
Java CPD (II)

Frans Coenen

Department of Computer Science

Tea

Time?

Java “Keyboard” Input

Keyboard Input (1)

• Java is a sophisticated language that allows input

from many streams, the “keyboard” is only one

of these.

• Because of this sophistication Java keyboard

input is more complicated than with respect to

many other languages.

• We read keyboard input using a method called
nextLine() which is in the Scanner class

that comes with Java but is not automatically

included (unlike some other classes).

Keyboard Input (2)

• Therefore we have to import the Scanner class

using an import statement:

• The Scanner class is contained in the

“package” Util which is a subclass of Java

(everything is a subclass of Java)

import java.util.*;

Keyboard Input (3)

• To use the nextLine method we need to create an

instance of the class Scanner:

• Static because we do not want to (accidently)

change it. The argument is an instance of the
class InputStream class called source.

• Java supplies an appropriate instance of the class
InputStream in the System class (its called

in).

private static Scanner keyboardInput =

 new Scanner(InputStream source);

Keyboard Input (4)

• Keyboard input, by default, is always in the form

of a string, thus if we wish to input a double or an

integer we must specify this:

keyboardInput.nextDouble();

keyboardInput.nextInt();

Keyboard Input (5)

private static Scanner keyboardInput =

 new Scanner(InputStream source);

String s = keyboardInput.next();

double d = keyboardInput.nextDouble();

Problem Example 5:

Landscape Gardening

Quote With Keyboard Input

Landscape Gardening Quote

With Keyboard Input

Requirements*

Create a Java programme that: (a) allows a user to input

lawn and patio dimensions and the number of water

features required (if any); and (b) outputs the cost for each.

* (Taken form AQA HCSE Specimen Controlled Assessment v1.0)

Quote Item Source Code (ver. 4)

• Go to the directory H:\JavaCPD

\JavaExampleProgrammes\keyboardInput

\LandscapeGardKBinput and load

QuoteItem.java into the text editor.

• Note that we have imported the package Java.util.

• Note that we have created an instance of the Scanner

class (protected so that it can be inherited).

 protected static Scanner input =

 new Scanner(System.in);

Quote Item Type 1 and 2 Source

Code (Ver. 3)

• Load QuoteItemType1.java

(QuoteItemType2.java into the text editor.

• Note: We have added another constructor in each
case with just three arguments no length or

width (quantity) with keyboard input for

length and width (quanitity).

Compiling and Running The

Quote Item Application

javac *.java

java QuoteItemApp

• Try adding another feature such as a patio or garden
lights (remember to also add an appropriate output
statement).

Constants

Constants

• Constants are data items whose value cannot be

changed (it is “constant”)

• In Java, by convention, we indicate that a data

item is constant by using all upper case for the

name.

• Thus:

private static double

 INST_TIME_LAWN = 20.0;

Problem Example 6:

Landscape Gardening Task

1(a) (The Full Quote)

Landscape Gardening Task 1(a)

• AQA GCSE Specimen Controlled Assessment

example, Task 1.

 Pond

Water
Feature

Lawn

Wooden
Decking

8m

4m

2m

5m 10m

Landscape Gard. Task 1(a) Reqs.

• (Taken from AQA GCSE specimen). Customers provide
a landscape gardening company with a plan. Costs are as
shown in the table. There is also a labour charge of
£16.49 for every hour of work done. Create a java
programme that: (a) allows a user to input lawn and patio
dimensions and the number of water features required (if
any); and (b) outputs the cost for each, the labour cost
and the total cost.

Work to be done Cost of materials Time to install

Laying a lawn £15.50 per m2 20 mins per m2

Laying a concrete patio £20.99 per m2 20 mins per m2

Installing a water feature
(e.g. a fountain)

£150.00 each
60 mins each

Quote Source Code

• Go to the directory H:\JavaCPD
\JavaExampleProgrammes\KeyboardInp
ut\LandscapeGardeningTask1a and load
Quote.java into the text editor.

• Note

1. New class. Has fields for: (i) the month, (ii)
instances of QuoteItemType1 (two of these)
and QuoteItemType2 (one of these), (iii)
labour cost and (iv) various totals.

Landscape Gardening Source Code

• Load LandsGardQuote.java into the text

editor.

• Note

1. Another new class.

2. Constants for installation times and labour costs.

3. Fields for: (i) instance of Scanner class, (ii)

material costs and (iii) an instance of Quote.

4. Method prepareAnewQuote().

Landscape Gardening

Application Source Code

• Load LandsGardQuoteApp.java into the

text editor.

• The application class has also been revised.

Compiling and Running The

Quote Item Application

javac *.java

java QuoteItemApp

• Try adding another landscape gardening element,

for example garden lights.

EditingThe Quote Item

Application

In LandsGardQuote class
add:

1. Material cost constant

2. Installation time constant

3. In
inputQuoteDetail(

) method add:

• Line to create quote
element

• argument for new item to
Quote constructor call

In Quote class add

1. Field for new feature

2. Argument and assignment
in Quote constructor

3. In caluateCost
method update:

• totalInstallati
onTime calculation

• totalMaterialCo
st calculation

4. Edit toString method
to include new feature

Programme Constructs

Programme Constructs

• Programming is founded on three basic

constructs:

1. Sequence

2. Selection

3. Repetition

Selection (linear “if” and

“if-else”)

Linear “if”

if (<BOOLEAN_EXPRESSION> {

 <STATEMENTS>

 }

“if-else”

if (<BOOLEAN_EXPRESSION> {

 <STATEMENTS_1>

 }

else {

 <STATEMENTS_1>

 }

Problem Example 7:

Triangle Recognition

Triangles Requirements

1. Equilateral (all
sides the same
length),

2. Isosceles (two
sides the same
length), or

3. Scalene (no sides
the same length).

• Produce a Java program which, given three sides

of a triangle, determines whether the triangle is

either:

Triangle Source Code

• Go to the directory
H:\JavaCPD\JavaExampleProblems

\Selection\TriangleRecognotion and load

TriangleRecog.java into the text editor.

• Note: Includes test to determine whether input

triangle can be realised or not.

• Load TriangleRecogApp.java into the text

editor.

Compiling and Running The

Triangle Recognition Application

javac *.java

java TriangleRecogApp

Switch Statements

Switch Statement

Switch (<SELECTOR>) {

 case <VALUE_1>:

 <STATEMENTS_1>

 case <VALUE_2>:

 <STATEMENTS_2>

 default:

 <DEFAULT_STATEMENTS>

 }

• Used to select between a number (more than two)

of alternatives.

While Loops

The While Loop Statement

While (<CONDITION>{

 <STATEMENTS_TO_BE_REPEATED>

 }

• General purpose loop for repeating some

sequence of statements.

Problem Example 8: Menu

Input

Menu Input Requirements

Design and implement a Java application

class that allows the user to select from five

different menu options on a continuous loop,

including an option to quit the program.

Include an error handling mechanism for the

situation where an unrecognised menu

option is input by the user.

Menu Application Source Code

• Go to the directory
H:\JavaCPD\JavaExampleProblems

\Repetition\MenuApp and load MenuApp.java
into the text editor.

• Note:

1. Note that source code features an infinite loop (the test
statement comprises the Boolean vale True which
evaluates to itself) and that the termination statement is
embedded in the loop using an “if” statement.

2. A switch statement is used to implement the menu
(default case at the end).

Compiling and Running The

Menu Application

javac *.java

java menuApp

Arrays

Arrays (Reminder 1)

• The available primitive (basic) types can be

extended by adding compound types made up of

existing primitive types (and/or other compound

types).

• Compound types are usually programmer defined.

• Classes in java can be viewed as compound types.

• The most straight forward (and oldest) form of

compound data type is the array.

• An array can be viewed simply as a collection of

data items all of the same type.

Arrays (Reminder 2)

• Features of arrays:

1. Items in arrays are called elements (some authors
call them cells).

2. The number of elements in an array is described by
its length.

3. Specific elements in an array can be identified
through the use of an index.

4. In Java the index is always of the type integer (this
is not the case in all programming languages).

5. In Java the first index is always the integer 0 which
is referred to as the lower bound, the last index is
then referred to as the upper bound.

6. Note that: upperBound = length-1.

For Loops

The For Loop Statement

for (<StartExpression> ; <TestExpression> ;

 <UpdatExpression>) {

 < sequence of statements >

 }

• Start expression: Introduces one or more loop parameters
(also referred to as the control variables or loop counters)

• Test expression: Defines the end condition for terminating
the loop.

• Update expression: To avoid infinite repetition the loop
parameter(s) must be updated on each repetition.

Problem Example 9: Set

Intersection

Set Intersection Requirements

Develop a Java program which, given two sets of

integers, determines the intersection of these two

sets and stores this in a third set. For example

Given:

set1 = {2 4 6 8 10 12 14 18 20}

set2 = {3 6 9 12 15 18}

set1 intersection set2 = set3 = {6 12 18}

Set Intersection Source Code

• Go to the directory H:\JavaCPD

\JavaExampleProgrammes\Arrays

\SetIntersection and load

SetOperations.java into the text

editor.

Set Intersection Comments (1)

• The set is defined as an integer array (line 16)

whose size is specified by the constructor (line

21).

• The noDuplicates method (lines 47-57)

includes a straightforward for loop (by definition

sets cannot contain duplicate items).

• The toString method (lines 155-169) also

includes a for loop (note index set to 1 not zero

because first element has already been

considered).

Set Intersection Comments (2)

• The inputSet method (lines 28-40) includes a

for loop with the update expression embedded in

the loop.

• The intersection method (lines 65-90)

contains two for loops, one nested inside the

other.

• The numIntersectingElements method

(lines 96-120) also contains two for loops, one

nested inside the other.

Set Intersection Application Source

Code

• Load SetIntersectionApp.java into the

text editor.

• Note: We create two sets (instances of the
SetOperations class) and then find the

intersection between these two sets.

Compiling and Running The Set

Intersection Application

javac *.java

java SetIntersectionApp

• Run the application a few times creating

different pairs of sets (include empty sets of

length zero).
• Try creating anther set, set4, and finding the

intersection between this and set3 (the

intersection of set1 and set2).

Home Time?

