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Abstract

The Collect problem for an asynchronous shared-memory system has the objective for the processors to learn
all values of a collection of shared registers, while minimizing the total number of read and write operations. First
abstracted by Saks, Shavit, and Woll [3Tpllectis among the standard problems in distributed computing. The
model consists of asynchronous processes, each with a single-writer multi-reader register of a polynomial capac-
ity. The best previously known deterministic solution perforﬁh@n”2 logn) reads and writes, and it is due to
Ajtai, Aspnes, Dwork, and Waarts [3]. This paper presents a new deterministic algorithm that peffouriag” n)
read/write operations, thisuibstantiallyimproving the best previous upper bound. Using an approach based on epi-
demic rumor-spreading, the novelty of the new algorithm is in using a family of expander graphs and ensuring that
each of the successive groups of processes collect and propagate sufficiently many rumors to the next group. The
algorithm is adapted to tHRepeatable Collegiroblem, which is an on-line version. The competitive latency of the
new algorithm isO(log” n) vs. the much higher competitive laten@y(,/n log ) given in [3]. A result of indepen-
dent interest in this paper abstracts a gossiping game that is played on a graph and that gives its payoff in terms of
expansion.
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1 Introduction

We consider a system in which asynchronous processes communicate by reading from and writing to shared-memory
registers. Coordination of multiple processes, in gathering values from a set of registers, or in writing values to a set
of registers, is among the fundamental cooperation problems in distributed computing. Two such problems have been
substantially researched in the past decade Ciblkect problem deals with reading the contents of a set of registers,

and theWrite-All problem deals with writing to a set of registers. For efficiency, the algorithms are structured so that
each process does not perform every read or write by itself. Instead, processes cooperate by sharing information about
partial progress. In the case @bllect they share the values of registers that have been already collected. In the case

of Write-All, they share the information about which registers have already been updated.

TheCollectproblem is stated fot processes, each owning a multi-reader single-writer register, initialized to some
private value. The goal of each process is to learn all these values. The problem is trivially solved by each process
performingn reads, which requires no cooperation and resuld(in?) reads in total. A potential for cooperation
stems from the fact that the initial value of a register can be distributed and stored in other registers, which act as
proxies in disseminating this value. A process accumulates valueslactingthem. To this end, it reads the
contents of another process’ register and adds any new information to the contents to its own register. Thus it should
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be possible for processes to perform a total number of reads that is significantly smalléx tfanThe Repeatable
Collectproblem is a dynamic on-line counterpart@bllect in which an execution consists of iterations. A value of
a register is said to bigeshfor a collecting process, if this value appears in the register after proces¢ss been
activated to participate in the current iteration. Freshness of collected values is additionally required in a specification
of correctness.

The Collectproblem was introduced by Shavit [38] and used by Saks, Shavit, and Woll [3Zbllact primitive
can be used to solve consensus [37], develop timestamps [19, 20, 21, 25, 38], or implement multi-writer registers [30,
43]. Ajtai, Aspnes, Dwork, and Waatrts [3] and Aspnes and Hurwood [7] considétapeatable Collegiroblem, in
which processes perform a sequence of collects, each time fresh values need to be learned.

Summary of previous research.We now briefly state the results on previous work-efficient solutions foCible

lect problem (a detailed discussion of the background and other related work concludes this section). Efficiency of

algorithms in the considered setting is commonly measured in termsmifthat accounts for all read/write instruc-

tions performed by the processes in solving a problem. The best deterministic solutivntisAll [5] attains work

O(n'*e), for any fixede > 0. An adaptation of this algorithm to th@ollect problem [3] has workO(n?/2 logn),

giving the best known deterministic upper bound. In both cases, the gap between the best known deterministic upper

and lower bounds is asymptotically bigger than a polylogarithmic factor. A lower b€i{ndogn) on work was

stated in [3]. Randomized solutions@wllect like in [7], andWrite-All, like in [33], exceed linear work by a polylog

factor. These randomized solutions have been analyzed in terms of work agaioktitimisadversaries only, and

this is too weak to enable the probabilistic method to yield a deterministic solution with a comparable performance.
The competitive latency of deterministiRepeatable Colledh [3] is O(y/nlogn), while for the oblivious ran-

domizedRepeatable Colledhe latency is)(log® n) [7].

Our results. The summary of the contributions is as follows.

I. We develop a deterministic algorithm that solves @wlect problem of sizen using O(nlog” n) reads and
writes against any adversary that controls interleaving of events at processes. Ours is the first deterministic
solution that exceeds the required linear work lower bofid) by only apolylogarithmicfactor. The best
previous deterministic solution is given by Ajtai, Aspnes, Dwork, and Waarts [3], and it ipaéyaomial
overhead, resulting in wor (n*/? log n).

Il. We extend our static algorithm f@@ollectto solve theRepeatable Collegbroblem. The competitive latency
of this algorithm isO(log” n), which is an improvement over polynomialbound O(n'/?logn), the best
competitive latency known before, given in [3].

[ll. Our Collect solution is analyzed by interpreting the flow of information as a rumor-spreading process. To
measure the efficiency of this process, we introduce a gossiping game on graphs and analyze its properties in
terms of the expansion of the underlying graph. This allows us to obtaist-case guaranteesn a rate of
spreading a rumor. This result is of an independent interest, with a potential of applications to gossip-based
algorithms, like those given in [15, 16, 22], and to fault-tolerance of expanders, following an approach first
proposed by Upfal [42].

The novelty of our approach is in analyzing the worst-case behaviordetexministicprocess of spreading ru-
mors. To circumvent technical obstacles inherent in such analysis, we structure the process to mimic proliferation
of information along the edges of an expander graphs, as nodes forward knowledge to their neighbors. We develop
tools to estimate the rate of flow of information in such a deterministic rumor-spreading process in expanders. The
only previous method to obtain a deterministic sub-quadratic solution, as applied in [3], reliatfidte-gAll solution
from [5], which is based on a set of permutations of a low contention. Another approach, of [7], relied on analyzing
Collectin terms ofrandomizedumor spreading against the oblivious adversary.

The model of computation. For theCollectproblem in the shared-memory model we consider the settingwith
asynchronous processes, where there is a multi-reader single-writer register associated with each process. A process
executes a sequence of steps, where each step includes a constant-time local computation, and either a read from an
arbitrary register or a write to the process’ own register. Reads and writes of registers are the only externally-visible
operations. An algorithm specifies how the next read operation depends on the set of processes whose registers’ values
have been already learnt. An asynchronous execution of an algorithm depends on the timing of events. An execution



can be represented by means of an externally-visibles, specified as an infinite sequenge= (py, p1,p2; .- -),
where eaclyy, is a process identifier. Thigh event in the trace is the currently pending read or write operation of
the process with the identifier,. We consider fair executions, determined by traces in which the identifier of each
process occurs infinitely often (see [31]).

The efficiency of algorithms solving theollect, Repeatable CollecndWrite-All problems can be measured in
terms of time, in terms of the total number of read and write operations, or in terms of competitiveness. The main
performance metric we use herevisrk, defined as the total number of reads and writes in an execution. Given an
infinite trace F’, the work performed in an execution is equal to the sum, over all the processes, of the number of
occurrences of the process identifier by the time the process completes its computation according to the algorithm.

The competitive latencyf a distributed algorithm is defined by Ajtai, Aspnes, Dwork, and Waarts in [3] to be the
ratio of the amount of work that the algorithm performs on a particular sequence of collects to the work by the best
possible distributed algorithm performing these collects given the same trace. The paper [3] alsocdééntrge
latencyat a point in time to be the worst-case work required to complete a set of collects that are in progress. They
show that ifL is a bound on the collective latency of a distributed algorithm thém+ 1 is a bound on the competitive
latency of the algorithm.

Additional background. The Collect problem was introduced in [37, 38]; subsequent literature includes [2, 3,

6, 7, 8, 9]. Saks, Shavit, and Woll [37] consider an asynchronous rumor-spreading-like algorithm tCacltdwoe

where each participating process chooses the next register to be read at random. They gave the expected time bound
of O(log?n/(logn — log f)). Ajtai, Aspnes, Dwork, and Waarts [3] showed how to adaptwhie-All algorithm

of Anderson and Woll [5] to a solution d@ollectthat performsO(n?/2logn) read/write operations; both of these
algorithms are not constructive.

It is often useful to interpret asynchronous computation by referring to an adversary, who controls the timing of
processes and the fairness of an execution. A precise definition of the power of the adversary is especially significant
for randomized solutions facollectandWrite-All. If the adversary is required to determine, prior to the start of an ex-
ecution, the order in which the events are enabled at processes, then such a weak adversarfuityaabiadous. An
intermediatecontents-obliviouadversary does not have access to the random bits generated locally by the processes,
until these bits are written to a register. Aspnes and Hurwood [7] considered a rumor-spreading game in which a step
results in the transfer of knowledge between a pair of processes. Each time a process is enabled for such a transfer,
it selects some other process to contact at random. They show that a game complefé@zvki)tgn2 n) operations
with high probability, if the adversary is content-oblivious. They applied this result to analyze a randdoisect
solution that take®(n log® n) reads and writes with high probability against the same adversary. The randomized
algorithm given in [7] is also analyzed in terms of its competitiveness.

Competitive analysis is concerned with the comparison of the cost of a given algorithm to the cost of an optimal
algorithm. It was introduced by Sleator and Tarjan [40], and applied in distributed computing by Ajtai, Aspnes,
Dwork, and Waarts [3], Awerbuch, Kutten, and Peleg [11], Bartal, Fiat, and Rabani [13], and Georgiou, Russell, and
Shvartsman [23].

An algorithm isadaptiveif its complexity depends only on the number of participating processes. Such algorithms
for Collect are given by Afek, Stupp, and Touitou [2] and Attiya, Fouren, and Gafni [8]. Solutiofefmeatable
Collectcan be used to implement atomic snapshot objects — these are shared objects that allow concurrent reads of
segments that are individually written by the participating processes. Such objects have been studied in a variety of
settings, for instance by Afedt al.[1], Anderson [4], Aspnes and Herlihy [6], and Attiya and Rachman [10].

Other related work. Collect may be implemented on top of processes that disseminate information, similar to an
epidemic spreading of gossip. Such processes have been studied in applied mathematics [12]. Randomized rumor-
spreading algorithms have been investigated by Karp, Schindelhauer, Shenkemckinig\[28]. Harchol-Balter,
Leighton, and Lewin [24] considered the problem of information exchange when the nodes do not initially know each
other, and where gossiping is used for node discovery. Desteak [18] developed epidemic-like algorithms for
updating data bases, where the nodes periodically choose other nodes at random and convey the rumors. Kempe,
Kleinberg and Demers [29] gave a gossip-style algorithm in which the nodes learn about the nearest resource location.
Van Renesse, Minsky, and Hayden [44] showed how to use gossip to gather information about the occurrence of
failures. Chlebus and Kowalski [16] studied gossiping in synchronous networks prone to node failures, and developed
algorithms that are both time- and message-efficient. They showed how to apply their gossiping solutions to solve



a consensus problem. This was extended by Georgiou, Kowalski, and Shvartsman [22] and applied to a problem of
performing independent tasks.

The Collectproblem is related to th@/rite-All problem, introduced by Kanellakis and Shvartsman [Z&dllect
is normally considered when registers are large, typically polynomial to be able to store the original values of
all registers. In contrast, solutions Write-All are expected to use shared atomic registers of a small size, possibly
even constant. There is a large body of literature on fault-tolerant PRAM simulations, most of it based on solutions to
Write-All, see [17, 27, 32, 33, 39]. Buss, Kanellakis, Ragde, and Shvartsman [14] gave a lowefXjouogn) on
work and developed a deterministic algorithm with wa?kn'°82%). A deterministic algorithm of Anderson and Woll
[5] attains workO(n'*€), for any constant > 0. The randomized algorithm of Martel, Park, and Subramonian [33]
performs workO(n) with high probability onn/log nlog* n processors. The probability estimates assume the fully
oblivious adversary.

Our algorithm forCollectuses graphs with good expansion properties. If expanders are selected randomly, then
they have the required expansion properties with high probability. A randoriin#ect solution could operate by
first selecting an expander at random, then proceeding as in the generic algorithm defined in Section 3. This results
in a randomized algorithm efficient against the adaptive adversary with high probability (see also [7]). Alternatively,
such expanders may be found by an exhaustive search, in exponential time. Constructive expanders that are best
for our purposes, were given by Ta-Shma, Umans, and Zuckerman [41], who improved the previous construction of
Reingold, Vadhan, and Wigderson [36]. The term “constructive” here means that the neighborhood of a hode can be
found in time that is polynomial in the maximum degree of the graph and polynoniial in The maximum degree
of a-expanders in [41] misses the lower bounth by a polylogarithmic factor.

Document structure. The rest of the document is structured as follows. In Section 2 we discuss expanders and
introduce the gossiping game. In Section 3 we presenCaliect algorithm. The analysis is given in Sections 4
and 5. In Section 6 we treat tfikepeatable Collegiroblem. We conclude in Section 7.

2 Expanders and gossiping game

Processes communicate by reading and writing shared registers. The communication patterns of our algorithm are
based on suitable expander graphs. Such graphs have good connectivity properties and can be defined in many equiv-
alent ways, see for instance [36, 41, 45]. Following Pippenger [35], we defineegpanderfor a positive integeu,

to be a simple grapty = (V, E) with |V| = n > a nodes such that if’; andW, are any sets of nodes, each of a size

at leasts, then there is a nodg in W; and another node; in W5 such that{v,, v, } is an edge irF.

Fact 1 For every sufficiently large constadt > 0, and any positive integers and n, with a < n, there exists an
a-expander witth nodes and of a maximum degree at mdstlgn)/a.

Fact 1 is proved by a standard probabilistic argument, e.g., as given first by Pinsker [34]. If we refer to specific
a-expanders of a maximum degréén 1gn)/a, that exist by Fact 1, then we assume that both the numbansin
are powers of. (The notatiorig = stands for the binary logarithm afthroughout the paper.)

For a set of nodeX in a graphG, the notationV¢ (X ) denotes the set of all neighbors of nodeXinwhenG is a
directed graph then we mean in-neighborsXlfs a singleton, sayX = {v}, thenNg(X) is denoted a¥V(v). The
set of all nodesw such that there is a path of length at moist graphG from the nodev to some node itX is denoted
N} (X), for a positive integei. Formally, letN(X) = Ng(X), and defineVi (X) = Ng(NL(X)) U N&(X)
recursively.

A gossiping gamés determined by two numbersanda, wherea < n/4. Suppose that andn are both powers
of 2, to avoid rounding notation. An instance of a play consists of two moves. Our move determines a simple graph
G = (V, E) with |V| = n. The opponent is asked to specify a sequefige. . ., Vi ,—1) Of sets of nodes of7, each
of a size3a. These sets do not need to be different or disjoint. To define the payoff function, we first construct an
auxiliary directed graplt/. The nodes off are these nodes ¢f that are irUig:’g’1 V;. The directed edges &f are
pairs (v, w) that correspond to these eddesw} € E for which there exist numbers< i < j <lgn — 1 such that
v € V; andw € V;. Thepayoff setX consists of these nodesin Vi, ,,—1 for which there are more thatu nodes
y € V, such that for each sughthere is a path irff from y to x and of length at modg »n — 1. In other words, the



payoff setX consists of all the nodesof Vi, ,—; for which the inequality{N}f ”’1(0) N V| > 2a holds. Thepayoff
of an instance of a game is defined to be the Ekzpof the payoff setX. The opponent strives to minimize the payoff
while giving the sequencé, ..., Vign—1)-

The intuition behind this definition is as follows. A sequerieg, ..., Viz,—1) Of Sets, each of a siz&, models
the history of a computation. The sEt contains the nodes that send a message to all their neighbors at some phase
i of computation. The goal of the opponent is to find a sequélge . ., Vig»,—1) in @ given communication graph
such that as few as possible nodes in the lastiset_; gather a significant amouft: of the initial information stored
in the first setl}.

We analyze the gossiping game for an arbitramgxpandeiG = (V, E), where|V| = n. Let a sequencé’;), for
0 <i <lga+ 1, consist of subsets d&f, and|V;| = 3a for each0 < i <lga + 1.

Suppose that grapfi is ana-expander. For a séV of nodes ofG, if [W| > a, then|Ng(W)| > n — a. We may
strengthen this byelativizingto a subset/ C V' of nodes: ifU andW are two sets of nodes @f, each of at least
a elements, then the following inequality holds:

INe(W)NU| > U] —a.

Lemmallf 0 <i <lgaandasetiV C lgatl _. V. has size at least, then the sefNg (W) N Vi, .—; is of a
= v = j=lga+1—i "J g
size larger tharRa.

Proof: For every edgdv, w} € E between the nodase Vi, ,—, andw € W, a directed edgév, w) is in graphH,
becausev € V; for somej > lga — i. By relativizing toVi,,—,;, we obtain that the s&V (W) N Vig .-, has size
larger tharBa — a = 2a. Thus also inH the inequalit Nz (W) N Viga—i| > 2a holds. O
Lemma 2 If asetlV C Vi, .41 has size at least, then there exists a node € W such that the seﬂ\fﬁ a“(w) NV
is of a size larger thara.

Proof: The setNy (W) = Ng(W) N Vi, has size larger thaku, by Lemma 1. Hence, by the pigeonhole principle,
there is a sell’; C W of a sizea/2 such thatVy (W) N Vig, is of a size larger than. We will extend this argument
to show the existence of sets of nod&s C Vigg o1 fori = 1,...,lg a, with the following properties: (aJV;| = 57,
and (b)| Nz (Wi) N Viegat1-i| > a.

This can be done inductively. The 9&% has just been shown to exist. Suppose we have & seiith the required
properties (a)-(b), fof < lga. Apply Lemma 1 tolW = N}, (W;) to obtain that Nj;™ (W;) N Vig a1 (i41)| > 2a.
By the pigeonhole principle, there is a $€t,; C W; such tha{iV, | = |W;|/2 and the inequalityN ;™" (W, ;1) N
WVigat+1-(i+1)| > a holds. The selV,, is comprised of a single elementc 1V, the setV 2 (w) NV, has size larger
thana, and hence, by Lemma 1, the g\éﬁ “*1(w) NV, is of a size larger thaia. O

Lemma 3 There is a seZ C Vig 41 Such thaiZ| > 2a and for every € Z the inequaliMN}f )N V| > 2a
holds.

Proof: We will show that there are sef§, fori = 1,...,2a + 1, with the following properties:

@z =14

(b) for eachv € Z; the inequalityl N 2 *™" (v) N Vy| > 2a holds.

We proceed inductively. By Lemma 2, witl’ = Vj; .11, there is a nodew € W such thaﬂN}% ) N V| > 2a.
Let us setZ; = {w}. Suppose we have a sBf, for somei < 2a + 1, with the required properties (a)-(b). We show
how to extend?; to Z;;, with the properties (a)-(b). Notice that the 3¢t,.1 \ Z; has size at least. Lemma 2
applied to this set yields a node € Viz .11 \ Z; such thaﬂN}% “+l(w) N Vo| > 2a. DefineZ;,1 to beZ; U {w}, it
has the properties (a)-(b). Finally, we may Set 75, 1. O

Theorem 1 If the underlying graph is an-expander, fom < n/4, then payoff in a gossiping game is always larger
than2a.



Proof: Let Z be as in Lemma 3. I = n/4, thenlga + 1 = lgn — 1 and the se is included in the payoff set.
Consider the case < n/4, thenlga < lgn — 1. Let X C Vi, be the payoff set. Suppose, to the contrary,
that| X| < 2a. Then|Wg,—1 \ X| > a. By the expansion property, there is an edgew) in H with v € Z and

w € Vign—1 \ X. Sincev € Ny (w), the following inclusions hold:

N (0) NV C NIV (0)) N Vo € N (w) N V.

The size ofN}_%’ ““(v) NV, is larger tharka, because € Z, hencew € X, which is a contradiction withw €
Vign-1\ X. O

The following fact is of independent interest. It is a generalization of a result by Upfal [42, Lemma 2], that was
applied in [42] to an agreement problem. See also [15, 16, 22] for other extensions and applications.

Theorem 2 Let G be an a-expander. For any s&t of at least3a nodes ofG there is a setZ C Y of a size at
least2a + 1 such that the subgraph ¢f induced by~ is of a diameter at moglga + 2.

Proof: Letus set; =Y, fori =0,...,lga + 1, in the gossiping game. Let C Vi, .41 = Y be a set that exists by
Lemma 3. Consider two nodes andz, in Z. Eachz;, fori = 1, 2, is of distancdg a + 1 from all the nodes in a set
X; CV, ofasize atleasta + 1. Since|V;| = 3a, the intersectionX; N X, is nonempty. Let some nodebe in both
X, fori =1,2. GraphH is a directed one, with the edges corresponding to edgés dhe distance from; to z,
in G is at most the distance from to v in H plus the distance fromto 2, in H, which is at mos2lga + 2. |

Theorem 2 can be interpreted in terms of fault-tolerance properties of networks with good expansion properties: if
few nodes fail, then what remains contains a subnetwork of many nodes that can communicate in logarithonigy time
among themselveslotice that Theorem 2 relies on expansiorGobnly, the node degrees @ are not mentioned.

3 The Collect algorithm

We start by fixing a sequence of grapfi, for ¢ = 0,...,lgn — 1. EachG, hasn nodes and is &‘-expander of

a maximum degree at mogt; lg n, for some fixed constant > 0. Existence of such a sequence of graphs follows
from Fact 1. The value of constadiis determined in the course of analysis. The gréjghis a complete graph of
nodes. Processes interpret the nodes in these graphs as IDs of processes and their corresponding registers.

A processy uses sequences, o, . .., Ty 1sn—1, Wherem, ¢ is an arbitrary permutation of all the neighborswof
in Gy. Lets, ¢ denote the degree ofin G,. Each sequence, , containss, , different registers, fod < ¢ <lgn —1,
ands, < g—? lgn. Process uses also a sequeneg, which is a permutation of all the registers except for the
register ofv. The sequence, is obtained by first concatenating all sequenegg, ,—1, . .., T, 0, and then pruning
the multiple occurrences of a register, while leaving only the first one. We refer to the segmgobotaining the part
of the original permutatior, ¢, but without multiple occurrences, as theart of o, for every? = 0,1,...,lgn —1.

Algorithm D-Collect has graphG, and permutations, andr, , embedded into the code of each process
Procesw initializes all o to 0, and eacls,  is set to the degree af in graphG,. The control structure of the
algorithm is in Figure 1. The main part of the algorithm is structured as the outer repeat-loop that iterates the inner
for-loop oflg n — 3 steps. During théth iteration of the inner loop, for < ¢ < lgn — 3, while in the course of théh
iteration of the outer loop, the procesperforms the following two read and one write operations. It reads from the
registerr, , (¢ mod s, ¢), next it reads from the first register in the ordering of the sequenaehose contents have
not been learnt yet. Then the processdds the newly read information to its own register.

We will use the following terminology to describe an execution of any instantiation of the algorithm for a specific
traceF. A positiondenotes the numbérof the current event occurring at procegs as determined by the trade=
(pk)k>0- An iteration done by a process denotes a single iteration of the ifaméoop in in Figure 1, during which it
performs two reads and one write and modifies its local state according to the outcome of the redtsit@tation
of the inner loop in theth iteration of the outer loop is the, ¢)-iteration. All the (i, ¢)-iterations are said to make the
¢-layer, for each? such thatlt < ¢ <lgn — 3. The algorithmD-Collect is structured in such a way that a process reads
the registers of its neighbors in graphs in a circular fashion. More precisely, durir@agyz consecutive iterations
in an{-layer every process reads registers of all its neighborsGh at least once.



repeat
for {=1to lgn—3do
set ay=ay+1 mod s,y
read registerr, ; (ap)
read first register ino, whose value is not known hy
write  all the new information read to the register.of
until  original register values are stored in the registes of

Figure 1: The main loop dD-Collect for process.

4 Epochs and stages

An execution of algorithnD-Collect is determined by a specific traéé We define partitions of traces into segments,
to facilitate measuring progress of collecting. This also results in the respective partitions of executions, and we refer
to these segments interchangeably. An execution consists of events. Disjoint segments of consecutive events are called
epochs. Epochs are grouped iiteegments, for a number parametebetails follow.
We partition the trace into consecutiepochs The position when théth epoch ends is denoted by. The
sequence of positionsy) ;>0 is defined inductively as follows. The positiof is set to0. Suppose that we have the
kth epoch already defined, by some positign For each positiop > 75, and every such thatl < ¢ < Ign — 3,
consider a sef(u) consisting of these processethatv performs at Ieagt% 1g? nand less tham4% 1g? n iterations
after positionr;, and up to the positiop. Let T;(n) be a set consisting of these processdisatv performs at least
7dn1g’ n iterations by position.. Definer,; to be the minimum positiop afterr;, such thatl (1) # 0, if suchu
exists, otherwise it is the bigge&tamongl < ¢ < lgn — 3, such thalT,(x)| > 3 - 2¢. Accordingly,T} 1 denotes
the setTy (1), wherel is the biggest index such that< ¢ < lgn — 3 and|Ty(7,41)| > 3 - 2¢, provides there is at
least one such an indéxotherwiseT}.; denotes the séfy(7;+1). If the former case applies, thé@n ., is of a size
(at least)3 - 2¢, for 1 < ¢ < lgn — 3, then thekth epoch is said to b&-heavy In the latter case, the s&},; is of a
constant size at mo5t and the epoch is said to beheavy

Lemma 4 The epochs are well defined.

Proof: Induction on the number of epoch. Suppose that the positioior somek > 0, is well defined. We show that
Tr+1 €Xists. By fairness of the execution, there is a positian 7, such that the séfy (1) is nonempty. Thusy; is
a minimum taken from a nonempty set of nonnegative integers. ]

Lemma 5 At most85dn lg> n iterations are performed during one epoch, for sufficiently laige

Proof: Consider an epoch. Let X (¢), for 0 < ¢ < 1gn — 3, denote the set of all the processesuch that performs
at Ieast?% 1g2 n and less tham43§—ﬁ 1g2 n iterations during epoch. Let X (log n — 2) be the set of processesuch
thatv performs less thaiv Qlﬁ’fj’;Q 1g* n iterations during epoch.

The setsX (¢) are all pairwise disjoint, because the ranges in their definitions are such. Every process performs
less thanl4 - 3dn 1g? n iterations in one epoch, because otherwise this epoch would have concluded earlier, as soon
as each process performed3dn 1g? n iterations during that epoch. We obtain that the equz{aumlfi’g_2 XW0)|=n
holds.

Claim. The inequality X (¢)| < 2°+! holds, for every such thatl < ¢ <lgn — 3.

Suppose, to the contrary, thaf (¢)| > 2¢+!. Then there is a séf C X (¢) of a size2‘*! such that every process
v € Y performs at Ieaﬂ% lg?n—1> 72?;% lg? n iterations by position;, — 1, by properties of the nodes iXi(¢).

It follows from the definition of epocl that, < 7, — 1, which is a contradiction, and this proves the claim.

Since all sets\(¢) are pairwise disjoint and every process is in someXsg), the number

lgn—2

3dn
Y. X0 1457 1g"n &
£=0



is an upper bound on the number of all the iterations in efpotNe have clearly thatX (0)| < 5 and|X (Ign—2)| < n.
Hence the number given by (1) can be upper-bounded by

lgn—3

3dn 3d
5-14-3dnlg’n+n- 1z lgin+ Y 2 14T Ign
=1
The first two terms aré(n log® n) and the third term is less thaddn 1g® n, if n > 27. O

Now we define/-stagesfor any/ between 0 anél; n — 3. An ¢-stage consists of a segment of consecutive epochs,
possibly of only one epoch. Suppose that epeéhthe last one in théth ¢-stage. Thertk + 1)th ¢-stage starts at the
beginning of epoclx + 1 and ends at the end of the first epach- z for which the number of processessuch that
v performs at Ieas’tg—? 1g? n iterations from epoch + 1 through epochy, is at leasB - 24, if £ > 0; otherwise it is at
least 1. All/-stages are well defined, since every process performs infinitely many iterations in a trace.

The impact of oné-stage, in terms of work performed by some group of processes 08si26, is similar to
the impact of oné-heavy epoch. An advantage to consider epochs is that the work done by some processes may be
larger during one stage than during one epoch. An advantage of considering stages is that this allows to partition the
execution into/-stages, which is not always possible felneavy epochs. Hence, to estimate collecting by spritf
processes, we may use stages, but to analyze the algorithm globally, one may use epochs, so as not to overestimate
the work (see Section 5). These two approaches can be combined because in the period-twary epochs occur
there are also at leakt/-stages (see Lemma 10).

We will use the following notation and terminology regarding the notion of a stage. A progasslisctive in the
kth ¢-stageif it performs at IeasV 1g2 n iterations during this stage, far< ¢ < lgn — 3. There are at least- 2
processes that are productive formbé stage; letS,(k) be a set containing- 2 of them. Note that |fid” Ig?n > n,
then during¢-stagek every productive process collects the values of all registers, Uﬁ%@ n reads (iterations)
according to permutation,, becausér, is a complete graph. We show that?i‘»g% lg> n < n, then every productive
process in thé-stage numbet + ¢1gn knows the values of all registers.

Consider consecutivestages. For every procesgproductive in theith such stage, the fir$ lg n iterations in
a (-layer are calledearning iterations Every iteration from arf-layer, which is not a learning iteration, is called a
promoting iteration Notice that during oné-stagek every productive process perforr%s lgn learning iteration,
and at Ieasﬁ% lg n promoting iterations. This is because in evérstage there are at Iea@% lg n iterations from
an /(-layer. Learning iterations are used to get to know the information acquired ditstages. They are efficient
because of good expansion properties of graghhardwired into the algorithm. The promoting iterations are to
complement this by utilizing the permutations.

In the proof of the following Lemma 6 we apply the machinery of gossiping games to géphket v be a
process inSy(k) and letR, ¢(k) consists of those productive processesi(k — lgn + 1) whose registers by the
end of the/-stagek — lgn + 1 are all collected by during the learning iterations iftstagek. This process is
a ((,k)-learnerif |R, ¢(k)| > 2|S¢(k —lgn + 1)|; which means that processhas read at least™! registers of
processes ity (k —1gn + 1) during its learning iterations dfstagek.

Lemma 6 For every/-stagek, wherek > Ign, the number of¢, k)-learners inS, (k) is larger thanZ | S (k)|.

Proof: We consider an instance of the gossiping game determined by the@raptu the set¥; = Sy(k—lgn+1+1),
for 0 <i <lgn — 1. GraphG, is ana-expander withu = 2¢. The sizesV;| of the setd/; are all equal t@ - 2¢ = 3a.
A payoff set in this case consists of those processé&s(ik) who are(?, k)-learners. By Theorem 1, the payoff of the
game is larger thapa = 271 = 2[S,(k)|. O

We say that a register is unknown to the processat an event in an execution, if the initial valueofs not
included in the register owned hyprior to this event, otherwise knowsthe register-.

Lemma 7 For every/, wherel < ¢ < lgn — 3, there exists a setl C Sy((¢ + 1)lgn) of a size2*+! such that
every process in A knows all the registers at the end 66tage(¢ + 1) 1gn, in any fair execution of the algorithm
D-Collect.



Proof: Consider/-stagek and setV C Sy(k); whenW = {v}, then we writev rather than{v}. We will use the
following notation:

e U(k,W) denotes the set of registersuch that- is unknown tosomeproces in W at the end of-stagek.
We also use the notatian(k, W) = |U (k, W)].

o U*(k, W) denotes the set of registersuch that- is unknown toeveryprocess i/ at the end of-stagek.
We also use the notatiart (k, W) = |U*(k, W)|.

e U(k, W) denotes the set of registerssuch that- is unknown tosomeprocessy in W at the end of théast
learning iterationof ¢-stagek. We also use the notatiai{k, W) = |U (k, W)|.

e U*(k,W) denotes the set of registerssuch that- is unknown toeveryprocess inlV" at the end of thedast
learning iterationof the ¢-stagek. We also use the notatiart (k, W) = |U*(k, W)|.

We may assume that > 4. Consider a tracé’. Notice that at the end of a iteration, the knowledge of process
about the other registers is always recorded in its register, as guaranteed by the write operation performed at the end
of every iteration. Consider the firétgn + 1 /-stages of tracé’.

We show that the following invariant holds after edestageilgn + 1, fori =0, ..., ¢:

there exists avitness setV C Sy(ilgn + 1) of
a size greater thaf*+! such that for every3 C
W of a size at least’, the inequalityu* (i 1g n -+
1, B) < 2= holds.

Proof of the invariant for i = 0. One needs to show that aftéstagel we haveu*(1, B) < 2, for every set
B C Sy(1) such that B| > 2°.

During the first/-stage we consider only the read operations performed by proeessésin promoting iterations
in ¢-layers according to permutations. By definition of¢-stage, every € B C S,(1) performs at Ieasﬂg—? g% n
of such operations. By definition of,, everyv € B reads registers of all its neighbors in gra@gh during/-stagel.
SinceG, is a2‘-expander an¢lB| > 2¢, we obtain|Ng, (B)| > n — 2¢, and hence:*(1, B) < 2°.

Proof of the invariant for 0 < ¢ < ¢. Suppose that the invariant holds for all the integers up4oi — 1 < ¢ — 1.
We prove the invariant foi. It follows from Lemma 6 fork = ilgn + 1 that there is a se¥ C Sy(ilgn + 1)
containing(, i lgn + 1)-learners and such thgt| > 2°*1. It follows that for every process € Z we have

@ (ilgn+1,v) <u (i —1)Ilgn+1,Rye((: —1)1gn+1)),

where the subsek, (((i — 1)lgn + 1) C S,((i — 1)1gn + 1) is of a size greater tha2f**. We show that se can
be taken as a witness gét in the invariant fori.
LetW C S¢((i — 1)lgn + 1) be a witness in the invariant for— 1. We have that

Rye((i—1)1gn+1)N W C Se((i —1)1gn+1)

and that|R, ,((i — 1)1gn + 1) N W| > 2¢, for every process € Z. By the invariant fori — 1, we have that the
following bounds _
w(lgn+1,v)<u"((i —1)1lgn+1,R,((1 —1)1gn+1)NW)
< 2Z7i+1

hold for everyv € Z. Consider anyB C Z of a size2’ and a process € B and its pattern of reads during its
promoting iterations while ii-stage of numbeilgn + 1. We restrict our attention only to read operations performed
by processes € Z in the iterations irt-layers according to permutatioas. By the definition off-stage, every € B
performs at Ieasﬁ‘;—’; 1g? n such operations: at IeaBg% lgn — Z—C} 1g? n iterations are promoting, and in one iteration
we perform one read accordingdg. Everyv € B can read only registers from

U=U*((i—1)lgn+1,R,e((i —1)Ilgn+1)NW),



whose size is at mo&f~"+!. We need to prove that/*(ilgn + 1, B)| < 2¢7".

Suppose to the contrary thét: = U*(ilgn + 1, B) is of a size at leas2‘~*. Consider set/ \ U*. Notice that
U* C U, hencelU \ U*| < 2¢7. It follows from the definition of seB3 that the total number of reads of registers
from U \ U* performed by processes froBiduring their promoting iterations is at least

d
B| - 62—7;1g2n = 6dnlog?n . @)

Claim 1. Suppose that a séf; C B, for everyj = 1,...,¢ — 4, contains every processe B that has read all its
neighbors in grapli7; as governed by the permutatiep by the end of the promoting iterations 65tage numbered
ilgn + 1. Then|X;| < 27, for any suchy.
Suppose, to the contrary, that, for soing j < ¢ — i, the setX; is of a size atleast’. Thenu*(ilgn+1, X;) <
29 < 2¢=% and hence* (ilgn + 1, B) < u*(ilgn + 1, X;) < 2°7%, which is a contradiction withU*| > 2¢=%, This
proves of Claim 1.
Claim 2. LetY; C (U \ U*) contain every register € (U \ U*) that has been read by at leagt log n but less than
6d" log n processes fron®, while reading according to the permutatisnduring the promoting iterations défstage
numberz lgn + 1, for everyj between 1 an@/ — i — 1). Then|Y;| > 27 for some among these valuesjof
Suppose to the contrary that for evgrguch thatt < j < /—i—1, we haveY;| < 2/. Recall thatU \U*| < 2°~".
It follows that the total number of reads froth\ U* by the processes frof8 during promoting iterations is less than

l—i—1

. dn
Z Y5165 Togn+ (U \ U*] Vo s-al) - 30 logn
which is less than
l—i—1 dn, d
Z 27 6—logn+2z ‘ 3 — logn = 6(¢ — i)dnlogn
j=1 < 6dnlog®n .

This contradicts the lower bound (2), thus proving Claim 2.
Consider a seY;, with a property as in Claim 2.

Claim 3. Each register € Y is read by at Ieas%’? log n processes € B, such that has read the wholg-part of
o, by the end of-stage numberetlg n + 1.

There are at IeaSid” log n processes fronB readingr. The number of those which may read registdrefore
they read the wholg- part of o, is at most the sum of degrees of expand@fs,—_s, ..., G; - since every read of
registerr is according to somépart, forlgn — 3 > i > 4, of somes,, and this means readingay the neighbors in
these expanders. This is at most

dn dn
3 log n+...+ 5 logn < 2— logn processes.

/

Hence there are at Iea&% logn — 2 2 logn = ’j log n processes € B which readr and the wholgj-part of o,
by the end of-stage numberedig n + 1 This completes the proof of Claim 3.

By Claims 3 and 2 and the expansion @f, we have|N¢, (Y;)| > n — 27, which together with the bound
|B| = 2¢ > 27+ imply |Ng, (Y;) N B| > 27, SinceNg, (Y;) N B C X we obtain thatX;| > 27, which contradicts
Claim 1. Hence the mequallﬂy] (ilgn+1,B)| < 2~ i holds, which |mplles the invariant far

Deriving the lemma from the invariant. The invariant fori = ¢1gn + 1 immediately yields what we seek to
prove in the lemma. Indeed, from the invariantfet ¢ we obtain that there is a SBf C S,(¢1gn+1), of a size2*+?,
such that for every séé C W of a size2?, the inequalityu* (¢1gn + 1, B) < 1 holds. LetR, denoteR, ,(¢lgn+1),
for every process. By Lemma 6, we obtain that there is a setC Sg((ﬂ +1)lg n) of a size2’*! such that every
process from A knows the rumors stored iii* (¢1gn + 1, R,), whereR, C S,(¢1gn + 1) is of a size2‘*!. Both
the setsRk, andW are included inS¢(¢1gn + 1), while |S,(¢1gn + 1)| = 3 - 2¢, and|W|, |R,| > 2 - 2¢. Since also
|R,NW| > 2¢, we obtain that each processdrmay possibly not know the registers only frémi(¢lgn+1, WNR,),
while u*(¢lgn +1,WNR,) =u*(llgn+1,W) = 0. O
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5 Completing the analysis

We use the following classification of epochs. An epoch is said t@-feccessfylfor 1 < a < n, if there is a setV
of processes such that’| > a and every process iV knows the original values of all the registers after the epoch is
finished.

The number of fast learners is large In this section we consider an execution to the first-successful epoch. For
a number, wherel < ¢ < lgn — 3, the/-setconsists of these epochs that afesuccessful but nat’*!-successful.

If i-heavy epoclk is in ¢-set andi > ¢ then we call such an epodiort, otherwise we call itong. An intuition
behind this terminology is as follows. if > ¢, then the sef’}, is large, and every process . performs “few”
iterations during such a short epogh Otherwise the s€f}, is small, and each process T performs “many”
iterations during such a long epokhThe notions of “few” and “many” are defined relative to the quanfgsjzylg2 n.

Consider a fair execution of the algoritibaCollect and the corresponding trace. Let the fif¥ssuccessful epoch
be denoted by, for 1 < ¢ < lgn — 3. Suppose that, is not2¢+1-successful. Lek, be the first epoch afte, such
that at least one of the following conditions holds:

Condition 1. There are at leasbg® n of short epochs amonig + 1, ... ., ke.

Condition 2. There are at leag¥ processes, for some integer ¢, that have not completed collecting by the end of
epochk,, and each such process occurs in at I%asbg n iterations in the long epochs frol + 1 throughk,.

Epochk, is well defined, provided epocty exists. To see this, suppose, to the contrary, taatoes not exist.
Then there are less thasg® n short epoché: > k,. But every process occurs infinitely many times in the trace, so
it occurs also infinitely many times during long epochs- &y, for ¢ < lgn — 1, which contradicts not holding of
Condition 2.

In the next two lemmas we estimate the cost of the short and the long epochs fromkepotkthrough epocti.

Lemma 8 The number of iterations executed by processes during short epochs, that occur starting frorb,epach
through epocti,, is at mos85dn log® n, for sufficiently largen.

Proof: There are at mosog® n short epochs, each of them takes at n#ssh: Ig® n iterations, by Lemma 5. ]

Lemma 9 The number of iterations executed by processes during long epochs, that occur starting frorh,epdch
through epocti,, is at mos88dn log® n, for sufficiently largen.

Proof: Consider all iterations performed by processes during long epochs admeng . . ., k, — 1. Let A;, for every
integerl < ¢ < logn, denote set of processes such that each executes moré%tﬂlag? n and at mosfz% log®n
iterations during considered long epochs. Betenote a set of these processes that each of them executes at most
dlog? n iterations. The following cases are the only logically possible:
Casel.i> /.

Since Condition 2 is not satisfied for epokh— 1, we have that4;| < 2¢, and the total number of iterations
performed by the processes.h is at mostdn log n.
Case 2. i < fand|4;| < 2%

The total number of iterations performed by processes fignis at mostdn log® n.
Case 3.7 < fand|A4;| > 2%,

We show that this case actually cannot occur. Suppose to the contraiytias the integer such that;| > 2°.
Notice that during the epochs under consideration each processerecutes more tha%?» log? n iterations. This
is more than‘é—? log n iterations ini-layer, while reading registers of its neighborgin The neighbors in graphs,
are read in a circular fashion, hence fewer thar: |A;| processes from; may not read a register containing all the
initial values during its‘é—? logn consecutive iterations fromlayer. Recall that, by the definition of #-successful
epoch, the set of registers containing all the values is of a size at2east2’. The remaining processes frory
have read such a register and halted. This is a contradiction with the fact that all the proce$spsriiorm more
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than ‘;—” log? n iterations, and so more th&ﬁ log n iterations from an-layer, during the epochs considered. This
completes a proof that Case 3 cannot occur. X
It follows that the number of iterations during long epochs, startirig at 1 throughk, — 1, is less than

logn
|B| - dlog®n + Z 2dnlog®n < dnlog?®n + 2dnlog®n .
i=1

By Lemma 5, the last epochy contains at most5dn log® n iterations, and so the cost of all the long epochs, from
k¢ + 1 throughk, is at mostdn log? n + 2dnlog® n + 85dn log® n < 88dnlog® n, which completes the proof. [

By the end of epoctt,, at leasR‘*! processes collected all the values.
Lemma 10 Epochk, is 2¢+!-successful.

Proof: If Condition 1 is satisfied for epocky, then there is an integer> ¢ such than there are at ledsg> n i-heavy

epochs among short epochs in the pefipéd 1, . . ., k,, hence also at leakig? n i-stages from the beginning of epoch

k¢ + 1 to the end of epocfag. Now it is sufficient to apply Lemma 7 to thesstages and the assumptior: 1gn — 3.
Otherwise, Condition 2 is satisfied for epofqh for a respective numbeér> ¢. Let W denote a set of processes

such thafW| > 2! > 2 - 2¢, each process i’ has not completed collecting by the end of epégland it occurs

in at Ieastg—’} log n iterations in long epochs among those in the pefipd- 1, .. ., ke. We can consider suchsince

¢ < lgn— 1. Recall that the neighbors of a nodeif are read in a circular fashion. Fewer tfdn< |WW|/2 processes

from W may not read a register containing all the values durin%}ti&ogn consecutive iterations, by properties of

the expande€;. By the definition of &2¢-successful epoch, the set of registers containing all the values is of a size at

least2® > 2¢. There are at leastV|/2 > 2¢ of the remaining processes. Each of them has read such a register and

has recorded in its own register the complete set of values. |

Slow learners get informed inexpensively We now assess the work of fast and slow learners.

Lemma 11 The work accrued after the first iteration when at leagB processes collected all the initial values of
registers each, i€ (nlog® n).

Proof: Let 7 be the first. /8 successful epoch. L&t denote set of unsuccessful processes at the end of epéair
every non-successful processe P consider its firsRdn 1g? n iterations after the end of epoeh partitioned into
lgn — 2 intervals, whergth interval hasz% 1g? n iterations, for3 < i < lgn, and(lgn + 1)st interval contains
the remaining iterations. Note that we number intervals fBaimig n + 1. Let P;, for 3 < i < lgn, denote the set of
processes which are still unsuccessful after performingttmterval of iterations.

Claim. |P;| < n/2¢, for every3 < i <lgn.

Suppose, to the contrary, thd;| > n/2¢, for some3 < i < lgn. In theith interval each node € P; performed
at leastd2 1g n iterations from(lg n — 7)-layer, which means that it read all registers of its neighbors/iti-expander
graphG) ,—;. By expansion property of this graph and assumptidh> n /2 we have that less thary2’ processes
in P; did not read from register of previously successful process (there are ab@ast n/2¢ successful processes
after epochr). This is a contradiction, since there is a process P; which is successful by the end of itth interval.
This completes the proof of the claim.

It follows from the Claim that each process is successful by the end @fitsnterval. It also follows that the

work done by the moment where all processes are successful is a[ﬁiﬁ@tm -d2'1g* n < dnlg® n. O

Theorem 3 AlgorithmD-Collect solves any instance of the Collect problem of sizeith a total ofO(n log” n) read
and write operations.

Proof: Consider a numbef such thatd < ¢ < lgn — 3. If epochk, is 2¢-successful, for some > ¢, then we do
not need to consider progress achieved during the epodhséh which is actually an empty set. Let us assume that
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epochk, is not2¢+!-successful. The inequality,; < k, holds, by Lemma 10. The work accrued during the epochs
starting atk, + 1 throughk,; is at most

85dn log® n + 88dnlog® n < 90dnlogn ,

by Lemmas 8 and 9, for sufficiently large There are at modbdg n — 2 possible values of, hence the work spent by
the moment when at leasy'8 processes gathered all registers each is at most

logn - 90dn log® n + O(nlog®n) = O(nlog" n) .

By Lemma 11, the remaining work @ (n log® n), hence the total work i©(n log” n). O

6 Repeatable Collect

Repeatable Colleds an on-line dynamic version of thi@ollectproblem, and it was defined in [3, 7]. We modify the
(static) collect algorithm to obtain tHeepeatable Colledolution that we call algorithr®-ReCollect.

Algorithm D-ReCollect We obtain algorithnD-ReCollect by modifying algorithmD-Collect as follows.

Each process has atimestamphat consists of an array, of integers and an arrastumors,, of lists of rumors.
Initially, o, (v) is @ number of the current iteration, and(w) = 0 for everyw # v. Also initially rumors,(v)
contains only the current value of the registevpndrumors, (w) are empty lists, for ally # v.

The algorithm collects values by using different updating and selecting rules.

1. ltuses the listumors, (v), as the list of known rumars, to select a register according to permutation

2. If v reads a register ab according tas,, then it adds only the current value of this register, rather than all the
values of the other registers, as a rumornab all its listsrumors, (z), for all z.

3. If it reads a timestamp, from a register of some proeesaccording to permutation, ¢, then it updates its
o, andrumors, as follows, for every entry. If a,,(z) = a,(2) thenv setsrumors, (z) := rumors,(z) U
TUMOTS,y (2). If ayy(2) > a,(2) thenv setsrumors, (z) := rumors,,(z). Finally, o, (z) is set tomax{a, (2), au(2) }.

If we add some rumor of processto the listrumors, (z), but there is already some rumorwofhere, then we replace
the old one by the new one, so that each #igtnors,(z) contains at most rumors, each of a different process.
Process stops the current iteration exactly whesnors, (v) attains sizer.

Lemma 12 AlgorithmD-ReCollect is correct.

Proof: We need to show that each rumor storedimors, (v) is fresh. To show this we prove a stronger invariant:

in any state of execution, and for any active processasdw, if «, (v) = a,(v), then all the rumors in
rumors,, (v) are fresh according to.

We argue in terms of iterations, each consisting of three operations. We treak'tesce sequence of iterations that is
ordered by ends of iterations. Before the first iteration this is true, by initialization rules. Assume that invariant holds
by iterationr. We prove that it holds for iteration+ 1. Suppose that this is an iteration of procesn this iteration
v reads a register of some procesaccording tor, , and register of some’ according tar,,. Process may change
its list rumors,(z), for any process, depending which of the following cases is applicable.
Case 1: o, (2) = ay(2).

Process adds some new rumors fromumors,,(z). If additionally a..(z) = a,(z) then, by the invariant, those
added rumors are fresh, so the newnors,(z) contains only fresh rumors according 40 Otherwise we are safe
since the assumptiom, (z) = «.(z) in the invariant is not satisfied.

Case 2: ay(2) > ay(2).
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Process changesy,(z) := ., (z) and sets itsumors,(z) to berumors,,(z). If additionally a,(z) = a,(2)
then by the invariant those added rumors are fresh, so themewrs, (z) = rumors,,(z) contains only fresh rumors
according taz. Otherwise we are safe since the assumptipfr) = a.(z) in the invariant is not satisfied, where we
mean a neww, (z) = a,(2).

Case 3: proces adds the current value of registerwfto all lists rumors, (z), for eachz.

By a definition of freshness, this rumor is fresh according to any proce$e see this observe that it might be
non-fresh only if process had been activated during iterationt+ 1 between read and write operations of process
but thenz changed itsy. (z) flag. Such cases are irrelevant since the assumption in the invariant is not satisfied.

Hence the invariant, and by it the lemma, are proved. |

Complexity analysis We need to use a number of new or modified notions for the purpose of analysis of a dynamic
case. For instance, a process still busy in a iteration is simply catlidek to distinguish it from the processes that are
already pausing in the given iteration. We restrict our attention to active processes only. Define a runfoeesh be
according to active process if it has been read from the respective register of procesf$er the last activation of
proces. We call an epocla-successfuif there is a setd of processes of cardinality at leassuch that for every
v € A and any process, all the rumors in the listumors, (z) are fresh according te.

The main results of this section are as follows.

Theorem 4 AlgorithmD-ReCollect has collective latency @ (nlog” n).
Corollary 1 AlgorithmD-ReCollect has competitive latency 6?(log” n).

Proof: It follows from [3] that the competitive latency is at most the collective latency divided &yd plus 1, which
makes Theorem 4 directly applicable. |

7 Discussion

This paper presents a new deterministic algorithm forGbéect problem. The work upper bound of the algorithm
substantially improves on the best previously known results. Specifically, our algorithm is the first deterministic
algorithm with theworst-casework of O(n log” n) that exceeds the required linear work by only a polylogarithmic
factor, significantly improving on the best prior deterministic solution of Ajtai, Aspnes, Dwork, and Waarts [3].

Our solution is parameterized by graphs embedded in the code of the algorithm. The specific graphs used here are
not constructive, in the formal sense that time required to compute such graphs is polynomial in the maximum degree
andlog n. This is because our goal was to minimize the work complexity by means of the small exponent in the power
of log n.

To obtain a constructive solution, one can use the family-ekpanders in described by Ta-Shma, Umans, and
Zuckerman [41], yielding an algorithm with worst-case work@®@¢n polylogn). The polylogarithmic factor oc-
curring in such a bound can be obtained by taking the polylogarithmic factor, by whisipanders given in [41]
miss the lower bound/a for the maximum degree, and dividing it bygn. For completeness, we mention that
the degree ofi-expanding graphs in [41] ié)(%logg n), and hence the additional factor in the work bound of a
polynomially-constructible collect algorithm € (log® n), resulting in workO(nlog® n). A similar conversion ap-
plies for a polylogarithmic competitive latency bound of the online algorithm. The analysis in [41] shows that their
construction ofz-expanders is polynomial in. We use a family of such expanders, of a logarithmic size, for values
of a being consecutive powers of 2. Given the graphs as in [41], an additional time to build the neighborhoods of
graphs and sequences, as needed ilCtikectsolution, isO(n polylogn).

En routeto obtaining our solution, we introduced a gossiping game on graphs and analyzed it in terms of expansion
of the underlying graph. A corollary shows thadt expanders are fault-tolerant, in the sense captured by Theorem 2,
generalizing the result of Upfal [42] obtained for specific graphs.
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