
NOctoSLAM: Fast Octree Surface Normal Mapping and Registration

Joscha Fossel1 Karl Tuyls1 Benjamin Schnieders1 Daniel Claes1 Daniel Hennes2

Abstract— In this paper, we introduce a SLAM front end
called NOctoSLAM. The approach adopts an octree-based map
representation that implicitly enables source and reference data
association for point to plane ICP registration. Additionally, the
data structure is used to group map points to approximate
surface normals. The multi-resolution capability of octrees,
achieved by aggregating information in parent nodes, enables
us to compensate for spatially unbalanced sensor data typically
provided by multi-line lidar sensors. The octree-based data
association is only approximate, but our empirical evaluation
shows that NOctoSLAM achieves the same pose estimation ac-
curacy as a comparable, point cloud based approach. However,
NOctoSLAM can perform twice as many registration iterations
per time unit. In contrast to point cloud based surface normal
maps, where the map update duration depends on the current
map size, we achieve a constant map update duration including
surface normal recalculation. Therefore, NOctoSLAM does not
require elaborate and environment dependent data filters. The
results of our experiments show a mean positional error of 0.029
m and 0.019 rad, with a low standard deviation of 0.005 m
and 0.006 rad, outperforming the state-of-the-art by remaining
accurate while running online.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) refers to
a fundamental problem in robotics in which a robot has to
generate a map of an unknown environment without external
tracking, while simultaneously localizing itself relative to the
same recorded map (Figure 1). Many real-world scenarios,
such as for instance search and rescue or planetary explo-
ration, lack external tracking infrastructure and consequently
require simultaneous localization and map generation.

Mobile robots are commonly equipped with 2D laser
sensors motivated by high precision and affordable price.
Recently, 3D laser sensors have been getting smaller and
more affordable, a trend which might amplify with the
introduction of solid state lasers in the near future. Cur-
rently, most 3D laser sensors provide multiple 2D scans
at different inclinations. Unlike 2D lasers, 3D lasers allow
for 6D pose estimation and 3D mapping without requiring
additional sensors, e.g. inertial measurement units or altitude
sensors. However, handling the large amount of data typically
provided by such sensors can prove challenging. In order
to register 3D scans online and in real-time, efficient scan
matching algorithms are required.

The main contribution of our paper is the introduction of
NOctoSLAM, a SLAM front-end which uses an octree-based

1Department of Computer Science, University of
Liverpool, L69 3BX Liverpool, United Kingdom
jfossel,bsc,dclaes,ktuyls@liv.ac.uk

2Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH, Robotics Innovation Center, 28359 Bremen, Germany
daniel.hennes@dfki.de

Fig. 1. This figure shows a NOctoSLAM generated 3D trajectory. The
pose estimates are used to transform the sensor data, where color represents
scan intensity. Recognizable details such as the whiteboard, radiators and
the beams in the arched window indicate a good pose estimation accuracy.

map representation that supports surface normals. This en-
ables quick nearest neighbour search for source to reference
point association and fast surface normal approximation.
Scan to map registration is performed using the Iterative
Closest Point [1] algorithm with a point to plane error metric.
Due to its computational performance, NOctoSLAM does
not require explicit data filtering, and thus also voids the
need for manual fine-tuning of filter parameters.

Our evaluation illustrates that NOctoSLAM is outper-
forming the state-of-the-art (i.e. libpointmatcher [2]) com-
putationally, while matching its accuracy. The computa-
tional performance of SLAM front ends is important as
it has an impact on the latency between acquiring sensor
data and updating the pose estimate. Furthermore, better
computational performance can increase the update rate,
and also determines how much of the sensor data can be
processed instead of filtered. Adjusting filter parameters of
libpointmatcher in order to enable near real-time processing,
unavoidably reduces accuracy. Thus, in an attempt to achieve
the same runtime as NOctoSLAM, applying source and
reference point filters to speed up libpointmatcher resulted in
a positional median error of ~0.09 m, compared to ~0.03 m
for NOctoSLAM.

The remainder of this paper is organized as follows.
Section II presents related work and provides a concise
background. Section III introduces NOctoSLAM and spec-
ifies the functionality in detail. Section IV describes the
experiments performed in order to compare NOctoSLAM to
other approaches. Results are discussed and a conclusion is
presented in Section V.

II. RELATED WORK & BACKGROUND

SLAM algorithms can differ in the way they register points
and represent maps. Point registration is typically performed
by an iterative closest point (ICP) algorithm.



The libpointmatcher [2] library supports different ICP
variations intended for direct comparison of different reg-
istration and error measurement approaches. For fast nearest
neighbour search, it makes use of libnabo [3], a kd-tree im-
plementation. It furthermore features various finely tunable
pre- and post-processing point filtering techniques, reducing
the amount of data processed in order to lower computation
costs.

An alternative way to address the limited computational
capabilities of mobile robots is presented with LOAM [4]. It
effectively separates the self localization from the mapping
operation by performing them at different rates with different
levels of accuracy. Pose estimation is performed at high-
frequency, but with low fidelity, while mapping is done
less often but investing a higher amount of computational
resources in order to find a more precise result. In order
to achieve good pose estimates despite low fidelity, LOAM
uses intricate feature detection algorithms to preserve only
meaningful data points.

An intuitive way to map laser sensor data is converting
the measured distances into spatial coordinates, then stor-
ing the coordinates in a point cloud, an unordered set of
all recorded points. In order to reduce the computational
costs of finding nearest neighbours, the number of stored
points can be reduced using filters, or by using a tree-based
data structure, such as a kd-tree or an octree. An octree
representation, recursively partitioning a cubic space into
eight smaller cubes, is a memory and time efficient way to
represent 3D environments in an organized manner. Figure 2
shows an example of storing laser sensor data in an octree.
OctoMap [5] is an octree-based mapping implementation,
representing occupied, free and unmapped areas distinctly in
a memory efficient way.

In structured environments, such as buildings, one can
make reasonable assumptions of the terrain layout in between
neighbouring measurements. Point to plane ICP [6] presents
an extension to the traditional iterative closest point algo-
rithm [1], using an error metric from each point to the tangent
plane of the corresponding closest points, thus relaxing the
requirement for exact point matches. This error metric has
been shown to converge faster in general [7], especially for
few or distant points. As most 3D laser scanners produce
sparse data in the vertical axis, point to plane ICP is a
reasonable choice. Another way of dealing with such non-
uniform density point clouds is presented in [8], where
the authors propose approximate surface reconstruction to
enhance registration performance.

A detailed overview of point cloud registration algorithms
is given in [9].

III. NOCTOSLAM

We propose an octree-based map representation that en-
ables fast point to plane scan registration [6]. Iterative Closest
Point (ICP) in the point to plane variant requires both
source/input to reference/map point association and a surface
normal estimate for the reference points. The proposed map
structure inherently provides surface normal approximations

x

y

z

p1 p2 p3 p4

p1 = (6, 1, 6)
p2 = (9, 1, 6)
p3 = (9, 4, 6)
p4 = (9, 6, 6)

avg = (8,2,6)
sfn = (0,0,1)

avg = (9,6,6)
sfn = ()

avg = (8.5,4,6)
sfn = (0,0,1)

a b

c

p1 p3 p4p2

Fig. 2. This figure shows a simplified map update. First, the initially empty
octree is extended to accommodate new data points. After inserting the data
points into the tree, the changes are propagated through the tree from bottom
to top, and surface normals (sfn) are calculated if feasible.

and allows for direct association of source point cloud to
reference map. Thus, we avoid having to maintain additional
data structures that perform nearest neighbour search for said
tasks. In comparison, point to plane ICP [6] and generalized
ICP [10] based algorithms, e.g. [2], [11], use kd-trees for
data association and surface normal estimation, whilst storing
the map in an unorganized point cloud format. While there
exist highly optimized approaches to tackle the k-nn problem,
such as libnabo [3], kd-tree based nearest neighbour search
in large point cloud based maps is not feasible online (see
Section IV). To achieve registration and map updates that are
faster than the sensor update rate, typically requires reducing
the number of points by filtering out large amounts of the
provided scan endpoints. The nearest neighbour approxima-
tion method proposed in this paper is very fast and allows
us to map and register 300,000 points per second, whilst
being sufficiently accurate to generate valid surface normals.
Hence, NOctoSLAM does not require explicit filtering of
sensor data as other point to plane ICP based methods
do. Tuning such filters can be challenging, environment
dependent, and also costly in terms of runtime.

In the following subsection we will explain how (i) updat-
ing the map, i.e. scan end point insertion and surface normal
approximation, and (ii) registration, i.e. data association and
pose updates, are performed in NOctoSLAM.

A. Mapping

To represent the environment, we extend the octomap
approach introduced in [5]. In the octomap approach, every
octree node represents a voxel, where its resolution depends



on the node’s level in the tree. Commonly, every octree node
stores the probability of representing occupied space, while
the position it represents in 3D space depends on the node’s
position in the tree. In NOctoSLAM we additionally store
two 3D vectors per node, i.e., a surface normal and a position
that can deviate from the center of the voxel. The former
is necessary for point to plane scan registration. The latter
allows for a more precise map representation at coarse map
resolutions. NOctoSLAM uses both data stored in leaf and
non-leaf nodes, thus such a position anchor is required.

Updating the map consists of two steps, insertion and
propagation, depicted in Figure 2. First, the tree is extended
if necessary, and the scan endpoint positions are inserted into
the corresponding nodes (p1, p2, p3, p4 in Figure 2). If a leaf
node ni already exists, the stored position is updated with
the scan endpoint position by using the weighted average
according to sensor model M and node occupancy probability
np

i :

ni =
ni ∗np

i +M ∗dk

M+np
i

, (1)

where vector ni is the position previously stored in node ni
and vector dk is the endpoint position of scan dk.

After having inserted all scan endpoints in this fashion, the
updates are propagated through the tree: all non-leaf nodes
traversed during the first step are updated from bottom to
top, based on the information stored in their descendants.
In particular, parent nodes store the average position of their
descendants, and use these positions to approximate a surface
normal if feasible (node a in Figure 2).

We approximate the surface normal by estimating the
normal of a plane tangent to the surface, which can be formu-
lated as a least-square problem. As shown in [12] the solution
can be reduced to a principal component analysis of the
covariance matrix C generated from the direct descendants
ni−1,k of a node ni, j:

C (ni, j) =
1
K

K

∑
k=1

(ni−1,k−p) · (ni−1,k−p)T , (2)

p =
1
K

K

∑
k=1

ni−1,k, (3)

C ·vm = λm ·vm, m ∈ {0,1,2}, (4)

where K is the number of descendants of node ni, j, λm the
m-th eigenvalue of the covariance matrix, and vm the m-th
eigenvector, which can be computed analytically. If exactly
two of three eigenvalues are similar, the corresponding
eigenvectors determine the plane through nodes ni−1,k, and
hence the surface normal for node ni,k. If no good surface
normal can be estimated, the surface normal vector centroid
of the descendants is used instead, if available (node c in
Figure 2). If neither is available, as for node b, no surface
normal is set. Figure 2 also shows the downside of this
approach compared to using traditional nearest neighbour
search: the right branch containing b and p4 has no surface
normal, and even though p3 is close to p4. This relation is
ignored because they are in different branches of the octree.

Laser reading

Laser noise

Surface normal

Degenerate surface normal

Fig. 3. This figure gives an example for how noisy sensor data can lead
to bad surface normal approximations in NOctoSLAM, as shown in the top
half of the figure. Here, the noisy data point occupies its own node and the
noise propagates to the parent node. The issue is tackled by using dynamic
map resolutions. The coarser the map, the more points are being averaged
reducing the impact of sensor noise, as shown on the bottom half of the
figure, where multiple points are averaged in the leaf nodes.

Nevertheless, experiments (Section IV) show that in practice
being able to process more points compensates for not being
able to approximate surface normals for some points. Note
that the data for such points is not discarded, and it is
likely that approximating surface normals in such cases will
become feasible at a future iteration due to high map update
rates.

Unlike RGBD cameras, multi-line lidars provide only
sparse data along the vertical axis. This can lead to degener-
ate surface normal approximations, as illustrated in Figure 3.
In the upper part we can see how noisy input (red dot)
would lead to a degenerate surface normal estimate. The
red striped node would have a surface normal perpendicular
to the actual one. To tackle this, we use dynamic map
resolutions by inserting leaf nodes at variable tree depths,
as shown in the lower part of Figure 3. By decreasing the
resolution we implicitly increase the number of input points
that are averaged to estimate a surface normal. Thus, the
surface normal ends up being only slightly skewed, instead
of being completely off. In particular, we choose a leaf
node resolution that forces nodes on vertical scan lines to
be adjacent, depending on distance to sensor origin, vertical
resolution of the sensor and map occupancy.

B. Pose Updates

To update the pose estimate we employ a point to plane
iterative closest point algorithm, originally introduced in [6].
The basic ICP algorithm consists of two steps. First, corre-
spondence between the source and reference data is com-
puted (i.e. scan endpoints are associated with points in the
map). Second, a transformation that minimizes the distance
between corresponding points from input and reference set



is computed.
To associate a scan endpoint di with a position and surface

normal stored in the map, the octree is traversed as far as
possible from root node towards the leaf node corresponding
to the coordinates of di. If a leaf node ni, with a parent node
that has its surface normal set is reached, di is associated with
the position stored in ni and the surface normal (si) stored
in the parent node. Otherwise, ni, the last node traversed for
which the surface normal is set, is associated with di. Instead
of calculating the actual euclidean distance for maximum
correspondence distance rejection, the tree level in which ni
is found is used instead. For each such association found
di, ni and si are used to determine the point to plane error
according to the following metric:

E = ∑
i

((
P ·
[
di 1

]T − [ni 1
]T) · [si 0

]T)2
, (5)

where P is the current pose matrix.

P =


1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1

 , (6)

with α , β , γ being roll, pitch, yaw angle and tx, ty, tz being the
translations along the respective axes. Minimizing Equation 5
is essentially a least-squares optimization problem. We use
the libpointmatcher error minimizer [2] to determine P for
the pose update estimates.

IV. EMPIRICAL EVALUATION

In this section we perform experiments to evaluate the
pose estimation quality as well as the runtime performance
of NOctoSLAM.

The experiments are conducted on an Intel® Core™ i7-
4770 CPU with 16GB of RAM, and the sensor used is
a VLP-161 multi-line lidar. It can provide about 15000
measurements at 20 Hz, with a maximum range of 100
m. The measurements are distributed among 16 horizontal
lines over a vertical FOV of 30 deg and over a horizontal
FOV of 360 deg. To estimate the accuracy of pose estimates
we compare against ground truth poses provided by an
Optitrack2 motion capture system.

We furthermore compare the NOctoSLAM results against
ETH Zurich’s ICP Mapping tool3, which uses libpoint-
matcher [2] for registration and libnabo [3] for nearest neigh-
bour search. The point to plane ICP algorithm, excluding data
association, is essentially the same in NOctoSLAM and the
ETHZ ICP Mapping tool.

The NOctoSLAM (referred to as NOcto in the figures)
performance is evaluated against the ETH Mapping tool
with two different sets of parameters. For NOctoSLAM, a
minimum map resolution of 0.01 m is used, and the map is
updated after every registration. In the following, algorithm
ETH refers to using no input filters and a 0.1× 0.1× 0.1

1http://velodynelidar.com
2http://optitrack.com
3http://wiki.ros.org/ethzasl_icp_mapping

NOcto ETH ETH*

M
e

te
r

0

0.1

0.2

0.3
Positional ME

NOcto ETH ETH*

M
e

te
r

0

0.1

0.2

0.3
Positional ME

NOcto ETH ETH*

R
a

d
ia

n
s

0

0.05

0.1

0.15
Rotational ME

NOcto ETH ETH*

R
a

d
ia

n
s

0

0.05

0.1

0.15
Rotational ME

Fig. 4. On the left the mean error (ME) of the position, and on the right
the ME of the rotation, are shown. ETH* performs significantly worse than
the other two algorithms, which perform similarly well.

TABLE I
POSE METRICS FOR 15 INDOOR EPISODES

Position in m Rotation in radians
Median Mean σ Median Mean σ

NOcto 0.030 0.029 0.005 0.018 0.019 0.006
ETH 0.032 0.032 0.011 0.015 0.017 0.008

ETH* 0.094 0.113 0.054 0.066 0.068 0.023

m3 voxel grid map filter, i.e. the same map resolution as
NOctoSLAM. Thus, registration is performed with approx-
imately 15000 input points at 20 Hz. In order to increase
runtime performance, ETH* uses various input filters that
reduce the number of input points to approximately 2500.
Among others, a max density filter configured to 300 points
per m3 is used. Additionally, the map is also limited to a
point density of 50 points per m3. The algorithm denoted
with ETH* updates the map not after every registration, but
only if the map overlaps less than 95 %.

A. Pose Estimation Accuracy

We evaluate the accuracy of pose estimates for 15 recorded
episodes, where each episode is between 1 and 2 minutes
long. In each episode, the sensor is moved manually through
a 8× 8× 3.5 m3 room. The sensor is equipped with mo-
tion capture markers, which are externally tracked. A rigid
transformation resulting from aligning the ground truth and
estimated trajectories via ICP is used to calibrate the sensor’s
optical axis to the markers. For each episode we calculate
the mean error (ME) of the position and rotation compared
to the ground truth data.

Figure 4 shows the results for 15 episodes, where the
center line marks the mean, the inner box represents the 95 %
confidence interval, and the outer box illustrates the standard
deviation. The figure shows that there is no significant
difference of either positional or rotational accuracy between
NOcto and ETH. Strongly reducing the number of source and
reference points leads to a significantly worse performance
of ETH*. In fact, with a position mean error of 0.113 m
(see Table I), ETH* approximately quadruples that of NOcto.
Additionally, the standard deviation of ETH* is also one
order of magnitude higher as the one of NOcto. A similar
trend can be observed for the three rotation axes.

To visualize the impact of a 0.094 m positional error



4
2

Trajectories for episode 4

0
-2-2

-1
0

1

2.5

2

1.5

1
2

Motion Capture
NOcto
ETH*

Fig. 5. The pose estimates for the median performance episode of ETH* are
shown. The performance difference between NOcto and ETH* is indicated
by the superior alignment of NOcto to the motion capture trajectory.

Number of points in map ×10
4

0 0.5 1 1.5 2 2.5 3 3.5 4

S
e

c
o

n
d

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Map update duration

NOcto ~15k
ETH ~15k
ETH* ~2.5k

Fig. 6. This figure shows the map update durations in relation to number
of points in the map. The points describing the lower constant line belong to
NOcto, and the points describing the shorter linear line below 0.08 s duration
belong to ETH*. A linear dependency between map size and required time
for both ETH and ETH* is visible, while NOcto performs in constant time.

versus a 0.029 m error, we plot the trajectories for the
median performance episode of ETH* in Figure 5. In order to
increase clarity only every fourth trajectory point is plotted,
and we omit the ETH trajectory as it is very similar to the
NOcto trajectory. It can be seen that the ETH* trajectory
aligns significantly worse with the motion capture trajectory
than the NOcto trajectory does.

B. Runtime Performance

When performing localization and mapping, the main
factors in terms of time consumption are updating the surface
normals and associating source to reference data. In the
following analysis the same data as for the experiments in
the previous subsection are used.

We investigate the map update duration in Figure 6. The
figure shows that ETH and ETH* map update durations are
proportional to the number of points in the map. This stems
from the unorganized point cloud representation used that
requires reprocessing at least large parts of the map during

NOcto ~15k pts ETH ~15k pts ETH* ~2.5k pts

S
e

c
o

n
d

s

×10
-3

0

1

2

3

4

5

6

7
Registration duration per iteration

Fig. 7. The registration durations per iteration for the three algorithms
are shown. NOcto significantly outperforms ETH when both process 15000
points per iteration. With the number of points reduced to 2500, ETH* is
faster than NOcto, but suffers from a significantly larger standard deviation.

each update. ETH* shows that the update duration can be
reduced by only storing sparse point clouds and using smaller
update sizes. Additionally, updating the map in parallel to
scan registration, and at a low frequency, makes using a point
cloud format computationally feasible. On the other hand,
the tree based map representation used in NOcto allows for
constant time map updates, regardless of map size. Thus, it is
not necessary to filter map data for performance reasons with
this approach. The mean map update duration for NOcto is
0.0062 s with a standard deviation of 6∗10−4 s, i.e. ~1/8th
of the available time at 20 Hz update rate.

Figure 7 shows a box plot of the scan registration dura-
tion per iteration for the three algorithms. The figure was
generated from ~4∗105 iterations. The median of NOcto is
0.0018 s, halving that of ETH (0.0036 s), while processing
approximately the same number of points. With a median of
0.0009 s, ETH* outperforms the other two, albeit processing
only ~2500 points instead of ~15000 points per iteration.
However, reducing the number of input points also causes
additional computational cost, where the severity depends on
the filters used. In our experiments, input filtering for ETH*
took on average 0.0167 s per registration.

C. Visual Inspection

Figure 8 and Figure 9 show maps generated by transform-
ing the sensor data with pose estimates from NOctoSLAM,
where the color represents intensity. Figure 8 demonstrates
that NOctoSLAM works indoors as well as outdoors. The
capability of mapping multiple levels is shown in Figure 9.
More material for visual inspection can be found online4.

D. Summary

In the previous subsections we have shown that NOc-
toSLAM performs as well as the ETH ICP Mapping Tool
in terms of pose estimation accuracy. Since the VLP-16 has
a typical accuracy of ±0.03 m, both algorithms perform well

4github.com/smartlab-liv/noctoslam



Fig. 8. Intensity sensor data transformed with NOctoSLAM pose estimates
from a combined indoor and outdoor episode, showing the DFKI Bremen
building.

Fig. 9. Intensity sensor data transformed with NOctoSLAM pose estimates
mapping the four story staircase of the UoL Ashton building.

in this regard. However, map updates as well as scan reg-
istration are significantly faster in NOctoSLAM. Especially
relevant is the constant map update time of NOctoSLAM
independent of map size. In contrast, with point cloud based
approaches map updates quickly become infeasible in near
real-time for large maps and high update rates. While the
use of source and reference point filters can increase the
performance, it is a cumbersome task to find the correct
filter parameters. Also, some parameters depend on the
environment, thus requiring prior expert knowledge that may
be expensive to get or may not be available. Furthermore,
filters might become infeasible if the environment changes,
e.g. when changing from indoor to outdoor. For instance,
indoor maps typically require more points per m3 for good
pose estimates than outdoor maps. While we do not have
quantitative data on the pose estimation accuracy on larger
maps, Figures 8 and 9 indicate a good performance, as fea-

tures such as the bookshelf, car and windows are discernible.

V. CONCLUSIONS & FUTURE WORK

We presented NOctoSLAM, a novel approach to surface
normal based mapping in conjunction with point to plane
ICP scan registration. We empirically demonstrated that the
proposed algorithm is as accurate, but significantly faster
than the state-of-the-art. In terms of precision we achieve
a mean error well within the rated accuracy (±0.03 m)
of the sensor used: 0.029 m positional, and 0.019 rad
rotational, with a low standard deviation of 0.005 m and
0.006 rad, respectively. Unlike point cloud based approaches,
NOctoSLAM can maintain high map update rates, regardless
of the map size. Because of the superior computational
performance configuring data filters is not necessary.

An octree-based map representation limits the maximum
volume the map can cover, depending on the minimum
resolution and maximum tree depth. At a minimum reso-
lution of 0.1 m and a tree depth of 16, we can only map
a maximum volume of approximately 3000× 3000× 3000
m3. Therefore, as increasing the tree depth leads to higher
computation time, in future work we plan to implement a
map stitching approach to overcome this limitation. This
will allow to evaluate NOctoSLAM with the large scale
KITTI [13] benchmark data set.

REFERENCES

[1] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in
Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–606.

[2] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp
variants on real-world data sets,” Autonomous Robots, vol. 34, no. 3,
pp. 133–148, 2013.

[3] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, “Comparison
of nearest-neighbor-search strategies and implementations for efficient
shape registration,” Journal of Software Engineering for Robotics
(JOSER), vol. 3, no. 1, pp. 2–12, 2012.

[4] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-
time,” in Robotics: Science and Systems Conference (RSS), 2014, pp.
109–111.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: an efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[6] Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image Vision Comput., vol. 10, no. 3, pp. 145–155, Apr.
1992.

[7] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in Third International Conference on 3-D Digital Imaging and
Modeling, 2001. Proceedings. IEEE, 2001, pp. 145–152.

[8] D. Holz and S. Behnke, Mapping with Micro Aerial Vehicles by
Registration of Sparse 3D Laser Scans. Cham: Springer International
Publishing, 2016, pp. 1583–1599.

[9] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud
registration algorithms for mobile robotics,” Foundations and Trends
in Robotics (FnTROB), vol. 4, no. 1, pp. 1–104, 2015.

[10] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Proceedings
of Robotics: Science and Systems, Seattle, USA, June 2009.

[11] J. Servos and S. L. Waslander, “Multi channel generalized-icp,” in
2014 IEEE International Conference on Robotics and Automation
(ICRA), May 2014, pp. 3644–3649.

[12] R. B. Rusu, “Semantic 3d object maps for everyday manipulation
in human living environments,” Ph.D. dissertation, Computer Science
department, TU Muenchen, Germany, October 2009.

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research, 2013.


