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Abstract

The Collect problem for an asynchronous shared-memory system has the objective for the processors to learn
all values of a collection of shared registers, while minimizing the total number of read and write operations. First
abstracted by Saks, Shavit, and Woll [37],Collect is among the standard problems in distributed computing. The
model consists ofn asynchronous processes, each with a single-writer multi-reader register of a polynomial capac-
ity. The best previously known deterministic solution performsO(n3/2 log n) reads and writes, and it is due to
Ajtai, Aspnes, Dwork, and Waarts [3]. This paper presents a new deterministic algorithm that performsO(n log7 n)
read/write operations, thussubstantiallyimproving the best previous upper bound. Using an approach based on epi-
demic rumor-spreading, the novelty of the new algorithm is in using a family of expander graphs and ensuring that
each of the successive groups of processes collect and propagate sufficiently many rumors to the next group. The
algorithm is adapted to theRepeatable Collectproblem, which is an on-line version. The competitive latency of the
new algorithm isO(log7 n) vs. the much higher competitive latencyO(

√
n log n) given in [3]. A result of indepen-

dent interest in this paper abstracts a gossiping game that is played on a graph and that gives its payoff in terms of
expansion.
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1 Introduction

We consider a system in which asynchronous processes communicate by reading from and writing to shared-memory
registers. Coordination of multiple processes, in gathering values from a set of registers, or in writing values to a set
of registers, is among the fundamental cooperation problems in distributed computing. Two such problems have been
substantially researched in the past decade: theCollectproblem deals with reading the contents of a set of registers,
and theWrite-All problem deals with writing to a set of registers. For efficiency, the algorithms are structured so that
each process does not perform every read or write by itself. Instead, processes cooperate by sharing information about
partial progress. In the case ofCollect, they share the values of registers that have been already collected. In the case
of Write-All, they share the information about which registers have already been updated.

TheCollectproblem is stated forn processes, each owning a multi-reader single-writer register, initialized to some
private value. The goal of each process is to learn all these values. The problem is trivially solved by each process
performingn reads, which requires no cooperation and results inΘ(n2) reads in total. A potential for cooperation
stems from the fact that the initial value of a register can be distributed and stored in other registers, which act as
proxies in disseminating this value. A process accumulates values bycollecting them. To this end, it reads the
contents of another process’ register and adds any new information to the contents to its own register. Thus it should
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be possible for processes to perform a total number of reads that is significantly smaller thanΘ(n2). TheRepeatable
Collectproblem is a dynamic on-line counterpart ofCollect, in which an execution consists of iterations. A value of
a register is said to befresh for a collecting processv, if this value appears in the register after processv has been
activated to participate in the current iteration. Freshness of collected values is additionally required in a specification
of correctness.

TheCollectproblem was introduced by Shavit [38] and used by Saks, Shavit, and Woll [37]. ACollectprimitive
can be used to solve consensus [37], develop timestamps [19, 20, 21, 25, 38], or implement multi-writer registers [30,
43]. Ajtai, Aspnes, Dwork, and Waarts [3] and Aspnes and Hurwood [7] consider theRepeatable Collectproblem, in
which processes perform a sequence of collects, each time fresh values need to be learned.

Summary of previous research.We now briefly state the results on previous work-efficient solutions for theCol-
lect problem (a detailed discussion of the background and other related work concludes this section). Efficiency of
algorithms in the considered setting is commonly measured in terms ofwork that accounts for all read/write instruc-
tions performed by the processes in solving a problem. The best deterministic solution forWrite-All [5] attains work
O(n1+ε), for any fixedε > 0. An adaptation of this algorithm to theCollect problem [3] has workO(n3/2 log n),
giving the best known deterministic upper bound. In both cases, the gap between the best known deterministic upper
and lower bounds is asymptotically bigger than a polylogarithmic factor. A lower boundΩ(n log n) on work was
stated in [3]. Randomized solutions toCollect, like in [7], andWrite-All, like in [33], exceed linear work by a polylog
factor. These randomized solutions have been analyzed in terms of work against theobliviousadversaries only, and
this is too weak to enable the probabilistic method to yield a deterministic solution with a comparable performance.

The competitive latency of deterministicRepeatable Collectin [3] is O(
√

n log n), while for the oblivious ran-
domizedRepeatable Collectthe latency isO(log3 n) [7].

Our results. The summary of the contributions is as follows.

I. We develop a deterministic algorithm that solves theCollect problem of sizen usingO(n log7 n) reads and
writes against any adversary that controls interleaving of events at processes. Ours is the first deterministic
solution that exceeds the required linear work lower boundΩ(n) by only apolylogarithmicfactor. The best
previous deterministic solution is given by Ajtai, Aspnes, Dwork, and Waarts [3], and it has apolynomial
overhead, resulting in workO(n3/2 log n).

II. We extend our static algorithm forCollect to solve theRepeatable Collectproblem. The competitive latency
of this algorithm isO(log7 n), which is an improvement over apolynomialboundO(n1/2 log n), the best
competitive latency known before, given in [3].

III. Our Collect solution is analyzed by interpreting the flow of information as a rumor-spreading process. To
measure the efficiency of this process, we introduce a gossiping game on graphs and analyze its properties in
terms of the expansion of the underlying graph. This allows us to obtainworst-case guaranteeson a rate of
spreading a rumor. This result is of an independent interest, with a potential of applications to gossip-based
algorithms, like those given in [15, 16, 22], and to fault-tolerance of expanders, following an approach first
proposed by Upfal [42].

The novelty of our approach is in analyzing the worst-case behavior of adeterministicprocess of spreading ru-
mors. To circumvent technical obstacles inherent in such analysis, we structure the process to mimic proliferation
of information along the edges of an expander graphs, as nodes forward knowledge to their neighbors. We develop
tools to estimate the rate of flow of information in such a deterministic rumor-spreading process in expanders. The
only previous method to obtain a deterministic sub-quadratic solution, as applied in [3], relied on aWrite-All solution
from [5], which is based on a set of permutations of a low contention. Another approach, of [7], relied on analyzing
Collect in terms ofrandomizedrumor spreading against the oblivious adversary.

The model of computation. For theCollect problem in the shared-memory model we consider the setting withn
asynchronous processes, where there is a multi-reader single-writer register associated with each process. A process
executes a sequence of steps, where each step includes a constant-time local computation, and either a read from an
arbitrary register or a write to the process’ own register. Reads and writes of registers are the only externally-visible
operations. An algorithm specifies how the next read operation depends on the set of processes whose registers’ values
have been already learnt. An asynchronous execution of an algorithm depends on the timing of events. An execution
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can be represented by means of an externally-visibletrace, specified as an infinite sequenceF = 〈p0, p1, p2, . . .〉,
where eachpk is a process identifier. Thekth event in the trace is the currently pending read or write operation of
the process with the identifierpk. We consider fair executions, determined by traces in which the identifier of each
process occurs infinitely often (see [31]).

The efficiency of algorithms solving theCollect, Repeatable CollectandWrite-All problems can be measured in
terms of time, in terms of the total number of read and write operations, or in terms of competitiveness. The main
performance metric we use here iswork, defined as the total number of reads and writes in an execution. Given an
infinite traceF , the work performed in an execution is equal to the sum, over all the processes, of the number of
occurrences of the process identifier by the time the process completes its computation according to the algorithm.

Thecompetitive latencyof a distributed algorithm is defined by Ajtai, Aspnes, Dwork, and Waarts in [3] to be the
ratio of the amount of work that the algorithm performs on a particular sequence of collects to the work by the best
possible distributed algorithm performing these collects given the same trace. The paper [3] also definescollective
latencyat a point in time to be the worst-case work required to complete a set of collects that are in progress. They
show that ifL is a bound on the collective latency of a distributed algorithm thenL/n+1 is a bound on the competitive
latency of the algorithm.

Additional background. The Collect problem was introduced in [37, 38]; subsequent literature includes [2, 3,
6, 7, 8, 9]. Saks, Shavit, and Woll [37] consider an asynchronous rumor-spreading-like algorithm to solveCollect
where each participating process chooses the next register to be read at random. They gave the expected time bound
of O(log2 n/(log n − log f)). Ajtai, Aspnes, Dwork, and Waarts [3] showed how to adapt theWrite-All algorithm
of Anderson and Woll [5] to a solution ofCollect that performsO(n3/2 log n) read/write operations; both of these
algorithms are not constructive.

It is often useful to interpret asynchronous computation by referring to an adversary, who controls the timing of
processes and the fairness of an execution. A precise definition of the power of the adversary is especially significant
for randomized solutions forCollectandWrite-All. If the adversary is required to determine, prior to the start of an ex-
ecution, the order in which the events are enabled at processes, then such a weak adversary is calledfully oblivious.An
intermediatecontents-obliviousadversary does not have access to the random bits generated locally by the processes,
until these bits are written to a register. Aspnes and Hurwood [7] considered a rumor-spreading game in which a step
results in the transfer of knowledge between a pair of processes. Each time a process is enabled for such a transfer,
it selects some other process to contact at random. They show that a game completes withO(n log2 n) operations
with high probability, if the adversary is content-oblivious. They applied this result to analyze a randomizedCollect
solution that takesO(n log3 n) reads and writes with high probability against the same adversary. The randomized
algorithm given in [7] is also analyzed in terms of its competitiveness.

Competitive analysis is concerned with the comparison of the cost of a given algorithm to the cost of an optimal
algorithm. It was introduced by Sleator and Tarjan [40], and applied in distributed computing by Ajtai, Aspnes,
Dwork, and Waarts [3], Awerbuch, Kutten, and Peleg [11], Bartal, Fiat, and Rabani [13], and Georgiou, Russell, and
Shvartsman [23].

An algorithm isadaptiveif its complexity depends only on the number of participating processes. Such algorithms
for Collect are given by Afek, Stupp, and Touitou [2] and Attiya, Fouren, and Gafni [8]. Solutions toRepeatable
Collectcan be used to implement atomic snapshot objects — these are shared objects that allow concurrent reads of
segments that are individually written by the participating processes. Such objects have been studied in a variety of
settings, for instance by Afeket al. [1], Anderson [4], Aspnes and Herlihy [6], and Attiya and Rachman [10].

Other related work. Collect may be implemented on top of processes that disseminate information, similar to an
epidemic spreading of gossip. Such processes have been studied in applied mathematics [12]. Randomized rumor-
spreading algorithms have been investigated by Karp, Schindelhauer, Shenker, and Vöcking [28]. Harchol-Balter,
Leighton, and Lewin [24] considered the problem of information exchange when the nodes do not initially know each
other, and where gossiping is used for node discovery. Demerset al. [18] developed epidemic-like algorithms for
updating data bases, where the nodes periodically choose other nodes at random and convey the rumors. Kempe,
Kleinberg and Demers [29] gave a gossip-style algorithm in which the nodes learn about the nearest resource location.
Van Renesse, Minsky, and Hayden [44] showed how to use gossip to gather information about the occurrence of
failures. Chlebus and Kowalski [16] studied gossiping in synchronous networks prone to node failures, and developed
algorithms that are both time- and message-efficient. They showed how to apply their gossiping solutions to solve
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a consensus problem. This was extended by Georgiou, Kowalski, and Shvartsman [22] and applied to a problem of
performing independent tasks.

TheCollect problem is related to theWrite-All problem, introduced by Kanellakis and Shvartsman [26].Collect
is normally considered when registers are large, typically polynomial inn, to be able to store the original values of
all registers. In contrast, solutions toWrite-All are expected to use shared atomic registers of a small size, possibly
even constant. There is a large body of literature on fault-tolerant PRAM simulations, most of it based on solutions to
Write-All, see [17, 27, 32, 33, 39]. Buss, Kanellakis, Ragde, and Shvartsman [14] gave a lower boundΩ(n log n) on
work and developed a deterministic algorithm with workO(nlog2 3). A deterministic algorithm of Anderson and Woll
[5] attains workO(n1+ε), for any constantε > 0. The randomized algorithm of Martel, Park, and Subramonian [33]
performs workO(n) with high probability onn/ log n log∗ n processors. The probability estimates assume the fully
oblivious adversary.

Our algorithm forCollect uses graphs with good expansion properties. If expanders are selected randomly, then
they have the required expansion properties with high probability. A randomizedCollect solution could operate by
first selecting an expander at random, then proceeding as in the generic algorithm defined in Section 3. This results
in a randomized algorithm efficient against the adaptive adversary with high probability (see also [7]). Alternatively,
such expanders may be found by an exhaustive search, in exponential time. Constructive expanders that are best
for our purposes, were given by Ta-Shma, Umans, and Zuckerman [41], who improved the previous construction of
Reingold, Vadhan, and Wigderson [36]. The term “constructive” here means that the neighborhood of a node can be
found in time that is polynomial in the maximum degree of the graph and polynomial inlog n. The maximum degree
of a-expanders in [41] misses the lower boundn/a by a polylogarithmic factor.

Document structure. The rest of the document is structured as follows. In Section 2 we discuss expanders and
introduce the gossiping game. In Section 3 we present ourCollect algorithm. The analysis is given in Sections 4
and 5. In Section 6 we treat theRepeatable Collectproblem. We conclude in Section 7.

2 Expanders and gossiping game

Processes communicate by reading and writing shared registers. The communication patterns of our algorithm are
based on suitable expander graphs. Such graphs have good connectivity properties and can be defined in many equiv-
alent ways, see for instance [36, 41, 45]. Following Pippenger [35], we define ana-expander,for a positive integera,
to be a simple graphG = (V,E) with |V | = n ≥ a nodes such that ifW1 andW2 are any sets of nodes, each of a size
at leasta, then there is a nodev1 in W1 and another nodev2 in W2 such that{v1, v2} is an edge inE.

Fact 1 For every sufficiently large constantd > 0, and any positive integersa and n, with a < n, there exists an
a-expander withn nodes and of a maximum degree at most(dn lg n)/a.

Fact 1 is proved by a standard probabilistic argument, e.g., as given first by Pinsker [34]. If we refer to specific
a-expanders of a maximum degree(dn lg n)/a, that exist by Fact 1, then we assume that both the numbersa andn
are powers of2. (The notationlg x stands for the binary logarithm ofx throughout the paper.)

For a set of nodesX in a graphG, the notationNG(X) denotes the set of all neighbors of nodes inX; whenG is a
directed graph then we mean in-neighbors. IfX is a singleton, sayX = {v}, thenNG(X) is denoted asNG(v). The
set of all nodesw such that there is a path of length at mosti in graphG from the nodew to some node inX is denoted
N i

G(X), for a positive integeri. Formally, letN1
G(X) = NG(X), and defineN i+1

G (X) = NG(N i
G(X)) ∪ N i

G(X)
recursively.

A gossiping gameis determined by two numbersn anda, wherea ≤ n/4. Suppose thata andn are both powers
of 2, to avoid rounding notation. An instance of a play consists of two moves. Our move determines a simple graph
G = (V,E) with |V | = n. The opponent is asked to specify a sequence〈V0, . . . , Vlg n−1〉 of sets of nodes ofG, each
of a size3a. These sets do not need to be different or disjoint. To define the payoff function, we first construct an
auxiliary directed graphH. The nodes ofH are these nodes ofG that are in

⋃lg n−1
i=0 Vi. The directed edges ofH are

pairs〈v, w〉 that correspond to these edges{v, w} ∈ E for which there exist numbers0 ≤ i < j ≤ lg n− 1 such that
v ∈ Vi andw ∈ Vj . Thepayoff setX consists of these nodesx in Vlg n−1 for which there are more than2a nodes
y ∈ V0 such that for each suchy there is a path inH from y to x and of length at mostlg n − 1. In other words, the
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payoff setX consists of all the nodesv of Vlg n−1 for which the inequality|N lg n−1
H (v) ∩ V0| > 2a holds. Thepayoff

of an instance of a game is defined to be the size|X| of the payoff setX. The opponent strives to minimize the payoff
while giving the sequence〈V0, . . . , Vlg n−1〉.

The intuition behind this definition is as follows. A sequence〈V0, . . . , Vlg n−1〉 of sets, each of a size3a, models
the history of a computation. The setVi contains the nodes that send a message to all their neighbors at some phase
i of computation. The goal of the opponent is to find a sequence〈V0, . . . , Vlg n−1〉 in a given communication graph
such that as few as possible nodes in the last setVlg n−1 gather a significant amount2a of the initial information stored
in the first setV0.

We analyze the gossiping game for an arbitrarya-expanderG = (V,E), where|V | = n. Let a sequence〈Vi〉, for
0 ≤ i ≤ lg a + 1, consist of subsets ofV , and|Vi| = 3a for each0 ≤ i ≤ lg a + 1.

Suppose that graphG is ana-expander. For a setW of nodes ofG, if |W | ≥ a, then|NG(W )| > n− a. We may
strengthen this byrelativizing to a subsetU ⊆ V of nodes: ifU andW are two sets of nodes ofG, each of at least
a elements, then the following inequality holds:

|NG(W ) ∩ U | > |U | − a .

Lemma 1 If 0 ≤ i ≤ lg a and a setW ⊆
⋃lg a+1

j=lg a+1−i Vj has size at leasta, then the setNH(W ) ∩ Vlg a−i is of a
size larger than2a.

Proof: For every edge{v, w} ∈ E between the nodesv ∈ Vlg a−i andw ∈ W , a directed edge〈v, w〉 is in graphH,
becausew ∈ Vj for somej > lg a − i. By relativizing toVlg a−i, we obtain that the setNG(W ) ∩ Vlg a−i has size
larger than3a− a = 2a. Thus also inH the inequality|NH(W ) ∩ Vlg a−i| > 2a holds. �

Lemma 2 If a setW ⊆ Vlg a+1 has size at leasta, then there exists a nodew ∈ W such that the setN lg a+1
H (w) ∩ V0

is of a size larger than2a.

Proof: The setNH(W ) = NG(W ) ∩ Vlg a has size larger than2a, by Lemma 1. Hence, by the pigeonhole principle,
there is a setW1 ⊆ W of a sizea/2 such thatNH(W1)∩ Vlg a is of a size larger thana. We will extend this argument
to show the existence of sets of nodesWi ⊆ Vlog a+1 for i = 1, . . . , lg a, with the following properties: (a)|Wi| = a

2i ,
and (b)|N i

H(Wi) ∩ Vlog a+1−i| > a.
This can be done inductively. The setW1 has just been shown to exist. Suppose we have a setWi with the required

properties (a)-(b), fori < lg a. Apply Lemma 1 toW = N i
H(Wi) to obtain that|N i+1

H (Wi) ∩ Vlg a+1−(i+1)| > 2a.
By the pigeonhole principle, there is a setWi+1 ⊆ Wi such that|Wi+1| = |Wi|/2 and the inequality|N i+1

H (Wi+1) ∩
Vlg a+1−(i+1)| > a holds. The setWlg a is comprised of a single elementw ∈ W , the setN lg a

H (w)∩V1 has size larger

thana, and hence, by Lemma 1, the setN lg a+1
H (w) ∩ V0 is of a size larger than2a. �

Lemma 3 There is a setZ ⊆ Vlg a+1 such that|Z| > 2a and for everyv ∈ Z the inequality|N lg a+1
H (v) ∩ V0| > 2a

holds.

Proof: We will show that there are setsZi, for i = 1, . . . , 2a + 1, with the following properties:
(a) |Zi| = i;
(b) for eachv ∈ Zi the inequality|N lg a+1

H (v) ∩ V0| > 2a holds.
We proceed inductively. By Lemma 2, withW = Vlg a+1, there is a nodew ∈ W such that|N lg a+1

H (v) ∩ V0| > 2a.
Let us setZ1 = {w}. Suppose we have a setZi, for somei < 2a + 1, with the required properties (a)-(b). We show
how to extendZi to Zi+1 with the properties (a)-(b). Notice that the setVlg a+1 \ Zi has size at leasta. Lemma 2
applied to this set yields a nodew ∈ Vlg a+1 \ Zi such that|N lg a+1

H (w) ∩ V0| > 2a. DefineZi+1 to beZi ∪ {w}, it
has the properties (a)-(b). Finally, we may setZ = Z2a+1. �

Theorem 1 If the underlying graph is ana-expander, fora ≤ n/4, then payoff in a gossiping game is always larger
than2a.
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Proof: Let Z be as in Lemma 3. Ifa = n/4, thenlg a + 1 = lg n − 1 and the setZ is included in the payoff set.
Consider the casea < n/4, then lg a < lg n − 1. Let X ⊆ Vlg n−1 be the payoff set. Suppose, to the contrary,
that |X| ≤ 2a. Then|Vlg n−1 \ X| ≥ a. By the expansion property, there is an edge〈v, w〉 in H with v ∈ Z and
w ∈ Vlg n−1 \X. Sincev ∈ NH(w), the following inclusions hold:

N lg a+1
H (v) ∩ V0 ⊆ N(N lg a+1

H (v)) ∩ V0 ⊆ N lg n−1
H (w) ∩ V0 .

The size ofN lg a+1
H (v) ∩ V0 is larger than2a, becausev ∈ Z, hencew ∈ X, which is a contradiction withw ∈

Vlg n−1 \X. �

The following fact is of independent interest. It is a generalization of a result by Upfal [42, Lemma 2], that was
applied in [42] to an agreement problem. See also [15, 16, 22] for other extensions and applications.

Theorem 2 Let G be an a-expander. For any setY of at least3a nodes ofG there is a setZ ⊆ Y of a size at
least2a + 1 such that the subgraph ofG induced byZ is of a diameter at most2 lg a + 2.

Proof: Let us setVi = Y , for i = 0, . . . , lg a + 1, in the gossiping game. LetZ ⊆ Vlg a+1 = Y be a set that exists by
Lemma 3. Consider two nodesz1 andz2 in Z. Eachzi, for i = 1, 2, is of distancelg a + 1 from all the nodes in a set
Xi ⊆ V0 of a size at least2a + 1. Since|V0| = 3a, the intersectionX1 ∩X2 is nonempty. Let some nodev be in both
Xi, for i = 1, 2. GraphH is a directed one, with the edges corresponding to edges ofG. The distance fromz1 to z2

in G is at most the distance fromz1 to v in H plus the distance fromv to z2 in H, which is at most2 lg a + 2. �

Theorem 2 can be interpreted in terms of fault-tolerance properties of networks with good expansion properties: if
few nodes fail, then what remains contains a subnetwork of many nodes that can communicate in logarithmic timeonly
among themselves.Notice that Theorem 2 relies on expansion ofG only, the node degrees inG are not mentioned.

3 The Collect algorithm

We start by fixing a sequence of graphsG`, for ` = 0, . . . , lg n − 1. EachG` hasn nodes and is a2`-expander of
a maximum degree at mostd n

2` lg n, for some fixed constantd > 0. Existence of such a sequence of graphs follows
from Fact 1. The value of constantd is determined in the course of analysis. The graphG0 is a complete graph ofn
nodes. Processes interpret the nodes in these graphs as IDs of processes and their corresponding registers.

A processv uses sequencesπv,0, . . . , πv,lg n−1, whereπv,` is an arbitrary permutation of all the neighbors ofv
in G`. Let sv,` denote the degree ofv in G`. Each sequenceπv,` containssv,` different registers, for0 ≤ ` ≤ lg n−1,
andsv,` ≤ dn

2` lg n. Processv uses also a sequenceσv, which is a permutation of all the registers except for the
register ofv. The sequenceσv is obtained by first concatenating all sequencesπv,ln n−1, . . . , πv,0, and then pruning
the multiple occurrences of a register, while leaving only the first one. We refer to the segment ofσv containing the part
of the original permutationπv,`, but without multiple occurrences, as the`-part of σv, for every` = 0, 1, . . . , lg n−1.

Algorithm D-Collect has graphG` and permutationsσv and πv,` embedded into the code of each processv.
Processv initializes all α` to 0, and eachsv,` is set to the degree ofv in graphG`. The control structure of the
algorithm is in Figure 1. The main part of the algorithm is structured as the outer repeat-loop that iterates the inner
for-loop of lg n−3 steps. During thèth iteration of the inner loop, for1 ≤ ` ≤ lg n−3, while in the course of theith
iteration of the outer loop, the processv performs the following two read and one write operations. It reads from the
registerπv,` (i mod sv,`), next it reads from the first register in the ordering of the sequenceσv whose contents have
not been learnt yet. Then the processv adds the newly read information to its own register.

We will use the following terminology to describe an execution of any instantiation of the algorithm for a specific
traceF . A positiondenotes the numberk of the current event occurring at processpk, as determined by the traceF =
〈pk〉k≥0. An iterationdone by a process denotes a single iteration of the innerfor loop in in Figure 1, during which it
performs two reads and one write and modifies its local state according to the outcome of the reads. The`th iteration
of the inner loop in theith iteration of the outer loop is the(i, `)-iteration. All the (i, `)-iterations are said to make the
`-layer, for each̀ such that1 ≤ ` ≤ lg n−3. The algorithmD-Collect is structured in such a way that a process reads
the registers of its neighbors in graphs in a circular fashion. More precisely, during anydn

2` lg n consecutive iterations
in an`-layer every processv reads registers of all its neighbors inG` at least once.
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repeat
for ` = 1 to lg n− 3 do

set α` = α` + 1 mod sv,`

read registerπv,` (α`)
read first register inσv whose value is not known byv
write all the new information read to the register ofv

until original register values are stored in the register ofv

Figure 1: The main loop ofD-Collect for processv.

4 Epochs and stages

An execution of algorithmD-Collect is determined by a specific traceF . We define partitions of traces into segments,
to facilitate measuring progress of collecting. This also results in the respective partitions of executions, and we refer
to these segments interchangeably. An execution consists of events. Disjoint segments of consecutive events are called
epochs. Epochs are grouped into`-segments, for a number parameter`. Details follow.

We partition the trace into consecutiveepochs. The position when thekth epoch ends is denoted byτk. The
sequence of positions〈τk〉k≥0 is defined inductively as follows. The positionτ0 is set to0. Suppose that we have the
kth epoch already defined, by some positionτk. For each positionµ > τk, and everỳ such that1 ≤ ` ≤ lg n − 3,
consider a setT`(µ) consisting of these processesv thatv performs at least7dn

2` lg2 n and less than14dn
2` lg2 n iterations

after positionτk and up to the positionµ. Let T0(µ) be a set consisting of these processesv thatv performs at least
7dn lg2 n iterations by positionµ. Defineτk+1 to be the minimum positionµ afterτk such thatT0(µ) 6= ∅, if suchµ
exists, otherwise it is the biggest`, among1 ≤ ` ≤ lg n − 3, such that|T`(µ)| ≥ 3 · 2`. Accordingly,Tk+1 denotes
the setT`(τk+1), where` is the biggest index such that1 ≤ ` ≤ lg n− 3 and|T`(τk+1)| ≥ 3 · 2`, provides there is at
least one such an index`, otherwiseTk+1 denotes the setT0(τk+1). If the former case applies, thenTk+1 is of a size
(at least)3 · 2`, for 1 ≤ ` ≤ lg n − 3, then thekth epoch is said to bè-heavy. In the latter case, the setTk+1 is of a
constant size at most5, and the epoch is said to be0-heavy.

Lemma 4 The epochs are well defined.

Proof: Induction on the number of epoch. Suppose that the positionτk, for somek ≥ 0, is well defined. We show that
τk+1 exists. By fairness of the execution, there is a positionµ > τk such that the setT0(µ) is nonempty. Thusτk+1 is
a minimum taken from a nonempty set of nonnegative integers. �

Lemma 5 At most85dn lg3 n iterations are performed during one epoch, for sufficiently largen.

Proof: Consider an epochk. LetX(`), for 0 ≤ ` ≤ lg n− 3, denote the set of all the processesv such thatv performs
at least7 3dn

2` lg2 n and less than14 3dn
2` lg2 n iterations during epochk. LetX(log n−2) be the set of processesv such

thatv performs less than14 3dn
2lg n−2 lg2 n iterations during epochk.

The setsX(`) are all pairwise disjoint, because the ranges in their definitions are such. Every process performs
less than14 · 3dn lg2 n iterations in one epoch, because otherwise this epoch would have concluded earlier, as soon
as each process performed7 · 3dn lg2 n iterations during that epoch. We obtain that the equality|

⋃lg n−2
`=0 X(`)| = n

holds.
Claim. The inequality|X(`)| < 2`+1 holds, for everỳ such that1 ≤ ` ≤ lg n− 3.

Suppose, to the contrary, that|X(`)| ≥ 2`+1. Then there is a setY ⊆ X(`) of a size2`+1 such that every process
v ∈ Y performs at least7 3dn

2` lg2 n−1 ≥ 7 3dn
2`+1 lg2 n iterations by positionτk −1, by properties of the nodes inX(`).

It follows from the definition of epochk thatτk ≤ τk − 1, which is a contradiction, and this proves the claim.
Since all setsX(`) are pairwise disjoint and every process is in some setX(`), the number

lg n−2∑
`=0

|X(`)| · 14
3dn

2`
lg2 n (1)
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is an upper bound on the number of all the iterations in epochk. We have clearly that|X(0)| ≤ 5 and|X(lg n−2)| ≤ n.
Hence the number given by (1) can be upper-bounded by

5 · 14 · 3dn lg2n + n · 14
3dn

2log n−3
lg2n +

lg n−3∑
`=1

2`+1 · 14
3dn

2`
lg2n .

The first two terms areO(n log2 n) and the third term is less than84dn lg3 n, if n ≥ 27. �

Now we definè -stages,for any` between 0 andlg n− 3. An `-stage consists of a segment of consecutive epochs,
possibly of only one epoch. Suppose that epochx is the last one in thekth `-stage. Then(k + 1)th `-stage starts at the
beginning of epochx + 1 and ends at the end of the first epochy > x for which the number of processesv, such that
v performs at least7dn

2` lg2 n iterations from epochx + 1 through epochy, is at least3 · 2`, if ` > 0; otherwise it is at
least 1. All`-stages are well defined, since every process performs infinitely many iterations in a trace.

The impact of onè -stage, in terms of work performed by some group of processes of size3 · 2`, is similar to
the impact of onè-heavy epoch. An advantage to consider epochs is that the work done by some processes may be
larger during one stage than during one epoch. An advantage of considering stages is that this allows to partition the
execution intò -stages, which is not always possible for`-heavy epochs. Hence, to estimate collecting by some3 · 2`

processes, we may use stages, but to analyze the algorithm globally, one may use epochs, so as not to overestimate
the work (see Section 5). These two approaches can be combined because in the period whenk `-heavy epochs occur
there are also at leastk `-stages (see Lemma 10).

We will use the following notation and terminology regarding the notion of a stage. A process isproductive in the
kth `-stageif it performs at least7dn

2` lg2 n iterations during this stage, for1 ≤ ` ≤ lg n − 3. There are at least3 · 2`

processes that are productive for thekth ` stage; letS`(k) be a set containing3 ·2` of them. Note that if7dn
2` lg2 n ≥ n,

then during`-stagek every productive process collects the values of all registers, using7dn
2` lg2 n reads (iterations)

according to permutationσv, becauseG0 is a complete graph. We show that, if7dn
2` lg2 n < n, then every productive

process in thè-stage number1 + ` lg n knows the values of all registers.
Consider consecutivè-stages. For every processv productive in thekth such stage, the firstdn

2` lg n iterations in
a `-layer are calledlearning iterations. Every iteration from aǹ-layer, which is not a learning iteration, is called a
promoting iteration. Notice that during onè-stagek every productive process performsdn

2` lg n learning iteration,
and at least6dn

2` lg n promoting iterations. This is because in every`-stage there are at least7dn
2` lg n iterations from

an `-layer. Learning iterations are used to get to know the information acquired during`-stages. They are efficient
because of good expansion properties of graphsG` hardwired into the algorithm. The promoting iterations are to
complement this by utilizing the permutationsσv.

In the proof of the following Lemma 6 we apply the machinery of gossiping games to graphsG`. Let v be a
process inS`(k) and letRv,`(k) consists of those productive processes inS`(k − lg n + 1) whose registers by the
end of the`-stagek − lg n + 1 are all collected byv during the learning iterations iǹ-stagek. This processv is
a (`, k)-learner if |Rv,`(k)| ≥ 2

3 |S`(k − lg n + 1)|; which means that processv has read at least2`+1 registers of
processes inS`(k − lg n + 1) during its learning iterations of̀-stagek.

Lemma 6 For every`-stagek, wherek ≥ lg n, the number of(`, k)-learners inS`(k) is larger than2
3 |S`(k)|.

Proof: We consider an instance of the gossiping game determined by the graphG` and the setsVi = S`(k−lg n+1+i),
for 0 ≤ i ≤ lg n− 1. GraphG` is ana-expander witha = 2`. The sizes|Vi| of the setsVi are all equal to3 · 2` = 3a.
A payoff set in this case consists of those processes inS`(k) who are(`, k)-learners. By Theorem 1, the payoff of the
game is larger than2a = 2`+1 = 2

3 |S`(k)|. �

We say that a registerr is unknown to the processv at an event in an execution, if the initial value ofr is not
included in the register owned byv prior to this event, otherwisev knowsthe registerr.

Lemma 7 For every`, where1 ≤ ` ≤ lg n − 3, there exists a setA ⊆ S`((` + 1) lg n) of a size2`+1 such that
every processv in A knows all the registers at the end of`-stage(` + 1) lg n, in any fair execution of the algorithm
D-Collect.
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Proof: Consider̀ -stagek and setW ⊆ S`(k); whenW = {v}, then we writev rather than{v}. We will use the
following notation:

• U(k,W ) denotes the set of registersr such thatr is unknown tosomeprocessv in W at the end of̀ -stagek.
We also use the notationu(k,W ) = |U(k, W )|.

• U∗(k,W ) denotes the set of registersr such thatr is unknown toeveryprocess inW at the end of̀ -stagek.
We also use the notationu∗(k, W ) = |U∗(k, W )|.

• Ū(k, W ) denotes the set of registersr such thatr is unknown tosomeprocessv in W at the end of thelast
learning iterationof `-stagek. We also use the notation̄u(k,W ) = |Ū(k,W )|.

• Ū∗(k, W ) denotes the set of registersr such thatr is unknown toeveryprocess inW at the end of thelast
learning iterationof the`-stagek. We also use the notation̄u∗(k,W ) = |Ū∗(k,W )|.

We may assume thatn ≥ 4. Consider a traceF . Notice that at the end of a iteration, the knowledge of processv
about the other registers is always recorded in its register, as guaranteed by the write operation performed at the end
of every iteration. Consider the first` lg n + 1 `-stages of traceF .

We show that the following invariant holds after each`-stagei lg n + 1, for i = 0, . . . , `:

there exists awitness setW ⊆ S`(i lg n + 1) of
a size greater than2`+1 such that for everyB ⊆
W of a size at least2`, the inequalityu∗(i lg n+
1, B) < 2`−i holds.

Proof of the invariant for i = 0. One needs to show that after`-stage1 we haveu∗(1, B) < 2`, for every set
B ⊆ S`(1) such that|B| ≥ 2`.

During the first̀ -stage we consider only the read operations performed by processesv ∈ B in promoting iterations
in `-layers according to permutationsσv. By definition of`-stage, everyv ∈ B ⊆ S`(1) performs at least6dn

2` lg2 n
of such operations. By definition ofσv, everyv ∈ B reads registers of all its neighbors in graphG`, during`-stage1.
SinceG` is a2`-expander and|B| ≥ 2`, we obtain|NG`

(B)| > n− 2`, and henceu∗(1, B) < 2`.

Proof of the invariant for 0 < i ≤ `. Suppose that the invariant holds for all the integers up to0 ≤ i− 1 < `− 1.
We prove the invariant fori. It follows from Lemma 6 fork = i lg n + 1 that there is a setZ ⊆ S`(i lg n + 1)
containing(`, i lg n + 1)-learners and such that|Z| > 2`+1. It follows that for every processv ∈ Z we have

ū∗(i lg n + 1, v) ≤ u∗((i− 1) lg n + 1, Rv,`((i− 1) lg n + 1)) ,

where the subsetRv,`((i− 1) lg n + 1) ⊆ S`((i− 1) lg n + 1) is of a size greater than2`+1. We show that setZ can
be taken as a witness setW in the invariant fori.

Let W̄ ⊆ S`((i− 1) lg n + 1) be a witness in the invariant fori− 1. We have that

Rv,`((i− 1) lg n + 1) ∩ W̄ ⊆ S`((i− 1) lg n + 1)

and that|Rv,`((i − 1) lg n + 1) ∩ W̄ | > 2`, for every processv ∈ Z. By the invariant fori − 1, we have that the
following bounds

ū∗(i lg n + 1, v)≤ u∗((i− 1) lg n + 1, Rv,`((i− 1) lg n + 1) ∩ W̄ )
≤ 2`−i+1

hold for everyv ∈ Z. Consider anyB ⊆ Z of a size2` and a processv ∈ B and its pattern of reads during its
promoting iterations while iǹ-stage of numberi lg n + 1. We restrict our attention only to read operations performed
by processesv ∈ Z in the iterations iǹ -layers according to permutationsσv. By the definition of̀ -stage, everyv ∈ B
performs at least6dn

2` lg2 n such operations: at least7dn
2` lg2 n− dn

2` lg2 n iterations are promoting, and in one iteration
we perform one read according toσv. Everyv ∈ B can read only registers from

U = U∗((i− 1) lg n + 1, Rv,`((i− 1) lg n + 1) ∩ W̄ ) ,

9



whose size is at most2`−i+1. We need to prove that|U∗(i lg n + 1, B)| < 2`−i.
Suppose to the contrary thatU∗ = U∗(i lg n + 1, B) is of a size at least2`−i. Consider setU \ U∗. Notice that

U∗ ⊆ U , hence|U \ U∗| ≤ 2`−i. It follows from the definition of setB that the total number of reads of registers
from U \ U∗ performed by processes fromB during their promoting iterations is at least

|B| · 6dn

2`
lg2 n = 6dn log2 n . (2)

Claim 1. Suppose that a setXj ⊆ B, for everyj = 1, . . . , ` − i, contains every processv ∈ B that has read all its
neighbors in graphGj as governed by the permutationσv by the end of the promoting iterations of`-stage numbered
i lg n + 1. Then|Xj | < 2j , for any suchj.

Suppose, to the contrary, that, for some1 ≤ j ≤ `− i, the setXj is of a size at least2j . Thenu∗(i lg n+1, Xj) <
2j ≤ 2`−i, and henceu∗(i lg n + 1, B) ≤ u∗(i lg n + 1, Xj) < 2`−i, which is a contradiction with|U∗| ≥ 2`−i. This
proves of Claim 1.

Claim 2. Let Yj ⊆ (U \U∗) contain every registerv ∈ (U \U∗) that has been read by at least3dn
2j log n but less than

6dn
2j log n processes fromB, while reading according to the permutationσv during the promoting iterations of`-stage

numberi lg n + 1, for everyj between 1 and(`− i− 1). Then|Yj | ≥ 2j for some among these values ofj.
Suppose to the contrary that for everyj such that1 ≤ j ≤ `−i−1, we have|Yj | < 2j . Recall that|U \U∗| ≤ 2`−i.

It follows that the total number of reads fromU \U∗ by the processes fromB during promoting iterations is less than

`−i−1∑
j=1

|Yj | · 6
dn

2j
log n + (|U \ U∗| − |Y`−i−1|) · 3

dn

2`−i−1
log n ,

which is less than
`−i−1∑
j=1

2j · 6dn

2j
log n + 2`−i · 3 dn

2`−i−1
log n = 6(`− i)dn log n

< 6dn log2 n .

This contradicts the lower bound (2), thus proving Claim 2.
Consider a setYj , with a property as in Claim 2.

Claim 3. Each registerr ∈ Yj is read by at leastdn
2j log n processesv ∈ B, such thatv has read the wholej-part of

σv by the end of̀ -stage numberedi lg n + 1.
There are at least3dn

2j log n processes fromB readingr. The number of those which may read registerr before
they read the wholej-part of σv is at most the sum of degrees of expandersGlg n−3, . . . , Gj - since every read of
registerr is according to somei-part, forlg n− 3 ≥ i ≥ j, of someσv, and this means readingr by the neighbors in
these expanders. This is at most

dn

n/8
log n + . . . +

dn

2j
log n ≤ 2

dn

2j
log n processes.

Hence there are at least3dn
2j log n − 2dn

2j log n = dn
2j log n processesv ∈ B which readr and the wholej-part ofσv

by the end of̀ -stage numberedi lg n + 1. This completes the proof of Claim 3.
By Claims 3 and 2 and the expansion ofGj , we have|NGj

(Yj)| > n − 2j , which together with the bound
|B| = 2` ≥ 2j+1 imply |NGj

(Yj) ∩B| > 2j . SinceNGj
(Yj) ∩B ⊆ Xj we obtain that|Xj | > 2j , which contradicts

Claim 1. Hence the inequality|U∗(i lg n + 1, B)| < 2`−i holds, which implies the invariant fori.

Deriving the lemma from the invariant. The invariant fori = ` lg n + 1 immediately yields what we seek to
prove in the lemma. Indeed, from the invariant fori = ` we obtain that there is a setW ⊆ S`(` lg n+1), of a size2`+1,
such that for every setB ⊆ W of a size2`, the inequalityu∗(` lg n+1, B) < 1 holds. LetRv denoteRv,`(` lg n+1),
for every processv. By Lemma 6, we obtain that there is a setA ⊆ S`

(
(` + 1) lg n

)
of a size2`+1 such that every

processv from A knows the rumors stored inU∗(` lg n + 1, Rv), whereRv ⊆ S`(` lg n + 1) is of a size2`+1. Both
the setsRv andW are included inS`(` lg n + 1), while |S`(` lg n + 1)| = 3 · 2`, and|W |, |Rv| ≥ 2 · 2`. Since also
|Rv∩W | ≥ 2`, we obtain that each process inA may possibly not know the registers only fromU∗(` lg n+1,W∩Rv),
while u∗(` lg n + 1,W ∩Rv) = u∗(` lg n + 1,W ) = 0. �
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5 Completing the analysis

We use the following classification of epochs. An epoch is said to bea-successful, for 1 ≤ a ≤ n, if there is a setW
of processes such that|W | ≥ a and every process inW knows the original values of all the registers after the epoch is
finished.

The number of fast learners is large In this section we consider an execution to the firstn/8-successful epoch. For
a number̀ , where1 ≤ ` ≤ lg n− 3, the`-setconsists of these epochs that are2`-successful but not2`+1-successful.

If i-heavy epochk is in `-set andi ≥ ` then we call such an epochshort, otherwise we call itlong. An intuition
behind this terminology is as follows. Ifi ≥ `, then the setTk is large, and every process inTk performs “few”
iterations during such a short epochk. Otherwise the setTk is small, and each process inTk performs “many”
iterations during such a long epochk. The notions of “few” and “many” are defined relative to the quantitydn

2` lg2 n.
Consider a fair execution of the algorithmD-Collect and the corresponding trace. Let the first2`-successful epoch

be denoted byk`, for 1 ≤ ` ≤ lg n− 3. Suppose thatk` is not2`+1-successful. Let̂k` be the first epoch afterk` such
that at least one of the following conditions holds:

Condition 1. There are at leastlog3 n of short epochs amongk` + 1, . . . , k̂`.

Condition 2. There are at least2i processes, for some integeri > `, that have not completed collecting by the end of
epochk`, and each such process occurs in at leastdn

2i log n iterations in the long epochs fromk` + 1 throughk̂`.

Epochk̂` is well defined, provided epochk` exists. To see this, suppose, to the contrary, thatk̂` does not exist.
Then there are less thanlog3 n short epochsk > k`. But every process occurs infinitely many times in the trace, so
it occurs also infinitely many times during long epochsk > k`, for ` ≤ lg n − 1, which contradicts not holding of
Condition 2.

In the next two lemmas we estimate the cost of the short and the long epochs from epochk` + 1 through epocĥk`.

Lemma 8 The number of iterations executed by processes during short epochs, that occur starting from epochk` + 1
through epocĥk`, is at most85dn log6 n, for sufficiently largen.

Proof: There are at mostlog3 n short epochs, each of them takes at most85dn lg3 n iterations, by Lemma 5. �

Lemma 9 The number of iterations executed by processes during long epochs, that occur starting from epochk` + 1
through epocĥk`, is at most88dn log3 n, for sufficiently largen.

Proof: Consider all iterations performed by processes during long epochs amongk` +1, . . . , k̂`−1. LetAi, for every
integer1 ≤ i ≤ log n, denote set of processes such that each executes more thandn

2i log2 n and at most2dn
2i log2 n

iterations during considered long epochs. LetB denote a set of these processes that each of them executes at most
d log2 n iterations. The following cases are the only logically possible:
Case 1. i > `.

Since Condition 2 is not satisfied for epochk̂` − 1, we have that|Ai| < 2i, and the total number of iterations
performed by the processes inAi is at most2dn log2 n.
Case 2. i ≤ ` and|Ai| ≤ 2i.

The total number of iterations performed by processes fromAi is at most2dn log2 n.
Case 3. i ≤ ` and|Ai| > 2i.

We show that this case actually cannot occur. Suppose to the contrary thati ≤ ` is the integer such that|Ai| > 2i.
Notice that during the epochs under consideration each process inAi executes more thandn

2i log2 n iterations. This
is more thandn

2i log n iterations ini-layer, while reading registers of its neighbors inGi. The neighbors in graphsG`

are read in a circular fashion, hence fewer than2i < |Ai| processes fromAi may not read a register containing all the
initial values during itsdn

2i log n consecutive iterations fromi-layer. Recall that, by the definition of a2`-successful
epoch, the set of registers containing all the values is of a size at least2` ≥ 2i. The remaining processes fromAi

have read such a register and halted. This is a contradiction with the fact that all the processes inAi perform more
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than dn
2i log2 n iterations, and so more thandn

2i log n iterations from ani-layer, during the epochs considered. This
completes a proof that Case 3 cannot occur.

It follows that the number of iterations during long epochs, starting atk` + 1 throughk̂` − 1, is less than

|B| · d log2 n +
log n∑
i=1

2dn log2 n ≤ dn log2 n + 2dn log3 n .

By Lemma 5, the last epocĥk` contains at most85dn log3 n iterations, and so the cost of all the long epochs, from
k` + 1 throughk̂`, is at mostdn log2 n + 2dn log3 n + 85dn log3 n ≤ 88dn log3 n, which completes the proof. �

By the end of epocĥk`, at least2`+1 processes collected all the values.

Lemma 10 Epochk̂` is 2`+1-successful.

Proof: If Condition 1 is satisfied for epocĥk`, then there is an integeri ≥ ` such than there are at leastlog2 n i-heavy
epochs among short epochs in the periodk` +1, . . . , k̂`, hence also at leastlog2 n i-stages from the beginning of epoch
k` +1 to the end of epocĥk`. Now it is sufficient to apply Lemma 7 to thesei-stages and the assumption` ≤ lg n− 3.

Otherwise, Condition 2 is satisfied for epochk̂`, for a respective numberi > `. Let W denote a set of processes
such that|W | ≥ 2i ≥ 2 · 2`, each process inW has not completed collecting by the end of epochk` and it occurs
in at leastdn

2i log n iterations in long epochs among those in the periodk` + 1, . . . , k̂`. We can consider suchi since
` ≤ lg n−1. Recall that the neighbors of a node inGi are read in a circular fashion. Fewer than2` ≤ |W |/2 processes
from W may not read a register containing all the values during itsdn

2i log n consecutive iterations, by properties of
the expanderGi. By the definition of a2`-successful epoch, the set of registers containing all the values is of a size at
least2` > 2i. There are at least|W |/2 ≥ 2` of the remaining processes. Each of them has read such a register and
has recorded in its own register the complete set of values. �

Slow learners get informed inexpensively We now assess the work of fast and slow learners.

Lemma 11 The work accrued after the first iteration when at leastn/8 processes collected all the initial values of
registers each, isO(n log3 n).

Proof: Let τ be the firstn/8 successful epoch. LetP denote set of unsuccessful processes at the end of epochτ . For
every non-successful processv ∈ P consider its first2dn lg2 n iterations after the end of epochτ , partitioned into
lg n − 2 intervals, whereith interval has dn

2lg n−i lg2 n iterations, for3 ≤ i ≤ lg n, and(lg n + 1)st interval contains
the remaining iterations. Note that we number intervals from3 to lg n + 1. Let Pi, for 3 ≤ i ≤ lg n, denote the set of
processes which are still unsuccessful after performing itsith interval of iterations.

Claim. |Pi| < n/2i, for every3 ≤ i ≤ lg n.
Suppose, to the contrary, that|Pi| ≥ n/2i, for some3 ≤ i ≤ lg n. In theith interval each nodev ∈ Pi performed

at leastd2i lg n iterations from(lg n− i)-layer, which means that it read all registers of its neighbors inn/2i-expander
graphGlg n−i. By expansion property of this graph and assumption|Pi| ≥ n/2i we have that less thann/2i processes
in Pi did not read from register of previously successful process (there are at leastn/8 ≥ n/2i successful processes
after epochτ ). This is a contradiction, since there is a processv ∈ Pi which is successful by the end of itsith interval.
This completes the proof of the claim.

It follows from the Claim that each process is successful by the end of itslg n interval. It also follows that the
work done by the moment where all processes are successful is at most

∑lg n
i=3 |Pi| · d2i lg2 n < dn lg3 n. �

Theorem 3 AlgorithmD-Collect solves any instance of the Collect problem of sizen with a total ofO(n log7 n) read
and write operations.

Proof: Consider a number̀ such that0 ≤ ` ≤ lg n − 3. If epochk` is 2i-successful, for somei > `, then we do
not need to consider progress achieved during the epochs in`-set, which is actually an empty set. Let us assume that
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epochk` is not2`+1-successful. The inequalityk`+1 ≤ k̂` holds, by Lemma 10. The work accrued during the epochs
starting atk` + 1 throughk`+1 is at most

85dn log6 n + 88dn log3 n ≤ 90dn log6 n ,

by Lemmas 8 and 9, for sufficiently largen. There are at mostlog n− 2 possible values of̀, hence the work spent by
the moment when at leastn/8 processes gathered all registers each is at most

log n · 90dn log6 n +O(n log3 n) = O(n log7 n) .

By Lemma 11, the remaining work isO(n log3 n), hence the total work isO(n log7 n). �

6 Repeatable Collect

Repeatable Collectis an on-line dynamic version of theCollectproblem, and it was defined in [3, 7]. We modify the
(static) collect algorithm to obtain theRepeatable Collectsolution that we call algorithmD-ReCollect.

Algorithm D-ReCollect We obtain algorithmD-ReCollect by modifying algorithmD-Collect as follows.
Each processv has atimestampthat consists of an arrayαv of integers and an arrayrumorsv of lists of rumors.

Initially, αv(v) is a number of the current iteration, andαv(w) = 0 for everyw 6= v. Also initially rumorsv(v)
contains only the current value of the register ofv, andrumorsv(w) are empty lists, for allw 6= v.

The algorithm collects values by using different updating and selecting rules.

1. It uses the listrumorsv(v), as the list of known rumors, to select a register according to permutationσv.

2. If v reads a register ofw according toσv, then it adds only the current value of this register, rather than all the
values of the other registers, as a rumor ofw to all its listsrumorsv(z), for all z.

3. If it reads a timestamp, from a register of some processw, according to permutationπv,`, then it updates its
αv andrumorsv as follows, for every entryz. If αw(z) = αv(z) thenv setsrumorsv(z) := rumorsv(z) ∪
rumorsw(z). If αw(z) > αv(z) thenv setsrumorsv(z) := rumorsw(z). Finally,αv(z) is set tomax{αv(z), αw(z)}.

If we add some rumor of processw to the listrumorsv(z), but there is already some rumor ofw there, then we replace
the old one by the new one, so that each listrumorsv(z) contains at mostn rumors, each of a different process.
Processv stops the current iteration exactly whenrumorsv(v) attains sizen.

Lemma 12 AlgorithmD-ReCollect is correct.

Proof: We need to show that each rumor stored inrumorsv(v) is fresh. To show this we prove a stronger invariant:

in any state of execution, and for any active processesv andw, if αv(v) = αw(v), then all the rumors in
rumorsw(v) are fresh according tov.

We argue in terms of iterations, each consisting of three operations. We treat traceF as a sequence of iterations that is
ordered by ends of iterations. Before the first iteration this is true, by initialization rules. Assume that invariant holds
by iterationτ . We prove that it holds for iterationτ + 1. Suppose that this is an iteration of processv. In this iteration
v reads a register of some processw according toπv,` and register of somew′ according toσv. Processv may change
its list rumorsv(z), for any processz, depending which of the following cases is applicable.

Case 1: αw(z) = αv(z).
Processv adds some new rumors fromrumorsw(z). If additionallyαz(z) = αv(z) then, by the invariant, those

added rumors are fresh, so the newrumorsv(z) contains only fresh rumors according toz. Otherwise we are safe
since the assumptionαv(z) = αz(z) in the invariant is not satisfied.

Case 2: αw(z) > αv(z).

13



Processv changesαv(z) := αw(z) and sets itsrumorsv(z) to berumorsw(z). If additionally αz(z) = αw(z)
then by the invariant those added rumors are fresh, so the newrumorsv(z) = rumorsw(z) contains only fresh rumors
according toz. Otherwise we are safe since the assumptionαv(z) = αz(z) in the invariant is not satisfied, where we
mean a newαv(z) = αw(z).
Case 3: processv adds the current value of register ofw′ to all listsrumorsv(z), for eachz.

By a definition of freshness, this rumor is fresh according to any processz. To see this observe that it might be
non-fresh only if processz had been activated during iterationτ + 1 between read and write operations of processv,
but thenz changed itsαz(z) flag. Such cases are irrelevant since the assumption in the invariant is not satisfied.

Hence the invariant, and by it the lemma, are proved. �

Complexity analysis We need to use a number of new or modified notions for the purpose of analysis of a dynamic
case. For instance, a process still busy in a iteration is simply calledactive, to distinguish it from the processes that are
already pausing in the given iteration. We restrict our attention to active processes only. Define a rumor to befresh,
according to active processv, if it has been read from the respective register of processv after the last activation of
processv. We call an epocha-successfulif there is a setA of processes of cardinality at leasta such that for every
v ∈ A and any processz, all the rumors in the listrumorsv(z) are fresh according toz.

The main results of this section are as follows.

Theorem 4 AlgorithmD-ReCollect has collective latency ofO(n log7 n).

Corollary 1 AlgorithmD-ReCollect has competitive latency ofO(log7 n).

Proof: It follows from [3] that the competitive latency is at most the collective latency divided byn and plus 1, which
makes Theorem 4 directly applicable. �

7 Discussion

This paper presents a new deterministic algorithm for theCollect problem. The work upper bound of the algorithm
substantially improves on the best previously known results. Specifically, our algorithm is the first deterministic
algorithm with theworst-casework of O(n log7 n) that exceeds the required linear work by only a polylogarithmic
factor, significantly improving on the best prior deterministic solution of Ajtai, Aspnes, Dwork, and Waarts [3].

Our solution is parameterized by graphs embedded in the code of the algorithm. The specific graphs used here are
not constructive, in the formal sense that time required to compute such graphs is polynomial in the maximum degree
andlog n. This is because our goal was to minimize the work complexity by means of the small exponent in the power
of log n.

To obtain a constructive solution, one can use the family ofa-expanders in described by Ta-Shma, Umans, and
Zuckerman [41], yielding an algorithm with worst-case work ofO(n polylogn). The polylogarithmic factor oc-
curring in such a bound can be obtained by taking the polylogarithmic factor, by whicha-expanders given in [41]
miss the lower boundn/a for the maximum degree, and dividing it bylog n. For completeness, we mention that
the degree ofa-expanding graphs in [41] isO(n

a log3 n), and hence the additional factor in the work bound of a
polynomially-constructible collect algorithm isO(log2 n), resulting in workO(n log9 n). A similar conversion ap-
plies for a polylogarithmic competitive latency bound of the online algorithm. The analysis in [41] shows that their
construction ofa-expanders is polynomial inn. We use a family of such expanders, of a logarithmic size, for values
of a being consecutive powers of 2. Given the graphs as in [41], an additional time to build the neighborhoods of
graphs and sequences, as needed in theCollectsolution, isO(n polylogn).

En routeto obtaining our solution, we introduced a gossiping game on graphs and analyzed it in terms of expansion
of the underlying graph. A corollary shows thatall expanders are fault-tolerant, in the sense captured by Theorem 2,
generalizing the result of Upfal [42] obtained for specific graphs.
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