
Planning ramifications: When ramifications are the norm, not the ‘problem’

Debora Field
Dept. of Computer Science, University of Liverpool

Liverpool L69 3BX, UK
debora@csc.liv.ac.uk

Allan Ramsay
School of Informatics, University of Manchester

PO Box 88, Manchester M60 1QD, UK
allan.ramsay@manchester.ac.uk

Abstract

This paper discusses the design of a planner whose intended
application required us to solve the so-called ‘ramification
problem’. The planner was designed for the purpose of plan-
ning communicative actions, whose effects are famously un-
knowable and unobservable by the doer/speaker, and depend
on the beliefs of and inferences made by the observer/hearer.
Our fully implemented model can achieve goals that do not
match action effects, but that are rather entailed by them,
which it does by reasoning about how to act: state-space plan-
ning is interwoven with theorem proving in such a way that a
theorem prover uses the effects of actions as hypotheses.1

Introduction
Seeing the word ‘ramification’ so often bound to the word
‘problem’, it is easy to get the impression from the litera-
ture that the ramifications of actions are viewed by the AI
planning community as an annoying hindrance to their AI
planning ambitions. We, however, see ramifications very dif-
ferently. They are the focus of our planning ambition and
the mechanism of its success. Why? Because we are inter-
ested in modelling an every-day human activity which is to-
tally dependent upon the ramifications of actions: human-to-
human communication.

As far as communication is concerned, each man (and
woman) is an island. I have things I want you to believe,
and to this end I do my best to make appropriate signs to
you—in writing, speech, smoke signals, facial gestures, and
so on. You see my signs, and you decide for yourself what
they mean. There is nothing I can do to ensure that you re-
ceive the message I want you to get. All I can do is make my
signs, and put my trust in the ramifications of my actions.

Consider the human, John. Imagine John’s current goal is
to get human Sally to believe the proposition John is kind.
John has no direct access to the environment he wishes to
affect—he cannot simply implant John is kind into Sally’s
belief state. John knows that Sally has desires and opinions
of her own, and that he will have to plan something that he

1Initially supported by an EPSRC grant, with recent develop-
ments partially funded under EU-grant FP6/IST No. 507019 (PIPS:
Personalised Information Platform for Health and Life Services).

considers might well lead Sally to infer John is kind. This
means that when John is planning his action—whether to
give Sally some chocolate, pay her a compliment, tell her he
is kind, lend her his credit card—he has to consider the many
different messages Sally might infer from the one thing John
chooses to say or do.

To plan communicative acts is, then, to plan actions by
taking into account their possible ramifications. How do we
do this? We took a backward-chaining theorem prover, and
adapted it for hypothetical reasoning about the effects of ac-
tions. Our backward-chaining reasoner essentially says, “I
could prove this backwards if you allowed me to introduce
these hypotheses”. The fully implemented model is thus able
to plan to achieve goals that do not match action effects,
but that are entailed by them. Our planner was developed by
first adapting (Manthey & Bry 1988)’s first-order theorem
prover, Satchmo, into a theorem prover for a highly inten-
sional logic (Ramsay 2001), namely, a constructive version
of property theory (Turner 1987). To this was added a deduc-
tion theory of knowledge and belief (Konolige 1986) so that
the planner can reason with its beliefs about the world, in-
cluding its beliefs about others’ beliefs. State-space planning
(based on foundational work in classical planning (Newell,
Shaw, & Simon 1957; Newell & Simon 1963; Green 1969;
McCarthy & Hayes 1969; Fikes & Nilsson 1971)) was then
interwoven with theorem proving in such a way as to enable
planning for entailed goals.

Satchmo

The theorem prover we present was developed by extend-
ing Manthey and Bry’s (1988) first-order theorem prover,
Satchmo (SATisfiability CHecking by MOdel generation).
For model generation we convert the standard form to SE-

QUENT FORM, where a sequent is a formula of the form
Γ ⇒ ∆ where Γ is >, an atomic formula, or a conjunc-
tion of atomic formulae, and ∆ is ⊥, an atomic formula,
or a disjunction of atomic formulae. Satchmo was designed
for carrying out proof by contradiction, where you show that
some formulaA follows from a set of assumptions α by con-
verting α ∪ {¬A} to normal form, and showing that this set

has no models. The goal is to show that the set of sequents
obtained from the assumptions α and the negation ¬A of the
goal supports a proof of ⊥, since this means that no model
of α can be a model of ¬A, and hence that all models of α
are models of A (i.e., α |= A).

Model generation proceeds by distinguishing between
HORN SEQUENTS, and DISJUNCTIVE SEQUENTS. A Horn sequent
has a single literal as its consequent; a disjunctive sequent
has a disjunction as its consequent. The proof proceeds in
two stages:

(MG-i) Try to prove ¬A by backward chaining among
the Horn sequents.

(MG-ii) If this fails, find a disjunctive sequent whose
antecedent can be proved using the Horn se-
quents, but whose consequent cannot. Add
each disjunct from the consequent in turn, and
try again. The point here is that if we know Γ
and Γ ⇒ A1 ∨ A2, then we know that either
A1 or A2 must hold. So if we can show that
⊥ follows from what we know already plus ei-
ther of A1 or A2, then we know that ⊥ actually
follows from what we know already.

A constructive epistemic intensional logic
The original presentation of Satchmo is unsuitable for our
purposes, since it assumes a classical version of predicate
logic, whereas we use a constructive epistemic logic.

An epistemic logic is necessary because the program
needs to be able to do reasoning about what agents believe,
including what they believe about the beliefs of other agents.
The theorem prover embodies a deduction model of be-
lief (Konolige 1986), rather than a ‘possible worlds’ model
(Hintikka 1962; Kripke 1963). In a deduction model, agents
are allowed to have sets of beliefs that are incomplete, inac-
curate, and inconsistent, to have imperfect inference strate-
gies, and to do inference—which is much more useful for
modelling human epistemic reasoning than an agent who
is logically omniscient and automatically knows everything
that follows from his belief set.

We use a constructive logic, because we consider it is es-
sential for our purpose—to model natural language—as we
will now briefly argue. Our argument falls under two themes:
(i) We need a theorem prover that can reason with formu-
lae in which propositions are quantified over; (ii) We need
a theorem prover that more closely models the way people
do reasoning, including reasoning about a proposition that a
person believes to be false.

A theorem prover for property theory
There are a number of phenomena in natural language that
we can cope with if we are allowed to quantify over proposi-
tions, but that seem otherwise very hard to capture. Consider
the word ‘only’. If S says to H:

I only touched it

(with a voiced stress on touched), S is invitingH to compare
the action A that S did do (touched) with some other action
A′ that S did not do, and which is in some way stronger
than A (broke, perhaps). To represent the meaning of ‘only’
we require intensional meaning postulates—intensional, be-
cause they comment on the truth or falsity of other parts of
the sentence. For ‘only’ we need something like:

∀P∀X(only(P,X) ⇒
(P.X&∃P ′(similar(P, P ′)&¬P ′.X)))

This axiom says that if only(P,X) holds, where P is
some property and X is an arbitrary entity (possibly a prop-
erty itself), then P does hold of X , but there is some prop-
erty P ′ which is similar to P , and which you might have
expected to hold of X , but which in fact fails to do so. So
then, to adequately represent the meaning of even a com-
mon little word like ‘only’, not to mention many other nat-
ural language constructions, we need to be able to quantify
over propositions (Ramsay 1994).

Quantifying over propositions, however, opens the way to
the paradoxes of negative self-reference—Russell’s set, the
Epimenedes paradox, Grelling’s paradox, and so on. There-
fore, we need some way of preventing this that still ad-
mits common natural language usage (e.g., the many self-
referring pronouns: ‘this’, ‘me’, ‘himself ’ . . .), which the
earlier classical solutions to this problem do not (e.g., White-
head and Russell’s (1910) THEORY OF TYPES, and MONTAGUE

SEMANTICS (Thomason 1974)).
Turner’s PROPERTY THEORY (1987) provides a solution to

this problem by allowing you to say whatever you want, but
then placing constraints on what can be proved. Turner’s
analysis involves taking a classical treatment of first-order
logic, and adding λ-abstraction and β-reduction to it (or at
any rate, operations which look extremely like λ-abstraction
and β-reduction). It allows propositions and properties to oc-
cur as arguments, and thus provides the expressive power we
need. It provides an operator for constructing terms corre-
sponding to propositions and properties, so that they can ap-
pear in the positions where terms are required (i.e., as pred-
icate arguments), together with a series of predicates for re-
trieving the truth conditions of such a term. The main ad-
vantage of Property Theory over languages like Montague
Semantics is that it is a type-free language, and hence pro-
vides considerable extra expressive power. Spelling out the
meaning of a word like ‘only’ requires you to produce un-
typed intensional meaning postulates—untyped because this
word can apply to phrases of (almost) any syntactic type, so
that their semantic analysis must apply to phrases of almost
any semantic type.

Turner’s Property Theory is, then, attractive for our nat-
ural language purposes. Unfortunately, (Herzberger 1982)
shows that it is impossible to provide a normal form for

Turner’s version of the logic, and hence it is very difficult to
implement a theorem prover for it. Our solution to this is to
take a constructive treatment of first-order logic, allow unre-
stricted use of both λ-abstraction and β-reduction, and avoid
the paradoxes by placing constraints on the assumptions that
can be used in a well-founded proof (Ramsay 2001).

Modelling human reasoning

The way humans do every-day reasoning is, we consider,
quite different from the way reasoning is handled under clas-
sical logic. In classical logic, for example, and using our
general knowledge, we judge the following formulae to be
true:

(1) Earth has one moon ⇒ Elvis is dead
(2) Earth has two moons ⇒ Elvis is alive
(3) Earth has two moons ⇒ Elvis is dead

(1) is true simply because antecedent and consequent are
both true formulae. We find this truth odd, however, because
of the absence of any discernible relationship between an-
tecedent and consequent. (2) and (3) are true simply because
the antecedent is false, which seems very counter-intuitive.
Even more peculiarly, the following formula is provable in
classical logic in all circumstances:

(4) (Earth has one moon ⇒ Elvis is dead) or
(Elvis is dead ⇒ Earth has one moon)

but it feels very uncomfortable to say that it must be the case
that one of these implies the other.

In order to avoid having to admit proofs like this, and to be
able to do reasoning in a slightly more human-like way, we
choose constructive logic and natural deduction. In order to
prove P ⇒ Q by natural deduction, one must show that Q is
true when P is true; if P is not true, constructive logic does
not infer P ⇒ Q. This treatment of implication hints at a
relationship between P and Q which is absent from material
implication.

Taking a constructive view also allows us to simplify
our reasoning about when the hearer believes something
of the form P ⇒ Q, and hence (because of the construc-
tive interpretation of ¬P as P ⇒ ⊥) about whether
she believes ¬P . We will assume that believes(H,P)
means that H could infer P on the basis of her belief set,
not that she already does believe P , and we will exam-
ine the relationship between believes(H,P ⇒ Q) and
believes(H,P) ⇒ believes(H,Q).

Consider first believes(H,P) ⇒ believes(H,Q). Un-
der what circumstances could you convince yourself that this
held?

For a constructive proof, you would have to assume that
believes(H,P) held, and try to prove believes(H,Q). So
you would say to yourself ‘Suppose I were H , and I be-
lieved P . Would I believe Q?’ The obvious way to answer
this would be to try to prove Q, using your own rules of

inference. Suppose you came up with such a proof. Assum-
ing that H’s rules of inference were the same as yours, you
would then be able to assume that she could also carry out
this proof. But if that were the case, then she would have
a proof of P ⇒ Q available to her, and hence it would be
reasonable to conclude believes(H,P ⇒ Q).

Suppose, on the other hand, that you believed
believes(H,P ⇒ Q), and that you also believed
believes(H,P). This would mean that you thought
that H had both P ⇒ Q and P available to her. But if
you had these two available to you, you would be able to
infer Q, so since H is very similar to you, she should also
be able to infer Q. So from believes(H,P ⇒ Q) and
believes(H,P) we can infer believes(H,Q), or in other
words, (believes(H,P ⇒ Q)) ⇒ (believes(H,P) ⇒
believes(H,Q)).

We thus see that if we take believes(H,P) to mean ‘If I
wereH I would be able to prove P ’, then (believes(H,P ⇒
Q)) and (believes(H,P) ⇒ believes(H,Q)) are equiv-
alent. This has considerable advantages in terms of the-
orem proving, since it means that much of the time we
can do our reasoning by switching to the believer’s point
of view and doing perfectly ordinary first-order reason-
ing. If, in addition, we treat ¬P as a shorthand for
P ⇒ ⊥, we see that believes(H,¬P) is equivalent to
believes(H,P) ⇒ believes(H,⊥). If we take the fur-
ther step of assuming that nobody believes ⊥, we can see
that believes(H,¬P) ⇒ ¬believes(H,P) (though not
¬believes(H,P) ⇒ believes(H,¬P)). We cannot, how-
ever, always assume that everyone’s beliefs are consistent,
so we may not always want to take this further step (note
that in possible worlds treatments, we are forced to assume
that everyone’s beliefs are consistent), but it is useful to be
able to use it as a default rule, particularly once we under-
stand the assumptions that lie behind it.

Constructive Satchmo
We have said that the original presentation of Satchmo is
unsuitable for our purposes, since it assumes a classical ver-
sion of predicate logic. This means that you can prove P

by showing that ¬P is unsatisfiable, and you can also use
equivalences such as ((P ⇒ Q) ⇒ R) ⇐⇒ ((Q ⇒
R)&(P or R)), which are not available in constructive
logic. We therefore need to adapt Satchmo so that it works
properly for constructive logic, and so that it can handle epis-
temic information.

We do this in two stages: first we have to convert our prob-
lem into an appropriate normal form, and then we have to
adapt the basic Satchmo engine to work constructively with
this normal form. Epistemic information is represented by
using Wallen’s (1987) notion of CONTEXT, which in our case
is epistemic context.

The construction of a normal form proceeds in three
stages.

(i) We start by making very straightforward textual changes,
to make standard logical form look a bit more like Prolog,
and to get rid of existential quantifiers.

NF-1 Replace (A & B) by (A’, B’) and
(A or B) by (A’; B’), where A’ and
B’ are the normal forms of A and B.

NF-2 Replace not(A) by (A’ ⇒ absurd).
NF-3 Replace P ⇒ (Q ⇒ R) by

((P & Q) ⇒ R)’.
NF-4 Replace believes(J,A)

by A@@[believes(J)]. (See below for
further discussion of epistemic contexts)

NF-5 Skolemise away existential quantifiers, and re-
move all universal quantifiers.

(ii) Separate the result of (i) into Horn and non-Horn clauses,
and convert the Horn clauses to ordinary Prolog.

PL-1 If the normal form of P is atomic then assert it
as a Prolog fact.

PL-2 If the normal form of P is (Q , R) then deal
with Q and R individually.

PL-3 If the normal form of P is (Q ; R) then as-
sert split(Q ; R) as a Prolog fact.

PL-4 If the normal form of P is (K ⇒ Q) where Q
is atomic then assert Q :- K as a Prolog rule.

PL-5 If the normal form of P is (K ⇒ (Q , R))
then deal with (K ⇒ Q) and (K ⇒ R) in-
dividually.

PL-6 If the normal form of P is (K ⇒ (Q ; R))
then assert split(Q ; R) :- K as a Pro-
log rule.

PL-7 If the normal form of P is
(A ⇒ B) ⇒ C then assert C :-
(A => B) as a Prolog rule. See (MG-3) for
further discussion of this rule.

(iii) Perform any optimisations that you can on these.

OP-1 Remove all ‘pure literals’ (Kowalski 1975)
from the clause set, and store for easy restora-
tion if they later become ‘impure’.

OP-2 Satchmo can be made to perform very poorly
if you include disjunctive clauses where one
or both disjuncts is actually irrelevant, so opti-
mise relevance by banning the use of a split
clause until it has been shown that its conse-
quents will contribute to a proof of G. Do this
by asserting a rule which will itself add the
split clause when its consequents have been
shown to be relevant.

OP-3 Include a ‘loop checking’ procedure which
ensures that any loops which might arise in
the automatically generated model are checked
(see later for how this is done).

OP-4 Cut out unnecessary multiple proofs of the
same goal. If the head of a rule is ground at the
point when called, we know there is no point
in finding multiple proofs of it, so place a Pro-
log cut, to be invoked iff the head was ground
at the point when the clause was called.

Once we have the problem converted to normal form, we
can use the following adaptation of the basic model genera-
tion algorithm.

MG-1 If you can prove A by using Prolog facts and
rules then you can prove it.

MG-2 You can prove A if you can prove
split(P , Q) and any of (i) P ⇒ A
and Q ⇒ A, or (ii) P ⇒ A and not(Q), or
(iii) not(P) and Q ⇒ A.

MG-3 To prove A ⇒ B, assert A and try to prove
B. If asserting A allows you to prove B then
you have a proof of A ⇒ B. Whether or not
you succeed in proving B, you must retract A
afterwards.

(MG-1) and (MG-2) are exactly as in the original presenta-
tion of Satchmo, except that since Satchmo works by try-
ing to show that the hypotheses + the negation of the goal
are unsatisfiable, it always tries to prove absurd, whereas
a constructive version has to show that the goal itself is
provable from the hypotheses (though the second pair of
routes through (MG-2) allow you to do this slightly indi-
rectly). (MG-3)2 is introduced because Satchmo relies on
the classical equivalence between ((P ⇒ Q) ⇒ R) and
((Q ⇒ R)&(P or R)) when constructing normal forms.
This equivalence is no longer available: if we want to prove
P ⇒ Q we have to use ⇒-introduction. In particular, if
you want to prove not(P), as you might as a consequence
of using (MG-2(ii)) or (MG-2(iii)), then you will have to do
this by using (MG-3) to prove P ⇒ absurd. There fol-
lows a skeletal implementation of this.

% You can prove A either directly
prove(A):-

A.
% or by proving (P or Q),(P => A)and(Q => A)
prove(A):-

split(P;Q),
% Check you haven’t tried this already
\+ (P;Q),
prove(P => (A or absurd)),
prove(Q => (A or absurd)).

% To prove (P => A), assert P
% and try to prove A (with some funny
% bookkeeping to tidy up after yourself)
(P => A):-

assert(P),
(prove(A) -> retract(P);
(retract(P), fail)).

2MG-3 is equivalent to⇒-introduction from standard construc-
tive logic. If you start by checking that B is not provable without A,
you get RELEVANT IMPLICATION (Anderson & Belnap jr. 1975).

Figure 1:

Initial State Goal Condition

cba

a

c

b

The key non-cosmetic differences between this and
Satchmo are that (i) this version implements a constructive
version of first-order logic rather than a classical one, and
(ii) it is slightly more direct when faced with clauses of the
form ((P ⇒ Q) ⇒ R). Most of the work in Satchmo
is performed in the backward chaining phase where the Pro-
log facts and rules are being used to prove specific goals. By
converting ((P ⇒ Q) ⇒ R) to R :- (P ⇒ Q), we
ensure that this rule is activated when it is required, at the
cost of having to prove P ⇒ Q by asserting P and showing
that Q follows from it. If we convert ((P ⇒ Q) ⇒ R) to
R :- (P ⇒ Q) and split(R ; P), we end up hav-
ing to explore the consequences of asserting P anyway.

Planning by hypothesising actions
Now that the theorem prover has been introduced, let us
move on to how the theorem prover is used to hypothesise
actions in order to achieve goals that do not match action
effects, but that are entailed by them. First, a ‘blocks world’
example will be given to illustrate what we mean by ‘plan-
ning ramifications’. Following this will be an explanation of
how information concerning which actions have been hy-
pothesised is carried around in the model. Finally, a descrip-
tion of the model’s planning procedure will be given.

An example
Figure 2 shows a list of facts describing a simple knowl-
edge state, which asserts: that j knows (strongly believes)
there is a certain configuration of blocks (three, each on the
table); that everyone knows about two actions: ‘stack’ and
‘unstack’; and that everyone knows that ‘above’ is the tran-
sitive closure of ‘on’.
The Initial State in Figure 1 is a pictorial representation of
the knowledge state shown in Figure 2, while the Goal Con-
dition in Figure 1 pictures the following proposition:

believes(j, above(a,b) & on(a,c))

This is the plan solution returned when we call the planner
to achieve this proposition from the initial state described by
state 1:3

3For clarity’s sake, a number of details are missing from Fig-
ure 2 which are present in the model, including constraints on the
recursive above(,) rule and on the effects of actions.

Figure 2:

state_1(
believes(j, isblock(a) & isblock(b)
& isblock(c) & on(a,table) & on(b,table)
& on(c,table) & clear(a) & clear(b)
& clear(c))

& forall(Y,
believes(Y,
action(doer(slave),stack(slave,F,G),
precons(isblock(G) & isblock(F)
& on(F,table)
& clear(G) & clear(F)),
add(on(F,G)),
delete(on(D,table) & clear(G)))))

& forall(Y,
believe(Y,
action(doer(slave), unstack(slave,F,G),
precons(on(F,G) & clear(F)
& isblock(F) & isblock(G)),
add(clear(G) & on(F,table)),
delete(on(F,G)))))

& forall(Y,
believes(Y,
(on(P,Q) => above(P,Q))))

& forall(Y,
believes(Y,
((on(R,Q) & above(P,R))
=> above(P,Q)))).

[stack(slave,c,b),stack(slave,a,c)]

Disregarding epistemic matters for the moment, in order
to achieve above(a,b) & on(a,c), something different from
an action with an above(,) expression in its add list is
needed (note that although the goal contains a predicate of
the form above(,), the add list of action stack does not
contain any above predicates). Placing a onto b, for exam-
ple, will make above(a,b) proveable, but it will also make
the achievement of on(a,c) impossible. By reasoning with
the rules that describe the meaning of above as the tran-
sitive closure of on, the theorem prover hypothesises that
the proposition on(a,X) & on(X,b) might enable the proof of
above(a,b) to be completed. It also knows that on(X,Y) is an
effect of action stack(X,Y). A proof of the preconditions of
action stack(a,X) is invoked by the planning search, and the
process continues (with backtracking), until a full plan solu-
tion is found. Thus the planner is able to find stack actions
to achieve above goals, because it knows that the effects of
stack(X,Y) include on(X,Y), while also knowing that the ram-
ifications of stack(X,Y) include above(X,Z).

Labels

Now we come to explain how information concerning which
actions have been hypothesised is carried around in the
model. As a starting point for this, we refer again to the
theorem prover’s loop-checking mechanism. The programs
we are concerned with are generated automatically from sets

of statements, and it is not appropriate to restrict what can
be said in this language, just because we are worried about
the theorem prover getting into a loop. In order to prevent
infinite loops of reasoning occurring, we include an abbre-
viated copy of the proof stack in a ‘label’ (after (Gabbay
1996)). The label carries non-logical, arbitrary information
about the progress of a proof, and is used for a variety of
purposes. Labels are threaded through the clause, so that in-
formation can be passed from one subgoal to the next. For
loop checking we add the current goal to the goal stack at
the points where we are about to call something which might
lead us into a loop, and we start this call by explicitly look-
ing to see whether we are in a loop.4 Another use for the
labels is to carry around the equivalence classes that result
from using rules relating to equality, which we use for dy-
namically rewriting clauses (rewriting the entire clause set,
as proposed by (Gallier et al. 1993), is very expensive if you
have large clause sets: we prefer to rewrite clauses as we use
them, using information encoded in the label).

The two most important entries in the label (as far as
this paper is concerned) are (i) the hypothetical actions that
the theorem prover collects, and (ii) a note of the epistemic
context of the proposition to which the label belongs. Re-
ferring again to the blocks-world example, Figure 3 shows
above(a,b), with its label, at the point in the search
where the theorem prover has identified some actions that
would achieve it.

The label is carried around as the first argument of the
goal predicate above. The arguments a and b of the goal
are the last arguments of the label (lines (32) and (33)). The
normal form above(a,b)@@[believe(j)] of the goal
is carried around in the label for goal protection purposes,
and can be seen as an argument of top in line (2). The stack
for the loop checker is trail(C), seen on line (3). The ac-
tions stack(slave,E,b) and stack(slave,a,E)
that have been found can be seen in lines (7 ff) and (20 ff) as
arguments of hypotheses(...). The epistemic context
[believe(j)] of the goal is seen in line (31). Let us say
a brief word here about epistemic entailment.

Epistemic entailment During a proof, a call is made to
procedure checkContexts to see whether the epistemic
context of a proposition is entailed by the epistemic context
of the proposition from which it is being currently proved.
The KNOWLEDGE AXIOM, TRANSMISSIBILITY AXIOM, and an INTRO-

SPECTION AXIOM (a two-way reading of the so-called POSITIVE

INTROSPECTION AXIOM (Hintikka 1962)) hold for knowledge as

4Clearly, the definition of checkloop is critical here—if you
define it too tightly you will lose proofs which are actually avail-
able; if you define it too loosely, you will still get into loops. For
practical purposes, we choose to define it quite tightly, so that we
have some confidence that the algorithm will terminate (it is there-
fore, of course, bound to be incomplete. That’s a choice you have to
make—the more loops you cut out, the more potentially provable
theorems you miss).

Figure 3:

1. above(label(shared(refs(B),
2. top(above(a, b) @@ [believe(j)])),
3. nonshared(trail(C),
4. D,
5. hypotheses([{,(above(a, b)
6. @@ [believe(j)],
7. (action(doer(slave),
8. stack(slave, E, b),
9. precons(isblock(b)
10. & isblock(E)
11. & on(E,table)
12. & clear(b)
13. & clear(E)),
14. add(on(E, b)),
15. delete(on(E, table)
16. & clear(b))),
17. [believe(j)]))},
18. {,(above(a, b)
19. @@ [believe(j)],
20. (action(doer(slave),
21. stack(slave, a, E),
22. precons(isblock(E)
23. & isblock(a)
24. & on(a,table)
25. & clear(E)
26. & clear(a)),
27. add(on(a, E)),
28. delete(on(a, table)
29. & clear(E))),
30. [believe(j)]))}]),
31. context([believe(j)]))),
32. a,
33. b)

modelled by the program. The axioms that hold for belief
are the INTROSPECTION AXIOM and a mutual belief axiom.

Mutual beliefs are beliefs that conversants believe that
they share. For example, we represent ‘John believes that
he and Sally mutually believe that pigs can’t fly’, in standard
logic as:

believes(john,
believes(sally,
mutuallybelieve([john,sally]),
not(fly(pigs))))

A mutual belief that p by j and s entails an infinite number
of beliefs (Bjp, Bsp, BjBsp, BsBjp, BjBsBjp . . .), how-
ever, this does not present a difficulty for the theorem prover,
because, as mentioned above, the theorem prover embodies
a deduction model of belief.

Now we will discuss in more detail how the actions got
into the label, and how they are used to derive a solution to
a planning problem.

Procedure
It is difficult to decide which is the more helpful way to de-
scribe our model. It is both a planner that employs a theorem

prover to hypothesise actions, and it is a theorem prover that
employs a planning search. It is perhaps more intuitive to
depict the model as the former, because the user calls the
planning search, and the planning search calls the theorem
prover; however, since the theorem prover hypothesises ac-
tions (a single action, or a series of actions), there is clearly
a fuzzy boundary between theorem proving and planning in
the model.

What we can say is that whereas the theorem prover posits
desirable series of actions, it does not of itself invoke a
search to find out whether the actions are doable (and to
make them doable if they are not); this testing of and plan-
ning for preconditions is carried out by the planning search
(which again invokes the theorem prover to hypothesise de-
sirable actions). Here is a more formal and more detailed
explanation.

The user calls plan to return a plan that would achieve
some goal G from some initial state W0 (which has already
been asserted into the Prolog database), and plan calls the
theorem prover.

The theorem prover first reasons to see whether
W0 |= G. It ensures no plan search is carried out by in-
sisting that the argument of hypotheses (carried in the
label) be the empty list. If W0 |= G, the empty plan is
returned to the user as the solution. Otherwise, the theorem
prover is called a second time, this time with a variable as
the argument of hypotheses.

Now the theorem prover distributes the epistemic context
of G over the conjuncts of G. We will illustrate using our
blocks-world example, so goal G

(above(a,b) & on(a,c))@@[believes(j)]

becomes G′

above(a,b)@@[believes(j)]
& on(a,c)@@[believes(j)]

Next, the first conjunct above(a,b)@@
[believes(j)] of G′ is addressed, and an action
is identified whose effects entail it. How is this done? Ad-
dressing conjunct above(a,b)@@[believes(j)] of
G′, the theorem prover finds that above(a,b) is the con-
sequent of a rule whose antecedent is on(a,b), and whose
epistemic context is [believes(Y)] (see Figure 2). The
epistemic context is distributed over the rule,5 and a proof is
sought of antecedent on(a,b)@@[believes(Y)].

Now the theorem prover is looking for an action whose
effects would render on(a,b)@@[believes(Y)] true.
Individual action effects are stored as ‘hypothetical facts’ in
the Prolog database. Figure 4 shows a skeletal version of the
effect on(F,G) of action stack(slave,F,G) as it is
stored in the database:6

5See earlier (‘Modelling human reasoning’) for our justification
of this move.

6In order to make our presentation as clear as possible for the
reader, we have missed out much of the body of the rule presented

Figure 4:

0. on(label(..., hypotheses(D),
1. context(E)),
2. F, G) :-
3. checkContexts([believes(H)],E),
4. hypothesis(
5. label(hypotheses(D),
6. context([believes(H)])),
7. action(doer(slave),
8. stack(slave,F,G),
9. precons(isblock(G)
10. & isblock(F)
11. & on(F,table)
12. & clear(G)
13. & clear(F)),
14. add(on(F,G)),
15. delete(on(F,K)&clear(G))).

This hypothetical fact says “on(F,G) would be true, if
you allowed me to introduce these hypotheses”. The hy-
pothesis the theorem prover wants to introduce here is
stack(J,F,G) (lines (4)–(15)).

Continuing with the example, the hypothetical fact
on(F,G) is unified with our current subgoal on(a,b),
and (among other things) a check is made to see whether
the epistemic context [believes(j)] of the subgoal is
entailed by the epistemic context [believes(H)] of the
action, which it is (see lines (1), (3), and (6)). Now the
label of on(a,b) is threaded through into the label of
above(a,b), carrying with it the list of hypothetical facts
(which contains one fact at the moment in our example),
and the list is returned to plan. Now the epistemic con-
text of the action stack(slave,a,b) is distributed over
the action’s preconditions, and plan is called to prove the
(now epistemic) preconditions of stack(slave,a,b).
Thus the whole planning procedure starts again from the
beginning, this time with the preconditions of a desir-
able action as the goal. In our example, all the precondi-
tions of stack(slave,a,b) are true, and so the action
stack(slave,a,b) is applied (the add list facts are
added to the Prolog database, and the delete list facts are
deleted). A goal protection check is made, which succeeds,
and the next conjunct on(a,c)@@[believes(j)] of
the goal G′ is addressed.

The procedure continues for the second goal conjunct
much as just described for the first, except this time
there is no need to invoke an above(,) rule to find
a desirable action. However, the goal protection check
fails, because to achieve on(a,c)@@[believes(j)],

in Figure 4. Present in the actual body are procedures for checking
whether the head of a rule is ground, for loop checking, and for
managing equivalence classes (all mentioned earlier), as well as
some additional constraints on stack. The label is also missing a
lot of arguments, most of which have been mentioned already. The
preconditions list has also been simplified.

the planner would have to ‘unachieve’ the earlier
achieved goal above(a,b)@@[believes(j)]. Con-
sequently, Prolog fails and backtracks to try an al-
ternative proof of above(a,b). This time the theo-
rem prover collects two hypothetical facts in its list
of hypotheses, and returns them to plan. Figure 3
above shows the model’s representation of the goal
above(a,b)@@[believes(j)] at this stage, when the
goal has just been returned to plan along with the hypothet-
ical facts that would enable its proof to be completed. Notice
that stack(slave,E,b) and stack(slave,a,E)
are included as arguments of hypotheses(...), being
the two actions that need performing before the proof of
above(a,b)@@[believes(j)] can be completed.

Having more than one action to deal with this time,
plan makes a plan to achieve the preconditions of the
first action stack(slave,E,b), applies that plan, does
a goal protection check, and then repeats the proce-
dure for the second action stack(slave,a,E) (which
by now is fully instantiated), with backtracking, until a
plan is found that will achieve the first goal conjunct
above(a,b)@@[believes(j)] from W0. The grow-
ing plan by this stage is [stack(c,b),stack(a,c)].
Now the second conjunct on(a,c)@@[believes(j)]
of the goal G′ is addressed, and the theorem prover finds
that W1 models on(a,c)@@[believes(j)], so a plan
solution has been found.

Comments on procedure

The example that has been given is a simple task, chosen
to keep the necessary explanation to a minimum. One fac-
tor that makes it simple is that there are only two con-
juncts in the goal condition, and only one of these is an
above(,) goal. The planner can, however, achieve goals
having many conjuncts, and including many above(,)
goals, including those which require multiple recursive calls
of the above(,) rules in order to be achieved.

Another factor that makes the example simple is that, due
to the fact that all the blocks are on the table and clear in
the initial state, no planning is required to achieve the pre-
conditions of the hypothesised actions. The example is not
typical, however, and there are many tasks the planner can
achieve which require preconditions to be achieved, not sim-
ply proved true.

The simplicity of the example has made it unnecessary to
describe aspects of the plan search that have been specially
designed to overcome unhelpful goal interactions (as first
discussed by (Sussman 1974; Sacerdoti 1975)). These in-
clude a cross-plan-splicing procedure we call ‘Think Ahead’
(Field & Ramsay 2004). It works by incorporating thinking
about the preconditions of chronologically later actions into
the planning of earlier actions, which it does by exploiting
the chronological information in the antecedent of a recur-
sive domain-specific inference rule.

The reader may have noticed that our actions have an ex-
plicit ‘doer’ who is always ‘slave’:

forall(Y,
believes(Y,
action(doer(slave),stack(slave,F,G)...)))

This is done because we want to maintain a clear dis-
tinction between three agent types: (i) the agent who knows
about actions and does all the thinking (Y in the stack op-
erator); (ii) the agent who will supposedly execute the ac-
tion (slave in stack); and (iii) the agent who observes
the action. No explicit observer is mentioned in the stack
operator, because we have represented stacking as a non-
communicative action, which is generally the case.7 Our
operators for communicative actions, however, require both
speaker (doer) and hearer (observer) to be made explicit, so
that preconditions lists can refer to both the speaker’s beliefs
and the hearer’s beliefs.

General comments and further work
The reader may have observed that there are perhaps alarm-
ingly large amounts of quoted Prolog in this paper. Although
this may appear unorthodox, we feel it serves our purpose
well to include the code, and so we hope that the reader will
forgive us. We are aiming to exploit the efficiency of Prolog
as an engine for backward chaining through Horn clauses.
The inclusion of a substantial amount of Prolog in the dis-
cussion is intended to show how we can obtain directly exe-
cutable Prolog from problems stated in epistemic logic.

The authors do recognise that most of the AI commu-
nity views ramifications as a problem (a part of the FRAME

PROBLEM (McCarthy & Hayes 1969)), and not the norm. We
concede that, whereas our presented model makes plans to
achieve what we might call ‘positive ramifications’ (new
propositions which become provable in the new state, but
which are not listed in an operator’s add list), there has
been no mention thus far of what we might call ‘negative
ramifications’—facts in the knowledge base which are ren-
dered false by the application of an action, but which do not
appear in the action operator’s delete list, and which there-
fore remain in the knowledge base, leading to potential in-
consistencies.

Currently no procedure is implemented in the model to
deal with negative ramifications, because there is no need
for it. This is because the inferences made by the entertain-
ment of hypotheses are only held at run-time, they are not
collected into a cache to be asserted in the knowledge base
for later reference. We recognise that there may be an argu-
ment for cacheing inferences, annotated by the hypotheses
that were being entertained at that point. However, in our

7It is, however, easy to think of situations in which stacking a
block is done to convey a message, for example, a mother stack-
ing a block to communicate to her baby how stacking is done. In
fact, we consider most ‘physical’ actions as potential communica-
tive actions.

natural language domain, the costs are likely to outweigh
the benefits, because we very seldom repeat inferences un-
der the same sets of assumptions. If we were to cache in-
ferences, we would probably appeal to the EXTENDED STRIPS

ASSUMPTION (Reiter 1978, p. 407) (formulae not in the delete
list of an operator will remain true after the action’s per-
formance, unless it can be shown otherwise), and employ a
reasoning maintenance system (after (Doyle 1987)). At the
point of the addition of a cache of inferences to the knowl-
edge base, the RMS would use necessary supporting condi-
tions to identify and delete any propositions in the database
which the new propositions contradicted.

References

Allen, J.; Hendler, J.; and Tate, A. 1990. Editors. Readings
in planning. San Mateo, California: Morgan Kaufmann.

Anderson, A. R., and Belnap jr., N. 1975. Entailment:
the Logic of Relevance and Necessity, vol. 1. New Jersey:
Princeton University Press.

Doyle, J. 1987. A truth maintenance system. In (Ginsberg
1987), pp. 259–79.

Feigenbaum, E. A., and Feldman, J. 1995. Editors. Com-
puters and thought. Cambridge, Massachusetts: MIT Press.
First published in 1963 by McGraw-Hill Book Company.

Field, D., and Ramsay, A. 2004. How to build towers
of arbitrary heights, and other hard problems. In Proc.
23rd Workshop of the UK Planning and Scheduling Special
Interest Group (PLANSIG), 20–21 December 2004, Cork,
Ireland.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2: 189–208.

Gabbay, D. M. 1996. Labelled deductive systems. Oxford
University Press: Oxford.

Gallier, P.; Narendran, P.; Plaisted, D.; Raatz, S.; and Sny-
der, W. 1993. An algorithm for finding canonical sets of
ground rewrite rules in polynomial time. Journal of the
Association for Computing Machinery 40(1): 1–16.

Ginsberg, M. L. 1987. Readings in nonmonotonic reason-
ing. Los Angeles, California: Morgan Kauffmann.

Green, C. 1969. Application of theorem proving to prob-
lem solving. In Proc. 1st International Joint Conference on
Artificial Intelligence (IJCAI), pp. 219–39.

Herzberger, H. 1982. Notes on naive semantics. Journal
of Philosophical Logic 11: 61–102.

Hintikka, J. 1962. Knowledge and belief: An introduction
to the two notions. New York: Cornell University Press.

Konolige, K. 1986. A deduction model of belief. London:
Pitman.

Kowalski, R. 1975. A proof procedure using connection

graphs. In Journal of the Association for Computing Ma-
chinery 22(4): 572–595.

Kripke, S. 1963. Semantical considerations on modal
logic. In Acta Philosophica Fennica 16: 83–94.

Manthey, R., and Bry, F. 1988. Satchmo: a theorem prover
in Prolog. Proc. 9th International Conference on Auto-
mated Deduction (CADE-9), volume 310 of Lecture Notes
in Artifcial Intelligence, pp. 415–434, Berlin: Springer-
Verlag.

McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
Machine Intelligence 4: 463–502.

Newell, A., and Simon, H. A. 1963. GPS, a program
that simulates human thought. In (Feigenbaum & Feldman
1995), pp. 279–93.

Newell, A.; Shaw, J. C.; and Simon, H. A. 1957. Empir-
ical explorations with the logic theory machine. In Proc.
Western Joint Computer Conference 15: 218–239.

Ramsay, A. M. 1994. Focus on “Only” and “Not”. In
Y. Wilks. Editor. Proc. 15th International Conference on
Computational Linguistics (COLING-94), Kyoto, pp. 881–
885.

Ramsay, A. 2001. Theorem proving for untyped construc-
tive λ-calculus: implementation and application. In the
Logic Journal of the Interest Group in Pure and Applied
Logics, Vol. 9(1): 83–100.

Reiter, R. 1978. On closed world data bases. In H. Gal-
laire and J. Minker. Editors. Logic and Data Bases, pp. 55–
76. New York: Plenum Press, 1978. Reprinted in (Ginsberg
1987), pp. 300–333.

Sacerdoti, E. D. 1975. The nonlinear nature of plans.
In Proc. 4th International Joint Conference on Artificial
Intelligence (IJCAI), Tbilisi, Georgia, USSR, pp. 206–14.
Reprinted in (Allen, Hendler, & Tate 1990), pp. 162–70.

Sussman, G. J. 1974. The virtuous nature of bugs.
In Proc. Artificial Intelligence and the Simulation of Be-
haviour (AISB) Summer Conference. Reprinted in (Allen,
Hendler, & Tate 1990), pp. 111–17.

Thomason, R. H. 1974. Editor. Formal Philosophy: Se-
lected papers of Richard Montague. New Haven: Yale Uni-
versity Press.

Turner, R. 1987. A theory of properties. In Journal of
Symbolic Logic 52(2):455–472.

Wallen, L. 1987. Matrix proofs for modal logics. Proc.
10th International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 917–23.

Whitehead, A. N., and Russell, B. 1910. Principia mathe-
matica. Cambridge: Cambridge University Press.

