Parallel composition of

complete theorem proving and

complete finite model building

for first-order predicate logic provides with a decision procedure for
safety properties of lossy channel systems.

ATVA 2010
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What else?

Parameterized cache coherence protocols specified in terms of
Extended FSM ATVA 2010

Safety verification for general term rewriting RTA 2012
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Safety for TRS

Consider the TRS R = {f (x)→ f (s(s(x)))} and assume that
we want to prove that f (a) 6→∗ f (s(a)) (automatically)

Traditional approach (Genet & Rusu, 2010): use tree
automata completion + finite state abstraction, expressed
equationally (and added manually)

Alternative approach we advocate in this talk: translate the
original question into a logical problem of disproving a
first-order formlua (in classical predicate logic)

Alexei Lisitsa Finite Models for Safety Verification



Safety for TRS

Consider the TRS R = {f (x)→ f (s(s(x)))} and assume that
we want to prove that f (a) 6→∗ f (s(a)) (automatically)

Traditional approach (Genet & Rusu, 2010): use tree
automata completion + finite state abstraction, expressed
equationally (and added manually)

Alternative approach we advocate in this talk: translate the
original question into a logical problem of disproving a
first-order formlua (in classical predicate logic)

Alexei Lisitsa Finite Models for Safety Verification



Safety for TRS

Consider the TRS R = {f (x)→ f (s(s(x)))} and assume that
we want to prove that f (a) 6→∗ f (s(a)) (automatically)

Traditional approach (Genet & Rusu, 2010): use tree
automata completion + finite state abstraction, expressed
equationally (and added manually)

Alternative approach we advocate in this talk: translate the
original question into a logical problem of disproving a
first-order formlua (in classical predicate logic)

Alexei Lisitsa Finite Models for Safety Verification



How it works

Let Φ = {R(f (x), f (s(s(x))),
R(x , y) ∧ R(y , z)→ R(x , z),

R(x , y)→ R(f (x), f (y))}
Suppose to the contrary f (a)→∗ f (s(a))

Then Φ ` R(f (a), f (s(a))) holds in classial first-order logic (a
derivation would follow rewriting)

But one can easily find a finite countermodel for
Φ→ R(f (a), f (s(a)) automatically using a generic finite
model finding procedure (e.g. implemented in Mace4)

So, the original question is resolved positively
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Experimental results

Protocol Time

ABP∗ 0.93s

MSI 0.01s

MESI 0.03s

MOESI 0.05s

Firefly 0.03s

Synapse N+1 0.01s

Illinois 0.03s

Berkeley 0.03s

Dragon 0.05s

Futurebus+ 1.14s

Bakery 0.01s

MutEx 0.01s

∗ ABP = Alternating Bit Protocol
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Practical results.I

Monotonic abstraction and RMC problems.

Protocol Time

Token passing (non-optimized) 0.12s

Token passing (optimized) 0.01s

Mutual exclusion I 0.03s

Mutual exclusion II 341s

Bakery 0.03s

Paterson− 0.77s
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FCM vs RTMC and Monotonic Abstraction

Protocol Time Time reported for RTMC∗

Token 0.02s 0.06s

Two-way Token 0.03s 0.09s

∗ the system configuration was Intel Centrino 1.6GHZ with 768MB
of RAM

Protocol Time Time reported∗

Token 0.02s 1s

Two-way Token 0.03s 1s

Percolate 0.02s 1s

Leader Election 0.03s 1s

Tree-arbiter 0.02s 37s

IEEE 1394 0.04s 1h15m25s

∗ the system configuration was dual Opteron 2.8 GHZ with 8 GB
of RAM
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Conclusion

We presented FCM method for verification of parameterized
systems

FCM is simple

FCM is at least as powerful as methods based on monotonic
abstractio, RMC, RTMC, tree automata completion
techniques in establishing safety

FCM is efficient in practice
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Thank you!
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