
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

PReMo: An analyzer for Probabilistic Recursive Models
Dominik Wojtczak and Kousha Etessami

PReMo is a tool for analyzing Recursive Markov Chains(RMCs), and their controlled/game extensions. RMCs are a natural
abstract model of probabilistic procedural programs and other systems involving recursion and probability. It generalizes a number
of well studied stochastic models such as Stochastic Context-Free Grammars (SCFGs) and Multi-Type Branching Processes.

What is a Recursive Markov Chain?
We can see below a source code of an example RMC, together with a
visualization that PReMo generates for it:

Informally, an RMC consists of several component Markov Chains (in
this example named A and B) that can call each other recursively. Each
component consists of nodes and boxes with possible probabilistic transi-
tions between them. Each box is mapped to a specific component so that
every time we reach an entry of this box, we jump to the corresponding
entry of the component it is mapped to. When/if we finally reach an
exit node of that component, we will jump back to a respective exit of
the box that we have entered this component from. This process mod-
els, in an obvious way, function invocation in a probabilistic procedural
program. Every potential function call is represented by a box. Entry
nodes represent parameter values passed to the function, while exit nodes
represent returned values. Nodes within a component represent control
states inside the function.

What PReMo can do and how?
PReMo can compute the probability of termination at a given exit for
an RMC starting at any of the vertices. It does so by generating and
finding the Least Fixed Point(LFP) of the underlying system of a non-
linear (min-max) equations. We can see how this system is constructed
in the following example (where e.g. x(f,a,z) denotes the probability of
termination at the exit z of the component f starting at the node a, for
details see [?]):

PReMo can also compute the (optimal/pessimal) expected termination

time in a restricted subclass of RMCs (and their game extensions) that
are allowed to have just one exit. It does so by generating a different
monotone system of linear (min-max) equations (see [?] for details) (no-
tice that these expected times can be infinite).
In brief, the solvers in PReMo work as follows:
1. decompose the equation system x = P(x) into Strongly Connected

Components(SCCs)
2. for each SCC S (starting at the bottom ones):
(a) run some numerical method to find LFP of P|S

(
x|S

)
(b) plug-in the approximate solution for the variables in S into higher

SCCs
To solve each SCC, PReMo provides several methods:
• Jacobi(or basic iteration) starts with x0 = 0 and iterates xi = P (xi−1)
•Gauss-Seidel improves on Jacobi, by using the value of variables from

the current step, not the previous one, if they are already computed
• Successive Overrelaxation (SOR) is an “optimistic” modification of

Gauss-Seidel, which isn’t guaranteed to converge in our case
•n-dimensional Newton’s method computes solutions to F (x) = 0, by iter-

ating xk+1 := xk− (F ′(xk))−1F (xk), where F ′(x) is the Jacobian matrix
of partial derivatives of F . In our case we apply it to F (x) = P (x)−x.
–Dense Newton(DNewton) uses LU decomposition to invert (F ′(xk))
– Sparse Newton(SNewton), rather than inverting F ′(xk), it solves a

sparse linear system F ′(xk)(xk+1 − xk) = F (xk) in order to compute
the value of xk+1 − xk, and then by adding xk, it obtains xk+1

Experimental results
All experiments were run on a Pentium 4 3GHz with 1GB RAM.

• SCFGs derived from the Penn Treebank

An SCFG is called consistent if starting at all nonterminals in the gram-
mar, a random derivation terminates, and generates a finite string, with
probability 1. We checked the consistency of a large SCFGs used by the
Natural Language Processing (NLP) group at University of Edinburgh
and derived by them from the Penn Treebank NLP corpora. Two out
of seven grammars turned out to be very inconsistent, namely those de-
rived from the brown and switchboard corpora of Penn Treebank. This
inconsistency was subsequently identified to be caused by annotation
errors in the Penn Treebank itself.

number of productions, the biggest SCC’s size, running time in

seconds and in parentheses the maximum number of iterations

•Randomly generated RMCs of various sizes

As we can see Sparse Newton is better than any other iterative method.

References
[1] PReMo’s homepage http://groups.inf.ed.ac.uk/premo
[2] K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,

and monotone systems of non-linear equations. In Proc. of 22nd STACS’05. Springer,
2005.

[3] K. Etessami, D. Wojtczak, and M. Yannakakis Recursive Stochastic Games with
Positive Rewards. Submitted for publication.


