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What is Crystal Structure Prediction?

Problem Crystal Structure Prediction (csp)
Input: A set of ions, A, an area of space, C .
Output: A structure, S , made by placing some copies of

the ions in A in C , with a neutral charge
minimising potential energy between the ions.
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What is a Crystal?

• We consider crystals to be made up of unit cells.
• Each unit cell is the smallest repeating region of space within

the crystal.

Figure 1: Unit cell highlighted in red, note any other box would be
equivalent
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What is a Unit Cell?

• Each unit cell is a collection of Ions.
• We assume each unit cell is independent of all other unit cells.

• This means that we only consider the interaction of ions within
the same cell.

• Every cell must have a total Neutral charge.
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Figure 2: Example of a unit cell
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What is an Ion?

• A point in space belonging to a species.

• The species determines its interaction with other ions, as well
as its charge.

• We denote the charge of ion, i , qi

• for a unit cell with the set of ions, S , we require the following
to be satisfied: ∑

i∈S
qi = 0
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How do we determine interaction

• We define the pairwise interaction for any pair of ions by some
parameterised function Uθi,j (rij).

• rij is the distance between ions i and j
• The parameters for this function are determined by the

species of ions i and j .
• A negative value for interaction means that the ions are trying

to move closer together, which implies the crystal will be
stronger.

• We can use this to represent the ions as a graph with
weighted edges.

U(i, j)
i j

Figure 3: Interaction between two ions represented as a graph, each ion
represents a vertex.
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Representing the unit cell as a graph

• We can use this to represent the unit cell as a graph
embedded into 3-dimensional space.

• Conversely, we can use this to create a complete graph where:
• each ion is a vertex.
• each edge has a weight equal to the interaction between the

two ions it is connected to.
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Representing the unit cell as a graph
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Figure 4: We can redraw our unit cell as a graph, using the ions as
vertices and the interactions as weights on the edges.

7 / 15



Some Notation and Terminology

• A Structure refers to a set containing all the ions within a
given unit cell.

• Give a structure, S , we use S+ to denote the set of ions with
a positive charge, and S− for the ions with a negative charge.

• We use |S+| to denote the sum of the magnitude of the
positive charges, |S+| =

∑
i∈S+ qi

• We use |S−| to denote the sum of the magnitude of the
negative charges, |S−| =

∑
i∈S− −(qi ).
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Crystal Structure Prediction by Vertex Removal

• We can use this to define our problem: Crystal Structure
Prediction by K-Ion (Vertex) Removal.

• We take as input some highly dense initial structure,
S = S+ ∪ S−, within our unit cell, and an integer, k.

• Our goal is to remove some substructure of S ,
S = −S ′+ ∪ S ′−, such that:

|S ′+| ≤ |S+| − k

|S ′−| ≤ |S−| − k

|S ′+| = |S ′−|

• We also want our solution to be minimal, in that there is no
substructure, S ′′ ⊂ S ′, that also satisfies the above.
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Crystal Structure Prediction by Vertex Removal

Problem K-Vertex Removal (kir).
Input A structure of ions, S , a pairwise energy function,

U, and an integer k .
Output A substructure, S ′ ⊆ S , formed by a minimal

removal of k charges from S with minimal total
energy with respect to U
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Decision problem

• For NP-Completeness, we need to reformulate this as a
decision problem.

• We do this by adding a goal energy, g , which is the maximum
allowed energy.

• Given an instance of kir, we report yes if there is a
substructure with total energy less than or equal to g , or no
otherwise.

11 / 15



The Energy function

• The given energy function determines what will and won’t be
a good solution.

• We will be considering a general class of functions for which
this problem is NP and APX complete, which we call the
Crystalline class of functions, F .

∀f ∈ F , ∃a, b ∈ R, a > b s.t.

∀r ∈ R+∃θar, θbr ∈ Rn s.t.fθar (r) = a, fθbr = b
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Buckingham-Coulomb potential energy

• The Buckingham-Coulomb potential is used frequently in
computational chemistry for determining the energy between
ions.

• In this function we use the charge of the ions, as well as 3
force field parameters, determined by the species of the ions,
as our parameters.

• These are Aij , Bij and Cij .

• The energy function is:

U{Aij ,Bij ,Cij ,qi ,qj}(rij) =
Aij

eBij rij
−

Cij

r6ij
+

qiqj
rij
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Clique to K-Vertex removal, for U ∈ F

• Assume we have some instance of the Clique problem, where
we have a graph, G , and wish to find a clique of size k .

• We claim that we can reduce this problem to kir, making the
latter NP and APX complete.

• We will do this by constructing a structure such that we will
be left with only the ions corresponding to vertices in G in a
clique of size k .

• The main idea is to create 2 ions for each vertex in G ,
labelled with their corresponding vertex.

• We will assume that our energy function is some arbitary
function in F
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Parameters

• We assign parameters so that the energy between a pair of
ions, i , j corresponding to vi and vj , is as follows:

Uθij (rij) =

{
b if (vi , vj) ∈ E , or vi = vj

a otherwise

• We know from our definition of F that we can always achieve
this.
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