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ABSTRACT
When we consider matching problems we often look to find
matchings that are stable, however in many variants such as
the hospital/residents problem such a matching may not in-
clude the maximum possible number of agents. While finding
a maximum cardinality matching can be done in polynomial
time, we often want to find one which is “almost stable”,
containing either as few blocking agents or pairs as possi-
ble, with the problem of finding a matching satisfying one of
these conditions being NP-hard. In this work we will provide
theoretical results for the these matchings, providing bounds
on the numbers of both blocking agents or pairs, depending
on what we are looking to minimise. We also present a new
ip model for finding such a matching, and results from ex-
periments found using this model. Finally we will present a
heuristic algorithm based on our theoretical results, as well
as results from those algorithms.

1. INTRODUCTION
Matching problems are a heavily studied area of computer

science with many applications in logistics and economics.
One of the first and simplest of these is the Stable Mar-
riage problem (sm), in which we have a set of men and a set
of women, where each man has a preference list containing
all the women in order that he finds them preferable to be
matched to, and each woman has a preference list of all of
the men in order she finds them acceptable. In this problem
we consider a matching, M , to be a set of man-woman pairs
where each man and woman appears in no more than one
pair. A blocking pair is some man-woman pair who are not
matched to each other in M , but prefer each other to their
current partners in M . We consider a matching that has no
blocking pairs to be stable, Gale and Shapley [6] showed it
was possible in an instance of sm to find a maximum cardi-
nality matching that is stable in polynomial time.

Generalisations of this problem allow us to more accu-
rately model real world problems. One example of this is
the case where men and women may find some members of
the other set unacceptable, we refer to this as the Stable
Marriage Problem with Incomplete lists (smi). It is worth
noting that stable matchings from instances of this prob-
lem may not be a maximum cardinality matching, however
all stable matchings will be of the same size, and any agent
that is unmatched in one of these will be unmatched in all of
them [9]. We can find, using Gale and Shapley’s algorithm,
a stable matching in polynomial time for the generalisation
to smi. It is known that a maximum cardinality matching in
a bipartite graph can be found in polynomial time, however

it is NP-hard to find a maximum cardinality matching that
has the minimum number of blocking pairs [4].

We may further generalise this problem to include ties in
agents preference lists, obtaining the Stable Marriage Prob-
lem with Incomplete Lists and Ties (smti). In this case we
define a blocking pair in a weakly stable matching as one
where we have some man-woman pair who are not matched
to each other in the current matching M , and strictly pre-
fer each other to their current partners in M , in this case
requiring that they are not in a tie with each other. There
are other notions of stability for this problem, however for
this project we will only be considering weakly stable match-
ings, which we will refer to simply as stable when considering
matchings with ties. Finding a maximum cardinality stable
matching in smti (max-smti) was shown to be NP-hard by
Iwama et al. [11], however we may find a arbitrary cardinal-
ity weakly stable matching by breaking the ties and using
the Gale-Shapley algorithm [17].

One very important generalisation of smi is the Hospi-
tal/Residents problem (hr), where the agents are hospitals
and residents, with each resident being matched to a sin-
gle hospital and each hospital to some number of residents
up to its capacity. As with smi, all stable matchings have
the same size [7, 20], which we may find in polynomial time
using Gale and Shapley’s algorithm [6], however finding a
maximum cardinality matching with the minimum number
of blocking pairs is NP-hard. Again we may add ties to this
generalisation, for the Hospital/Residents problem with Ties
(hrt). In this case the problems of finding a maximum sta-
ble matching (max-hrt) and a maximum cardinality match-
ing with the minimum number of blocking pairs (max-card
min-bp hrt) are both NP-hard [4, 10, 14], with max-hrt
being approximable within a factor of 2 [14, 11], while max-
card min-bp hrt is not approximable within n1−ε, ε > 0
unless P = NP .

The notion of such “Almost Stable” matchings was first
introduced for the related Stable Roommates problem by
Abraham et al. [1], an instance of which, unlike sm and hr,
may not admit a stable matching. In this case we consider a
matching to be “Almost Stable” if it contains the minimum
number of blocking pairs. While this problem is NP-hard,
finding if a matching with some constant number of of block-
ing pairs, K, exists can be done in polynomial time when K
is a constant [1]. This was extend to smi and hr by Manlove
et al [4], who looked to find matchings of maximum cardi-
nality, proving that this problem was NP-hard to solve. For
an smi instance, Manlove et al. showed that we can find if
a matching of maximum cardinality with some set number
of blocking pairs K, where K is a constant, can be done
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in polynomial time, as well as finding a max-card min-bp
matching for both smti and hrt when the preference lists
on one side were restricted to length at most 2. Some exper-
imental results on the number of blocking pairs admitted by
max-card min-bp smti matchings were presented by Mit-
tal [19], who used an augmenting path based approach to
find maximum cardinality matchings. Using this technique,
they found a general increase in the cost of blocking pairs
for matchings as the size of the matchings increases towards
maximum cardinality.

For finding solutions to these problems, one commonly
employed technique is Integer Programming (ip). There
have been several prominent examples of using ip models
for both NP-hard problems in general [5, 2, 8] and specif-
ically matching problems [3, 13, 15, 16]. Relevant to us
is the model by Kwanashie and Manlove [13] for max-hrt,
who importantly found the sizes of stable matchings for the
instances of the 2006, 2007 and 2008 Scottish Foundation
Allocation Scheme. Many other ip models have focused on
finding stable solutions to the Hospital/Residents Problem
with Couples (hrc), a generalisation of hr where some res-
idents are in couples with a joint preference list containing
pairs of hospitals for both members of the couple, as well
as further generalisations of hrc such as the case with ties
(hrct). While this problem is not what we are focusing
on in this projects, looking at models from these [3, 15] has
provided some ideas for our own. One highly relevant model
based on this problem is by Manlove et al. [16] who looked
to find“Almost Stable”matchings in hrc, though it is worth
noting these were not maximum cardinality matchings.

In this work we will present our theoretical results on the
structure of blocking pairs and agents in max-card min-
bp hrt and max-card min-ba smti respectively, as well
as bounds on the minimum number of blocking pairs and
agents for such a matching respectively. We also present a
new ip model for finding a matching of a given cardinality
with the minimum number of blocking pairs, as well as a
heuristic algorithm based on our theoretical results. We
also present some empirical results found using the model
we present here as well as for a modified version used to find
a matching of a given cardinality with the minimum number
of blocking agents.

Our paper will be organised as follows: in Section 2 we
will present our theoretical results, in Section 3 we present
the main new ip model for our paper, in Section 4 we present
our heuristic algorithm based on the theoretical results, in
Section 5 we present our experimental set up in addition to
how we implemented and tested our tools, in Section 6 we
discuss the results of our empirical study, finally we provide
concluding remarks in Section 7.

2. THEORETICAL RESULT
We will first look at the theoretical results that we have

derived for the problem. Our primary result concerns the
structure of above stable cardinality matchings, in particular
that the number of blocking pairs for a matching k greater
than a stable matching will be strictly more than that of a
matching of cardinality k−1 greater than a stable matching.
We’ll also some further results on the number of blocking
pairs in matchings, in particular focusing on an upper bound
on the number of blocking pairs. In these proofs we will
assume that we are looking at instances of smti.

We will first define some notation that we will be using.

Figure 1: full lines indicated matched agents, dotted
lines indicate blocking pairs

We will define the problem of finding a matching of a given
cardinality, K, with the minimum number of blocking pairs
as k-card min-bp hrt and for a minimum number of block-
ing agents as k-card min-ba smti.

For denoting matchings, we will use S(I) to denote a sta-
ble matching in an instance I of smti, and β(I) to denote
a maximum cardinality matching, with βbp(I) denoting a
maximum cardinality matching with the minimum number
of blocking pairs and βba(I) denoting a maximum cardinal-
ity matching with the minimum number of blocking agents.
For the number of blocking pairs in a matching, M , we will
use bp(M), and similarly for the number of blocking agents
we use ba(M). Finally, given a matching M and an agent
Ai, we will us M(Ai) to refer to the agent that Ai is matched
to in M , if such an agent exists.

2.1 Blocking Pairs in k-card min-bp smti

In a matching of cardinality greater than stable we by
necessity have blocking pairs between a man and a woman,
which we will denote (mi, wj). There are three kinds of
blocking pairs, which we will define here:

• Internal (I): A blocking pair occurring between two
agents within the matching

• Bridge (B) A blocking pair occurring between one
agent within the matching and one unmatched agent

• External (E) A blocking pair occurring between two
unmatched agents

We provide a visual example of the types of blocking pairs
in Figure 1. In this case we have a matching containing the
edges (m1, w1) and (m2, w2), with blocking pairs between
(m2, w1), (m3, w2) and (m3, w3). In this case the block-
ing pair (m2, w1) forms an internal blocking pair, (m3, w2)
forms a bridge blocking pair and (m3, w3) forms an external
blocking pair.

We will define resolving a blocking pair, (mi, wj), to be the
process of removing any pairs, (mi,M(mi)), (M(wj), wj),
from the matching if they exist, then adding (mi, wj) to the
matching. We may note here that when resolving an Inter-
nal blocking pair we reduce the cardinality by 1, resolving
a bridge blocking pair maintains the cardinality, and an Ex-
ternal blocking pair will increase the cardinality 1. The best
blocking pair for some blocking agent is the blocking pair
made with the agent it finds most preferable (or an agent it
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finds most preferable in the case of ties). We may also con-
sider the best blocking pair conditional on it being a certain
kind, most importantly bridge, in this case we consider it
to be the most preferable blocking pair of that kind some
agent makes. When resolving a blocking pair we will al-
ways consider there to be an initiating agent, which will be
matched with the best blocking pair within the constraints
of the type of blocking pair we are resolving.

For all blocking pairs, we will consider a structure within
this matching to be a set consisting of some initial block-
ing agents, A1 · · ·Ak, making either an Internal or bridge
blocking pair, that when resolved will create some num-
ber of blocking pairs from M(Ai), i ∈ 1 · · · k. By contin-
uing to resolve these either we will end with some pair of
agents unmatched who form no bridge blocking pairs, or
will not terminate by continuing to resolve in this way, end-
ing with some pair of agents we have already encountered
forming bridge blocking pairs with other previously encoun-
tered agents. We will consider the first case to be a chain
and the second case to be a cycle. The structure will consist
of the set of the agents that are in the matching after we get
by resolving any bridge blocking pairs from the unmatched
agents.

One important aspect to a cycle is that if it includes a
smaller cycle within it, we can always decompose this into
a smaller cycle and a chain. We can see this as follows,
assume we have some cycle containing within itself a cycle.
In this case there will be some subset of the agents that
will not be reached by resolving the unmatched agents from
the cycle, giving us a chain and a smaller cycle. As such,
we will only consider cycles that may not be decomposed
in the remainder of this work, considering any chains from
decompositions as entirely separate structures.

In the case of a chain we will only have a single initial
agent, A1, while in the case of a cycle we may have multiple
initial agents A1 · · ·Ak. We will consider an I-Chain to be a
chain initiated by an Internal blocking pair, and an I-Cycle
to be a cycle initiated by one ore more Internal blocking
pairs. Similarly we have a B-Chain and B-Cycle as a chain
or cycle initialised by a bridge blocking pair(s). We will first
make two statements on these structures:

Lemma 2.1.1. Any B-Chain may always be resolved with-
out reducing the cardinality or adding to the number of in-
ternal blocking pairs.

Proof. We can see this as any agents involved in the
chain that remain in the matching will only have their part-
ner improved as a result of the chain. As such given a match-
ing of greater than stable cardinality, we can always find a
matching of the same cardinality without any B-Chains.

Lemma 2.1.2. Any cycle must have a stable matching
containing all the agents within it.

Proof. We can see this by considering some cycle that
admits no stable matching, in order for there to not be a sta-
ble matching there must be some pair of agents that we can
remove without adding blocking pairs, contradicting that
this would be a cycle as it would terminate.

From this we can see that any I-Cycle can be resolved
with the same cardinality and less blocking pairs, meaning
that in a minimum blocking matching we can not have any
I-Cycles.

Lemma 2.1.3. Given any cycle, we can always create a
matching of any cardinality up to the size of the cycle that
will contain no internal blocking pairs.

Proof. We can see this by considering the stable match-
ing of maximum cardinality, from this a matching of smaller
cardinality that is internally stable may be trivially created
by removing any pair from this matching.

Given these results, we will now claim the following:

Theorem 2.1.1. In a k-card min-bp smti matching for
some instance I, K > |S(I)|, all blocking pairs must be in-
ternal and may only be involved in I-Chains

Proof. We first consider some matching of above stable
cardinality with the minimum number of blocking pairs for
that cardinality that consists of some number of I-Chains,
bridge blocking pairs and External blocking pairs. We will
first resolve any B-Chains in the matching, removing them
from the matching. Next we may resolve some I-Chain, and
any generated B-Chains, decreasing the cardinality of the
matching by 1 and as any change we make to the matching
will only increase the preference of agents with their matches
we will in doing so decrease the number of internal block-
ing pairs. From this we may increase the cardinality of the
matching by resolving adding the best blocking pair of some
agent in a B-Cycle, which we may use Lemma 2.1.3 to en-
sures that the matching is internally stable. We may repeat
this process until either we have no B-Cycles or no I-Chains.

In the case we have no B-Cycles, we have two disjoint sets
of agents, in the case we still have external blocking pairs
left we can continue to resolve some I-chain then add some
external blocking pair to the matching, again resolving any
B-Chains that may arise from it. We can repeat this until
either we have no external blocking pairs or no I-Chains. In
the case we have no external blocking pairs, as we have been
strictly decreasing the number of internal blocking pairs, we
must have less blocking pairs than in the initial matching,
contradicting our assumption that it had the minimum num-
ber of blocking pairs for a matching of its cardinality. In the
case that we have no I-chains, we may take advantage of the
fact that this matching consists of two disjoint sets, finding
a stable matching within the unmatched agents giving us a
stable matching of greater cardinality than our initial match-
ing and thus contradicting our assumption of the matching
being above stable cardinality.

In the case we have some B-Cycles but no I-Chains, we
may again add the B-Cycles into the matching, resolving any
B-Chains that arise, until we again have either two disjoint
sets of agents. As the matching will contain no I-Chains, by
finding a stable matching within the unmatched agents, we
again find a matching of greater cardinality that is stable,
contradicting our original assumption.

Given this, we can see that any matching of greater than
stable cardinality with a minimum number of blocking pairs
can only contain I-Chains. From this we can derive the
following Theorem:

Theorem 2.1.2. Given an instance, I, and two match-
ings of I, M and M ′, |M ′| > |M | > |S(I)|, both with the
minimum number of blocking pairs for a matching of their
cardinality, bp(M ′) > bp(M).
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Proof. We can see this by considering the matching M ′.
As this matching must have some blocking pair, which must
be internal, we may resolve it to decrease the cardinality of
the matching by 1. If resolving this would generate a B-
Cycle or a disjoint set of unmatched agents, we could find
a matching of greater cardinality that is stable, therefore it
may only generate B-Chains, which we may resolve to find
a matching of cardinality, M ′′, bp(M ′) > bp(M ′′). We may
repeat this process |M ′| − |M | times, getting a matching of
cardinality |M | with strictly less blocking pairs than |M ′|,
though not strictly the same number as in M .

As such, given a matching M for some instance I, |M | >
S(I), we have that bp(M) ≥ |M | − |S(I)|.

2.2 Blocking Agents in k-card min-ba smti

We will now claim that given an instance I and two match-
ings for I, M and M ′ |M ′| > |M | > S(I), such that both
M and M ′ have the minimum number of blocking agents
for their cardinality, ba(M ′) > ba(M). In this case we will
consider agents to be either internal or external, referring to
whether the agent has a partner or not in the matching.

Lemma 2.2.1. In a k-card min-ba matching there are
no external blocking agents.

Proof. We can see this by considering some k-card
min-bp smti matching, containing at least one external block-
ing agent. In this case we will have at least one bridge or
external blocking pair. In the case we have bridge blocking
pairs we may resolve them without adding any new inter-
nal blocking pairs as noted in Lemma 2.1.1. Again we can
continue to resolve these until we have less internal blocking
agents than previously and some number of external block-
ing agents, containing only external blocking pairs. We can
resolve one of the external blocking pairs and internal block-
ing pairs simultaneously, maintaining the same cardinality of
the matching, and decreasing the number of bridge block-
ing pairs which we can resolve. By repeating this process
we will either reach the point where we have no internal
blocking agents, allowing us to find a matching of greater
cardinality that is stable, contradicting our assumption that
the matching was of above stable cardinality, or a matching
containing strictly less blocking agents all of which are in-
ternal, contradicting the assumption that the matching had
the minimum number of blocking pairs.

Using this we claim:

Theorem 2.2.1. For some instance, I, given two match-
ings, M and M ′, |M ′| > |M | > S(I), where both M and M ′

have the minimum number of blocking agents for a matching
of their cardinality, ba(M ′) > ba(M).

Proof. Given M ′, we may find some matching of car-
dinality |M ′| − 1 by resolving it with its most preferable
blocking pair, reducing the number of internal blocking pairs
in the matching. We can subsequently resolve any bridge
blocking pairs leaving us with only internal and external
blocking pairs. In the case we have external blocking pairs,
we may resolve one internal blocking pair and one exter-
nal blocking pair simultaneously, until either we have no
external blocking pairs and strictly fewer internal blocking
agents than in M ′, or only external blocking pairs, allowing

us to find a stable matching of greater cardinality contra-
dicting our original assumption. By repeating this we re-
duce the number of blocking agents at each stage, proving
that ba(M ′) > ba(M).

Given some instance I, any matchingM, |M | > |S(I)|, ba(M) ≥
|M |−|S(I)|. We may find a stricter bound considering The-
orem 2.2.1 alongside the following facts

Lemma 2.2.2. There must be at least one agent in the
matching that does not form a blocking pair in any matching
with a minimum number agents

Proof. We can see this by considering the case where we
have a matching where all agents form at least one blocking
pair, we would have an alternating cycle consisting of an
internal blocking pair edge followed by a matched edge. This
would allow us to find a matching of that cardinality with
less blocking pairs and agents, hence there must be at least
one agent that is not involved in a blocking pair.

This provides an upper bound on the number of block-
ing agents in any k-card min-ba matching of 2k − 1. We
can also see this same limit applies for a k-card min-bp
matching. We may further generalise this to

Lemma 2.2.3. In a matching with the minimum number
of blocking agents, there can be no alternating cycles between
blocking edges and matched edges.

We can trivially see this holds from the previous proof.
From these we claim:

Theorem 2.2.2. Given a matching M for some instance
I, |M | > S(I), with the minimum number of blocking pairs
for its cardinality, there exists some matching of size |M |−1
containing 2 fewer blocking agents.

Proof. We know from Lemma 2.2.3 that all blocking
agents may only be involved in chains, allowing us to se-
lect some blocking agent that is at one end of a chain, by
following the alternating path from this agent along the most
preferable edge we will eventually reach some point were two
agents will share a most preferable edge. By resolving this,
both agents will no longer be involved in blocking pairs, thus
removing 2 agents from the matching. We know there can
be no external blocking pairs as if there were we could find
a matching of size |M | with less blocking agents, invalidat-
ing our initial assumption. Any bridge blocking pairs must
contain the two agents that were originally in the matching,
allowing us to resolve them until we are left with none and
at least 2 fewer blocking agents than in our original match-
ing.

From this we get that given some instance I, any matching
M, |M | > |S(I)|, ba(M) ≥ 2(|M | − |S(I)|)

3. IP MODEL
We will now present our new ip model for finding a match-

ing of some given cardinality K in an instance of smti. As
input we will assume we have our instance, consisting of a
set of men, U , and women W . The rank of some agent Ai
on a second agent Aj ’s preference list is either the position
of Ai on Aj ’s preference list, or the size of the set to which
Ai belongs + 1. In the case we have two agents that are

4



tied on some preference list, they share the same rank for
that preference list. We will define R(mi, wj) to return the
rank of the jth woman on the preference list of the ith man,
and similarly R(wj ,mi) which returns the rank of the ith

man on the jth woman’s preference list. We will also add
a dummy man and dummy woman to the end of the sets
of men and women respectively, we use these to represent
unmatched agents.

Using these we will construct two Rank Subtract Prefer-
ence Matrices, PU and PW which we define as follows:

PUi,j = (|W |+ 1)−R(mi, wj)1 ≤ i ≤ |U |, 1 ≤ j ≤ |W |

PWi,j = (|W |+ 1)−R(wj ,mi)1 ≤ i ≤ |U |, 1 ≤ j ≤ |W |

Giving a value of 0 for unacceptable partners, or a positive
value for acceptable partners such that PUi,j > PUi,p if and

only if the ith man prefers the jth woman to the pth one,
and similarly PWi,j > PWq,j if and only if the jth woman prefers

the ith man to the qth one. We will also define two matrices
of variables, the first will be M , where

Mi,j =

{
1, if mi is matched to wj

0, otherwise

1 ≤ i ≤ |U | − 1, 1 ≤ j ≤ |W | − 1

And to represent unmatched agents

Mi,|W | =

{
1, if mi is unmatched

0, otherwise

1 ≤ i ≤ |U | − 1

M|U|,i =

{
1, if wj is unmatched

0, otherwise

1 ≤ j ≤ |W | − 1

and a second matrix, B where

Bi,j =

{
1, if (mi, wj) form a blocking pair

0, otherwise

1 ≤ i ≤ |U | − 1, 1 ≤ j ≤ |W | − 1

Given these variables, we subject them to the following
constraints:

Bi,j ∈ {0, 1} 1 ≤ i ≤ |U | − 1, 1 ≤ j ≤ |W | − 1

(1)

Mi,j ∈ {0, 1} 1 ≤ i ≤ |U |1 ≤ j ≤ |W |
(2)

|W |∑
j=1

Mi,j = 1 1 ≤ i ≤ |U | − 1

(3)

|U|∑
i=1

Mi,j = 1 1 ≤ j ≤ |W | − 1

(4)

Mi,j ≤ PUi,j · PWj,i 1 ≤ i ≤ |U | − 1, 1 ≤ j ≤ |W | − 1
(5)

|U|−1∑
i=1

|W |−1∑
j=1

mi,j ≥ K (6)

1 ≤ i ≤ |U | − 1, 1 ≤ j ≤ |W | − 1, 1 ≤ q ≤ |W |, 1 ≤ p ≤ |U |

Bi,j ≥
(PUi,j − PUi,q)Mi,q

|(PUi,j − PUi,q)|+ 1
+

(PWi,j − PWp,j)Mp,j

|(PWi,j − PWp,j)|+ 1
− |U |+ |W |
|U |+ |W |+ 1

(7)

With the objective to minimise the value of
|U|−1∑
i=1

|W |∑
j=1

Bi,.

In this we are assuming that the sets contain the dummy
agents as the final member, and that all agents find them
to be unacceptable. Constraints 1 and 2 ensure that both
the matching and blocking pair matrices are binary valued.
Constraints 3 and 4 ensure that each of the men and women,
excluding the dummy cases, are matched to either to a mem-
ber of the other set, or indicate they are unmatched. Con-
straint 5 ensure that agents are only matched if they each
find the other acceptable, or are the dummy agent. Con-
straint 6 ensures that our matching is of cardinality at least
K, which, as we are minimising the number of blocking pairs
in the matching is equivalent to requiring the matching to
be of size K as we know from Theorem 2.1.2.

Constraint 7 requires more intuition to understand. In
this constraint we are checking, for each possible man-woman
pair all other men and women to see if they are a blocking
pair. The first fraction obtains us a positive value if and
only if mi is matched to wq but finds wj preferable. Triv-
ially we can see that if he is not matched to wq the fraction
will return 0, allowing us to assume they are matched for the
remainder of this discussion. In the case wj is less preferable
than wq, the overall value of the fraction will be negative,
being at most −1

2
. In the case where the two are equally

preferable the value will be 0, and in the case where wj is
more preferable the fraction will be at least 1

2
and at most

|W |
|W |+1

. We can see the same arguments apply to the second

fraction, with the upper bound on a positive value being
|U|
|U|+1

. As such the sum of these two parts will be greater

than or equal to 1 in the case the two prefer each other
to their currently matched partner in the matching, and at

most the larger of |W |
|W |+1

and |U|
|U|+1

in the other case, either

of which will be less than |U|+|W |
|U|+|W |+1

, which is less than 1,
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giving us an overall sum of some value greater than 0 if there
is a blocking pair, and less than 0 if not. The upper bound

in the case where mi and wj is |U|
|U|+1

+ |W |
|W |+1

− |U|+|W |
|U|+|W |+1

,

which we can see will be less than 1 in all cases.
We provide our extension of this model to further prob-

lems in Appendices A, B and C. For now we will simply note
that these extend the model the max-card min-bp hrt,
max-smti, max-hrt, as well as the cases for these problems
we wish to minimise the number of blocking agents rather
than blocking pairs.

4. HEURISTIC ALGORITHM
Moving beyond our ip model, we also provided a heuristic

algorithm (Algorithm 1) based on our theoretical results.
The first step is to find an arbitrary maximum cardinality
matching. We do this using a simple augmenting path based
approach. Once we have this matching, our next step is to
find and resolve some bridge chain. We choose this path
using a simple greedy approach where for each unmatched
agent we check if it is involved in a bridge blocking pair, if
it is we create a new path starting with this blocking pair
followed by the matched edge adjacent to the matched agent
in the initial blocking pair. From this we take the agent
not adjacent to a blocking edge in the path, then add the
best blocking edge containing this agent to the matching,
and the adjacent matched edge. We repeat this until we
reach an agent with no blocking edges, at which point we
compare this to the best path found so far and, if found
better by our weighting method, we replace with the new
one. Having checked all unmatched agents, we resolve the
best path found and repeat with the new matching. Once we
have removed all bridge blocking pairs from the matching we
search for any alternating cycles in the matching, resolving
them when we find them.

For determining the best path, we devised 4 methods for
weighting the paths:

• The length of the path

• The sum of the improvements for all agents in the path

• The sum of the improvement of the agent in each edge
improving by the most

• The sum of the improvement of the agent in each edge
improving by the least

In the first case we simply looked at the number of edges in
our alternating path, selecting the path that was the longest
as the best. In the second case we took the weight to be
the sum of the difference in rank for the two agents in the
blocking edge, and their current partner (or length of the
preference list, in the case they were unmatched). For the
third case we only took the value of the agent improving
by the greatest amount, and in the fourth case by the least
amount.

5. EXPERIMENTAL SET-UP AND PROCE-
DURE

In this section we will discuss the set up of the instances
used for our experiments, as well as the tools used to ob-
tain the results. We will also include a discussion of our
experimental methodology and the verification testing for
our tools.

Data: Graph G
Result: matching in G
find arbitrary maximum matching of G;
while G contains a bridge blocking pair do

find best path starting with bridge blocking pair;
resolve path;

end
Cycle p = find cycle in reduced graph;
while p 6= null do

resolve p;
p = find cycle in reduced graph;

end
Algorithm 1: Heuristic Algorithm

5.1 Instances
We will first discuss the instances we used for our exper-

iments, starting with what aspects of the instances we vary
in our experiments, followed by our set up for instances of
smti and hrt. For both smti and hrt instances we vary
the following four aspects:

• Instance Size: The number of agents in the instance

• Tie Density: The probability that, the ith agent in a
preference list is tied with the i+ 1th

• Length of Preference Lists: The upper bound on the
length of preference lists for the agents

• Skewedness: The amount of preference lists the most
popular agents occur in, as a ratio compared to that
of the least popular ones

For smti instances our standard set up had 50 men and 50
women, with a tie density of 0 (making all instances where
we were not varying the ties smi instances), an upper bound
of 3 on preference lists for both sides and a skewedness value
of 5.

For our experiments, when varying instances size we in-
creased the size for both the men and women in increments
of 5. For tie densities we varied the tie density for the men
from 0 to 1 in increments of 0.1, varying at each of these in-
crements the density for the woman from the current density
of the men to 1 again in increments of 0.1. We can safely
ignore tie densities for women lower than that of the men
due to the symmetries of the problem, meaning that the re-
sults for the men with tie density of i, and women with tie
density of j, j ≥ i should be approximately the same given a
sufficient sample size as instances with men of tie density of
j and women with a tie density of i. For preference lists we
vary the length from 1 to 5 in increments of 1 for the men,
and varying at each increment, where the men have prefer-
ence lists of length i, the preference lists of women from i to
5, again ignoring the symmetry for the same reasons as in
the case of tie densities. Finally in the case of skewedness
we vary the degree lists are skewed by from 2 to 10, varying
in each case the skewedness of the men by 1, and for each
of these the skewedness of the women from that of the men
to 10.

For hrt instances our standard instances have 50 resi-
dents and 10 hospitals, with 60 posts randomly distributed
between the hospitals. Again we have a tie density of 0
(making any instance where we’re not varying the tie den-
sity an hr instance), an upper bound of 3 for the length of
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residents preference lists and unbounded for hospitals and a
skewedness value of 5 for both sides.

For our experiments, when varying the size of instances we
maintained a ratio of 5 residents for each hospital, and 1.1
posts for each resident randomly distributed. We varied the
size of instance from 15 to 100 residents in increments of 5.
For tie density we varied the density separately for hospitals
and residents by 0.1 from 0 to 1, considering all combina-
tions of hospital and resident tie densities. For the upper
bound on the length of preference lists we varied the value
for both hospitals and residents from 1 to 5, again consider-
ing all possible of combinations. Finally for the skewedness
we independently varied the value for both hospitals and
residents for 2 to 10 in increments of 1.

We also preformed experiments on scalability of our tools.
In this case we used hr instances set up as before varying
the size from 5 to 125, at which point our tools could no
longer scale to find optimal solutions fast enough to solve
a sufficient amount to draw conclusions. For verification
testing we used instances of smi of size 7 to solve with a
brute force tool. The limit of 7 was chosen as any higher
could not be efficiently solved using the brute force tool.

In our experiments we looked at finding solutions to find
maximum stable, max-card min-bp, max-card min-ba, k-
card min-bp and k-card min-ba matchings, where k was
varied from one greater than the size of a stable matching to
one less than the size of a maximum cardinality matching.
In these cases we measured the cardinality of the match-
ing, number of blocking pairs and the number of blocking
agents. We also recorded the matching to allow verification
to be done. Finally we also recorded the time, initially in
seconds though this was improved to milliseconds when we
were testing the scalability of the model.

5.2 Tools
For solving instances optimally we used our ip models pre-

sented in Section 3 and in Appendices A, B and C. We im-
plemented these using Gurobi with the Java API. Gurobi
was chosen due to the results from surveys on ip solvers [12,
18], suggesting that it was better than open source solvers
and at least comparable to other commercial solvers. Java
was chosen as the language to implement our tools in due
to familiarity with the language. Our tool is operated from
the command line, taking in the models, output file and in-
stances as arguments as well as optional flags to specify how
the tool is to be run. For solving the problem of finding a
stable matching in smi and hr instances, we use Gale and
Shapley’s algorithm, and an augmenting path algorithm to
find a maximum cardinality matching.

We also implemented our heuristic algorithm, presented
in Section 4, as a command line based Java tool. For the
verification testing of our primary tool we created a back
tracker in Java to check all possible solutions to the the
instance.

To check our primary tool we generated 10,000 instances
of smi of size 7 with preference lists of size at most 3, and a
skewedness of 5. The size of 7 was chosen as it was the largest
size our brute force tool was able to solve quickly. We solved
these instances for smi, max-card min-bp smi, max-card
min-ba smi, k-card min-bp smi and k-card min-ba smi
with both the ip based solver and our brute force tool. In all
cases our values from both tools were equal. For additional
verification we also checked against the instances previously
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Figure 2: Instance Size versus Average Matching Size
for stable and maximum cardinality matchings
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Figure 3: Instance Size versus Average Number of
Blocking Pairs in a max-card min-bp smti matching

solved by Kwanashie and Manlove [13] for max-hrt for the
instances of size up to 200 for our ip solver.

6. EXPERIMENTAL RESULTS
In this section we will look at our results for solving the

instances. We will first look at the optimal solutions to in-
stances, followed by our tests on real instances, our heuristic
results, and finally our scalability results.

6.1 Optimal solutions for SMTI

We will look at our experiments for SMTI in the following
order, size of matchings, tie density, preference list length
and finally skewedness, where the instances were set up as
described in section 5. In all cases we used 1000 randomly
generated instances so as to get a reasonable sample for us
to draw conclusions.

In Figures 2, 3 and 4 we show our results for the cardi-
nality of a stable and maximum cardinality matchings, the
number of blocking pairs in max-card min-bp smti match-
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Figure 5: Average size of max-smti and
max-card smti matchings, varying tie density

ings and the number of blocking agents in max-card min-
ba matchings. In all 4 cases we saw a very strong linear
relationship between the size of the instance and the other
aspects we are measuring. From this we may conject that
results on the number of both blocking pairs and agents is
proportional to the size of instances, and results on the na-
ture of these are independent of the size of the instances.

The next set of experiments varied the tie density for men
and women independently. We present the results from sym-
metrically varying the tie density in in Figures 5, 6 and 7.
We saw that, besides a small amount of noise due to the
number of instances, we have in general that the difference
in cardinality of a stable and maximum cardinality match-
ing decreases with the number of ties on the side with less
ties. We can see that for both the number of blocking pairs
and agents we have decrease that is inversely proportional
to the tie density.

In Figures 8, 9 and 10 we present our results from sym-
metrically varying the lengths of preference lists for both
the men and women, ignoring the case where women have
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Figure 10: Average number of blocking agents in a
max-card min-ba smi, varying preference lists’ length
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Figure 12: Average number of blocking pairs in
max-card min-bp smi, varying the skewedness of pref-
erence lists

smaller preference list due to the symmetry of the prob-
lem. In this we again see that, similar to the case with tie
densities, the difference in cardinality between stable and
maximum cardinality matchings, as well as the number of
blocking pairs and agents in max-card min-bp and max-
card min-ba matchings respectively, are all seemingly only
impacted by the length of the shorter of the preference list.

In our final smi experiment we looked at varying the skewedness
for both the men and the women independently, showing
the symmetrical results in Figures 11, 12 and 13. In these
we found a weak but consistent correlation between the
skewedness of the preference lists and the size of matchings,
as well as the number of blocking pairs in a max-card min-
bp and blocking agents in max-card min-ba matchings. In
this case we see a slight decrease across all three values as
the skewedness increases. Unlike in our experiments varying
tie density and length of preference lists the impact seems
based on the skewedness of both lists, as opposed to just
from the more extreme one.
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Figure 13: Average number of blocking agents in
max-card min-ba smi, varying the skewedness of pref-
erence lists

6.2 Optimal solutions for hrt

We will now consider our optimal solutions for the out
hrt instances, presented in the same order as in the previous
section. In this section all figures may be found in Appendix
D.

We will again look at our experiments for varying the size
of instances first. We can see the in these experiments that
we had larger matchings on average, with more blocking
pairs and agents, than the corresponding matchings for smi
of the same size. We can understand this by considering
that the average resident’s preference list should provide 18
posts that they find acceptable compared to the 3 available
in the smi case. A second reason is that as there is no
upper bound on the lengths of hospitals lists, unlike for men,
women and residents, the instances we generate will have
longer preference lists on average.

For tie density we see again that in general increase the
tie density for either list decreases the difference between the
size of stable and maximum cardinality matchings, as well
as the number of blocking pairs and agents in max-card
min-bp and max-card min-ba matchings respectively. We
see a much larger impact when varying the tie density on
residents lists than for hospitals. One potential reason for
this is that we have more residents than hospitals, meaning
an increase in tie density for residents can affect many more
lists than for hospitals. A second potential reason is that a
tie on the resident’s list will tie on average 12 posts, where
as hospitals will only tie two residents.

For the lengths of preference lists we see a much larger
impact on all three factors from the lengths of hospital’s
lists than from residents. For the difference in cardinal-
ity of matchings we see a strong increase in the difference
between stable and maximum cardinality matchings as we
increase the lengths of hospitals preference lists, with the
difference seemingly being maximised when residents and
hospitals have lists of equivalent length. However our cur-
rent data is not sufficient to draw any significant conclusions
on that. For both blocking pairs and agents we again see a
strong increase in the number in a max-card min-bp and
max-card min-ba matching as we increase the length of the
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Figure 14: Cost in blocking pairs as we move further
from a stable matching

hospitals lists, while seeing in general a small decrease as we
increase the lengths of residents preference lists. The rela-
tive importance of the hospitals lists makes intuitive sense,
as they are able to match multiple residents an increase of
preference lists by 1 until we reach the capacity of the lists
will have a much larger impact by increasing the matching.
Unfortunately we don’t have sufficient data to draw any sig-
nificant conclusions on the impact of residents lists, however
it is certainly something worth investigating further based
on these results.

Finally we see in the skewedness case much more impact
again from the hospitals preference lists being skewed than
the resident’s. In the cardinality case in particular we see
relatively little impact on the skewedness of residents lists
on the cardinality of matchings. In the blocking pair and to
a lesser extent blocking agent cases we do see some impact,
with a general increase in the number of blocking pairs or
agents corresponding to an increase in the skewedness of the
residents list. It is particularly interesting that this is more
pronounced in the blocking pair case than the blocking agent
one as in our other experiments we have in general seen very
close results between the two. This suggests that we are
finding instances where either the max-card min-bp and
max-card min-ba matchings are different, or that in those
matchings we have cases of most blocking agents forming
blocking pairs with a small set of popular blocking agents.

One notable result we found in both our smti and hrt ex-
periments was in regards to the cost in both blocking pairs
and blocking agents of finding a matching as we increase the
distance from a stable matching. More formally, we found
that given an instance admitting a stable matching of car-
dinality N , the cost from moving from a matching of size
N + T to one of N + T + 1 was in general less than the cost
of moving from a matching of size N + T + 1 to one of size
N + T + 2, for both blocking pairs and agents relative to
whichever we were trying to minimise. We illustrate this in
Figures 14 and 15 for our experiments for smti max-card
min-bp and smti max-card min-ba respectively for our in-
stances of size 100, up to an increase of 10 beyond which
there were to few instance to draw any significant conclu-
sions. In our experiments we saw that the increase for both
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Figure 15: Cost in blocking agents as we move further
from a stable matching

m1: {w1 w2} w1: {m1 m2}
m2: {w1} w2: {m2}
m3: {w3 w4} w3: {m3 m4}
m4: {w3} w4: {m3}
m5: {w5 w6} w5: {m5 m6}
m6: {w5} w6: {m5}

Table 1: Example instance with constant cost to in-
crease cardinality

was in general linear with blocking pairs increasing slightly
faster relative to the lower bound (1) than blocking agents
did relative to the their lower bound (2). We would assume
from this that as we tend towards a maximum cardinality
matching, the average rank of the agents that are matched
increases, causing more blocking pairs and agents to emerge
within the matchings. We can see that this is not a strict
rule, considering the instance in Table 1.

In this case we can find a stable matching of size 3, {(m1, w1),
(m3, w3), (m5, w5)}, as well as a matching of cardinality 4
containing 1 blocking pair, {(m1, w2), (m2, w1), (m3, w3),
(m5, w5)}, one of cardinality 5 containing 2 blocking pairs,
{(m1, w2), (m2, w1), (m3, w4), (m4, w3), (m5, w5)} and fi-
nally one of size 6 with 3 blocking pairs, {(m1, w2), (m2, w1),
(m3, w4), (m4, w3), (m5, w6), (m6, w5)}. In this case we have
that the presented matchings are both minimal in terms of
blocking pairs and blocking agents, and have a constant cost
in both cases as the lower bound.

6.3 Real Instances
To analyse the effectiveness of our model we looked at the

instances for the Scottish Foundation Allocation Scheme in
2006, 2007 and 2008. These instances are much larger than
the instances we experimented on, having over 700 residents
and 50 hospitals in all 3. We also had longer preference lists,
with a bound of 6 on the residents lists and unbounded lists
for the hospitals. We also had a large number of ties on the
hospitals lists, with ties containing in many cases over 10
residents.

A matching of maximum cardinality for the 2007 instance
was found by Manlove et al. [4], admitting 400 blocking

Instance |R| |H| |P| |S| |M| |BP(M)|
2006 759 53 801 758 759 8
2007 781 53 789 746 781 150
2008 748 52 752 709 745 143

Table 2: Real HRT instances
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Figure 16: Number of blocking pairs found by the
Heuristic algorithm and the optimal case, varied over
instance size for smi

pairs. Our results for the same instance provided a signifi-
cant increase admitting only 150 blocking pairs. It is worth
noting that the matchings we found for all three instances
were not necessarily optimal, but rather just the best ones
we could find. We show these results in the following table,
using |R| to denote the number of residents, |H| the number
of hospitals, |P| the number of posts, |S| the size of a stable
matching, |M| the size of a maximum cardinality matching,
and |BP(M)| smallest number of blocking pairs. We show
our results in Table 2.

The first thing we can see is that these matchings, though
not necessarily optimal, seem to have a similar amount of
blocking pairs as we might expect from our experimental
results, although for the 2006 case it seems likely that we
may find a matching with fewer blocking pairs. Beyond
just the results, we may also note that our instances in this
case are much larger than for our experiments, meaning that
while we were not able to find optimal matchings, that we
were able to find what seems to be relatively good matchings
suggest that our model may be able to be used for real world
applications.

6.4 Heuristic Results
Here we will look at the use of our heuristic for finding

matchings with a minimum number of blocking pairs. To
test this we used our data sets for varying cardinality, for
both smti and hrt instances, comparing the best result we
got from a heuristic to the optimal solutions we previously
computed. We present these results in Figures 16 and 17.

As with the optimal case, we see a linear relationship be-
tween the number of blocking pairs and the size of the in-
stance. As we would expect from this, we have the number
of blocking pairs increasing by a larger factor as we increase
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Figure 17: Number of blocking pairs found by the
Heuristic algorithm and the optimal case, varied over
instance size for hr

Weighting smi hr total
alone total alone total alone total

1 5955 19297 9229 11286 15184 30583
2 703 14045 6714 8769 7417 22814
3 0 1058 0 442 0 1500
4 0 1058 0 442 0 1500

Table 3: Number of times each weighting found the
smallest number of blocking pairs, either as the only
one returning that result or alongside others

cardinality than the optimal case. We would assume this, as
it becomes more likely that we encounter a locally optimal
solution with more blocking pairs increases. Due to time
constraints we were unable to preform experiments beyond
where we varied the size of instances, however we would
expect to see the same relationship in between the blocking
pairs in the optimal solution and the solutions we computed.

Looking at the relative performances of the heuristic weight-
ings described in Section 4, we found that the first weighting
found the optimal solution far more often than the others,
however in the majority of cases this was tied with the sec-
ond weighting. In all cases the third and fourth weighting
computed the worst solution. We do see a notable disparity
between smi and hr, with weightings 1 and 2 being much
closer for hr than smi, while weightings 3 and 4 are worse
in hr than smi. We also see that the algorithms preformed
notably worse for hr, having a significantly higher factor be-
tween the optimal number of blocking pairs and the number
found by our algorithm than the smi case.

It is interesting to see the large disparity between the first
weighting and the second, which we would assume to be
similar in many cases due to the lengths of preference lists
being very restricted. Looking at the number of times these
heuristics returned an optimal solution we see an exponen-
tial decrease, which we show in Figure 18. Here we see an
exponential decrease in the number of optimal cases we find
solutions to as we increase cardinality, with the increase be-
ing far more rapid for weightings 3 and 4 as we would expect
based on the previous results. In the case for hr we have
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Figure 18: Number of optimal solutions versus size
of instances for smi
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Figure 19: Average time to solve instances of
max-card min-bp hr as we vary the size of instances

much fewer optimal matchings, with a mere 34 out of 1000
in the best case, and a similar rate of decrease. This com-
bined with the poor results from the algorithm in general
suggests that we may need to investigate other techniques
for finding heuristics to hr.

6.5 Scalability and use of other solvers
Finally we will look at the scalability of instance size and

the time taken to solve to optimality. All experiments were
done on a machine with 8GB of RAM, and a AMD 7th Gen
A10-9600P APU with 4 cpu cores and 2.6 GHz clock speed.
The instances used were hr instances with the same settings
as discussed in Section 5.

We see that our ip model seems to scale exponentially
with the size of instances. We may assume that the sud-
den jump between 115 and 120 in our samples were to do
with the size of instances requiring paging of some kind to
store the models. These results largely conform to our ex-
pectations, with the slight irregularities in the graph curve
presumably due to the limited number of instances we were
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able to experiment on.
A MiniZinc encoding was made, however even for rela-

tively small instances of a size of 20 this encoding strug-
gled to find solutions some instances within a reasonable
time frame. It is worth noting that this encoding took a far
greater amount of time to find solutions to instances where
the maximum cardinality was the same as stable cardinality
instance. This suggests that we may be able to take ad-
vantage of some degree of pre-processing, providing a lower
bound on the number of blocking pairs for more complex
cases, that may result in a speed up, however we were not
able to get such an encoding working adequately within the
time frame of the project.

7. CONCLUSION AND FURTHER WORK
In this paper we have provided new theoretical bounds

on the numbers of blocking pairs and agents in max-card
min-bp smti and max-card min-ba smti matchings. In
particular we showed that as we increase the cardinality of
a matching above stable, we must also increase the number
of blocking pairs or agents respectively. We also provided
new structural results for this, showing that any blocking
pairs must only be between agents that are matched in any
above stable matching where we are minimising the number
of blocking pairs or blocking agents.

Our investigations using ip models showed that in general
there seems to exists a linear relationship between the size
of an instance and the cardinality of both stable and maxi-
mum matchings, as well as the number of blocking pairs and
blocking agents in a max-card min-bp smti or max-card
min-ba smti matching respectively (as well as for the case
for these problems with hrt instances). We also saw that
the relationships for varying tie density, lengths of preference
lists and skewedness of preference lists have clear, though not
necessarily linear, relationships for all three factors.

In the case of smti we saw that for tie density the impact
was based on the side with lower tie density. Similarly for
preference lists the impact was strongly correlated with the
length of the smaller preference lists. In skewedness there
was a weak but noticeable impact based on the skewedness
of both lists. The results were very similar for hrt, though
we did see that more impact was made by the residents
in the case of varying tie densities and by the hospitals in
cases of the lengths and skewedness of preference lists. We
also looked at some real instances, finding a considerable
improvement over the previous best case where available.
This also showed that our tools were able to scale to handling
lager and more complicated instances.

Beyond just the ip models we also looked at a heuristic for
max-card min-bp smti and max-card min-bp hrt, based
on our structural results. This heuristic proved to be con-
siderably more effective for smti than hrt, although still
scaling linearly with the sizes of instances in both cases. Fi-
nally we looked at the scalability of the ip solver, showing
an exponential increase in the time to solve instances as size
increased.

7.1 Further Work
The first major piece of further work would be to extend

the results presented in Section 2 to hrt. While it seems
likely that these should hold, further analysis is required to
ensure they do in the many-to-one generalisation. It may
also be worth investigating if these results have any bar-

ing on our understanding of similar problems such as stable
roommates.

One major open question raised by our empirical results
is to see if there is any correlation between max-card min-
ba and max-card min-bp matchings. While there clearly
appears to be looking at our results, this may be due to the
size of instances we are considering and certainly requires
further investigation. Another related problem would be
the structure of matchings that are below stable cardinal-
ity, in particular seeing if, in such matchings, the number of
blocking pairs decreases as the cardinality of these matching
increases towards stable. Also an investigation of the struc-
tures of these matchings, particularly if one or more of the
types of blocking pairs can not exist or must exist in these
matchings.

Adapting our model for other problems, such as the stu-
dent project allocation problem or the stable roommates
problem, is also a direction that we may wish to take. Given
the improvements we’ve seen in the results to the real in-
stances of hrt this may show similar improvements to these
problems. Attempts to develop heuristics to focus on max-
card min-ba smti, as well as to investigate if our heuris-
tics for max-card min-bp smti were effective for that prob-
lem. Further work on using techniques such as finding aug-
menting paths from a stable matching, taking advantage of
the theoretical results such as being able to resolve bridge
blocking pairs and internal cycles to develop a more effective
heuristic.

Finally, attempting to adapt our models to be better aimed
at constraint programming and Boolean satisfaction prob-
lem solvers. This may allow us to find solutions faster than
with the ip solver, or at least to provide a good compari-
son between the solvers. One direction we may take this in
would be providing bounds on the number of blocking pairs
to avoid having to search for matchings with an impossi-
ble number of blocking pairs. We may also combine this
with an upper-bound from a heuristic to provide a starting
matching.
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[3] Péter Biró, David F. Manlove, and Iain McBride.
The Hospitals / Residents Problem with Couples: Complexity
and Integer Programming Models. In Joachim
Gudmundsson and Jyrki Katajainen, editors,
Experimental Algorithms: 13th International
Symposium, SEA 2014, Copenhagen, Denmark, June

13



29 – July 1, 2014. Proceedings, pages 10–21. Springer
International Publishing, Cham, 2014.
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Appendices
A. EXTENSION TO MAX-CARD MIN-BP HRT

We will here see how this model may be extend to handle
an hrt instance, instead of an smti one. In this case we
have the preference matrices as before, as well as a capacity
vector c, where ci is the capacity of the ith hospital. We will
consider the number the residents to be n1 and the number
of hospitals to be n2. As before we will have a dummy
hospital to represent unmatched residents, and a dummy
resident to represent undersubscribed hospitals.

Both objective functions will be unchanged with the ex-
tension to hrt. When we are evaluating the first objective
function we will be subject to Constraints 2, 3 and 5, as well
as the following two constraints:

n1+1∑
i=1

mi,j ≤ cj (1 ≤ j ≤ n2) (8)

mn1+1,jcj +

n1∑
i=1

mi,j ≥ cj (1 ≤ j ≤ n2) (9)

These require some intuition to understand that they will
provide the appropriate values. Constraint 8 provides an up-
per bound on the amount of residents that may be assigned
to the hospital as being equal to the capacity of the hospital.
Constraint 9 ensures that if the capacity is not reached, the
hospital is matched to the dummy resident.

When evaluating the second objective function, we will
be subject to Constraints 2, 3 and 5 to 7 from the previous
formulation, as well as Constraints 8 and 9. As we have al-
ready considered the use of Constraints 2, 3 and 5 on this
model, we will show that that Constraint 7 will still be suffi-
cient to provide the relevant blocking pair information. For
any resident-hospital pair (ri,hj), resident ri only has to be
more preferable than hj ’s least preferable resident to form a
blocking pair. Clearly from the Constraint we will be test-
ing against the least preferable resident that the hospital is
assigned to, including the dummy resident in the case that
it is undersubscribed. From the arguments in Section 3,
can see that the when (ri,hj) form a blocking pair, we will
have a positive strictly between 1 and 0 on the right hand
side of the inequality, forcing the value of bi,j to be 1. In
the case that they do not, the value of the right hand side
will be less than 0. We can also see that even though the
right hand side may be less than 0 when evaluating against
assigned residents rather than the least preferable will not
effect the final value of bi,j .

It is worth noting that, as smti is a special case of hrt we
can use this model to solve a smti instance by constraining
the values of the capacity vector to be 1 for all hospitals. We
can see that substituting cj with 1 in constraints 8 and 9, we
get two constraints that are equivalent to that of constraint
4, as we would expect.

B. MAXIMUM STABLE MATCHINGS
In this section we will look at changes we may make to

the model in Section 3 to find matchings for both hrt and
smti that are the maximum possible stable matchings.

For all these cases we will assume that we are covering
the case of smti, however as noted in Appendix A, we can

trivially extend this to hrt. We will also see in Appendix
C how we may extend these to cover the case of blocking
agents.

Our objective function formaximum cardinality stable match-

ing (max-smti/hrt) is to maximise the value of
n1∑
i=1

n2∑
j=1

mi,j

with Constraints 2 to 5, alongside the additional constraint:

1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ q ≤ n2 + 1, 1 ≤ p ≤ n1 + 1

(PUi,j − PUi,q)mi,q

|(PUi,j − PUi,q)|+ 1
+

(PWi,j − PWp,j)mp,j

|(PWi,j − PWp,j)|+ 1
≤ n1 + n2

n1 + n2 + 1

(10)

This ensures that we can have no blocking pairs, which
we can see trivially from the arguments from Section 3.

C. EXTENSION OF THE MODELS TO COVER
BLOCKING AGENTS

In this section we will see how we might convert our model
for finding the minimum number of blocking pairs to instead
find the minimum number of blocking agents. We may ob-
serve that it is sufficient to simply add two vectors, V U and
VW , constrained to binary variables, such that:

V Ui =

{
1, if mi is a blocking agent

0, otherwise

VWj =

{
1, if wj is a blocking agent

0, otherwise

By adding these alongside the following constraints:

V Ui ≥ bi,j 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 (11)

VWj ≥ bi,j 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 (12)

With the objective to minimise the value of
n1∑
i=1

V Ui +
n2∑
j=1

VWj .

We can reduce the number of variables that we are using in
this by replacing Constraint 7 with the following:

1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ q ≤ n2 + 1, 1 ≤ p ≤ n1 + 1

V Ui ≥
(PUi,j − PUi,q)mi,q

|(PUi,j − PUi,q)|+ 1
+

(PWi,j − PWp,j)mp,j

|(PWi,j − PWp,j)|+ 1
− n1 + n2

n1 + n2 + 1

(13)

1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ q ≤ n2 + 1, 1 ≤ p ≤ n1 + 1

VWj ≥
(PUi,j − PUi,q)mi,q

|(PUi,j − PUi,q)|+ 1
+

(PWi,j − PWp,j)mp,j

|(PWi,j − PWp,j)|+ 1
− n1 + n2

n1 + n2 + 1

(14)

Alleviating the need for Constraints 11 and 12. We can see
from the arguments in Section 3 and A that these will be 1 if
and only if the agent is in a blocking pair. Again, minimis-
ing the same function we will get the minimum number of
blocking pairs in the instance. We can also see how we could
combine these Constraints with the others we discussed for
the problems in Appendix B to investigate the properties for
these matchings.

In order to find a matching with a minimum number of
blocking agents from the matching with a set cardinality
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with the minimum number of blocking pairs (k-card min-
bp min-ba), we would evaluate the model from Appendix B
with K set to the cardinality we are searching for, getting
B blocking pairs. We would then attempt to minimise the

value of
n1∑
i=1

V Ui +
n2∑
j=1

VWj , subject to the relevant previous

Constraints from Appendix B, alongside the new Constraint:

n1∑
i=1

n2∑
j=1

bi,j = B (15)

Which will ensure that we get the minimum number of
blocking pairs. We can trivially see how we might change
this model to find a matching with a minimum number of
blocking pairs from the matching with a set cardinality with
the minimum number of blocking agents (k-card min-ba
min-bp).

D. HRT FIGURES
Please note that in Figures 23 - 31 we are using a heat

map where a lighter shading indicates a higher value.
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Figure 20: Instance Size versus Average Matching
Size for stable and maximum cardinality matchings
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Figure 21: Instance Size versus Number of Blocking
Pairs in a max-card min-bp matching
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Figure 22: Instance Size versus Number of Blocking
Agents in a max-card min-ba matching

Figure 23: Difference in cardinality of a max-hrt and
max-card hrt as we vary the tie density

16



Figure 24: Number of blocking pairs in
max-card min-bp as we vary the tie density

Figure 25: Number of blocking agents in
max-card min-ba as we vary the tie density

Figure 26: Difference in cardinality of a max-hrt and
max-card hr as we vary the length of preference lists

Figure 27: Number of blocking pairs in
max-card min-bp as we vary the length of pref-
erence lists

Figure 28: Number of blocking agents in
max-card min-ba as we vary the length of pref-
erence lists
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Figure 29: Difference in cardinality of hr and
max-card hr as we vary the skewedness

Figure 30: Number of blocking pairs in
max-card min-bp as we vary the skewedness

Figure 31: Number of blocking agents in
max-card min-ba as we vary the skewedness
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