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Abstract: We propose a simple but powerful approach to the verificationof param-
eterised systems. The approach is based on modelling the reachability between pa-
rameterized states as deducibility between suitable encodings of states by formulae
of first-order predicate logic. To establish a safety property, that is non-reachability
of unsafe states, the finite model finder is used to find a finite countermodel, the
witness for non-deducibility.
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1 Main idea of the method

Let S = 〈S,→〉 be a transition system with the set of statesSand transition relation→. Denote
by →∗ the transitive closure of→. Consider encodinge : s 7→ ϕs of states ofS by formulae
of first-order predicate logic, satisfying the folowing property. The states′ is reachable froms,
i.e. s→∗ s′ if and only if ϕs′ is the logical consequence ofϕs, that isϕs |= ϕs′ and ϕs ⊢ ϕs′ .
Here we assume standard definitions of semantical consequence |= and deducibility⊢ (in a
complete deductive system) for first-order predicate logic. Under such assumptions one can
translate reachability questions forSto the classical questions in logic. Establishing reachability
amounts to theorem proving, while deciding non-reachability becomes theorem disproving. It
is clear that due to undecidability of first-order logic suchan approach can not be universal.
However one may hope that much developed automated theorem provers and model finders for
first-order logic can be used for automated decision of (non-)reachability problems.

In this paper we will focus on applications of these ideas to the automated verification ofsafety
properties ofinfiite stateandparameterisedsystems. Restriction to the safety properties, i.e.
non-reachability ofunsafestates means we will be mainly dealing with automated disproving.
To disproveϕs |= ϕs′ is is sufficient to find a countermodel forϕs → ϕs′ , or, which is the same,
the model forϕs∧¬ϕs′. In general, in first-order logic such a model may be inevitably infinite.
Furthermore, the set of satisfiable first-order formulae in not recursively enumerable, so one can
not hope for complete automation here. As a partial solutionwe propose to use automatedfinite
model finders/builders [2]. Here we present preliminary results realated to instantiations of these
ideas to the verification of lossy channel systems [1] and to the verification of parameterised
cache coherence protocols [3].
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1.1 Verification of Lossy Channel Systems

Lossy Channel Systems are essentially finite-state automata augmented witha finite amount of
unbounded but lossy FIFO channels (queues). The messages sent via lossy channels may be
lost in the transition. In [1] we find the definition of a Lossy Channel SystemL as a tuple
〈S,s0,A,C,M,δ 〉, whereS is a finite set ofcontrol states, s0 ∈ S is an initial control state,A is a
finite set ofactions, C is a finite set of channels,M is a finite set of messages,δ is a finite set of
transitions. Starting in the intial control states0 the systemL may execute non-deterministically
any applicable transition fromδ , which involves switching the control states and either, writing
a messagem into some channelc, or reading a messagem from some channelc, or just executing
an actiona. Additionally, at every step any message from any channel may be lost. The sequence
of actionsσ ∈ A∗ executed up to some step is called a trace ofL. The set of all traces ofL is
denoted byTraces(L). A global stateof L is a pair〈s,w〉, wheres∈ S andw : C → M∗ is a
function assigning to each channel a finite sequence of messages (content of the channel).

The general form of thesafetyverification problem for lossy channel systems we address here
is as follows.

Given: A lossy channel systemL = 〈S,s0,A,C,M,δ 〉 and a regular setΣ ⊆ A∗

Question: DoesTraces(L) ⊆ Σ hold?

We assume thatΣ is effectively given by a deterministic1 finite automatonMΣ̄ which accepts
thecomplementof Σ. Following the standard approach [1] we first reformulate equivalently the
above question as a question onreachability:

Is it true that in L×MΣ̄ no global state of the form〈〈s, t〉,w〉 with t ∈F is reachable?

HereL×MΣ̄ is a lossy channel system, which is aproduct of L andMΣ̄ synchronized over
actions fromA, 〈〈s, t〉,w〉 is a global state ofL×MΣ̄ andF is the set of accepting states ofMΣ̄.

1.2 Verification via countermodel finding

In this subsection we show how to apply reachability as deducibility concept and finite counter-
model finding for deciding the above reachability problem.

First, we define a translation of the product systemL×MΣ̄ into a formula of the first-order
predicate logicΦL×MΣ̄ as follows. The vocabulary ofΦL×M consists of constant symbols to de-
note the control states ofL andMΣ̄, the messages ofL; the constant symbole to denote the empty
sequence of messages; one binary associative symbol∗ to denote concatenation and to encode
sequences of messages; for every actiona a unary functional symbolfa; and one relational sym-
bol Rof arity n+2, wheren is a number of channels inL. The global stateγ of L×MΣ̄ is encoded
then naturally as an+2-tuple of terms̄tγ , the first two terms are to represent the control states of
L andMΣ̄, and the remainingn terms are to encode the content of the channels.

1the restriction to deterministic automata leads to more concise translations oflcs’s to first-order formulae, but is
not very essential in the proposed approach
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The intended meaning of the atomic formulaR(t̄γ) is “the global stateγ is reachable”, and the
whole formulaΦL×MΣ̄ axiomatizes the reachability inL×MΣ̄:

Theorem 1The global stateγ is reachable in L×MΣ̄ if and only ifΦL×MΣ̄ ⊢ R(t̄γ).

Let F be a set of acceptable states ofMΣ̄ andds be a constant denoting anys∈ F. Let thenB
be a first-order sentence∨s∈F∃y∃x̄R(y,ds, x̄).

Theorem 2Either ΦL×MΣ̄ ⊢ B, or there is afinite model forΦL×MΣ̄ ∧¬B.

The proof of the Theorem 2 uses the completeness of the symbolic reachability algorithm for
the lossy channel systems from [1], in particular thefinite characterization of the set of global
states backwards reachable from any upwards closed2 set of global states. Based on both the-
orems, the following is a complete decision procedure for the safety problem for lossy channel
systems.

Run in parallel the complete theorem prover for the first-order logic with the inputΦL×MΣ̄ →
B and the complete finite model finder for the first-order logicwith the inputΦL×MΣ̄ ∧¬B
until exactly one successfully returns.

In practical experiments with that procedure we have used a combination of the prover Prover9
and the model finder Mace4 [4], which provides with the convenient unified interface. Seethe
Appendix for the report on the verification of Alternating Bit Protocol modelled as alcs.

1.3 Verification of parameterized cache coherence protocols

Another class of the systems to which verification via finite countermodel finding approach has
been applied is parameterized cache coherence protocols [3], modelled by Extended Finite State
Machines(EFSM). The states of EFSM are non-negative integer vectors and transitions are affine
transformations with affine pre-conditions. The safety is expressed as the non-reachability of
global states which belong to some upwards closed sets. We define a translation of the EFSM
modelM and the correctness conditionsC to the first-order formulaeφM andψC ≡ ∨i∃x̄iψi(t̄i),
respectively, such that the following proposition holds.

Proposition 1 If there is a finite model forφM ∧¬ψC then M satisfies C

Using the finite model finder Mace4 we have verified all cache coherence protocols from [3].
One example, the verification of Futurbus protocol, is givenin the Appendix B.
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Appendix A. Verification of Alternating Bit Protocol

The first-order translationΦ of the specification of ABP given in terms of lossy channel systems
in [1].

% Protocol ABP, first-order translation of the specificati on given in Abdulla and Jonsson paper,
% Prover9/MACE syntax

% The positions of arguments: R(Sender,Receiver,Message, Ack, Automaton)

R(1,1,e,e,1).

R(1,x,y,z,w) -> R(2,x,y,z,s(w)).
R(2,x,y,z,w) -> R(2,x,0 * y,z,w).
R2,x,y,z * 1,w) -> R(2,x,y,z,w).
R(2,x,y,z * 0,w) -> R(3,x,y,z,w).
R(3,x,y,z,w) -> R(4,x,y,z,s(w)).
R(4,x,y,z,w) -> R(4,x,1 * y,z,w).
R(4,x,y,z * 0,w) -> R(4,x,y,z,w).
R(4,x,y,z * 1,w) -> R(1,x,y,z,w).

R(x,1,y,z,w) -> R(x,1,y,1 * z,w).
R(x,1,y * 1,z,w) -> R(x,1,y,z,w).
R(x,1,y * 0,z,w) -> R(x,2,y,z,w).
R(x,2,y,z,w) -> R(x,3,y,z,r(w)).
R(x,3,y,z,w) -> R(x,3,y,0 * z,w).
R(x,3,y * 0,z,w) -> R(x,3,y,z,w).
R(x,3,y,z,w) -> R(x,4,1 * y,z,w).
R(x,4,y,z,w) -> R(x,1,y,z,r(w)).

R(x,y,(z1 * z2) * z3,v,w) -> R(x,y,z1 * z3,v,w).
R(x,y,z,(v1 * v2) * v3,w) -> R(x,y,z,v1 * v3,w).

(x * y) * z = x * ( y * z).

s(1) = 2.
s(2) = 3.
r(1) = 3.
r(2) = 1.

The first-order translationΨ of the the (negation of ) correctness condition of ABP.

% Prover9/MACE syntax

exists x exists y exists z exists w R(x,y,z,w,3)

The finite model forΦ∧¬Ψ was found in 0.97 seconds by Mace4 running on the laptop of
average specification.

No \volume defined! 4 / 6



ECEASST

Appendix B. Verification of Futurbus parameterized cache coherence
protocol

The first-order translationΦ of EFSM model of the Futurebus+ protocol.

% Protocol FutureBus, counting abstraction, first-order t ranslation.
%The syntax of Prover9/MACE. R(..) stands for reachable glo bal state.

plus(0,y) = y.
plus(i(x),y) = i(plus(x,y)).

%-(i(x) = x).

R(i(x1),x2,x3,x4,x5,0,x7,x8,x9) -> R(x1,0,0,0,i(x5),0 ,plus(x4,x7),x8,plus(x2,plus(x3,x9))).

R(x1,x2,x3,x4,x5,x6,i(x7),x8,x9) ->
R(x1,plus(i(0),plus(x2,x5)),x3,x4,0,x6,x7,x8,x9).

R(x1,x2,x3,x4,x5,x6,x7,x8,i(x9)) ->
R(x1,i(plus(x2,plus(x5,x9))),x3,x4,0,x6,x7,x8,0).

R(x1,x2,x3,x4,i(i(x5)),x6,0,x8,0) ->
R(x1,i(i(plus(x5,x2))),x3,x4,0,x6,0,x8,0).

R(x1,x2,x3,x4,i(0),x6,0,x8,0) ->
R(x1,x2,i(x3),x4,0,x6,0,x8,0).

R(i(x1),x2,x3,x4,x5,0,x7,x8,x9) ->
R(plus(x1,plus(x3,plus(x2,plus(x9,plus(x5,x7))))),0 ,0,0,0,i(0),0,plus(x4,x8),0).

R(x1,x2,x3,x4,x5,x6,x7,i(x8),x9) ->
R(i(x1),x2,x3,plus(x6,x4),x5,0,x7,x8,x9).

R(x1,x2,x3,x4,x5,x6,x7,0,x9) ->
R(x1,x2,x3,plus(x6,x4),x5,0,x7,0,x9).

R(x1,x2,i(x3),x4,x5,x6,x7,x8,x9) ->
R(x1,x2,x3,i(x4),x5,x6,x7,x8,x9).

R(x1,i(x2),x3,x4,x5,x6,x7,x8,x9) ->
R(plus(x2,x1),0,x3,i(x4),x5,x6,x7,x8,x9).

R(i(x),0,0,0,0,0,0,0,0).
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The first-order translationΨ of the (negation of ) correctness condition for the Futurebus+
protocol.

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,x2,i(i(x3)),x4,x5,x6,x 7,x8,x9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,x2,i(x3),i(x4),x5,x6,x 7,x8,x9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,x2,x3,i(i(x4)),x5,x6,x 7,x8,x9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,i(x2),i(x3),x4,x5,x6,x 7,x8,x9) |

exists x1 exists x2 exists x3 exists x4 exists x5 exists x6
exists x7 exists x8 exists x9 R(x1,i(x2),x3,i(x4),x5,x6,x 7,x8,x9).

The model forΦ∧¬Ψ was found in 1.14 seconds by Mace4 running on the laptop of average
specification.
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