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Static and Temporal Graphs

Many systems in Science and Technology:
abstracted as graphs
vertex ←→ elementary system unit
edge ←→ some kind of interaction between units

However many modern systems are highly dynamic:
Modern communication networks, e.g., mobile ad hoc,
sensor, peer-to-peer, opportunistic, delay-tolerant networks:
links change dynamically at a high rate
Social networks: friendships are added/removed, individuals
leave, new ones enter
Physical systems: e.g. systems of interacting particles
Transportation networks: transportation units change with
time their position in the network
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Static and Temporal Graphs

Network changes may:
follow specific patterns, e.g. satellites following a trajectory, or
be unpredictable, e.g. mobile ad hoc networks

The common characteristic in all these applications:
the graph topology is subject to discrete changes over time

⇒ the notion of vertex adjacency must be appropriately
re-defined
(by introducing the time dimension in the graph definition)

Various graph concepts (e.g. reachability, connectivity):
crucially depend on the exact temporal ordering of the edges
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Overview

Temporal graphs

Temporal paths (journeys)

Strongly connected components

Temporal exploration

Temporal design problems

Stochastic temporal graphs

Future research directions
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Temporal graphs
Formally:
Definition (Temporal Graph)
A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and
λ : E→ 2N is a discrete time-labeling function.
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Temporal graphs
Formally:
Definition (Temporal Graph)
A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and
λ : E→ 2N is a discrete time-labeling function.

If t ∈ λ(e) then edge e is available at time t
This formal definition (for single-availabilities per edge) embarks from:
[Kempe, Kleinberg, Kumar, STOC, 2000]
[Berman, Networks, 1996]
In general every edge can have multiple availabilities
[Mertzios, Michail, Chatzigiannakis, Spirakis, ICALP, 2013]
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Temporal graphs
Formally:
Definition (Temporal Graph)
A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and
λ : E→ 2N is a discrete time-labeling function.

Remarks:
Denote by λmin (resp. λmax) the smallest (resp. largest) time-label in (G,λ)

λmax may be infinite (e.g. in periodic temporal graphs)
If λmax ̸= ∞, then the age of (G,λ) is α(λ) = λmax − λmin + 1

Unless otherwise specified:
the labels are given explicitly with the input
c(λ) is the total number of labels
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Temporal graphs
Formally:
Definition (Temporal Graph)
A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and
λ : E→ 2N is a discrete time-labeling function.

temporal graph: temporal instances:

1,4 2,4

3
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Temporal graphs
Related models

Related notions of dynamicity in graphs:
flows over time
[Fleischer, Skutella, SIAM J. on Computing, 2007]
[Hoppe, Tardos, Math. Oper. Res., 2000]
[Fleischer, Tardos, Oper. Res. Lett., 1998]

flows on static graph topologies with transit times on the edges
continuous availabilities; natural model, different techniques
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Temporal graphs
Related models

Related notions of dynamicity in graphs:
flows over time
[Fleischer, Skutella, SIAM J. on Computing, 2007]
[Hoppe, Tardos, Math. Oper. Res., 2000]
[Fleischer, Tardos, Oper. Res. Lett., 1998]

flows on static graph topologies with transit times on the edges
continuous availabilities; natural model, different techniques

minimum label graph problems
[Fellows, Guo, Kanj, J. Comp. Syst. Sci., 2010]

input: static topology G with a label on each edge, graph property Π
goal: find an edge subset with the smallest number of distinct labels which satisfies Π
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Temporal graphs
Related models

Related notions of dynamicity in graphs:
dynamic graphs
[Demetrescu, Finocchi, Italiano, Handbook Data Str. and Appl., 2004]

topology changes via insertion/deletion of vertices/edges
changes are assumed to happen rarely
goals: efficient query & solution update after a dynamic change
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Temporal graphs
Related models

Related notions of dynamicity in graphs:
dynamic graphs
[Demetrescu, Finocchi, Italiano, Handbook Data Str. and Appl., 2004]

topology changes via insertion/deletion of vertices/edges
changes are assumed to happen rarely
goals: efficient query & solution update after a dynamic change

In contrast, in the context of temporal networks:
topology is expected to change frequently and massively
⇒ changes are not anomalies or exceptions
they are rather an integral part of the system
⇒ can not be reasonably modeled with network faults /failures
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Temporal graphs
Temporal graphs were studied under various different names:

time-varying graphs
[Aaron et al., WG, 2014]
[Flocchini et al., ISAAC, 2009]
[Tang et al., ACM Comp. Comm. Review, 2010]
evolving graphs (usually “graph-centric”)
[Avin et al., ICALP, 2008]
[Clementi et al., SIAM J. Discr. Math., 2010]
[Ferreira, IEEE Network, 2004]
dynamic graphs
[Giakkoupis et al., ICALP, 2014]
[Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]
[Bhadra and Ferreira, J. Internet Serv. Appl., 2012]
graphs over time
[Leskovec et al., ACM Trans. Knowl. Disc. from Data, 2007]
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Temporal graphs
Recent surveys and books:

Time-Varying Graphs and Dynamic Networks
[Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]

an attempt to integrate and unify existing models and concepts
Deterministic Algorithms in Dynamic Networks
[Casteigts, Flocchini, Defence R&D Canada, Tech. Report I, 2013]
[Casteigts, Flocchini, Defence R&D Canada, Tech. Report II, 2013]

survey of deterministic algorithms for distributed computing
temporal graph classes based on temporal patterns of the labels

– satellites −→ periodic availabilities
– sensor networks −→ connected at every instant
– contacts in a company −→ bounded edge recurrence (every week)
– community contacts −→ unbounded, yet recurrent interactions

Temporal Networks
[Holme, Saramäki, eds., Springer, 2013]
[Michail, Spirakis, Commun. ACM, 2018]
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Temporal graphs
Recent surveys and books:

Time-Varying Graphs and Dynamic Networks
[Casteigts et al., Int. J. Par., Emergent & Distr. Syst, 2012]

an attempt to integrate and unify existing models and concepts
Deterministic Algorithms in Dynamic Networks
[Casteigts, Flocchini, Defence R&D Canada, Tech. Report I, 2013]
[Casteigts, Flocchini, Defence R&D Canada, Tech. Report II, 2013]

survey of deterministic algorithms for distributed computing
temporal graph classes based on temporal patterns of the labels
– satellites −→ periodic availabilities
– sensor networks −→ connected at every instant
– contacts in a company −→ bounded edge recurrence (every week)
– community contacts −→ unbounded, yet recurrent interactions

Temporal Networks
[Holme, Saramäki, eds., Springer, 2013]
[Michail, Spirakis, Commun. ACM, 2018]
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Overview

Temporal graphs

Temporal paths

Strongly connected components

Temporal exploration

Temporal design problems

Stochastic temporal graphs

Future research directions
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Temporal paths
The conceptual shift from static to temporal graphs significantly impacts:

the definition of basic graph parameters
the type of tasks to be computed

Graph properties can be classified as:
a-temporal, i.e. satisfied at every instance

connectivity at every point in time
temporal, i.e. satisfied over time

communication routes over time
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Temporal paths

Definition (Temporal path; Time-respecting path; Journey)
Let (G,λ) be a temporal graph and P = (e1, e2, . . . , ek) be a walk in G. A temporal path is a
sequence ((e1, ℓ1), (e2, ℓ2), . . . , (ek, ℓk)), where:

ℓ1 < ℓ2 < . . . < ℓk
and ℓi ∈ λ(ei), 1 ≤ i ≤ k.
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Temporal paths

Definition (Temporal path; Time-respecting path; Journey)
Let (G,λ) be a temporal graph and P = (e1, e2, . . . , ek) be a walk in G. A temporal path is a
sequence ((e1, ℓ1), (e2, ℓ2), . . . , (ek, ℓk)), where:

ℓ1 < ℓ2 < . . . < ℓk
and ℓi ∈ λ(ei), 1 ≤ i ≤ k.

Causality in information dissemination:
information “flows” along edges whose labels respect time ordering
⇒ strictly increasing labels along the path
a “static path” given “in pieces”
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Temporal paths

Definition (Temporal path; Time-respecting path; Journey)
Let (G,λ) be a temporal graph and P = (e1, e2, . . . , ek) be a walk in G. A temporal path is a
sequence ((e1, ℓ1), (e2, ℓ2), . . . , (ek, ℓk)), where:

ℓ1 < ℓ2 < . . . < ℓk
and ℓi ∈ λ(ei), 1 ≤ i ≤ k.

Causality in information dissemination:
information “flows” along edges whose labels respect time ordering
⇒ strictly increasing labels along the path
a “static path” given “in pieces”

Most identified temporal graph parameters are “temporal path”-related:
temporal versions of distance, diameter, connectivity, reachability, exploration, etc.
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Temporal paths

Definition (Temporal path; Time-respecting path; Journey)
Let (G,λ) be a temporal graph and P = (e1, e2, . . . , ek) be a walk in G. A temporal path is a
sequence ((e1, ℓ1), (e2, ℓ2), . . . , (ek, ℓk)), where:

ℓ1 < ℓ2 < . . . < ℓk
and ℓi ∈ λ(ei), 1 ≤ i ≤ k.

A temporal path:
1 3 4 7 18 25temporal path:

temporal instances:
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ℓ1 < ℓ2 < . . . < ℓk
and ℓi ∈ λ(ei), 1 ≤ i ≤ k.

A temporal path:
1 3 4 7 18 25temporal path:

temporal instances:
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Metrics to optimize
Question: What is the temporal analogue of an s-t shortest path?

Answer: Not uniquely defined!
topologically shortest path: smallest number of edges
fastest path: smallest duration
foremost path: smallest arrival time

Example:
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Metrics to optimize
Question: What is the temporal analogue of an s-t shortest path?
Answer: Not uniquely defined!

topologically shortest path: smallest number of edges
fastest path: smallest duration
foremost path: smallest arrival time

Example:

s t

a b

c

d e8

97

2 8

shortest: s-c-t (two edges)

fastest: s-d-e-t (no intermediate waiting)

3, 6

2, 51, 4

foremost: s− a− b− t (arriving at time 5)
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Metrics to optimize
Question: What is the temporal analogue of an s-t shortest path?
Answer: Not uniquely defined!

topologically shortest path: smallest number of edges
fastest path: smallest duration
foremost path: smallest arrival time

Example:

s t

a b

c

d e8

97

2 8

shortest: s-c-t (two edges)

fastest: s-d-e-t (no intermediate waiting)

1, 4

3, 6

2, 5

foremost: s− a− b− t (arriving at time 5)
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Metrics to optimize
An easy algorithm for computing all foremost paths from a given source s:
[Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017]

first sort the time-labels non-decreasingly
run a BFS-like search starting from s
at every time-step t consider only edges currently available
if you reach a new vertex at time t, keep its predecessor

easy adaptation of the static BFS algorithm
running time O(c(λ) · log(c(λ)))
due to the sorting of the labels

Algorithm 1 Foremost Temporal Paths from Source s
1: Let S be the array with the sorted time-labels
2: R← {s}
3: for each v ∈ V \ {s} do
4: pred[v]← ∅; arr[v]← ∞ {Init.: Predecessor; Time Arrived}
5: for each time-label t ∈ S do
6: for each edge e = (u, v) with t ∈ λ(e) do
7: if u ∈ R, v /∈ R, and arr[u] < t then {we reached v}
8: pred[v]← u; arr[v]← t {Predecessor; Time Arrived}
9: R← R∪ {v}
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An easy algorithm for computing all foremost paths from a given source s:

[Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017]
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Metrics to optimize

Polynomial algorithms exist also in the case of edges with traversal times for computing:
shortest and foremost paths [adaptations of Dijkstra’s algorithm]
fastest paths

[Bui-Xuan, Ferreira, Jarry, Int. J. Found. Comp. Sci., 2003]
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Metrics to optimize

Polynomial algorithms exist also in the case of edges with traversal times for computing:
shortest and foremost paths [adaptations of Dijkstra’s algorithm]
fastest paths

[Bui-Xuan, Ferreira, Jarry, Int. J. Found. Comp. Sci., 2003]

Question: Are all “path-related” temporal problems tractable?
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Metrics to optimize

Polynomial algorithms exist also in the case of edges with traversal times for computing:
shortest and foremost paths [adaptations of Dijkstra’s algorithm]
fastest paths

[Bui-Xuan, Ferreira, Jarry, Int. J. Found. Comp. Sci., 2003]

Question: Are all “path-related” temporal problems tractable?
Answer: Not all!

E.g. some temporal variations of:
connectivity problems
reachability problems

Eleni Akrida (Durham) Temporal Graphs: Algorithms & Complexity Liverpool, March 2021 12 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

Temporal graphs

Temporal paths

Strongly connected components

Temporal exploration

Temporal design problems

Stochastic temporal graphs

Future research directions
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Temporal strongly connected components

We write u v if there exists a temporal path from u to v
The relation  is not symmetric: u v < v u

vau 3 5
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Temporal strongly connected components

We write u v if there exists a temporal path from u to v
The relation  is not symmetric: u v < v u

vau 3 5

and not transitive: u z, z v < u v
vu 3 5 2x z

⇒ the time dimension creates its own “level of direction”
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Temporal strongly connected components
Recall:
Definition
A directed (static) graph G is strongly connected if there is a path in each direction between
each pair of vertices of G.
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Temporal strongly connected components
Recall:
Definition
A directed (static) graph G is strongly connected if there is a path in each direction between
each pair of vertices of G.

A key property:

Observation
Let S be a (maximal) strongly connected subgraph and u, v ∈ S. If P = (u, . . . , z, . . . , v) is a
path from u to v then z ∈ S.

Does this transfer to temporal graphs?
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Temporal strongly connected components

a b

c

2

3 a b

c

2

3

static: temporal: temporal:

strongly
connected

strongly
connected

strongly
connected

component component

a b

c

12 12
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Temporal strongly connected components

2
a b

c

2

3 a b

c

2

3

static: temporal: temporal:

strongly
connected

strongly
connected

strongly
connected

component component

a b

c

12 12
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Temporal strongly connected components

2
a b

c

2

3 a b

c

2

3

static: temporal: temporal:

strongly
connected

strongly
connected

strongly
connected

component component

a b

c

12 12

{a, b}: direct temporal paths between a and b
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Temporal strongly connected components
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12 12

{a, b}: direct temporal paths between a and b
{b, c}: the only temporal path from c to b passes through a /∈ {b, c}
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Definition (Bhadra, Ferreira, 2012)
An open strongly connected component (o-SCC) in a temporal graph is
a set S of vertices such that u v for every u, v ∈ S.

Examples of an o-SCC: {a, b}, {b, c}

Definition (Bhadra, Ferreira, 2012)
A strongly connected component (SCC) in a temporal graph is a set S of vertices such that,
for every u, v ∈ S, there is a temporal path from u to v that uses only vertices from S.

Example of a SCC: {a, b}
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Definition (Bhadra, Ferreira, 2012)
An open strongly connected component (o-SCC) in a temporal graph is
a set S of vertices such that u v for every u, v ∈ S.

Examples of an o-SCC: {a, b}, {b, c}
Definition (Bhadra, Ferreira, 2012)
A strongly connected component (SCC) in a temporal graph is a set S of vertices such that,
for every u, v ∈ S, there is a temporal path from u to v that uses only vertices from S.

Example of a SCC: {a, b}
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A difference to the static case:
there can be a path between two vertices of the SCC (e.g. {a, b})
that traverses vertices outside the SCC (e.g. c)
the same for an o-SCC (e.g. {b, c})
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Temporal strongly connected components
Further differences to the static case:

two different SCCs can have common vertices

{a, c, d} is a SCC

{b, c, d} is another SCC
{a, b, c, d} is not a SCC (no temporal path b a)

3 6

52

1, 4, 7a b

c

d

Can we compute/verify temporal SCCs/o-SCCs efficiently?
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Temporal strongly connected components

Theorem (Bhadra, Ferreira, 2012)
Given a vertex subset S of a temporal graph (G,λ), we can verify in polynomial time whether
S is a SCC (resp. an o-SCC).

Proof.
consider the induced (temporal) subgraph on S (resp. whole (G,λ))
from every vertex v ∈ S compute all foremost temporal paths

or all shortest / fastest paths, with any of the known algorithms
if at least one vertex v does not reach the whole S:

then S is not a SCC (resp. an o-SCC)

Observation: similarly to static graphs
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from every vertex v ∈ S compute all foremost temporal paths

or all shortest / fastest paths, with any of the known algorithms
if at least one vertex v does not reach the whole S:
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Observation: similarly to static graphs
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Temporal strongly connected components

Theorem
Given a temporal graph (G,λ), it is NP-hard to compute the maximum size of a SCC, even if
all edges have one and the same label.

Theorem (Bhadra, Ferreira, 2012)
Given a temporal graph (G,λ), it is NP-hard to compute the maximum size of an o-SCC, even
if all edges have two labels.

Reduction from CLIQUE:
Input: Graph G
Goal: Find a clique of maximum size in G.

Eleni Akrida (Durham) Temporal Graphs: Algorithms & Complexity Liverpool, March 2021 18 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

Temporal graphs

Temporal paths

Strongly connected components

Temporal exploration

Temporal design problems

Stochastic temporal graphs

Future research directions
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Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)
Input: Temporal graph (G,λ) and source vertex s
Goal: Visit each vertex at least once with a temporal walk that minimizes

the arrival time (possibly revisiting vertices)

Its “static analogue”: Graphic Traveling Salesman Problem
13
9 -approximation algorithm [Mucha, Th. Comp. Syst., 2014]
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Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)
Input: Temporal graph (G,λ) and source vertex s
Goal: Visit each vertex at least once with a temporal walk that minimizes

the arrival time (possibly revisiting vertices)

Its “static analogue”: Graphic Traveling Salesman Problem
13
9 -approximation algorithm [Mucha, Th. Comp. Syst., 2014]

Observation
The decision version in the static case can be solved in linear time.

Proof.
A static graph G is explorable ⇔ G is connected.

⇒ Check connectivity in G by DFS.
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Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)
Input: Temporal graph (G,λ) and source vertex s
Goal: Visit each vertex at least once with a temporal walk that minimizes

the arrival time (possibly revisiting vertices)

Its “static analogue”: Graphic Traveling Salesman Problem
13
9 -approximation algorithm [Mucha, Th. Comp. Syst., 2014]

Observation
If a temporal graph (G,λ) is connected at every time t, then it is always explorable.
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Temporal exploration

Temporal Exploration Problem (TEXP) (Michail, Spirakis, 2014)
Input: Temporal graph (G,λ) and source vertex s
Goal: Visit each vertex at least once with a temporal walk that minimizes

the arrival time (possibly revisiting vertices)

Its “static analogue”: Graphic Traveling Salesman Problem
13
9 -approximation algorithm [Mucha, Th. Comp. Syst., 2014]

Observation
If a temporal graph (G,λ) is connected at every time t, then it is always explorable.

However:
Theorem (Michail, Spirakis, MFCS, 2014)
The decision version in the temporal case is NP-complete.
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Temporal exploration

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
There exists an infinite family of temporal graphs that require Ω(n2) time to be explored.
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Temporal exploration

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
There exists an infinite family of temporal graphs that require Ω(n2) time to be explored.

Proof.
Let V = {cj, ℓj : 0 ≤ j ≤ n− 1} be the vertex set of G
The “snapshot” of G at time t ≥ 0 is a star with center ct mod n
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Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
There exists an infinite family of temporal graphs that require Ω(n2) time to be explored.

Proof.
Let V = {cj, ℓj : 0 ≤ j ≤ n− 1} be the vertex set of G
The “snapshot” of G at time t ≥ 0 is a star with center ct mod n
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Temporal exploration

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
There exists an infinite family of temporal graphs that require Ω(n2) time to be explored.

Proof.
Let V = {cj, ℓj : 0 ≤ j ≤ n− 1} be the vertex set of G
The “snapshot” of G at time t ≥ 0 is a star with center ct mod n
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Temporal exploration
Proof (continued).

If the exploring agent is at a vertex that is not the current center:
it can only wait or travel to the current center

If it moves, at the next step it will be again not in the current center
⇒ to go from ℓi to ℓj, i ̸= j, n steps are needed:

the fastest way is to move from ℓi to the current center, to wait n− 1 steps, and then go to ℓj

⇒ the total number of steps is Ω(n2)
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Temporal exploration
Proof (continued).

If the exploring agent is at a vertex that is not the current center:
it can only wait or travel to the current center

If it moves, at the next step it will be again not in the current center
⇒ to go from ℓi to ℓj, i ̸= j, n steps are needed:

the fastest way is to move from ℓi to the current center, to wait n− 1 steps, and then go to ℓj
⇒ the total number of steps is Ω(n2)
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Temporal exploration
Modifying the reduction used to prove NP-completeness, the result can be strongly amplified:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
Approximating TEXP with ratio O(n1−ε) is NP-hard.

The previous reduction can be also “parameterized”:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
For every ∆ > 0, there exists an infinite family of temporal graphs with maximum degree ∆
that require Ω(∆n) time to be explored.

Furthermore, on restricted classes of underlying graphs:

Theorem (Erlebach, Hoffmann, Kammer, ICALP, 2015)
Any temporal graph whose underlying graph has treewidth at most k, can be explored in
O(n1.5k2 log n) time.
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The previous reduction can be also “parameterized”:
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that require Ω(∆n) time to be explored.
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Temporal exploration
The travelling salesperson who returns home

Restricting the problem on the special class of underlying star graphs.
Motivation: inspired by the well-known Traveling Salesperson Problem (TSP): “Given a
list of cities and the distances between each pair of cities, what is the shortest possible
route that visits each city and returns to the origin?”, i.e. find a min-cost Hamiltonial
cycle.

What if the salesperson has particular temporal constraints, e.g. (s)he can only go from city
A to city B on Mondays or Tuesdays?
What if (s)he needs to return to their home town after visiting each city?
Can the salesperson decide whether (s)he can visit all towns and finally return to their home
town by a certain day or time?
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Temporal exploration
The travelling salesperson who returns home

Definition (Temporal Star)
A temporal star is a temporal graph (Gs,λ) on a star graph Gs = (V,E).

Definition (Exploration of a temporal star)
A (partial) exploration of a temporal star is a journey J that starts and ends at the center of Gs
which visits some nodes of Gs; its size |J| is the number of nodes of Gs that are visited by J.

We “enter” (resp. “exit”) an edge when we cross it from center to
leaf (resp. leaf to center) at a time on which the edge is available.
We can assume that in an exploration the entry to any edge e is
followed by the exit from e at the earliest possible time. Waiting at
a leaf (instead of exiting as soon as possible) does not help in
exploring more edges.

3, 4, 5

2, 6, 10
1, 2

8, 11, 12

1, 2, 3, 4, 5
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The travelling salesperson who returns home

Definition (Temporal Star)
A temporal star is a temporal graph (Gs,λ) on a star graph Gs = (V,E).

Definition (Exploration of a temporal star)
A (partial) exploration of a temporal star is a journey J that starts and ends at the center of Gs
which visits some nodes of Gs; its size |J| is the number of nodes of Gs that are visited by J.

We “enter” (resp. “exit”) an edge when we cross it from center to
leaf (resp. leaf to center) at a time on which the edge is available.
We can assume that in an exploration the entry to any edge e is
followed by the exit from e at the earliest possible time. Waiting at
a leaf (instead of exiting as soon as possible) does not help in
exploring more edges.
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1, 2

8, 11, 12

1, 2, 3, 4, 5
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Temporal exploration
The travelling salesperson who returns home

Star Exploration Problem (StarExp(k)) (Akrida, Mertzios, Spirakis, CIAC, 2019)
Input: A temporal star (Gs,λ) such that every edge has at most k labels.
Question: Is (Gs,λ) explorable?

Maximum Star Exploration Problem (MaxStarExp(k)) (Akrida et al., CIAC, 2019)
Input: A temporal star (Gs,λ) such that every edge has at most k labels.
Output: A (partial) exploration of (Gs,λ) of maximum size.
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Temporal exploration
The travelling salesperson who returns home

MaxStarExp(3) can be efficiently solved in O(n log n) time

StarExp(k) is NP-complete, when k ≥ 6

MaxStarExp(k) is APX-complete, when k ≥ 4

Maximum number of labels per edge
k = 1 k = 2 k = 3 k = 4 k = 5 k ≥ 6

StarExp(k) No O(n log n) O(n log n) ? ? NP-c

MaxStarExp(k) No O(n log n) O(n log n) APX-c APX-c APX-c
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Temporal exploration
The travelling salesperson who returns home

Theorem (Akrida, Mertzios, Spirakis, CIAC, 2019)
MaxStarExp(3) can be efficiently solved in O(n log n) time

Proof (sketch).
problem is reducible to the Interval Scheduling Maximization Problem (ISMP):
Input: A set of intervals, each with a start and a finish time.
Output: Find a max-size set of non-overlapping intervals.
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Temporal exploration
The travelling salesperson who returns home

Theorem (Akrida, Mertzios, Spirakis, CIAC, 2019)
MaxStarExp(3) can be efficiently solved in O(n log n) time

Proof (sketch).
problem is reducible to the Interval Scheduling Maximization Problem (ISMP):
Input: A set of intervals, each with a start and a finish time.
Output: Find a max-size set of non-overlapping intervals.

Every edge e can be viewed as one or two
intervals to be scheduled.

Any edge with a single label can be
ignored.

5, 8

1, 2, 3

2, 8, 11
c

u

v

w

Interval 1: [2,8]
Interval 2: [8,11]
Interval 3: [1,2]
Interval 4: [2,3]
Interval 5: [5,8]
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Temporal exploration
The travelling salesperson who returns home

Theorem (Akrida, Mertzios, Spirakis, CIAC, 2019)
MaxStarExp(3) can be efficiently solved in O(n log n) time

Proof (sketch).
problem is reducible to the Interval Scheduling Maximization Problem (ISMP):
Input: A set of intervals, each with a start and a finish time.
Output: Find a max-size set of non-overlapping intervals.

Every edge e can be viewed as one or two
intervals to be scheduled.

Any edge with a single label can be
ignored.

5, 8

1, 2, 3

2, 8, 11
c

u

v

w

Interval 1: [2,8]
Interval 2: [8,11]
Interval 3: [1,2]
Interval 4: [2,3]
Interval 5: [5,8]
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Temporal exploration
The travelling salesperson who returns home

Theorem (Akrida, Mertzios, Spirakis, CIAC, 2019)
MaxStarExp(3) can be efficiently solved in O(n log n) time

Proof (sketch).
problem is reducible to the Interval Scheduling Maximization Problem (ISMP):
Input: A set of intervals, each with a start and a finish time.
Output: Find a max-size set of non-overlapping intervals.

Any (partial) exploration of (Gs,λ)
corresponds to a set of non-overlapping
intervals of the same size as the
exploration, and vice versa.

5, 8

1, 2, 3

2, 8, 11
c

u

v

w

Interval 1: [2,8]
Interval 2: [8,11]
Interval 3: [1,2]
Interval 4: [2,3]
Interval 5: [5,8]
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Temporal exploration
The travelling salesperson who returns home

Theorem (Akrida, Mertzios, Spirakis, CIAC, 2019)
MaxStarExp(3) can be efficiently solved in O(n log n) time

Proof (sketch, continued).
Greedy optimal solution for ISMP:

1 Start with the set I of all intervals (|I| ≤ 2(n− 1)). Select the iterval, I, with the
earliest finish time.

2 Remove from I the interval I and all overlapping intervals.
3 Repeat until I is empty.

Time needed: (|I| log |I|) = O(n log n)
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Temporal exploration: further work

Minimum cost exploration; complete directed temporal graph with edge weights from
{1, 2}
[Michail and Spirakis. Traveling salesman problems in temporal graphs, TCS, 2016.]

Exploration of constantly connected dynamic graphs; underlying cactus graph
[Ilcinkas,Klasing, Wade. Exploration of constantly connected dynamic graphs based on
cactuses, SIROCCO, 2014.]

Exploration of temporal graphs of small pathwidth; NP-completeness
[Bodlaender and van der Zanden. On exploring always-connected temporal graphs of
small pathwidth, Information Processing Letters, 2014.]

Exploration of temporal graphs using temporal paths with non-strictly increasing labels
[Erlebach, Spooner. Non-strict Temporal Exploration, SIROCCO, 2020.]

Eleni Akrida (Durham) Temporal Graphs: Algorithms & Complexity Liverpool, March 2021 28 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

Temporal graphs

Temporal paths

Strongly connected components

Temporal exploration

Temporal design problems

Stochastic temporal graphs

Future research directions
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Temporal design problems
So far:

we were given the input temporal graph (G,λ) and
we were asked to optimize some metric (e.g. a foremost path)

Many times the problem is different:
we are given a graph G and
we are asked to construct a time-labeling λ such that:

λ minimizes some cost function and
(G,λ) satisfies some connectivity constraints

[Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017]
[Mertzios, Michail, Spirakis, Algorithmica, 2019]
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Temporal design problems
In many scheduling problems:

the provided graph topology G represents a given static specification
e.g. available bus routes in the city center

the aim is to organize a temporal schedule on this specification, e.g.
when the buses should be in which stop
such that every pair of stops is connected via a route

while minimizing some cost function
e.g. with as few buses as possible
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Temporal design problems
In many scheduling problems:

the provided graph topology G represents a given static specification
e.g. available bus routes in the city center

the aim is to organize a temporal schedule on this specification, e.g.
when the buses should be in which stop
such that every pair of stops is connected via a route

while minimizing some cost function
e.g. with as few buses as possible

Creating and maintaining a connection does not come for free, e.g.:
edge “rentals” / toll roads
in wireless sensor networks the connection cost depends on the power consumption of the
vertices awake
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Temporal design problems
We mainly study the following cost functions of a time-labeling λ:

1 temporal cost κ: the total number of labels on all edges
a centralized measure of cost

2 temporality τ: the maximum number of labels per edge
a distributed / decentralized measure of cost in the temporal network

3 as well as trade-offs between the age α(λ) and these parameters

and two fundamental connectivity properties:
1 preserve in (G,λ) all reachabilities in G

if v is reachable from u in G ⇒ u v in (G,λ)

2 preserve in (G,λ) all paths in G
G has a path P ⇒ (G,λ) has a temporal path on the same edges as P

Notation (combining cost function & connectivity property):
κ(G, reach), τ(G, all paths), τ(G, all paths, α(λ)), etc.
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Temporal design problems
We mainly study the following cost functions of a time-labeling λ:

1 temporal cost κ: the total number of labels on all edges
a centralized measure of cost

2 temporality τ: the maximum number of labels per edge
a distributed / decentralized measure of cost in the temporal network

3 as well as trade-offs between the age α(λ) and these parameters

and two fundamental connectivity properties:
1 preserve in (G,λ) all reachabilities in G

if v is reachable from u in G ⇒ u v in (G,λ)

2 preserve in (G,λ) all paths in G
G has a path P ⇒ (G,λ) has a temporal path on the same edges as P

Notation (combining cost function & connectivity property):
κ(G, reach), τ(G, all paths), τ(G, all paths, α(λ)), etc.
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Temporal design problems
We mainly study the following cost functions of a time-labeling λ:

1 temporal cost κ: the total number of labels on all edges
a centralized measure of cost

2 temporality τ: the maximum number of labels per edge
a distributed / decentralized measure of cost in the temporal network

3 as well as trade-offs between the age α(λ) and these parameters

and two fundamental connectivity properties:
1 preserve in (G,λ) all reachabilities in G

if v is reachable from u in G ⇒ u v in (G,λ)

2 preserve in (G,λ) all paths in G
G has a path P ⇒ (G,λ) has a temporal path on the same edges as P

Notation (combining cost function & connectivity property):
κ(G, reach), τ(G, all paths), τ(G, all paths, α(λ)), etc.
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Temporal cost for preserving all reachabilities
Cost function: total number κ of labels
Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let d(G) denote the (static) diameter of the directed graph G. The problem of computing
κ(G, reach, d(G)) is APX-hard, even when each directed cycle of G has length at most 2.
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Temporal cost for preserving all reachabilities
Cost function: total number κ of labels
Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let d(G) denote the (static) diameter of the directed graph G. The problem of computing
κ(G, reach, d(G)) is APX-hard, even when each directed cycle of G has length at most 2.

Proof (sketch).
reduction from Max-XOR(3):

formula ϕ with n variables and m clauses
XOR-clauses (ℓi ⊕ ℓj) with two literals each: (ℓi ⊕ ℓj) = 1 ⇔ ℓi ̸= ℓj
each variable appears in at most 3 clauses ⇒ m ≤ 3

2n
the goal is to find a truth assignment τ with the maximum number |τ(ϕ)| of XOR-satisfied
clauses

from ϕ we construct a graph Gϕ and we prove:
|τ(ϕ)| ≥ k ⇔ κ(Gϕ, reach, d(Gϕ)) ≤ 39n− 4m− 2k
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Temporal cost for preserving all reachabilities
Proof (sketch, continued).

diameter d(Gi) = 9

to achieve a maximum label 9 we have two choices:

xi = 1

trunck of Gi

3 branches of Gi

gadget Gi for variable xi:
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Temporal cost for preserving all reachabilities
Proof (sketch, continued).

diameter d(Gi) = 9
to achieve a maximum label 9 we have two choices:

xi = 0

xi = 1

trunck of Gi

3 branches of Gi

gadget Gi for variable xi:

1

1 2

2 3 4 5 6

2 3 3 4 4 5 5 6 6 7

7

7

7

9

8

8

8

8

8

8
9

9

9

9

98

8

8
7

7

7
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Temporal cost for preserving all reachabilities
Proof (sketch, continued).

diameter d(Gi) = 9
to achieve a maximum label 9 we have two choices:

xi = 0
xi = 1

trunck of Gi

3 branches of Gi

gadget Gi for variable xi:

1
1

2 3 4 5 6

2 3 4 5 6

7

7

7

98

8

8 9

9

9 87

7

7

9 8

9 8

2 3 4 5 6 7

8

8

8
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Temporal cost for preserving all reachabilities
Proof (sketch, continued).

for every clause (ℓi ⊕ ℓj) where:
ℓi corresponds to the pth appearance of xi (p ∈ {1, 2, 3})
ℓj corresponds to the qth appearance of xj (q ∈ {1, 2, 3})

we identify the pth branch of Gi and the qth branch of Gj as follows:
`i = xi

`j = xj`j = xj

`i = xi

ℓi ̸= ℓj ⇔ the correct “tracks” of these branches are labeled
otherwise we use both “tracks” ⇒ pay more labels
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Temporal cost for preserving all reachabilities
Proof (sketch, continued).

for every clause (ℓi ⊕ ℓj) where:
ℓi corresponds to the pth appearance of xi (p ∈ {1, 2, 3})
ℓj corresponds to the qth appearance of xj (q ∈ {1, 2, 3})

we identify the pth branch of Gi and the qth branch of Gj as follows:
`i = xi

`j = xj`j = xj

`i = xi

ℓi ̸= ℓj ⇔ the correct “tracks” of these branches are labeled
otherwise we use both “tracks” ⇒ pay more labels
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Temporal cost for preserving all reachabilities
A simple approximation algorithm:

the reachability number of u ∈ V:
r(u) = |{v ∈ V : v is reachable from u}|

the total reachability number: r(G) = ∑u∈V r(u)

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
A r(G)

n−1 -approximation for κ(G, reach, d(G)) can be computed in polynomial time for connected
graphs G.
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Temporal cost for preserving all reachabilities
A simple approximation algorithm:

the reachability number of u ∈ V:
r(u) = |{v ∈ V : v is reachable from u}|

the total reachability number: r(G) = ∑u∈V r(u)

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
A r(G)

n−1 -approximation for κ(G, reach, d(G)) can be computed in polynomial time for connected
graphs G.

Proof.
Compute from every u ∈ V a temporal out-tree

⇒ all reachabilities are maintained with ≤ r(G) labels
OPT≥ n− 1 ⇒ approximation ratio r(G)

n−1
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
We consider a fixed, arbitrary spanning tree T of G and
let a leaf node w be its root.

G = (V,E)
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
We consider a fixed, arbitrary spanning tree T of G and
let a leaf node w be its root.

w

G = (V,E)
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
We consider a fixed, arbitrary spanning tree T of G and
let a leaf node w be its root.
Let w′ be the single child of w in T and let T′ be the
subtree of T that is rooted at w′.

w

G = (V,E)

w′
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
We consider a fixed, arbitrary spanning tree T of G and
let a leaf node w be its root.
Let w′ be the single child of w in T and let T′ be the
subtree of T that is rooted at w′.
Let r length of longest path from w′ to any leaf of T′.

w

G = (V,E)

w′

r=3
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
We consider a fixed, arbitrary spanning tree T of G and
let a leaf node w be its root.
Let w′ be the single child of w in T and let T′ be the
subtree of T that is rooted at w′.
Let r length of longest path from w′ to any leaf of T′.
We assign labels to the edges of T as follows.

w

G = (V,E)

w′

r=3
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
Going upwards.
Any edge of T′ incident to a leaf gets label 1. Any edge
e = {u, v} of T′, with d(w′, v) = d(w′, u) + 1, where the
subtree T∗ rooted at v has been labelled going upwards
towards w′, gets a label le = max{all labels in T∗}+ 1.

(r = 3)

w

T

11

21

w′
3
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.

The edge {w,w′}.
We label the edge {w,w′} of T with the single label r + 1.

(r = 3)

w

T

11

21

4

w′
3
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Nearly cost-optimal design for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
Given a connected undirected graph G = (V,E) of n ≥ 2 vertices, we can construct a labelling
λ of cost c(λ) = 2n− 3 that preserves all reachabilities on G in polynomial time.

Proof.
Going downwards.
Any edge of T′ incident to w′ gets a label r + 2. Any edge
e of T′ in a path from w′ to a leaf of T′, the parent edge of
which has been labelled, going downwards, with label l′,
gets a label le = l′ + 1.

(r = 3)

w

T

1, 71, 7

2, 61, 5

4

w′
3, 5
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Removal cost for preserving all reachabilities

The “inverse” design problem:
given a temporal graph (G,λ) that maintains all reachabilities of G
remove the maximum number of labels by maintaining reachabilities
removal cost r(G,λ)
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Removal cost for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
The problem of computing r(G,λ) is APX-hard on undirected graphs G.
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Removal cost for preserving all reachabilities

Theorem (Akrida, Gąsieniec, Mertzios, Spirakis, TOCS, 2017)
The problem of computing r(G,λ) is APX-hard on undirected graphs G.

Proof (sketch).
reduction from monotone Max-XOR(3):

same as Max-XOR(3) but no variable is negated

from ϕ we construct a graph Gϕ and we prove:
|τ(ϕ)| ≥ k ⇔ r(Gϕ,λ) ≥ 9n + k
assuming a PTAS for computing r(Gϕ,λ), we obtain a PTAS for monotone Max-XOR(3)
Contradiction; monotone Max-XOR(3) is APX-hard [Alimonti and Kann, CIAC, 1997]
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Removal cost for preserving all reachabilities

Proof (sketch, continued).
Construction of Gϕ,λ

Figure: The gadget Gϕ,i for the variable xi.

For every p ∈ {1, 2, 3} we associate the pth appearance of the variable xi in a clause of ϕ
with the pth branch of Gϕ,i.
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Removal cost for preserving all reachabilities

Proof (sketch, continued).
Construction of Gϕ,λ

Figure: The gadget Gϕ,i for the variable xi.

For every pair of vertices wxip ,w
xj
q , p, q ∈ {0, 1, 2, 3}, i, j ∈ {1, 2, . . . , n} add an edge

e = {wxip ,w
xj
q } with label 7.
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Removal cost for preserving all reachabilities

Proof (sketch, continued).
Construction of Gϕ,λ

Figure: The gadget Gϕ,i for the variable xi.

For every pair of vertices txip , t
xj
q , p, q ∈ {1, 2, 3}, i, j ∈ {1, 2, . . . , n} add an edge with

label 7.
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Removal cost for preserving all reachabilities

Proof (sketch, continued).
Construction of Gϕ,λ

t
xi

2

sxi

u
xi

0

w
xi

0

v
xi

0

uxi

p

wxi

p

vxi

p

5

6

6

6

6

6

11

33

4
4

1, 2 1, 2

1, 2 1, 2

1

t0

Figure: The addition of vertex t0. There exists in Gϕ also the edge {t0,wxn
0 } with label 5.

Add vertex t0 adjacent to all vertices {sxi , txi
1 , t

xi
2 , t

xi
3 , uxip , vxip : 1 ≤ i ≤ n, 0 ≤ p ≤ 3} with

label 5 or 6.
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Removal cost for preserving all reachabilities

Proof (sketch, continued).
Construction of Gϕ,λ

t
xi

2

sxi

u
xi

0

w
xi

0

v
xi

0

uxi

p

wxi

p

vxi

p

5

6

6

6

6

6

11

33

4
4

1, 2 1, 2

1, 2 1, 2

1

t0

Figure: The addition of vertex t0. There exists in Gϕ also the edge {t0,wxn
0 } with label 5.

Add the edge t0,wxn
0 with label 5.
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Removal cost for preserving all reachabilities
Proof (sketch, continued).
Construction of Gϕ,λ

3

3

44

1, 2 1, 2

3

3

u
xi

0 v
xi

0

sxi

11

1, 2 1, 2

w
xi

0

11

1, 2 1, 2

w
xj

0

sxj

txi
p
= txj

q

uxi
p
= vxj

q vxi
p
= uxj

q

wxi
p
= wxj

q

1

u
xj

0
v
xj

0

Figure: The gadget for the clause (xi ⊕ xj).
Consider now a clause α = (xi ⊕ xj) of ϕ. Assume that the variable xi (resp. xj) of α corresponds
to the pth (resp. to the qth) appearance of xi (resp. of xj) in ϕ. Then we identify the vertices
uxip , vxip ,wxip , txip of the pth branch of Gϕ,i with the vertices vxiq , uxiq ,wxiq , txiq of the qth branch of Gϕ,j,
respectively.
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Temporality of the ring Cn
A very different cost function: maximum number τ of
labels per edge

u1

u2

u3u4

u5

un−1

un

P1

P2
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Temporality of the ring Cn
A very different cost function: maximum number τ of
labels per edge

increasing labels on P1 ⇒ decreasing labels from
(un−1, un) to (u1, u2)

u1

u2

u3u4

u5

un−1

un

P1

P2
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Temporality of the ring Cn
A very different cost function: maximum number τ of
labels per edge

increasing labels on P1 ⇒ decreasing labels from
(un−1, un) to (u1, u2)

P2 uses first (un−1, un), then (u1, u2)

⇒ increasing pair of labels on these edges
To preserve both P1, P2 we need 2 labels on at
least one of these two edges ⇒ τ(Cn, all paths) ≥ 2

u1

u2

u3u4

u5

un−1

un

P1

P2
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Temporality of the ring Cn
A very different cost function: maximum number τ of
labels per edge

increasing labels on P1 ⇒ decreasing labels from
(un−1, un) to (u1, u2)

P2 uses first (un−1, un), then (u1, u2)

⇒ increasing pair of labels on these edges
To preserve both P1, P2 we need 2 labels on at
least one of these two edges ⇒ τ(Cn, all paths) ≥ 2

u1

u2

u3u4

u5

un−1

un

P1

P2

The labeling that assigns to each edge (ui, ui+1) the labels {i, n + i} preserves all simple
paths, i.e. τ(Cn, all paths) ≤ 2

⇒ τ(Cn, all paths) = 2
The maximum label is 2n (can be “tuned” to 2n− 2)
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Temporality of the ring Cn
Restricting the age

What if we restrict the age to α(λ) = n− 1?
Assume that some edge e of Cn misses label
i ∈ {1, 2, . . . , n− 1}
Then there exists a temporal path
on Cn that needs label i on edge e
to finish by time n− 1

u1

u2

u3u4

u5

un−1

un

P1

P2

Eleni Akrida (Durham) Temporal Graphs: Algorithms & Complexity Liverpool, March 2021 37 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Temporality of the ring Cn
Restricting the age

What if we restrict the age to α(λ) = n− 1?
Assume that some edge e of Cn misses label
i ∈ {1, 2, . . . , n− 1}
Then there exists a temporal path
on Cn that needs label i on edge e
to finish by time n− 1

⇒ the optimal labeling assigns {1, 2, , . . . , n− 1} to all
edges of Cn

⇒ τ(Cn, all paths, n− 1) = n− 1

u1

u2

u3u4

u5

un−1

un

P1

P2
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Temporality of the ring Cn
Restricting the age

More generally:

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
If G is a directed ring Cn and α(λ) = (n− 1) + k, where 1 ≤ k ≤ n− 1, then

τ(G, all paths, α) = Θ(n/k).

In particular: ⌊ n−1
k+1⌋+ 1 ≤ τ(G, all paths, α) ≤ ⌈ n

k+1⌉+ 1.
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Temporality of a DAG
A topological sort of a digraph G:

a linear ordering of its vertices, where
if G contains an arc (u, v) then u appears before v

It is known:
a digraph G can be topologically sorted ⇔ G is a DAG

1

2 4

5

6
u1 u2 u3 u4 u5 u6 u7

1

2

3

3

Eleni Akrida (Durham) Temporal Graphs: Algorithms & Complexity Liverpool, March 2021 38 / 48



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Temporality of a DAG

Lemma (Mertzios, Michail, Spirakis, Algorithmica, 2019)
If G is a DAG then τ(G, all paths) = 1.

Proof.

Take a topological sort u1, u2, . . . , un of G
Give label i to every edge (ui, uj), where i < j.

1

2 4

5

6
u1 u2 u3 u4 u5 u6 u7

1

2

3

3
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Temporality: preserving all reachabilities

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let G be an undirected (or strongly connected directed) graph. Then τ(G, reach) ≤ 2.

Proof.
pick an arbitrary vertex v
let v have (static) distance at most k to all other vertices
build a temporal in-tree to vertex v with labels {1, 2, . . . , k}
from v build a temporal out-tree to vertex v with labels {k + 1, k + 2, . . . , 2k}

⇒ all vertices remain temporally connected with 2 labels per edge
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Temporality: preserving all reachabilities

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let G be an undirected (or strongly connected directed) graph. Then τ(G, reach) ≤ 2.

Similarly to the analysis for DAGs:

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let G be a directed graph. Then τ(G, reach) = maxC∈C(G) τ(C, reach), where C(G) is the set
of strongly connected components of G.
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Temporality: preserving all reachabilities

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let G be an undirected (or strongly connected directed) graph. Then τ(G, reach) ≤ 2.

Similarly to the analysis for DAGs:

Theorem (Mertzios, Michail, Spirakis, Algorithmica, 2019)
Let G be a directed graph. Then τ(G, reach) = maxC∈C(G) τ(C, reach), where C(G) is the set
of strongly connected components of G.

Therefore:
Corollary
τ(G, reach) ≤ 2 for every directed or undirected graph.

That is: we can preserve all reachabilities with at most 2 labels per edge.
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Overview

Temporal graphs

Temporal paths

Strongly connected components

Temporal design problems

Temporal exploration

Stochastic temporal graphs

Future research directions
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Stochastic temporal graphs

Levels of knowledge about the network evolution:
whole temporal graph given in advance
adversary who reveals it snapshot-by-snapshot at every time step
intermediate knowledge setting, captured by stochastic temporal graphs, where the
network evolution is given by a probability distribution that governs the appearance of
each edge over time
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Stochastic temporal graphs

Models of randomness:

“Selection from a pool of labels”: the labels assigned to the edges of the underlying graph
are chosen independently and uniformly at random from a set of available time labels.

ephemeral random dynamic networks

“Fixed probability”: each edge exists at each time-step with a certain probability
opportunistic mobile networks

“Memory effect”: appearance probability of a particular edge at a given time-step t
depends on the appearance (or absence) of the same edge at the previous k ≥ 1 time
steps

faulty network communication
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Stochastic temporal graphs
Uniform random temporal graphs

Upper and lower bounds on the Temporal Diameter, i.e., expected maximum temporal
distance, of the complete graph with a single label per edge

Note that the complete graph is the only graph for which preserving all reachabilities is
guaranteed with random labels, even with 1 label per edge.

[Akrida, Gąsieniec, Mertzios, Spirakis JPDC, 2016]
Bound on the smallest number of random labels per edge that guarantees preservation of
reachability with high probability ⇒ upper bound on a measure of how “good” the best
random assignment is compared to the best deterministic one.
[Akrida, Gąsieniec, Mertzios, Spirakis JPDC, 2016]
High removal profit with high probability for complete graphs and random graphs.
[Akrida, Gąsieniec, Mertzios, Spirakis TOCS, 2017]
Flows in uniform random temporal networks: characterisation of networks that block any
flow from arriving to the target.
[Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis, J. Comp. Syst. Sci., 2019]
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Stochastic temporal graphs
Fixed probability per time step

Model of opportunistic mobile networks as a type of random temporal networks, where
each edge exists at each time-step with a fixed probability; proof of existence of small
diameter.
[Chaintreau, Mtibaa, Massoulié, Diot, CoNEXT, 2007]
Dijkstra-like polynomial-time algorithm for computing the arrival time of a best policy for
choosing an source-target journey
[Basu, Bar-Noy, Ramanathan, Johnson, arXiv, 2010]
Cost-effective data dissemination approach in disruption tolerant networks, based on a
centrality metric.
[Gao, Cao, INFOCOM, 2011]
Efficient content dissemination in opportunistic social networks broken down into
’temporal communities’, i.e., groups of people meeting periodically.
[Pietiläinen, Diot, MOBIHOC, 2012]
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Stochastic temporal graphs
Probability per time step with dependence of history

Case of each edge existing at each time-step with probability dependent on the previous
time-step: upper bounds for the flooding time and tight characterizations of the graphs
on which the flooding time is constant
[Clementi, Macci, Monti, Pasquale, Silvestri, SIDMA, 2010]

Investigation of the complexity of two temporal path problems, namely computing the
expected arrival time of a foremost source-target journey and of a best policy for choosing
a particular source-target journey.
[Akrida, Mertzios, Nikoletseas, Raptopoulos, Spirakis, Zamaraev, J. Comp. Syst. Sci.,
2020]
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Overview

Temporal graphs

Temporal paths

Strongly connected components

Temporal design problems

Temporal exploration

Stochastic temporal graphs

Future research directions
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Research Directions

Find constant-factor approximations for the various temporal graph design problems

Other natural connectivity properties subject to which optimization is to be performed

Efficient deterministic/randomized/approximation algorithms on special temporal graph
classes, i.e. by restricting:

the underlying topology G and/or
the temporal pattern with which the time-labels appear
(a new dimension with no previous static analogue!)
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Research Directions

Natural non-path temporal problems
the notion of a “∆-temporal clique” in social networks:
“a set of nodes and a time interval such that all pairs interact at least every ∆ during this
interval”
[Viard, Latapy, Magnien, ASONAM, 2015]
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Research Directions

Natural non-path temporal problems
the notion of “temporal matchings” has been studied before:
“a collection of edges and time steps of their existence such that the edges are a matching
and each edge appears at a different time-step”
[Michail, Spirakis, TCS, 2016]
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Research Directions

Natural non-path temporal problems
more recently defined temporal analogues of “vertex cover”:
“a collection of vertex appearances that cover every edge at least once” and “a collection of
vertex appearances and a time length so that every edge is covered at least once within every
time interval of the given length”
[Akrida, Mertzios, Spirakis, Zamaraev, J. Comp. Syst. Sci., 2020]
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Research Directions

Natural non-path temporal problems
more recently defined temporal analogues of “vertex cover”:
“a collection of vertex appearances that cover every edge at least once” and “a collection of
vertex appearances and a time length so that every edge is covered at least once within every
time interval of the given length”
[Akrida, Mertzios, Spirakis, Zamaraev, J. Comp. Syst. Sci., 2020]

Our results so far are a first step towards answering this fundamental question:

To what extent can algorithmic and structural results
of graph theory be carried over to temporal graphs?
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Thank you for your attention!
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