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Abstract

The research presented in this thesis is directed at an investigation into the use of
keystroke dynamics (typing patterns) for the purpose of impersonation detection, espe-
cially in the context of online assessments. More specifically, the aim was to research
the nature of time series analysis approaches for the purpose of continuous user au-
thentication. The research question to be answered was “Is it possible to continuously
authenticate individuals, according to their keyboard usage patterns; and if so what are
the most appropriate mechanisms for achieving this?”.

The main contribution of the thesis is a collection of three time series analysis ap-
proaches to continuous user authentication using keystroke dynamics: (i) Once-only
Keystroke Continuous Authentication (OKCA), (ii) Iterative Keystroke Continuous Au-
thentication (IKCA) and (iii) Keystroke Continuous Authentication based Spectral Anal-
ysis (KCASA). The OKCA approach was a benchmark, proof-of-concept, approach ap-
plicable in the static (as opposed to the continuous) context, and directed at establishing
the veracity of the time series approach. The IKCA system was the first of two proposed
continuous iterative authentication approaches. The IKCA approach was founded on the
OKCA approach. A particular novel aspect of the operation of the IKCA approach was
that it used the concept of a bespoke similarity threshold. The KCASA approach was
then an improvement on the IKCA approach that operated in the spectral domain rather
than the temporal domain used in the case of the OKCA, and IKCA approaches. Two
spectral transformations were considered: (i) the Discrete Fourier Transform (DFT) and
(ii) the Discrete Wavelet Transform (DWT). All three of the proposed approaches used
Dynamic Time Warping (DTW) as the time series similarity determination mechanism
because this offered advantages over the more standard Fuclidean distance similarity
measurement.

The systems were evaluated using a dataset collated by the author, and two further
datasets taken from the literature. Both Univariate and Multivariate Keystroke Time
Series (U-KTS and M-KTS) were considered. The evaluation was conducted to compare
the operation of the proposed approaches and to compare the operation of the proposed
approaches with the established feature vector-based approach from the literature. All

the proposed time series-based approaches were found to be more accurate than the
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feature vector-based approach. The most accurate of the three proposed time series-
based approaches was found to be the KCASA approach. More specifically, KCASA
with DWT coupled with M-KTS. However, DFT was found to be more efficient in terms

of run-time complixity.
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Glossary

Cosine Similarity. A method for finding similarity between two non-zero vectors; it is
extensively used in the context of information retrieval, data mining and
pattern recognition.

Discrete Fourier Transform. A mechanism for transforming time series data from
the temporal domain to the frequency domain by representing the time
stream as a linear combination of sinusoidal coefficients.

Discrete Wavelet Transform. An alternative mechanism to the Discrete Fourier
Transform for transforming time series data by considering the time span
over which different frequencies (coefficients) are present in a time series.

Dynamic Time Warping. A time series similarity checking mechanism that considers
the optimal alignment between two time series.

Flight Time. The time between consecutive key presses and releases.

Key-Hold Time. The length of time between a key press and a key release.

Keyboard Event. A point in a point series which is parametrised as a tuple of the form
(Ti, X;), where T is an identifying index and X is one or more keystroke
dynamics.

Keystroke Time Series. An ordered discrete sequence of keyboard events.

Multivariate-Keystroke Time Series (M-KTS). A keystroke time series that com-
prises multiple keyboard events.

Shapelet. A subsequence of a keystroke time series.

Univariate-Keystroke Time Series (U-KTS). A keystroke time series that com-
prises a single keyboard event.

User Typing Template. A set of shapelets that are known to belong to a particular

user.
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Chapter 1

Introduction

1.1 Overview

Recent decades have witnessed a massive increase in digital learning, or simply eLearn-
ing, and online education methods. Digital learning, whatever form this might take,
refers to internet facilitated education, as opposed to traditional face-to-face classroom
style education. Many universities and educational institutions now provide online pro-
grammes where students can learn outside of the traditional, nine to five, bricks and
mortar, setting. For instance, in 2017, the University of Liverpool had more than
10,000 students enrolled in over 30 postgraduate programmes, all delivered fully on-
line |118,[119]. Another example of the prevalence of eLearning is the emergence of the
Massive Open Online Courses (MOOCs) phenomena [35]. The term MOOCs was first
coined by George Siemens, from the School of Computing and Information Systems at
Athabasca University, and Stephen Downes, from Canada’s National Research Council,
in 2008 [41} 160} 123]. MOOCs are also web-based teaching platforms, but are different to
other eLearning approaches in that they are typically not bound by formal regulations
or schedules; thus students can register, learn at their own pace and withdraw, openly
and freely [23]. The number of students enrolled on MOOCs has been increasing year
on year. Figure shows a graph of the number of students, year-on-year from 2011,
registered with some well known MOOC operators, specifically Coursera [32], Udacity
[153] and edX [43] . The increase in student numbers can be clearly observed.

Many eLearning and MOOC providers give students an option, at an additional cost,
to register for an award, although many MOOC users take courses solely out of interest,
rather than with the aim of acquiring some kind of certification. Nevertheless, where
students do want some sort of certification the provider has to have systems in place
that allow them to confirm that students have met the learning outcomes of the course
they are taking. This is typically done through some form of remote assessment, and
thus the provider must correctly authenticate the student’s identity before granting any
form of certificate (certificates should clearly not be awarded to imposters).

The increasing prevalence of eLearning has meant that user (student) authentication

has become a significant issue [48] 97, [105]. Today, the vast majority of eLearning

1
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FiGUure 1.1: Well known MOOC providers and the number of students enrolled from
2011 to 2017. The numbers have been taken from the official websites of each provider
(Coursera, Udacity and edX) respectively [32] 43, [153].

and MOOC systems depend on (traditional) log-in credentials, such as passwords and
usernames, for authentication. However, this means that the identity of students is only
authenticated at the start of an eLearning assessment [105] and even then usernames and
passwords are open to misuse. The utilisation of this form of authentication is obviously
inadequate with respect to what is known as “insider attacks”. The form of insider
attack most relevant to eLearning is impersonation, where an imposter poses as the
real user when performing some remote assessment. Consequently, a major issue with
respect to the certification of individuals taking courses using eLearning systems and
MOOC:s is how to continuously confirm that a student taking an assessment is who they
say they are. This means, not only that students need to be authenticated at the start
of each eLearning assessment, but throughout the course of the assessment; continuous
surveillance of student identity is thus required. The work presented in this thesis is
motivated by this requirement and seeks to find a suitable solution to the continuous
authentication problem in the context of online assessments.

Generally speaking, the process of authentication, with respect to any computerised

system, can be categorised (at least at a high level) as:

1. Token-Based: The authentication is accomplished using stored credentials pre-
viously assigned to the user, such as: a given password, answers to a security
question, or magnetic identity cards. This type of authentication process is also
sometimes described as one-off validation [141], because it is only done once, for

example on entering a building or logging in to a computer system.

2. Biometric-Based: In contrast to the above, the biometric-based authentication
process operates using some feature that is inherent to the user [135]. Biometrics

can be classified into following:
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(a) Physiological Biometrics: Physiological biometrics are the organic char-
acteristics of an individual. Well known examples include: (i) iris recognition
[166], (ii) face recognition [126] and iii) fingerprint recognition [98].

(b) Behavioural Biometrics: Behavioural biometrics are concerned with the
manner in which individuals perform certain tasks. Examples include: (i)
keystroke dynamics (typing patterns) [108], (ii) mouse movement usage [4],
(iii) voice recognition [65], (iv) handwriting recognition [157] and (v) gait

(walking style) recognition [100].

A further distinction between physiological and behavioural biometrics is that the first
is typically also used for one-of-verification as in the case of token-based authentication.

In the context of token-based authentication mechanisms, user credentials (password
and username) are the most common method used for authentication; this is especially
the case in the context of computerised systems. However, because of their one-off
nature, password and username are inappropriate for continuous user authentication
as required for the purpose of monitoring students taking online assessments. Also,
passwords can be easily violated by (say) theft, hacking and “shoulder surfing”. Thus,
token-based knowledge, using (say) passwords and usernames, is unsuited to addressing
the security concerns regarding elLearning and online education assessment methods;
more robust methods are required.

Biometrics can produce strong authentication solutions [9]. As already noted, bio-
metric mechanisms authenticate users based on personal traits rather than something
they know, or carry around with them; and are thus considered more reliable. Typi-
cally, the use of physiological biometrics requires specialised equipment to operate, such
as iris, face or fingerprint recognition devices. However, in the context of the eLearning
domain, it seems unreasonable to expect online students to purchase such equipment
for authentication reasons. Moreover, physiological biometrics are impractical for con-
tinuous authentication in that students need to re-conduct the biometric authentication
periodically. In contrast, behavioural biometrics, seem well suited to continuous user
authentication in the eLearning context, because they do not require dedicated devices
which in turn make their deployment relatively straightforward. The most obvious be-
havioural biometrics of this type is keystroke dynamics (typing patterns). The work
presented in this thesis is therefore directed at continuous user authentication, in the
context of eLearning environments, using keystroke dynamics.

The intuition behind the use of keystroke dynamics, as will be demonstrated in the
next section, is that individuals use keyboards in different manners regardless of what
they are typing. Thus such “typing rhythms”, captured using keystroke dynamics, can
be effectively used to authenticate keyboard users. Although the usage of keystroke
dynamics for user authentication, and user identification, is not new (there are some
previous reports in the literature) the idea of viewing keystroke dynamics in terms of a
data stream and using this for continuous user authentication as proposed in this thesis

is, to the best knowledge of the author, entirely new.
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1.2 Motivations

From the foregoing, the main motivation for the work presented in this thesis is the
need for effective, in terms of accuracy and cost, mechanism to support continuous user
authentication in the context of online learning environments. The fundamental idea
presented in this thesis is, as already noted above, to use keystroke dynamics for this
purpose. The research presented in this thesis was founded on the observation that the
way in which individuals use keyboards is distinctive and that keyboard usage displays a
pattern that can be detected and associated with individual users. Thus, the suggestion
here is that impersonation with respect to online tests and exams can be detected using
some kind of keyboard usage recognition software in a way that is not provided by
other forms of authentication mechanisms. Furthermore, using keystroke dynamics,
the identity of the user can be continuously monitored. The intuition is that typing
patterns can be continuously extracted regardless of the text being typed, or the nature
of a particular keyboard layout, and that these patterns can be used for continuous
authentication purposes. In summary, keystroke dynamics, as a means of continuous

authentication, provides the following advantages over other types of authentication:

e Usage of keystroke dynamics provides a continuous authentication mechanism as
typing patterns can be continuously extracted and monitored throughout an entire

online session.

e It is difficult to mimic the typing style of other users; thus keystroke dynamics are
difficult to circumvent [151].

e The usage of keystroke dynamics for authentication is low-cost [71] in that it
does not require specialist equipment as in the case of other forms of biometric

authentication, such as iris and fingerprint recognition.

e Keystroke dynamics are a transparent and a nonintrusive biometric technology;
keystroke authentication systems can operate in the background without the knowl-
edge of the user [34].

To date, most work on authentication systems founded on keystroke dynamics has
concentrated on providing an extra level of security with respect to user credentials,
such as users typing in passwords and usernames, or pin numbers (see for example
(13} 21), 22] [72], 183] 110, [120, [149]). This form of authentication is also known as static
authentication. Some keystroke dynamic systems have also been proposed that operate
using typing patterns extracted from free text, although they have received little atten-
tion in the literature (some examples can be found at [3} 138} 154, 107, [142]); these are also
known as continuous authentication systems (continuous because the text being typed is
continuous as opposed to static). For ease of presentation, in this thesis, the concept of
static authentication will be referred as to KSA (Keystroke Static Authentication). Sim-
ilarly, the concept of continuous authentication will be referred as to KCA (Keystroke

Continuous Autehntication).



Chapter 1. Introduction 5

The most common existing mechanism for representing keystroke dynamics, regard-
less of whether KSA or KCA is being considered, is the feature vector representation,
where individual feature vectors describe individual typing profiles [18, [70) [108, [167].
Keystroke dynamic feature vectors typically comprise statistical values representing
keystroke timing data such as the average and standard deviation of hold times [117],
or the interval time of selected frequently occurring keystrokes [38]. Authentication is
then conducted by comparing the similarity between stored feature vectors representing
reference profiles which are known to belong to a specific user, and a previously unseen
profile that is claimed to belong to a particular user. The feature vector approach has
met with some success. However, there are some critical disadvantages concerning the
usage of the feature vector approach with respect to keystroke continuous authentication.

These disadvantages can be summarized as follows:

1. The feature vectors tend to be large; this is especially the case for continuous
authentication where a large number of features are required for effective authen-

tication to take place. This also can raise effeciency concerns.

2. The feature vector values are either typing pattern abstractions (for example av-
erage hold times) or only a subset of the available dynamics (for example only
frequently occurring n-graphs). Thus it can be argued that more accurate authen-
tication can be achieved if more of the data is considered without adversely affect

the efficiency.

From the preceding discussion, the work presented in this thesis, therefore explored
other mechanisms, taking into account the disadvantages mentioned above, whereby
keystroke continuous authentication could be conducted. To this end, usage of time series
analysis techniques was proposed as these could take into consideration all keystrokes,
rather than some subset as in the case of feature vector based approaches. More specifi-
cally, the idea proposed in this thesis is to view keystrokes in terms of press-and-release
temporal events such that a series of successive events can be recorded. The intuition was
that the time series analysis paradigm could be more readily used to identify suspicious
typing behaviour from free text dynamically, and consequently provide an effective and

efficient solution to the continuous authentication problem in the context of eLearning.

1.3 Research Question and Related Issues

Given the above motivation, the research question, at which the research presented in

this thesis is directed, is as follows:

“Is it possible to continuously authenticate individuals, according to their keyboard
usage patterns; and if so what are the most appropriate mechanisms for achieving
this?”
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The provision of an answer to this research question entailed the resolution of a number

of subsidiary questions as follows:

1. How can keyboard usage patterns best be represented in a way that avoids the

disadvantages associated with the feature vector representations used to date?

2. Given a collection of patterns, what is the most appropriate mechanism whereby
a new pattern can be compared with an existing pattern, for the purpose of user

authentication?

3. Given solutions to 1 and 2 above, how do we go about evaluating whether a good

solution has been discovered (or not)?

4. What is the most effective process whereby continuous, real-time, authentication

can be conducted in the context of online assessment and more generally?

5. In the context of 4 above, how should the process deal with “away from keyboard”

events?

6. Can we recognise typing patterns in a way that avoids the knowledge of the text

that is being typed by the user so as to avoid data privacy concerns?

1.4 Research Methodology

The high level proposed research methodology, designed to provide an answer to the
above research question and associated issues, was to generate an appropriate training
set and to then experiment with a number of authentication mechanisms. A commitment
had already been made to adopt a time series analysis based approach because there was
very little evidence in the research literature suggesting that this had been attempted
previously.

To collect training data the idea was to develop an online data collection facility
where users were invited to type text in response to questions, the idea being to simulate
a “discussion question” style online assessment. The view was that it would be necessary
to collect a number of samples from each individual (responding to different questions).
Each sample would be anonymised, but each would be allocated an ID number. In
this manner keystroke data could be collected. More specifically, the time between
consecutive key presses (the flight time), and the key-hold time were extracted. Either
would provide a point series for further analysis. Alternatively, both could be used.
Figure shows a typical keystroke time series, the vertical axis, in this case, represents
flight time while the horizontal axis represents keystrokes (keyboard keys being pressed).
A commitment was also made to use existing keystroke dynamics data sets from the
literature.

The idea was to commence with an initial, “proof of concept”, system and test this
using the collected time series so as to provide an initial insight into whether it was pos-

sible to distinguish between typing patterns represented as time series (the expectancy



Chapter 1. Introduction 7

1.2

o o
» (o]
T T

Flight time (ms)

o
~
T

0.2 [ 1

0 20 40 60 80 100
Keystrokes

FIGURE 1.2: Typical keystroke time series.

was that this would be the case) and also how much sample text might be required
to allow patterns to be distinguished. Once established this benchmark system could
then be elaborated on. One idea was to transpose point series from the time domain
to the frequency domain and determine the effectiveness of keystroke authentication in
this case. To this end, the Discrete Fourier Transform (DFT) and the Discrete Wavelet
Transform (DWT) were adopted. Also, a further representation to be considered was
using multivariate keystroke time series, instead of univariate keystroke time series, in
both the time domain and the frequency domain.

To perform continuous authentication monitoring, the fundamental idea was to ex-
periment with the use of a sliding window, although the nature of this window was
unclear at the commencement of the research. By doing so, it was suggested that the
proposed windowing approach is able to handle changes in the typing pattern of a sub-
ject as typing processes. It was also clear, from the beginning, that whatever techniques
were developed the comparison of point series would be required. The most straightfor-
ward mechanism for doing this would be to use the average Euclidean Distance (ED)
between the points in two given keystroke time series (assuming they were of the same
length). However, from a brief exploration of the time series to be considered it was
clear that this would be unlikely to be successful because of the way that features in
the keystroke time series would be offset against one another. Instead, an approach
known as Dynamic Time Warping (DTW) [20] was adopted, where the linearity of time
series (possibly of different lengths) was “warped” so that the sequences were aligned,
and phase shifting between pairs of time series could be taken into consideration. Thus
DTW was considered to be a more reliable form similarity measurement in the case of

keystroke time series, as proposed in this thesis, than ED measurement.
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The final phase of the research methodology was to evaluate the proposed keystroke
continuous authentication mechanisms. Thus, comparisons were undertaken with re-
spect to the feature vector representation, as previously proposed for keystroke contin-
uous authentication. The evaluation was performed to assess the effectiveness, in terms

of accuracy and efficiency (run-time complexity), for the proposed methods.

1.5 Contributions

The work presented in this thesis makes a number of contributions with respect to the

Computer Science research community, these are summarised as follows:

1. Enhancement of the accuracy of current pattern detection mechanisms for keystroke
continuous authentication; reported keyboard dynamics continuous authentication

accuracy, to date, has been generally poor [151].

2. Confirmation that keystroke dynamics can be effectively encapsulated in the form

of a discrete time series representation.

3. A system for real-time/continuous keystroke authentication that is independent of
the keyboard layout, and therefore generic, as required with respect to eLearning
and MOOC systems; some of the reported work to date has only been directed at

controlled environments using prescribed keyboards,

4. A keystroke modeling technique that is a privacy-preserving in that knowledge of

which keys are being pressed is not required.

5. A keyboard authentication mechanism that, although intended for use with respect
to online assessment, has general applicability. For example, it may equally well be
used to detect certain human conditions, such as detecting keyboard user emotions
as described in [132].

6. A keystroke online data capture tool, namely the Web-Based Timestamp Keystroke
Recorder (WBTKR), which facilitates the collection of keystroke data sets.

7. A keystroke dynamics data set, collected from real users in an uncontrolled envi-

ronment, available for public use.

8. Eight competing techniques directed at keystroke dynamics authentication as iden-
tified in Figure

i Static authentication using a univariate keystroke time series representation

with flight time (a benchmark algorithm).

ii Static authentication using a multivariate keystroke time series representation

with flight time and key-hold time (a benchmark algorithm).
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FIGURE 1.3: Categorization of the main keystroke analysis techniques proposed in this
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thesis.

Continuous authentication using a univariate keystroke time series representa-

tion with flight time.

Continuous authentication using a multivariate keystroke time series represen-
tation with flight time and hold time.

Continuous authentication using DFT spectral (transformed) univariate keystroke

time series with flight time.

Continuous authentication using DFT spectral (transformed) multivariate keystroke

time series with flight time and hold time.

Continuous authentication using DWT spectral (transformed) univariate keystroke

time series with flight time.

Continuous authentication using DWT spectral (transformed) multivariate keystroke

time series with flight time and hold time.

The techniques are summarised in diagrammatic form in Figure Note that in the

figure the chapter numbers in the thesis where the techniques are described are included,

as are, where applicable, references to where the techniques have been published.

1.6 Published Work

As noted in Figure [1.3] a number of the contributions presented in this thesis have been

published previously in the form of peer-reviewed articles as follows:

Journal papers
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1. Abdullah Alshehri, Frans Coenen and Danushka Bollegala (2018): Iterative Keystroke
Continuous Authentication: A Time Series Based Approach. German Journal on
Artificial Intelligence (KI- Kiinstliche Intelligenz), ISSN 1610-1987, DOI 10.1007
/$13218-018-0526-z, pp 1-13. Springer.

The paper presents a mechanism for real-time iterative keystroke continuous au-
thentication using sequences of keystroke dynamics and univariate time series. The
idea was to continuously monitor the time series for unusual typing behaviour in
consecutive time series subsequences obtained using a sliding window and a prede-
fined similarity threshold. The work presented in this paper is included in Chapter
[6, where the concept of continuous authentication is introduced. The evaluation
conducted in the paper utilised three data sets, the same data sets as used in this
thesis as discussed in Chapter |3 and compared the proposed method with a fea-
ture vector based approach from the literature. The results from this evaluation,

including additional detail, are also considered in Chapter
Conference papers

1. Abdullah Alshehri, Frans Coenen and Danushka Bollegala (2016): Towards Keystroke
Continuous Authentication Using Time Series Analytics, Thirty-sizth SGAI Inter-
national Conference on Artificial Intelligence (SGAI 2016), pp. 325-339. Springer

International Publishing. Winner of best student paper prize.

This was the first paper resulting from the work presented in this thesis. In this
paper, what was described as a novel approach to representing typing behaviour
from an arbitrary text, typed in the context of heterogeneous environments, using
time series analytics (as conceived of in this thesis), was first introduced. More
specifically the idea presented in this paper was to conceptualise the keystroke pro-
cess in terms of ongoing sequential streams to which authentication processes could
be applied. Keystrokes were encapsulated in terms of press-and-release temporal
events such that a series of successive events could be recorded. Each keystroke
was defined in terms of a pair P = (t,k), where ¢ was a time stamp or tempo-
ral identifier of some form; and k was a dimensional keystroke attribute (such as
the flight time between keys or key-hold length). The approach was applied in
the context of static authentication to determine the effectiveness of the proposed
representation. In the context of this thesis, the univariate (single) keystroke time

series reported on in this paper is discussed in Chapter

2. Abdullah Alshehri, Frans Coenen and Danushka Bollegala (2017): Keyboard Usage
Authentication using Time Series Analysis, 18th International Conference on Big
Data Analytics and Knowledge Discovery (DaWaK 2016), pp.239-252. Springer

International Publishing.

This paper built on the earlier conference paper listed above by considering keystroke

dynamics time series from the multivariate (3D) perspective. The intuition was
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that be using 3D time series, where both flight time and hold time, are considered
more effective authentication could be conducted. The proposed method was eval-
uated by comparing its operation with that of the univariate method proposed in
the previous conference paper. From the evaluation, it was found that the use of
the multivariate representation gave better results in terms of authentication accu-
racy, but not with regard to efficiency. The approach presented in this paper was
also considered with respect to static authentication. The concept of multivariate
keystroke time series as proposed in this paper is also discussed in Chapters 4| and
[ of the thesis.

3. Abdullah Alshehri, Frans Coenen and Danushka Bollegala: Accurate Continuous
and Non-intrusive User Authentication with Multivariate Keystroke Streaming,
9th International Conference on Knowledge Discovery and Information Retrieval
(KDIR 2017.), pp 61-70. SciTePress. Short-listed for KDIR 2017 best stu-

dent paper prize.

The content of this paper was an extension of the work presented in the above
journal paper; however, the idea of multivariate keystroke time series was used for
continuous authentication, as opposed to static authentication. The idea was to
use sequences of keystroke timing features in the form of a multivariate time series
representation by incorporating flight time and key-hold time features. The process
of iterative authentication was then conducted by continuously extracting subse-
quences from keystroke streams (which are representative of typing patterns), and
to monitor the changes in typing behaviour as these subsequences were received.
The hypothesis investigated in this paper was the idea that when incorporating
more than one keystroke timing feature, in a keyboard time series representation,
the quality of the user authentication can be improved significantly. Some of the

content of this paper was used with respect to the work presented in Chapter [6]

4. Abdullah Alshehri, Frans Coenen and Danushka Bollegala (2018): Spectral Analy-
sis of Keystroke Streams: Towards Effective Real-Time and Continuous User Au-
thentication, 4th International Conference on Information Systems Security and
Privacy (ICISSP 2018), pp 62-73. SciTePress

This paper proposes a mechanism for enhancing the efficiency of the proposed
keystroke dynamics time series representation by transforming the raw keystroke
time series into some other form. The paper introduced the Keystroke Continuous
Authentication based Spectral Analysis (KCASA) technique. The proposed model
was motivated by the idea that transforming such time series from the temporal
domain to the spectral (frequency) domain might lead to faster, and more accurate,
patterns extraction and usage. Two types of the spectral transform are considered
in this study: (i) the Discrete Fourier Transformation (DFT) and (ii) the Discrete
Wavelet Transform (DWT). Chapters [5| and [6| use material from this paper.
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5. Abdullah Alshehri, Frans Coenen and Danushka Bollegala (2017): Spectral Key-
board Streams: Towards Effective and Continuous Authentication, 12th Interna-
tional Workshop on Spatial and Spatiotemporal Data Mining at the IEEE Inter-
national Conference on Data Mining (ICDM 2017), pp 242-249. IEEE

This paper presented further work on transforming keystroke time series from

the time domain to the spectral domain. The paper considered the nature of

spectral transformations for keystroke time series and how these might be used

to discriminate typing patterns. An evaluation of the proposed approach using a

spectral transformation was included in the paper. The content presented in this

paper has contributed to the material presented in Chapter

1.7 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2: Background and Related Work. This chapter presents the background

Chapter 3:

Chapter 4:

Chapter 5:

to the work presented in this thesis. The chapter commences with a review
of the relevant work with respect to the field of keystroke dynamics in the
context of static and continuous authentication. This is followed by a
review of the relevant previous work regarding the adopted time series
representation and the analysis methods that are pertinent to the work
presented in this thesis.
Evaluation Data Acquisition. Chapter introduces the three data sets
used to support the research work presented in this thesis. The first of
these was acquired using the Web-Based Keystroke Timestamp Recorder
(WBKTR) data collection tool developed by the author, whilst the other
two data sets were obtained from the literature. This chapter provides
detail concerning each of these data sets and the WBKTR tool.
Keystroke Time Series Fundamentals and Preliminaries. The
chapter provides material associated with the fundamentals and prelimi-
naries of the keystroke time series representation. The chapter also intro-
duces a formal description of Univariate-Keystroke Time Series (U-KTS)
and Multivariate-Keystroke Time Series (M-KTS), the main representa-
tions in which keystroke streams can be realised. Dynamic Time Warping
(DTW), the adopted method for similarity checking with respect to the
U-KTS and M-KTS representations, is detailed in this chapter.
Once-only Keystroke Continuous Authentication. The chapter
considers the first keystroke continuous authentication approach presented
in this thesis, namely: Once-only Keystroke Continuous Authentication

(OKCA). The OKCA approach served as a proof of concept system to
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Chapter 6:

establish the utility of the proposed keystroke time series representation
with respect to extracting typing patterns from free text.

Iterative Keystroke Continuous Authentication in Time Series.
The chapter introduces the Iterative Keystroke Continuous Authentication
(IKCA) approach. The chapter covers different models of the IKCA ap-
proach. Furthermore, an extensive evaluation concerning the performance

of the proposed IKCA techniques is presented.

Chapter 7: Keystroke Continuous Authentication based spectral Analysis. In

Chapter 8:

this chapter, an alternative approach to continuous keystroke authentica-
tion, namely Keystroke Continuous Authentication based Spectral Anal-
ysis (KCASA), is introduced. The approach translates the keystroke time
series from the temporal domain to the spectral domain. KCASA approach
is fully described and detailed in the chapter, including comparisons with
the proposed IKCA approach presented in the preceding chapter.

Conclusion and Future Work. The chapter concludes the work pre-
sented in this thesis by summarising the main findings regarding the re-
search question and the associated subsidiary questions. Furthermore, the
chapter provides some recommendations and discussion for possible direc-

tions for future work.

1.8 Summary

This chapter has introduced the main content of the work presented in this thesis. The

introduction has provided the motivation, research question, methodology and contri-

butions of the thesis. Furthermore, the published articles resulted from this work have

been briefly reviewed. The following chapter presents the background and the previous

related work concerning the material described in subsequent chapters of this thesis.



Chapter 2

Background and Related Work

2.1 Introduction

As noted in Chapter [I, the work conducted in this thesis intersects across three es-
tablished research areas: (i) user authentication, (ii) keystroke dynamics and (iii) time
series analysis. This chapter will thus provide the necessary background concerning
each of these research areas with respect to the work presented later in this thesis. The
remainder of this chapter is hence constructed as follows. Section introduces the
fundamentals and methods of user authentication in computerised systems. It also pro-
vides an overview of the following topics: (i) static versus continuous authentication, (ii)
the difference between authentication and identification and (iii) biometrics-based au-
thentication. In Section a comprehensive review of keystroke dynamics is presented.
The section includes material on the state-of-the-art of the techniques and methods that
have been used to implement typing pattern recognition systems. Section provides
a general background to time series analysis. The section includes consideration of: (i)
time series representation methods, (ii) the process of transforming time series (stream-
ing) data to different domains and (iii) techniques for finding the similarity between time

series data. The chapter is concluded with a summary in Section

2.2 Authentication Fundamentals

Authentication has become an essential task in the era of computerised systems. Broadly
speaking, authentication is defined as the process of verifying the identity of an entity
[147], where the entity, in this context, can be either a machine or a human (user).
Thus, from the literature, the “state-of-the-art” can be divided into two categories: (i)
machine authentication and (ii) user authentication.

The first category describes the process of assuring the validity of a computer’s
identity when a communication or transaction task is to be performed between two
networked computers. This kind of authentication is concerned with the security network
protocols used to establish a secure channel for communication. An example of a well-
established protocol of this type is the Secure Socket Layer (SSL) protocol [134, [162].

14
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The second category is concerned with authenticating the identity of individuals, more
specifically to validate the correctness of a claimed individual’s identity [121]. Typically,
the individual’s identity is verified, using some authentication method, to grant the
individual access to some system or location.

The work presented in this thesis is directed at user authentication, this is, therefore,
the focus of the rest of this section. In Sub-section[2.2.1]user authentication is considered
in more detail. Sub-section [2.2.2] then considers user authentication in the context
of token-based knowledge while Sub-section [2.2.3] considers user authentication in the

context of biometrics.

2.2.1 User Authentication

User authentication, for the purpose of allowing access to computer systems, has been
an issue of concern since the introduction of remote access to computer systems and
shared computing facilities. One commonly encountered example, with an established
history, is the Automated Teller Machine (ATM). A more recent example, as noted
in the introduction to this thesis, is where students are performing online assessments
and examinations. A well-known security concern in this later context is impersonation
[26, [87]. Whatever the case, user authentication can be conducted in a static or a
continuous context, this is discussed further in Sub-section below. Furthermore,
there is a distinction between user authentication and user identification; this is thus
discussed further in Sub-section For completeness, an overview of the process of

static/continuous user authentication/identification is presented in Figure

2.2.1.1 User Authentication and User Identification

The work presented in this thesis is directed at user authentication. The term is fre-
quently considered to be synonymous with user identification. However, in this thesis,
they are not considered to be the same thing. User authentication refers to the process
of determining the validity of a user’s claimed identity [152]. The goal is to verify that
the user is who they say they are. For example, in the case of a banking scenario,
we wish to verify a user’s identity using an entered pin number which (it is claimed)
belongs to the user. On the other hand, the goal of user identification is to determine
who the user is [96} [152], typically with respect to a bank of user profiles (references).
For example, in an access control situation we might wish to apply iris recognition to
identify the individuals who have access rights, if the obtained iris pattern is not in-
cluded in a pre-registered database, access can be denied. From a practical perspective
user authentication, as defined here, is less resource intensive; only a limited number of
comparisons need to be made, while in the case of user identification an entire database
has to be searched. Although the focus of this thesis is user authentication (continuous

user authentication), user identification is considered in Chapter
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FIGURE 2.1: Data flow diagram illustrating the authentication process.

2.2.1.2 Static Authentication versus Continuous Authentication

User authentication can be conducted in a static or continuous context. Static user
authentication is where the user authentication is conducted once only, typically at the
beginning of a session, for example when a user requests access to an online bank-
ing service or when a user wishes to enter a restricted access location (as in the case
of passport control at airports). In the context of internet-facilitated working, static
authentication typically takes place when a user first connects (“logs-in”). Whereas
continuous authentication is when authentication continues to take place throughout a
session. Continuous authentication is clearly a requirement in the context of the online
assessments that feature in distance learning (eLearning) environments. Although the
central theme of this thesis is directed at continuous authentication (using keystroke

dynamics), static authentication is also considered.

2.2.2 User Authentication using Token-Based Knowledge

As already noted in Chapter [l user authentication can be conducted using either token-
based or biometric-based methods. Token-based methods are discussed further in this
sub-section while biometric based methods are discussed further in the following sub-
section (Sub-section [2.2.3).

Token-based methods are typically concerned with mechanisms that operate using
knowledge that the user knows or possesses, such as user credentials (password and
username), PIN codes and magnetic cards [140]. In practice, token-based methods,
especially those founded on user credentials, are the most popular form of user au-
thentication method. Note also that token-based methods lend themselves to static
authentication, especially remote static user authentication, as in the case of eLearning

platforms and online banking systems. The reason that token-based methods are more



Chapter 2. Background and Related Work 17

popular than biometric-based methods is because of their simplicity of usage. Further-
more, token-based methods are non-intrusive; there is no need for particular devices or
sophisticated technology.

However, token-based methods feature a significant disadvantage in that they can
easily be violated, for instance by (say) hacking and theft. Thus the knowledge used
does not guarantee the user is who they say they are, they may be an impersonator.
Moreover, the knowledge used can have been obtained by fraudulent means, or have been
given by the user to the impersonator. For example in the context of online assessment
a student can initially be authenticated by providing appropriate credentials at the start
of a session, thus static authentication, even though they are not who they say they are.

This is a well-known form of impersonation attack.

2.2.3 User Authentication using Biometrics

Biometrics are dependent on inherent physiological or behavioural attributes from the
user [68], such as fingerprints, face recognition, typing patterns, and handwritten sig-
natures. Figure shows example of a hierarchical classification of the most common

biometric methods.

Biometrics

Physiological Biometrics Behavioural Biometrics
Fingerprint Keystroke Dynamics
Face Recognition Signature
[ris Recognition Voice
Retina Recognition — Gait

FIGURE 2.2: Example of a hierarchical classification of the most common physiological
and behavioural biometric methods.

A biometric authentication mechanism can be defined as a pattern recognition system
in which biometric data is first collected from users, after each pattern, features are
extracted from the collected biometric data to construct a distinctive template, which
can then be compared, for authentication purposes, against previously stored templates
in a database [65]. More specifically, biometric user authentication, in general, comprises
a two-stage process 36,139} [154], namely: (i) enrollment and (ii) verification (Figure[2.3).
The first is concerned with the creation of an enrollment database, and the second with

using that database for authentication or identification purposes. During the enrollment
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FIGURE 2.3: The schematic of the process of biometric user authentication [148].

stage, biometric data is acquired from real users using devices/sensors, such as fingerprint
scanners, cameras, keyboards, voice recording and so on. This data is usually known as
the biometric sample [39]. Once the biometric data is obtained, features are extracted
from this data to represent a distinctive template for each user. All the collected user
templates are then stored in a database, referred to as a biometric database [64].

During verification (authentication), a newly generated template is compared against
the stored templates in the database. The comparison is made so as to authenticate the
user. Typically, in the context of user authentication, the primary interests of this thesis,
the biometric validation operates by comparing the generated biometric template with
the claimed users template(s) stored in the biometric database. Biometrics are unique
to individual users and thus provide a safeguard against impersonation [165].

In other words, biometric authentication systems operate as a pattern recognition
based binary classification. The classifier is trained using both templates that are known
to belong to the user and those that are known not to belong to the user. The resulting
classifier can then be used to classify previously unseen templates as True (the user is
who they say they are) or False (the user is not who they say they are). The operation of
the classifier can be measured in terms of the number of: (i) true accepts (true positives),
(ii) true rejects (true negatives), (iii) false accepts (false positives) and iv) false rejects
(false negatives). The last two outcomes (false accept and false reject), in the context
of biometric user authentication, are referred to as biometric system errors [6§].

The metric most commonly used for measuring the effectiveness of a biometric user
authentication system is the walidity rate. This is discussed further in the next sub-

section.

2.2.3.1 Validity Rate

The validity of a biometric system is measured in terms of the number of false accepts
(false positives) and the number of false rejects (false negatives). These values are used
to calculate the False Match Rate (FMR), and a False Non-Match Rate (FNMR) [101]:
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false positives

FMR = (2.1)

n

FNME — false negatives

- (2.2)

where n is the total number of comparisons such that:
n = true positives + true negatives + false positives + false negatives

Note that the terms False Acceptance Rate (FAR) and False Rejection Rate (FRR) are
interchangeably used in the literature to refer to FMR and FNMR respectively [137].
However, the terms FMR and FNMR are used in this thesis. The lower the FMR and

FNMR values the more robust a biometric user authentication system is said to be.

2.2.3.2 Biometrics Application Domain

Biometrics, in general, provide strong authentication solutions compared to token-based
knowledge methods [66, 167, [128]. Unlike token-based knowledge methods, they are also
well suited to continuous authentication [40]. However, which biometrics to use in which
situation is very much application dependent. There is no optimal biometric that meets
the security requirements of all applications [68]. In the case of the online assessment
continuous authentication domain is of interest with respect to this thesis, physiological
biometrics may not be the ideal solution because they need a dedicated device which
makes its deployment infeasible by the end user. However, typing patterns (keystroke
dynamics) seem like an ideal behavioural biometric for online assessment continuous
authentication, and this was thus selected for further investigation in the context of the
work presented in this thesis. The next section gives a comprehensive review of keystroke
dynamics and the techniques, from the literature, used to recognize typing patterns for

the user’s authentication.

2.3 Typing Pattern and Keystroke Dynamics Approach

The idea of using typing patterns for user authentication can be traced back to the
introduction of telegraphy in the 19th century [5} [L5] (74} [124] when it was observed that
telegraph operators (typing Morse code) had individual typing patterns which could
be used to identify individual operators [89]. During the Second World War, there
was a mechanism called “Fist of the Sender” which was used to identify telegraph
operators based on the pace and syncopation of signal taps [39, (103, [111].

Since the development of the computer keyboard, typing patterns have received a
considerable amount of attention in the literature as a behavioural biometric which
can be used to authenticate individuals. The fundamental approach is to use the de-
tailed timing information of press-and-release movements, known as keystroke dynamics

[50]. As indicated in Section [1.2] keystroke dynamics have considerable advantages over
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other forms of biometrics. The most significant advantage is that keystroke dynamics are
an ideal means for providing continuous authentication without requesting specialised
equipment, this, in turn, makes them well suited to the continuous authentication of
users taking online assessments (such as online exams). The following sub-section con-

siders the distinction between static and continuous keystroke authentication.

2.3.1 Static Versus Continuous Keystroke Authentication

Keystroke dynamics have been studied, as a biometric technology, for different authen-
tication purposes. From the literature (as also noted in Chapter , keystroke dynamics
have been applied to work in the context of both static and continuous authentication.

Static authentication using keystroke dynamics, as the name implies, is directed at
static (predefined) text such as passwords, usernames, and pin numbers. The goal is to
verify the identity of the claimed user at the initiation of a session. This is the most
common form of keystroke dynamics biometric authentication. Thus, typing patterns
are learned from a fixed text and associated with users for authentication purposes.
Examples of applications where static keystroke authentication is used include: log-in
strengthening [16) 211 [56], access code verification at physical access points [88] [145],
and password sharing prevention |99, [106].

Whereas static keystroke authentication is directed at fixed texts, continuous keystroke
authentication is direct at continuous (free) text. Thus, typing patterns are learned from
an arbitrary set of texts associated with a specific user and then used to continuously
authenticate (monitor) the user. This type of authentication is required with respect
to applications where the aim is to monitor a remote user’s identity in a continuous
manner. It should also be noted here that the term dynamic authentication is also used
in the literature to describe the process of continuous authentication using keystroke
dynamics as described here (see for example [108]).

From the previous, it is conjectured in this thesis that continuous authentication,
founded on keystroke dynamics, can be successfully employed for user authentication in
the context of online assessments such as those encountered in eLearning and MOOC
platforms. However, in this thesis, the terms “once-only” and “iterative” are also used
to describe the nature of the authentication. The term once only is used to refer to “one-
time-only” authentication applied once typing has been completed, regardless of whether
we are considering keystroke static authentication (fixed text) or keystroke continuous
authentication (free text). The term iterative then refers to a process where the authen-
tication is repeatedly conducted whilst typing is taking place, preferably in real-time, as
required when monitoring online assessments and examinations. It does not make sense
to apply iterative authentication in the context of keystroke static authentication; thus
the term iterative authentication is assumed to apply to keystroke continuous authenti-
cation only. In Chapter |5] the concept of iterative keystroke continuous authentication

will be described in further details. From the literature, however, most existing work
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on keystroke continuous authentication has been directed at once only authentication,
authentication conducted when typing has been completed.

The following subsections provide further details concerning previous work directed
at keystroke dynamics systems, with a focus on keystroke continuous authentication as

this is a central theme of the work presented in this thesis.

2.3.2 Keystroke User Authentication Workflow

The process of using keystroke dynamics, as an authentication biometric, is similar as
to that used with respect to other forms of biometrics. The process commences by
collecting keystroke timing information (samples) from typed text, and this is then
processed further to extract features and collected keystroke timing information. The
extracted features are then used to generate a typing template for each user which can
then be used for authentication purposes. Figure illustrates the overall keystroke
dynamics user authentication workflow. Note that the process maps into the general

procedure for biometric verification given in Figure

Digitising Keystroke Data 4){ Feature Extraction —D{ Pattern Representation

FI1GURE 2.4: Keystroke dynamics user authentication workflow.

Template
Matching

Decision Making
(Authenticatefldentify)

2.3.3 Keystroke Timing Features

Approaches founded on keystroke dynamics are founded on the temporal patterns gener-
ated as a result of sequences of key presses and releases. The features used with respect
to keystroke authentication systems are what are known as timing features. For each
keystroke press, there are four timing values that can be obtained: (i) Key-down time
KD! | (ii) Key-up time KU* , (iii) Key-hold time KH' and (iv) flight-time F* . For any
keystroke i, KH! can be calculated as KHE = KU! — KDL, The value for F! can then be
obtained from F! = KD!—KU._,. Since KH' and F* incorporate other values, these are
considered the most important keystroke features. Figure illustrates the relationship
between the four keystroke timing features.

The nature of the main keystroke features (F* and KH' ) can be summarised as

follows:

1. Flight Time: The time between consecutive key presses and releases.

2. Key-Hold Time: The length of time between a key press and a key release.

Note that in the context of flight time, the sequences of key presses are typically

referred to as n-graphs, where n is the number of keys pressed; where n = 1 it is called
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FIGURE 2.5: The basic keystroke timing features.

a monograph, where n = 2 it is called a digraph, where n = 3 it is a trigraph, and so on.
Furthermore, in the literature, flight time has been given various diverse names such as:
(i) latency time [72} 106} [136] (thus digraph and trigraph latency is also referred to, see
for example [74]), (ii) elapsed time [4, [144] and (iii) transition time [82) [158]. Similarly,
key hold time has also been given different names in the literature, such as: (i) dwell
time [150, 172] and (ii) duration time [19} 44]. Nevertheless, in this thesis, the terms
key-hold time and flight-time are used.

The fundamental idea of keystroke dynamics is to utilise these features to construct
a distinctive typing profile (also referred to as a signature or reference profile, the term
template is also used) associated with individual users for authentication purposes [50].
The next subsection thus introduces a further overview concerning typing profile con-

struction.

2.3.4 Typing Profile Construction

To date, the most common mechanism used to build individual typing profiles (tem-
plates) is by constructing feature vectors based on keystroke timing information. Exam-
ples can be found in [14} 55| [72] [139]. Such feature vectors usually comprise statistical
values, for example, the average and standard deviation of flight or hold times [58] [109].

In the context of keystroke static authentication, the template is constructed from a
fixed text; users are typically requested to type the fixed text several times [6} (52} 53] [83].
Table[2.1]shows examples from the literature concerning fixed text template construction
in terms of: (i) the number of participants, (ii) fixed text used and (iii) the number of
repetitions.

In the context of keystroke continuous authentication, however, the construction of
templates is more challenging. This is because, by definition, the text to be consid-
ered is unstructured; we do not know in advance the expected sequence of key presses.
This, in turn, means that typing templates need to be more generic, and consequently
more sophisticated. A common mechanism for defining feature vector templates, in the
context of keystroke continuous authentication, is by identifying statistical details con-
cerning the most frequently occurring sequences of keystrokes, n-graphs (see for example
the studies at [38] [107]). For instance, if ea and th are the most frequently occurring
digraphs in typing samples, the typing template can be constructed using the means
and standard deviations of the flight times for these digraphs. Consequently, within

the verification stage, given a typing sample received by the user, we can search for
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TABLE 2.1: Statistics concerning the construction of templates, in the static authenti-
cation context, taken from examples presented in the literature.

Study Giot et al [53] Kﬁf;giylg?jd Allen [6] Giot et al [52]
# of users 100 51 104 133
“pr7qlz”
Fixed text | “greyc laboratory”  “.tiebRoanl”  “Jeffery Allen” “greyc laboratory”
“drizzle”
Repetition 6 50 89-504 5-107

templates whose statistical similarity (matching score) falls within a global predefined
threshold; whenever the similarity between two typing samples falls below the threshold,
it will be recognised as a real sample, otherwise it will be rejected. This mechanism is
the prominent approach used for continuous authentication. However, a criticism that
can be directed at this mechanism is that the typing profile might not feature the same
frequently occurring n-graphs as the samples to be authenticated, which in turn can lead
to poor verification rates. A suggested solution is to increase the number of training
n-graphs considered to cover all possibilities; however, this means that the user needs to
be asked to provide a lot of samples. An obvious question is how many n-graphs do we
require to ensure that a typing template is sufficiently robust? Whatever the answer, the
number of n-graphs, and hence the number of required samples, is significant. Further
discussion regarding iterative keystroke continuous authentication is presented in the

following sub-section.

2.3.5 Keystroke Continuous Authentication

Much existing work on keystroke continuous authentication (and keystroke static au-
thentication) is directed at one time only authentication; there has been very little work
directed at iterative keystroke continuous authentication. Some exceptions in the liter-
ature, where iterative keystroke continuous authentication has been considered, can be
found in [107], [38], [54] and [3].

In [107] a training set was used to generate a feature vector represented typing
template repository which was then used to “identify” users (see also [109]). The feature
vectors were constructed by computing the flight time means of all digraphs that were
featured in the training set. The iterative user identification was then conducted by
repeatedly generating “test” feature vectors for a given user, one every minute, and
comparing with the stored templates. If a statistically similar match was found this was
considered to be an indication of the typer’s (user’s) identity. For evaluation purposes a
kNN approach was used where kK = 1. Experiments were also conducted using a number
of different methods for comparing feature vectors: Euclidean distance, Mahalanobis,
probability, and weighted probability. The disadvantage of the approach, however, was
the size of the feature vectors (a great number of digraphs were required) and the

number of stored templates. To minimise the search complexity, the authors proposed



Chapter 2. Background and Related Work 24

a clustering mechanism, so only the most relevant cluster had to be searched in detail.
However, this then meant that re-clustering was required every time a new user was
added. The overall reported accuracy, in the context of user identification and iterative
KCA, was 23%; not, it is argued here, a good result.

In [38] digraph latency (flight time) was used for the construction of feature vectors.
Each feature vector was generated by considering the first 500 digraphs and trigraphs in
the input typing sample, and the most frequently occurring 2000 keywords in the English
language and determining the associated latency (flight) times. Valid latency times had
to be within the range 10ms to 750ms. The mean and Standard Deviation (SD) of
each digraph, trigraph and keyword were calculated and n-graphs with SD values in
the top and bottom 10% pruned so as to remove n-graphs that had large SD’s. During
authentication, potential imposter samples were compared with a stored template and
an “alert criterion” adjusted accordingly. A deviation (threshold) value was then used to
identify imposters. For evaluation of the process, a simulated environment was used. The
metric used to measure the performance of the system was the False Match Rate (FMR).
Experiments were conducted using digraphs, trigraphs, and keywords; independently
and in combination. Best results were obtained using digraphs. The reason trigraphs
and keywords did not work well was that the trigraphs did not appear as frequently as
digraphs, and many keywords did not appear at all.

The study presented in [54]|] is one of the most promising studies that deal with
continuous authentication. In this study, a feature vector representation was again
used, however, with respect to the latency values (flight times) associated with the
entire shared set of n-graphs included in the evaluation data set. The similarity between
two typing samples was determined as follows. The latency times of all shared n-graphs
in the two samples were extracted, and ordered (in ascending order of latency time) in
two arrays. The difference between the order numbering of each n-graph in each array,
the counterpart distance d, was then computed and summed to give a degree of disorder
Valu This was then used as a similarity measure, the smaller the degree of disorder
the more similar the two typing samples. The process is illustrated in Figure (taken
from [54]). The figure shows five digraphs, ic-he-th-ti-ca, that feature across two
typing samples E; and F>. The digraphs are ordered according to latency time. The
associated counterpart distances are then {2,0,2, 3,1} respectively. The similarity, sim,

between the two samples can then be computed as:

Z?:l di

sim(E1, E2) = 12

where n is the number of shared digraphs (five in the example). In the study, the
authentication process was evaluated by comparing a new sample to a collection of
samples belonging to each enrolled users. For each user, an average degree of disorder

value was obtained and the user with the lowest average value selected. This was a

1 This study has received considerable attention in the literature in terms of the citation.
2 An idea inspired by Spearman’s rank correlation coefficient.
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FIGURE 2.6: An example showing how similarity is computed using “degree of disorder”
as proposed in [54] (the figure has been taken from the original study [54]).

computationally expensive process given an enrolment database of any size. In the
reported evaluation, 600 reference templates were considered (generated from 40 users,
each supplying 15 samples one of which was used as a previously unseen sample); the time
taken for a single match was thus substantial. Moreover, each typing sample comprised
between 700 — 900 of keystrokes, so the average template size of each user consisted of
11,200 (14 x 800 = 11200) keystrokes. Another disadvantage of the approach was the
need for a large number of n-graphs so that accurate authentication results could be
obtained.

In [3] a mechanism was proposed to mitigate against the expense (in terms of time
and size) of pattern extraction and template construction for iterative keystroke con-
tinuous authentication. The idea was to use an Artificial Neural Network (ANN) to
predict missing n-graphs based on the available data that subjects provided. A feature
vector representation was again used. The features used were key-down time and aver-
age digraph and monograph flight time. The ANN classifier was then used to build a
prediction model with which to conduct user authentication. This mechanism worked
reasonably well in a controlled experimental setting; typing of the same text using the
same keyboard layout in an allocated environment. However, this is not the situation
that will be encountered in the context of real-world authentication tasks (such as in
the case of online assessment user authentication), where iterative keystroke continuous
authentication is expected to operate.

From the above, it can be observed that most existing iterative keystroke continuous
authentication studies have been directed at the usage of quantitative statistical mea-
sures to represent keystroke dynamics which have then been encapsulated in a feature
vector format. However, feature vector representation may not be the most appropriate
representation for iterative keystroke continuous authentication due to the disadvantages
detailed above (also summarised in Section . The central drawback, in this context,
is that feature vector based approaches depend on how the feature vectors are con-
structed. In other words, feature vector based typing patterns are typically constructed
by calculating some statistical information of the most frequently occurring n-graphs in
a set of typing samples (training data) belonging to a collection of authors where the

pairings between individual authors and samples were known. Thus the training data
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might not feature the same frequently occurring n-graphs as the samples to be authen-
ticated. Of course, a suggested solution to this criticism is to increase the amount of
training data available, but this clearly has limitations in terms of the increased size of
the vectors that can consequently adversely affect the performance of authentication.
Intuitively, keystroke data forms a natural temporal sequence made up of press-and-
release keyboard actions (events). This series of events can provide desirable discrimi-
native typing patterns. Therefore, in this thesis, it is conjectured that representing all
keystroke features (events), rather than those associated with specific digraphs, as a
time series can lead to a better understating of typing patterns. To the best knowledge
of the author, there is no prior work in the literature that has considered the concept
of a time series representation for iterative keystroke continuous authentication. Time

series analysis is therefore considered in further detail in the following section.

2.4 Time Series Analysis

In this section, an overview of time series analysis, and time series similarity measures,
will be presented. The section is structured as follows. In Subsection methods
for representing time series data are considered. This is followed, in Subsection [2.4.2
with consideration of the techniques and mechanisms that can be adopted for measuring
the similarity between time series. Of particular note in this context is Dynamic Time
Warping (DTW), a well known time series comparison mechanism that was adopted
with respect to the proposed time series based continuous authentication mechanisms

presented later in this thesis. This is therefore discussed in further detail in Subsection

2.4.3l

2.4.1 Time Series Representation

A time series is an accumulation of observations which occur in a sequential (chronolog-
ical) manner. Time series data is ubiquitous, it appears across many domains, including
science, medicine, and finance [76,[133]. The prevalence of time series data has attracted
researchers and practitioners to develop a great variety of methods to mine and anal-
yse time series data. Examples can be found in the context of stock market data [84],
anomaly detection in data streams [80], mining shapelets in medical images [46] and the
analysis of electrocardiograms (ECGs) [63].

The majority of existing studies directed at time series assume that the time di-
mension is discrete or can be discretised [164]. Without loss of generality, the same
assumption has been made with respect to the work presented in this thesis. Generally

speaking, a time series T' can be described as a sequence of pairs such that:

T = [(t1,p1), (t2,p2,- - -, (ti; )5 - - -, (tn, Pn)]

where p; is a data point in a d-dimensional data space, and t; is a time stamp associated

with data point p; [164]. Note that given two-time series with the same sampling rate,
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the time stamp ¢; can be omitted; in other words the time series can be considered as a

simple sequence of data points:

T = [p17p27' « s Piy e 7pn]

The sequence T is then called the raw representation of the time series (in anticipation
of further processing). Note that n refers to the number of points in 7', or simply the
length of the time series T'.

One of the primary concerns of time series analysis is how they can best be repre-
sented so that they can be processed with respect to some end goal. For short time
series this is not usually an issue, but for long time series processing can be expensive
[164]. One solution is to recast the time series of interest into a form which will allow
efficient processing while at the same time maintaining effectiveness.

In the literature, there are many methods for representing time series other than in
their raw (default) format, these including: (i) sampling methods |10} [170], (ii) Piecewise
Aggregate Approximation (PAA) |77, /78|, (iii) symbolic methods [8,192] 93] 112, [122][168]
and (iv) spectral (transformed) methods [2} [17, [73] [94] [131].

With respect to the work presented in this thesis two categories of representation are
considered: (i) time domain representations and (ii) transformed representations. The
former is concerned with representing keystroke timing features in their raw format,
the default representation, and then using a sliding window approach to detect typing
patterns. Although this is the default time series representation, as far as the author
is aware, this representation has not been considered previously concerning continuous
(free text) iterative keystroke user authentication. The second considered representation
involves transforming time series from the temporal domain to the spectral domain.

The usage of the raw data representation is an obvious start point for user au-
thentication using keystroke dynamics as it allows for a straightforward representation.
With respect to the transformed representation two well-known methods from the liter-
ature were adopted: (i) Discrete Fourier Transform and (ii) Discrete Wavelet Transform.

These are therefore considered in further detail in the following two subsections.

2.4.1.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) has been widely adopted with respect to time
series data of all kinds (see for example |2, [159]). Typically, DFT is used to transform
time series data from the temporal domain to the frequency domain. The idea is that
this will then allow comparisons of time series more efficiently (than if a transformation
had not been conducted) without losing any salient information. The transformation is
performed by representing the time stream as a linear combination of sinusoidal coeffi-
cients. The similarity between the transformed coefficients for any pair of corresponding

signals can then be computed for time series comparison purposes.
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Given a time series T' = {p1, p2, ..., Pn}, where n is the length of the time series, The
DFT transform compresses 1" into a linear set of sinusoidal functions with amplitudes

p, q and phase w:

n

T = (piCos(2mwgp;) + q;:Sin(2mw;p;)) (2.3)
i=1
The time complexity for transforming 7" is O(n log n) using the radix 2 DFT algorithm
[31L 169].
Further detail concerning the proposed iterative user authentication process, using
the DFT, is given in Chapter

2.4.1.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is an alternative form of time series represen-
tation, to the DFT described above, that considers the time span over which different
frequencies are present in a time series. DW'T is sometimes claimed to provide a better
transformation than DFT in that it retains more information [28]. DWT can be applied
to time series according to different scales, orthogonal [57] and nonorthogonal [49]. With
respect to the work proposed in this thesis, an orthogonal scale was used for the DWT;
more specifically the well known Haar transform was adopted [57] as described in [28].

Fundamentally, a Haar wavelet is simply a sequence of functions which together form
a wavelet comprised of a series of square shapes. The Haar transform is considered to
be the simplest form of DWT; however, it has been shown to offer advantages with
respect to time series analysis where the time series feature suddenly changes. The
transformation is usually described in terms of Equation where x is a time series
point. The time complexity for transforming a time series 7', using the Haar transform

is O(n).

1 if 0<t<3
px)=¢ -1 if L<t<1 (2.4)

0 otherwise

Chapter [7] presents further detail concerning the usage of the Haar DW'T transfor-
mation in the context of the proposed user authentication mechanisms considered in this

thesis.

2.4.2 Similarity Measures for Time Series Data

Time series similarity is a fundamental task with respect to time series analysis. The
similarity is ideally considered in the context of an entire time series; exact matches
are rare [47]. In other words, the optimal matching of two corresponding time series is
conducted in an approximate manner. Figure illustrates the intuition of conducting

time series similarity whereby, given a set of time series T' = {T,T5,75,74} and a
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FIGURE 2.7: Time series similarity.

query series, its similarity is considered in terms of the most similar, “closest fit”, time
series in T

The different approaches to finding the similarity between two time series can be
categorised in terms of: (i) finding the similarity in time (correlation-based), (ii) find-
ing the similarity in shape (shape-based) and (iii) finding the similarity in change
(autocorrelation-based) [79, [95] [104]. Which is the most appropriate is application de-
pendent. For example, if the goal is to predict the stock market trend in the next
quarter of the financial year, it is intuitive to work with an autocorrelation-based time
series similarity approach. With respect to the work presented in this thesis shape-based
similarity is used for reasons explained in Chapters [ and

From the literature, two categories of distance measure, for determining the similarity
between two-time series, can be identified: (i) Lock-step Measures, and (ii) Elastic
Measures. Each is considered in further details in Sub-sections [2.4.2.1] and 2.4.2.2 below.

An alternative categorisation of time series similarity measurement techniques is in

terms of Entire sequence matching and Subsequence matching [2]. Thus, Sub-sections
[2.4.2.3 and [2.4.2.4] consider these categories in further detail.

2.4.2.1 Lock-step Measures

Lock-step measures, also known as omne-to-one comparison point measures, are cal-
culated as follows. Given two time series sequences S1 = {p1,p2,...,pi} and Sy =

{q1,q2,...,q;}, where i is the length of Sy, j is the length of Sy and (i = j), a lock-step
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similarity function Sim will compute the distance between each point ¢ in S&; with the
corresponding point j in Sz. The simplest method to calculate this kind of distance

measure is by using Euclidean distance:

Sim(S1,S2) =

An alternative might be Manhattan distance [29] or L, norms [30]. Figure[2.§|illustrates
the Lock-step time series similarity measurement approach.

An advantage of Lock-step methods is that they can linearly measure similarity, so
the complexity of finding the similarity between two-time series is O(n), where n is the
length of the time series. Furthermore, they are parameter-free and thus have generic
applicability [164]. However, Lock-step methods are susceptible to time shifting in the
time series as the mapping between the points in the two time series is one-to-one.
In other words, local time-shifting, where the shape of the series can imply similarity,
cannot be captured by using these kinds of methods. A further disadvantage is that the

two time series to be compared have to be of the same length.

e}
)
Co <
\ \ o
= O
(0]
o}
©
>
>
(0]
o}
¢}
[e0]
. AN AT
<
o \\A / -
o
o T T T T
5 10 15 20
Index

FIGURE 2.8: Lock-step time series similarity measurement.

2.4.2.2 Elastic Measures

Elastic Measures allow for more flexible similarity measurement, between two given time

series, than in the case of Lock-step measurement. These methods operate by stretching
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or compressing the given time series so as to provide a superior similarity measurement.
Typically, the comparison between time series points is computed as a one-to-many
mapping. Figure [2.9] shows a conceptualisation of the Elastic measure approach. From
the figure, it can be observed that similar parts (sub-sequences) of the two-time series are
shifted so as to capture similarity in shapes between the parts. Thus, Elastic measures
can be said to be best suited to shape-based similarity mechanisms; the category adopted

with respect to the work presented in this thesis.
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FIGURE 2.9: A conceptualisation of the Elastic measure approach.

However, Elastic measures are quadratic in nature, thus the complexity of finding
the similarity between two time series is given by O(n)?; assuming the two time series
have the same length n, although Elastic Measures can work well in the context of
time series with different lengths (unlike in the case of Lock-step measures). A well-
known Elastic measure is the Warping Distance measure obtained using Dynamic Time
Warping (DTW); this is the approach adopted with respect to the work presented in
this thesis. Thus, further details concerning DTW are given Sub-section [2.4.3.

2.4.2.3 Entire Sequence Matching

Entire sequence matching is directed at determining time series similarity by consider-
ing the two given time series in their entirety. However, the utilization of the entire
time series in its raw format may be computationally expensive. Therefore, it has been

suggested that the best way to proceed is to first transform the given time series into a
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different domain, such as DFT or DWT, so the dimensionality of time series can be re-
duced. The most frequently used mechanism for measuring similarity, in this context, is
the Euclidean distance measure. The advantage offered is simplicity and hence efficiency
in comparison with alternative methods such as elastic methods. However, an issue with
the Euclidean distance measure is that it does not take into account offsets (shifts) in
the data whereas elastic methods can address this |75} [102] [125]. For example, in the
case of ECG time series the characteristics of the time series are frequently unaligned
(offset).

2.4.2.4 Subsequence Matching

Using Subsequence matching, a short query sequence is compared with a much longer
time series. The idea is to determine whether the query sequence is contained somewhere
within the larger sequence. In [45] a subsequence matching time series technique was
proposed whereby a time series is mapped into a small set of multidimensional rectangles
in a feature space. These rectangles can then be indexed using well known spatial
methods such as R-trees. In other words, a sliding window is used to pass over the
time series and rectangles extracted. Intuitively, this kind of mechanism allows for fast
extraction of patterns in time series data; a similar approach has been adopted with

regards to the work presented in this thesis.

2.4.3 Dynamic Time Warping

The Dynamic Time Warping (DTW) time series similarity checking mechanism is a
well-established method, which has been used effectively to find the similarity between
pairs of point (time) series. It has been adopted in many domains such as speech
recognition [130, [171], time series data mining |1, [11},137], pattern recognition [20} [164],
motion and music data analysis [114], medicine [25| [127], robotics [155], biometrics
[7, 12} 186l [115], user interface analysis [85] (129, [156], the study of historical manuscript
data [61] and biology [81]. A great advantage of DTW is that it serves to warp the
linearity of sequences (even of different lengths) so that any phase shifting can be taken
into consideration. Thus it can be usefully adopted to find similarity in shape between
two corresponding keyboard dynamics time series.

In more detail, the central idea of DWT is to compare two time series by find-
ing the optimal alignment between them in which the similarity can be identified ac-
cordingly. More specifically, the operation of DTW can best be described by consid-
ering two time series (say) 71 = {a1,a2,...,ai,...,a;}, of length x € N, and T, =
{b1,b2,...,bj,...,by}, of length € N. A matrix of size (z) x (y), i.e. M € R**Y,
is then constructed whereby the value held at each cell m; ; € M is a local cost mea-
sure (c) from point a; € T to point b; € Tp. Thus, the matrix, M, is utilised to
determine the optimal alignment by finding the optimal Warping Path- WP, (P), from
cell m(0,0) to cell m(z,y). In this context, a warping path, P = {ki,...,k,} where
kn = c(an,by) € [1: x] X [1:y], needs to satisfy the following constraints [113]:
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e Bounding Constraint: As indicated earlier, the warping path needs to start
from the location (1, 1) to the location (z,y) in the matrix M € R**Y such that
ki1 = c(a1,b1) and k,, = c(ag, by) where kq, k, € P.

e Monotonicity Constraint: The elements of the warping path are required to be

ordered according to time such that a; < ag < - - < a, and by < bg--- < b,.

e Continuity Constraint: The warping path moves in a forward manner to the
neighbouring location such that given k, = m(i, j) the follow on location is either
m(i+1,7), m{i,j+ 1) or m(i + 1,7 + 1).

For further explanation concerning these constraints Figure [2.10| gives examples of
warping paths extracted from two time series T3 = {1,2,3,4,5,6,7,8,9} and Tp =
{1,2,3,4,5,6,7} (the example has been taken from [113]). The figure shows four sub-
figures as follows: (a) shows the warping path that satisfies all constrains, (b) shows
the warping path where the first constraint is discarded, (c) depicts the warping path
where the second constraint is avoided and (d) illustrates the warping path where the

third constraint is ignored.

9 9
b

8 8
7 o] 7 -
6 6
5) 15) ®
4 + 4
3 3 | e
2 2
1[é 1

1 234567 1234567

(a) (b)
9 9
8 I 8 I
7 ° 7
) i ) S

6 6
5 5)
4 4
3 3
2 oo & 2
lI_ 1

1 234567 1234567

(c) (d)

FIGURE 2.10: Example of warping path constrains in DTW [113].



Chapter 2. Background and Related Work 34

The warping path is then used to determine a minimum Warping Distance- WD, (©),
which is consequently used as a similarity measure. The warping distance, O, is the

accumulated sum of the values associated with P such that:

O=) ky,cP (2.5)

It is worth noting here that the DTW concept has similarities with Levenshtein
Distance calculation [90], also referred to as Edit Distance, used for measuring the
similarity between two strings. However, in this case, the values used are the number of

deletions, insertions or substitutions required to transform the first string into the other.

2.5 Summary

This chapter has presented the background to the principal areas of research covered
in this thesis. Three research areas were identified as being pertinent to the presented
work: (i) user authentication, (ii) keystroke dynamics and (iii) time series analysis. Each
of which was considered in further detail and its relevance highlighted with respect to
the central research question of the thesis.

The chapter commenced with a discussion of the concept of user authentication.
The distinctions between user authentication and user identification, and static and
continuous authentication, was highlighted. A number of authentication schemes were
considered categorised as being either Token-based or Biometric-based.

Keystroke dynamics were considered next and discussed in detail, The state-of-the-
art was reviewed and current developments highlighted. The chapter also reviewed
the techniques most appropriate to continuous (free text) authentication and for the
extraction and representation of typing patterns. It was noted that keystroke dynamics
user authentication presented in the thesis can be categorised as iterative continuous
user authentication.

The chapter was concluded with a discussion of time series analysis techniques, rel-
evant because the mechanisms proposed in the thesis consider keystroke dynamics in
terms of time series. The discussion including consideration of the methods that may
be adopted for representing time series and time series similarity measures. The well-
known Dynamic Time Warping (DTW) time series similarity checking methods, utilised
extensively with respect to work presented later in the thesis, was presented in detail.

The following chapter introduces the evaluation data sets utilised with respect to the
evaluations reported on later in the thesis, including the process whereby the data was

acquired in each case.
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Evaluation Data Acquisition

3.1 Introduction

A fundamental precursor to any form of machine learning is the acquisition of data sets
from which some desired model can be learned and evaluated. This chapter presents an
extensive overview of the data sets used in this thesis.

Generally speaking, for many machine learning application well-documented bench-
mark training/test data sets are available. The University of California, Irving (UCI)
machine learning repository [91] is a commonly used source for benchmark data sets.
However, in the case of keystroke user authentication there are no widely recognised
benchmark data sets and very few publicly available data sets. Two data sets that are
publicly available, although not sufficiently widely used to merit the adjective “bench-
mark”, are: (i) the GP (Gunetti and Picardi) data set from The University of Torino,
Italy [54] and (ii) the VHHS (Vural, Huang, Hou and Schuckers) data set from Clarkson
University, USA [161].

The GP data set comprised keystroke data from 31 subjects where the VHHS data set
comprised keystroke data from 39 subjects. Although, both data sets could be usefully
employed to evaluate the work presented in the thesis it was felt that this would not
be sufficient to support extensive evaluation of the techniques proposed in this thesis.
Consequently, it was decided to collate a third evaluation data set, the University of
Liverpool, ACB (Alshehri, Coenen and Bollegala) data set, so as to provide for a more
extensive evaluation. The ACB data set comprised 30 records. This was constructed
using a bespoke tool developed by the author namely “Web-Based Timestamp Keystroke
Recorder (WBKTR)”.

The rest of this chapter is organised as follows. Section presents a discussion of
the factors to be taken into consideration when generating a keystroke dynamics data
set. Section then presents the WBKTR tool used to collect the ACB data set and
details concerning the make up of this data set. The nature of the GP and VHHS data
sets is then discussed in the following two sections, Section and Section Note
that Sections and [3.5] are structured in an identical manner. Section [3.6] then

35
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provides a summary, for reference purposes, of the three evaluation data sets, whilst
Section [3.7] concludes this chapter.

3.2 Principles of Keystroke Dynamics Evaluation Data Col-

lection

As noted earlier, in its most basic form, keystroke dynamics data is founded on the
timestamp of each key press and release. This section presents a discussion of the
factors to be taken into consideration when wishing to generate a keystroke dynamics
data set. However, the overriding consideration is the application domain in which the
data set is to be used. In the case of the work presented in this thesis, this is subject
authentication in the context of subjects typing continuous text in a manner analogous
to subjects completing online written assessments.

In [15] two factors are identified that need to be taken into consideration when
gathering keystroke dynamics data: (i) the nature of the text to be typed, and (ii) the
environment in which the typing is to take place.

The first is concerned with whether the typing samples should be structured (fixed/pre-
determined) or unstructured (free/arbitrary) text. In the context of the structured text,
the text can be obtained as being either short or long. Short texts in this context
are things like subject credentials (password and username), while long texts include
phrases that are copied from a book (see for example [50]) or from a speech (see for
example [161]). In contrast, unstructured text is any text of an arbitrary nature. With
respect to the work presented in this thesis unstructured evaluation training/test data
was required.

The second factor is concerned with whether the typing samples are collected within
a controlled or uncontrolled environment. In a controlled environment, subjects are
required to use a specified type of computer with a specified operating system and
keyboard. Typically, subjects are required to provide typing samples, regardless of
whether a structured or unstructured text is to be collected, in a lab session. An
uncontrolled environment is the opposite of a controlled environment; subjects are not
obliged to provide typing samples under specific settings, they are free to use whatever
computer, operating system and keyboard they have at hand. The advantage offered by
samples collected using a controlled environment is the avoidance of noise that might
be introduced from using a variety of computers, operating systems, and keyboards;
for example, traditional free-standing PC keyboards and built-in laptop keyboards have
different layouts. However, an argument against the used of controlled environments
is that for many authentication applications, such as the online assessment application
domain considered in this thesis, data collected in this way does not reflect the true life
data to which any generated model can be expected to be applied. Thus, concerning the
work presented in this thesis training/test data collected in an uncontrolled environment

was considered to be the most desirable.
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Regardless of whether structured or unstructured text is collected, and whether this
is collected in a controlled or uncontrolled environment, data can be collected from
subjects using either: (i) plug-in software which subjects are requested to download on
to their computers where it operates in the background to collect keystroke data, or (ii)
a web-based interface which subjects are requested to access and provide typing samples
by entering text into a web form.

The first method is privacy intrusive in that some sensitive data, such as passwords,
can be recorded, so subjects are typically not willing to run such software. Of course,
the subjects can be advised to switch off the plug-in data collector while typing some
sensitive data, but this seems undesirable. The second method is more secure in that
the information typed is not collected at all. Consequently, concerning the collection of

the ACB data set, the second mechanism was adopted.

3.3 The University of Liverpool ACB Data Set

This section presents details concerning the collection and make up of the ACB data
set. Note that the ACB data set comprised unstructured text obtained in the context
of an uncontrolled environment. The section comprises three subsections. The first,
Sub-section [3.3.1] is concerned with the WBKTR tool used to collect the data set;
the second, Sub-section with adopted data collection process (using the WBKTR
tool). Sub-section then gives a statistical analysis of the ACB data set.

3.3.1 Data Collection Mechanism (ACB Data Set)

The ACB data was collected using the web-based interface approach (see above). More
specifically using a bespoke keystroke dynamics data collection tool, the Web-Based
Keystroke Timestamp Recorder (WBKTR) tool developed in JavaScript, and embedded
into a HTML “front end” Figure shows a screenshot of the WBKTR interface.
Subjects were asked to provide answers (in English) to three discussion style questions;
thus three typing samples could be collected from each subject. The idea was to mimic
the situation where students are conducting online assessments; a situation where no
constraints would be imposed regarding specific keyboards or operating systems. In
other words, the idea was to allow subjects to type in the same manner as they would
within an online learning environment that can be rendered using a variety of platforms,
browsers and so on.

JavaScript was used to create the WBKTR tool because of its robust, cross-platform,
operating characteristics. This also offered the advantage that no third-party plug-ins
were required to enable the WBKTR tool. Another advantage of using JavaScript was
that it avoided any adverse effect that might result from network delay when passing
keystroke timing data to the “home” server, which might have affected the accuracy of

recorded times. In other words, the script function works at the end user station to

!The interface can be found at http://cgi.csc.liv.ac.uk/ hsaalshe/ WBKTR3.html



Chapter 3. Evaluation Data Sets, and Data Acquisition 38

@ LIVERPOOL
The Keystroke Dynamic Authentication (KDA) Project

Data Capture Page

Abullah Alshehi

project, underway within the Department of Computer Science at the University of L i KD/ MOOC:

Note: anonymous, you are. We only

Instructic . 3 you like. He least 100

Please: : i) simpl over and over

‘Thanks: Many thanks for your help and support.

words counter

FIGURE 3.1: A Screenshot of the WBKTR interface.

record timestamp data (in milliseconds) within the current limitations of the accuracy
of the end users’ computer clock, not within the server time accuracy. Note also that
the ability to paste text was disabled so the subjects could not cut and paste text from
other sources while they were providing answers. The client-side scripting was done
using JQuery, the most commonly used JavaScript open-source library.

Using the WBKTR tool three timing values were collected as follows:
1. KD! : key-down timestamp recording when a key is pressed.
2. KU : key-up timestamp recording when a key is released.

3. KH' : key-hold time calculated as KL — KDL

Figure [3.2] shows some samples of the recorded keystroke data. From this data, the
interval time between a keypress (say) k; and a following keypress (say) ki1, or simply
the flight time F' , can also be extracted such that:

Fi =KD - Ku:_,

While typing each sample, a PHP script was used to transfer the keystroke time
series data, using the JSON open-standard file format, and AJAX, to a local server.
Note that the characters associated with key presses were not recorded. This was for two
reasons: (i) because the thesis was focused on keystroke dynamics represented as time
series, character (ASCII) codes do not lend themselves to this format; and (ii)because,
as noted in the motivation for the work presented in this thesis (see Chapter , data
confidentiality was considered to be important; therefore, recording what was actually

being typed was considered inappropriate.

3.3.2 Data Collection Process (ACB Data Set)

The WBKTR tool described in the foregoing sub-section was used to collect data using

volunteers, mostly students and staff at the University of Liverpool (staff volunteers
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Index of keystroke kb Ku KH
1 1431628620594 1431628620714 120
2 1431628620722 1431628620754 32
4 1431628621610 1431628621698 88
86 1431628651457 1431628651585 128
87 1431628651618 1431628651761 143

FIGURE 3.2: Samples of the recorded keystroke timing features

included online instructors teaching online programmes). Subjects were asked to type at
least 100 words in response to three discussion question (with no maximum limitation) so
that an adequate number of keystrokes could be collected (for convenience the WBKTR
environment included a scripting function to count the number of words per question).
In this manner, it was conjectured, the minimum number of keystrokes collected per
subject would not be less than 1200 (calculated by assuming that the average word
length would be 4 keystrokes, thus 43003 = 1200). In the event of samples comprised
of less than 1200 keystrokes, these would be discarded.

In total, data from 30 subjects was collected. The identity of each subject was
anonymised; each subject was given a randomly selected ID number which could not be
traced back to the subject. No additional information concerning subjects was recorded,
such as gender and/or age. This was a deliberate decision so as to minimise the resource
required by subjects providing the data. Also because this information was not needed
as the focus of interest was subject authentication; the work presented in this thesis is
not directed at drawing any conclusions about the nature of keyboard usage behaviour

in the context of (say) age or gender.

3.3.3 Quantitative Interpretation (ACB Data Set)

This sub-section provides a brief statistical analysis of the collated ACB data set so as
to provide an overview of the data. For the analysis, each subject’s record was viewed
as a single keystroke time series comprised of the three constituent time series.

Inspection of the data set demonstrated that the maximum keystroke time series
length, in terms of the number of keystroke events (data points or key presses), was
4581; and the minimum 2206. Thus the average length of a keystroke time series, for
the entire data set, was 3589 with a Standard Deviation (SD) of 529. The total number
of keystroke events was 107677. Figure [3.3| shows the distribution of keystroke time
series lengths over the entire data set.

As noted in Chapters 1| and [2| the main features used to represent keystroke time
series, in the context of this thesis, are flight time (F*) and key-hold time (KH'). Thus,
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F1cURE 3.3: The distribution of keystroke time series size in The University of Liver-
pool Data Set.

further statistical information, concerning the average flight time and key-hold time,
Avg(F?) and Avg(KH') respectively, together with the associated standard deviations,
SD(F*) and SD(KH!) respectively, is given in Table

3.4 The University of Torino GP Data Set

This section presents an overview of the GP data set also used for evaluation purposes,
in addition to the ACB data set described above, as described later in this thesis. The
GP data set was generated by researchers at the University of Torino, in Italy, and is
described in [54]. This data set was gathered from subjects who provided unstructured
text typing samples, written in Italian, typing within an uncontrolled environment. Asin
the case of the previous section, the section is divided into three subsections, Sub-section
considers the adopted methodology used to collect the GP data set, Sub-section
the process and Sub-section some statistical analysis of the data set.

3.4.1 Data Collection Mechanism (GP Data Set)

Typing samples, as in the case of the author’s ACB data set, were collected using an
HTML interface which featured a text form into which subjects could type. According to
[54], the subjects could type anything they liked; suggestions included daily activities,

favourite movies, holidays and so on. The subjects could access the HTML interface
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TABLE 3.1: Average (Avg.) and Standard Deviation (SD) for the flight time F* (Sec)
and hold time CH" (Sec) for each subject (record) in the ACB University of Liverpool
data set.

Subject || Avg(F") | SD(F*) || Avg(KH') | SD(KH?)

subl 0.204 0.257 0.373 0.820
sub2 0.268 0.259 0.085 0.034
sub3 0.280 0.374 0.069 0.036
sub4 0.321 0.336 0.080 0.028
subd 0.290 0.280 0.068 0.045
sub6 0.316 0.373 0.092 0.083
sub? 0.238 0.277 0.063 0.027
sub8 0.194 0.259 0.072 0.023
sub9 0.442 0.392 0.104 0.046
subl0 0.346 0.396 0.082 0.037
subl11 0.242 0.314 0.072 0.072
subl2 0.526 0.485 0.117 0.055
subl3 0.348 0.323 0.098 0.048
subl4 0.382 0.393 0.093 0.025
sublb 0.371 0.405 0.084 0.033
subl6 0.326 0.364 0.056 0.044
subl17 0.519 0.416 0.137 0.074
subl8 0.297 0.367 0.112 0.041
subl9 0.202 0.230 0.444 0.142
sub20 0.290 0.340 0.982 0.782
sub21 0.284 0.421 1.532 0.115
sub22 0.334 0.451 0.089 0.039
sub23 0.316 0.408 0.094 0.041
sub24 0.198 0.250 0.077 0.025
sub2b 0.316 0.408 0.094 0.041
sub26 0.547 1.293 0.067 0.028
sub27 0.419 0.925 0.095 0.043
sub28 0.594 0.200 0.073 0.045
sub29 0.683 1.097 0.092 0.049
sub30 0.772 0.119 0.081 0.053

once per day (thus one session a day), so could provide one typing sample per day.
The subjects were also free to use whatever keyboard and operating system they had
available. During each session, the key down timestamp (XD!) was recorded (in mil-
liseconds) together with the ASCII value for each keystroke. However, in this thesis,
because the focus is on keystroke dynamics as time series, the ASCII data was not
used. Unfortunately, the timestamp for key releases (KU') was not recorded so infor-
mation concerning key hold time, (KXH!), could not be calculated. Thus, in the data
set flight time (F!) was derived as the time between two consecutive key down events,
such that: F} = KD; — KD;_;. The timing data of keystroke dynamics was recorded
using JavaScript, as also used with respect to the WBKTR tool described above, whilst

the subject was filling the form. When the form was completed, the subject pressed a
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FIGURE 3.4: The distribution of keystroke time series size, per record, for the GP
University of Torino Data Set.

submit button, at which point the keystroke data was transferred to a local server.

3.4.2 Data Collection Process (GP Data Set)

The GP data set was collected using two groups of subjects. The first group acted as
legal users whilst the second group acted as imposter users. However, only the first
group, real subjects, was used with respect to the evaluation presented later in this
thesis. The reason was to maintain consistency with the other data sets used in this
thesis where no imposter data was recorded.

The total number of real subjects was 40; however, the public version of the data
set has only 31 subject records. The recruited subjects were postgraduate students and
staff within the Department of Computer Science at the University of Torino; they were
all native Italian speakers.

Each subject had to provide 15 typing samples; each was produced on a different day
over a period of six months. The majority of the subjects provided typing samples on
an irregular basis; some provided samples every two and three weeks; in another case,
there was a lapse of two months between some samples. Note that the subjects provided
samples in their own time using whatever keyboard and operating system they had at
hand.



Chapter 3. Evaluation Data Sets, and Data Acquisition 43

3.4.3 Quantitative Interpretation (GP Data Set)

According to [54], the HTML text form used to collect the GP data set was 56 characters
wide and 12 lines long, thus space for a maximum of 672 (56 x 12 = 672) characters.
However, subjects could exceed this limit; the average length of each sample was 800
keystrokes (in both groups).

Overall, in the context of the real subject data, the maximum keystroke time series
length was 21806 characters (keyboard events), whilst the minimum length was 10724
characters. Figure shows the distribution of keystroke time series lengths per real
subject record in the GP data set. The average and SD of the keystroke time series size
were 14315 and 2189 respectively; the total length of keystroke time series, in the GP
data set, was 443778. Concerning the F! feature, Table provides some statistical

information, again in terms of the average and SD of the feature values.

3.5 Clarkson University VHHS Data Set

The VHHS data set was gathered by the authors of [161], at Clarkson University, USA.
This data set comprised both structured (fixed) and unstructured (free) text samples,
but all were obtained under laboratory conditions (thus a controlled environment). For
the evaluation reported on in this thesis, only the unstructured (free) text samples were
considered so that meaningful comparisons could be made with the results obtained
using the other data sets. Thus the following subsections are concentrated on giving
detail of the unstructured text data collection. As in the case of the descriptions of the
ACB and GP data sets (Sections|3.3|and [3.4]above) this section is also divided into three
sub-sections. Sub-section presents the adopted collection mechanism, Sub-section
the data collection process and Sub-section some statistics concerning the
collated VHHS data set.

3.5.1 Data Collection Mechanism (VHHS Data Set)

For the VHHS data set the keystroke data was collected, using a controlled environment,
in the form of timing information, using a client web browser (as in the case of the ACB
and GP data sets). The timestamps for keystroke presses and releases were recorded in
milliseconds. Typing samples, in the context of the unstructured text, were collected
based on writing opinions in response to the set of questions listed in Figure which
gives a screenshot of the relevant part of the Clarkson keystroke data collection website.
Note that the first six questions are “survey” questions whilst the last two ask subjects
to provide a written description of the scene in two given pictures of the form shown in
Figure Note that in Figure the numbering starts at four because, as already
noted, we are interested in using unstructured text, the preceding numbering refers to

structured text thus is not included here. Subjects were asked to write text into eight

2The second picture is not provided in [I61].
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TABLE 3.2: Average (Avg) and Standard Deviation (SD) for the flight time F* (Sec)
for each subject (record) in the GP University of Torino data set.

Subject || Avg(F") SD(F")

subl 0.294 0.798
sub2 0.231 0.395
sub3 0.333 1.039
sub4 0.278 0.984
subb 0.252 0.552
sub6 0.416 0.801
sub7 0.251 0.547
subg& 0.222 0.581
sub9 0.240 0.634
sub10 0.326 0.781
subll 0.176 0.492
sub12 0.259 0.421
sub13 0.451 1.381
subl4 0.443 1.022
sublb 0.324 0.933
sub16 0.234 0.378
subl7 0.309 0.660
sub18 0.207 0.532
subl9 0.225 0.517
sub20 0.236 0.653
sub21 0.286 0.432
sub22 0.272 0.807
sub23 0.234 1.032
sub24 0.376 1.461
sub25 0.237 0.396
sub26 0.321 0.707
sub27 0.353 0.950
sub28 0.267 0.511
sub29 0.358 1.553
sub30 0.211 0.292
sub31 0.354 1.453

web-based forms one per question, hence the first six were devoted to providing responses
to the six survey questions, whilst the last two were dedicated to writing descriptions
for two given pictures.

For the controlled environment used to collect the VHHS data the Explorer 8 web
browser and desktop (PC) computers were used. The timestamp values for D' and
KU were sequentially recorded for each keystroke; values for the F* feature could thus
subsequently be derived. The recorded keystroke data, per subject, was transferred,

using a PHP script, to a local server in the form of a plain text file.
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Freetext questions

4. Describe why you chose to study/work at Clarkson University. Are you satisfied with your decision
to come to Clarkson University? In your experience what do you think is the most important quality in a
university? Would you recommend Clarkson University to high school graduates/employees and why?

5. What activities do you like to do in your spare time? Do you like art, music or theatre? Describe the type
of outdoor activities you like to do. What activities do you like to do in your current city Potsdam NY? Do
you think there is a good balance of indoor and outdoor activities here in your current city Potsdam NY? If
you could change anything about your current city Potsdam NY to increase social activities, what would you
do?

6. Describe what you like and dislike about your current city Potsdam NY. Do you like the buildings and the
lecture rooms? How do you find campus dining? Do you think the school has enough sporting facilities?
What other recreational activities could be developed? How do you find the education? What do you think
of the professors? What do you think about the classrooms and laboratories?

7. Describe your favorite vacation spot. Where is it located? What does it look like? Describe the environ-
ment. How crowded is it? What is the region surrounding look like? How often do you have the chance to
go there? If you had the chance to go abroad for three months which countries would you like to visit? Why
would you be interested in visiting them?

8. Describe your favorite class in college or high school and why you like it. Describe your least favorite
class in college or high school and how the instructor can make it more interesting. Do you like interaction in
classes? What do you think about labs? Do you find them useful in learning the concepts of a class? Would
more homeworks and quizzes help you learn better? If there was not any grading involved would you enjoy
the class better? Would you also learn better?

9. Describe your future career plans. Which sector are you planning to work in? Where do you see yourself
in five years from now? Do you think you are close to your goals? What would make achieving your goals
easier? Do you think Clarkson University prepares you well for achieving your goals? Do you think achieving
your dreams is more about luck or hard work?

10. Describe what you see in this picture. What does the scene look like ? What are the people doing?

11. Describe what you see in this picture. What does the scene look like ? What are the people doing?

FIGURE 3.5: A screenshot from the Clarkson University keystroke data collection web
site listing the questions to which subjects were asked to respond [161].

3.5.2 Data Collection Process (VHHS Data Set)

For the purpose of collecting the VHHS data set, a total of 39 subjects were recruited
and asked to attend lab sessions at Clarkson University. The subjects were employees
and students of Clarkson University. Although a description of the data set is given
in [161] further detail concerning the subjects, such as identity, age and gender, is not
provided.

The data collection was generated as follows. The subjects were required to attend
two lab sessions on two separate days and write responses to the posed questions (see
above). Subjects were asked to type at least 500 keystrokes in response to each question,
thus a minimum of 4000 keystrokes per subject per session (8000 across both sessions).
The subjects were allowed to attend the two sessions over a period of eleven months
(between August 2011 and June 2012). According to [L61], the average time span
between sessions was one to two months, the minimum time span was a couple of days

and the maximum four or five months.
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FIGURE 3.6: A screenshot from the Clarkson University keystroke data collection web
site showing one of the pictures which subjects were asked to describe [161].
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3.5.3 Quantitative Interpretation of (VHHS Data Set)

This sub-section provides a statistical analysis of the VHHS data set. For the analysis,
the keystroke data, per subject, was concatenated into a single keystroke time series.
The total number of keystroke events was 331128, with an average of 8490 and an SD
of 712. The maximum and minimum keystroke time series lengths, for a single subject,
were 9576 and 5034 respectively. Note that, as described in the previous sub-section,
subjects were requested to type at least 500 characters per question response. Thus
the minimum keystroke should not be less than 8000 across both sessions, whilst the
minimum value was found to be 5034. The later was simply (according to |[161]) because
one subject had not completed all questions in one of the typing session. Whatever the
case, the distribution of the size of the keystroke time series in the VHHS data set is
shown in Figure Further statistical information, with respects to the values of F*
and KH! per subject, is given in Table

3.6 Data Summarisation

In the previous three sections details concerning the three data sets used with respect
to the evaluations reported later in this thesis were presented. As noted in the previous
three sections, each data set had different characteristics and properties. An overall
summarisation for these data sets is thus provided in this section so as to provide a
simple reference which can be used with respect to the material reported later in this
thesis. The summarisation is presented in Table the table lists the characteristics
and properties of each data set. More specifically, the table gives the number of subjects
(# Sub.), the kind of text entry (Txt.), the environment setting (Env.), the language
used to type samples (Lang.), the number of sample for each subject (# Sam.), the
duration over which the samples were collected (Dur.) and the average (Avg.) and
standard deviation (SD) of the keystroke time series with respect to each entire data

set.

3.7 Summary

In this chapter, the evaluation data sets, which have been utilised for evaluating the
keystroke continuous authentication proposed in this thesis, have been introduced. Typ-
ically, collecting keystroke data, for the purpose of biometric authentication, is a non-
trivial task, the nature of which depends on the nature of the biometric authentication
to be conducted, static or continuous. The factors to be taken into consideration when
planning to collect keystroke data for the evaluation authentication mechanisms was
therefore first discussed. It was noted that, in the context of subject (user) authentica-
tion directed at those completing online assessments, it was most appropriate to collect
unstructured text within uncontrolled environments as this best simulated the process

of online assessment. In total three data sets were described: (i) The University of
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TABLE 3.3: Average (Avg) and Standard Deviation (SD) for the flight time F* (Sec)
and hold time KH" (Sec) for each subject (record) in the VHHS Clarkson University
data set.

Subject || Avg(F") | SD(F*) || Avg(KH') | SD(KH?)

subl 0.112 0.241 0.560 7.962
sub2 0.094 0.237 0.112 0.353
sub3 0.103 0.246 0.144 0.456
sub4 0.149 0.316 0.174 0.551
subd 0.127 0.257 0.753 0.238
sub6 0.163 0.300 0.215 0.681
sub? 0.124 0.293 0.149 0.472
sub8 0.179 0.324 0.197 0.623
sub9 0.126 0.211 0.172 0.544
subl0 0.137 0.290 0.181 0.571
subl11 0.132 0.238 0.159 0.503
subl2 0.180 0.369 0.189 0.596
subl3 0.139 0.266 0.302 0.953
subl4 0.247 0.417 0.459 0.462
sublb 0.144 0.304 0.244 0.770
subl6 0.166 0.257 0.261 0.825
subl17 0.147 0.269 0.232 0.732
subl8 0.160 0.264 0.544 0.172
subl9 0.130 0.267 0.295 0.932
sub20 0.141 0.283 0.794 0.251
sub21 0.086 0.192 0.267 0.844
sub22 0.165 0.305 0.255 0.806
sub23 0.140 0.268 0.319 0.101
sub24 0.165 0.323 0.353 0.111
sub2b 0.103 0.240 0.257 0.814
sub26 0.192 0.316 0.141 0.446
sub27 0.149 0.236 0.115 0.363
sub28 0.125 0.258 0.230 0.728
sub29 0.181 0.320 0.338 0.107
sub30 0.112 0.277 0.167 0.528
sub31 0.137 0.254 0.123 0.388
sub32 0.160 0.298 0.683 0.217
sub33 0.133 0.261 0.165 0.523
sub34 0.228 0.393 0.245 0.773
sub35 0.176 0.322 0.274 0.866
sub36 0.147 0.294 0.224 0.707
sub37 0.103 0.230 0.681 0.215
sub38 0.123 0.230 0.208 0.658
sub39 0.160 0.330 0.253 0.800

Liverpool ACB data set collated by the author, (ii) The University of Torino GP data
set, obtained from [54] and (iii) The Clarkson University VHHS data set, obtained from
[161]. Each was described in the chapter in terms of the mechanism and process used

to collect the data, and in terms of a statistical analysis of the content of each data
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TABLE 3.4: Summary of data sets.

’ Data set H # Sub. ‘ Txt. Env. Lang. ‘ # Sam. ‘ Dur. ‘ Avg. ‘ SD ‘
ACB 30 Unstr. | Uncont. | English 3 1 Day 3589 | 529
GP 31 | Unstr. | Uncont. | Ttalian | 15 | = D%5 | 14315 | 2189

-6 mths
VHHS 39 | Unstr. | Cont. | English | 12 2Days | g100 | 712
-11 mths

Key: Unstr. = Understructured, Uncont. = Uncontrolled, Cont. = Controlled, mths = months.

set. The following chapter presents some preliminaries and formulations concerning the

proposed keystroke continuous authentication mechanisms presented later in the thesis.



Chapter 4

Keystroke Time Series

Fundamentals and Preliminaries

4.1 Introduction

In Chapter [2]it was emphasised that the prominent methods for recognising typing pat-
terns, in the context of continuous authentication, have focused on the use of quan-
titative statistical measures to represent n-graph timing information which in turn
was encapsulated in a feature vector format (see for instance the work presented in
[3} 138, 154, 107, 1109]). However, n-graph representations only utilise a subset of the data
that is potentially available. The claim made in this thesis is that more sophisticated
methods, methods that use a greater proportion of the available data than used with
respect to the n-graph approaches from the literature, may be more effective in the con-
text of keystroke continuous authentication. The proposed mechanisms presented in this
thesis are thus directed at using all available data other than the nature of the keypress;
the latter for reasons of privacy preservation, as discussed earlier in the thesis. More
specifically the methods proposed in this thesis consider keystroke dynamics in terms of a
discrete data stream, a time series, comprised of a sequence of press-and-release tempo-
ral events. The distinction, between the proposed time series based method and previous
work, can be said to be that the proposed method uses what might be termed “global
features”, whilst the previous methods use what might be termed “local features”. The
anticipation was that the collated time series would feature keystroke dynamic patterns
unique to individual users. In other words, the shapes (fluctuations within the keystroke
time series) would define continuous typing patterns that in turn can be used for the
purpose of keystroke continuous authentication.

This chapter presents a number of items concerned with the fundamentals of keystroke
time series analysis for continuous authentication, items required as a precursor to the
work presented later in this thesis. The chapter commences, Section with a formal
description of the adopted Keystroke Time Series (KTS) representation and then goes
on to describe the adopted data cleaning process in Section Two types of KTS

50
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are considered in this thesis: (i) Univariate-Keystroke Time Series (U-KTS), and (ii)
Multivariate-Keystroke Time Series (M-KTS). The distinction between U-KTS and M-
KTS is discussed in Section A significant task associated with any form of time
series analysis is the comparison of time series, especially to determine the similarity be-
tween time series. The approach to keystroke time series similarity calculation adopted
throughout this thesis was the Dynamic Time Warping (DTW) approach introduced
previously in Chapter 2l Because of its significance with respect to the work presented
in this thesis, this is described in further detail, with respect to both U-KTS and M-KT'S,

in Section [4.5] The chapter is concluded with a summary in Section [4.6

4.2 Keystroke Time Series (KTS) Representation

Keyboard usage is typically undertaken in a sequential manner key-press by key-press;
even when using the shift key to (say) type an uppercase letter the shift key is pressed
before the character key. The nature of this typing process can be recorded as a sequence
of real-valued data points, each with its own time stamp. In other words, the process
of typing can be viewed as a sequence of keystroke events (key-presses), thus a time
series. More formally, as noted in Section @ (Chapter , for each key-press, there
are two primary real-valued timing data entities which can be recorded: (i) the Key-
down timestamp KD and (ii) Key-up timestamp KU' . These values can then be used to
determine the value for two secondary data entities: (i) flight time F* | and (ii) key-hold

time KH' . For any keystroke event i, the flight time F} value is calculated using:

Fl=KD! - Kut_, (4.1)

whilst the value for KH! is calculated using:

KH: = KUt — KD} (4.2)

It is thus these secondary data entities, F* and KH! , that are utilised with respect to
the keystroke time series representation used in this thesis.

In more detail, if X'is used to indicate a keystroke event, either F* or KH!, occurring
at a time 7, the generic form of a keystroke time series will then be {p1, p2, ...} where
each point p; is comprised of a tuple of the form of (7, X’), such that p; = {(7;, X;)}.
Thus:

(T, &), {(T2, A2), .. {(Tn, &) }

As such, a time series can be viewed as a 2D plot with time T along the horizontal axis and
the keystroke event value Xrepresented by the vertical axis. However, the “ticks” along
the time series horizontal axis will typically then be irregularly spaced, which is seen as
undesirable because it will tend to hinder the time series analysis, especially where there

is a significant pause in typing activity. Consequently, in this thesis, the horizontal axis
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is considered to represent keystroke index numbers, such that each keystroke index KA
= {1,...,00}. By doing so, the obtained series will be regularly spaced, and unaffected
by changes in typing pace. Also, because the indexing can be inferred from the ordering
of points in the time series, the keystroke time series can be simply conceptualised as a

series of points such that:

{X1 X, ..., X}

Figure illustrates the difference between using actual time stamps and keystroke
indexes, as bar charts and as point series. Figure (a) gives a time series where the
horizontal axis represents time stamps, note that the ticks are irregularly spaced; whilst
Figure (b) gives the same time series where the horizontal axis records the keystroke

index, note that the ticks are regularly spaced.

irregular sampling

regular sampling

T

FIGURE 4.1: Examples of keystroke time series illustrating the distinction between
using time stamps, Figure (a), and keystroke event indexes, Figure (b).

(b)

Given the foregoing the following definitions should be noted:

Definition 4.1. A keystroke time series stream (Kis ) is an ordered discrete sequence

of keyboard events {p1, p2,...,pn} where n € N is the length of the series.

Definition 4.2. A point, keystroke event, p; € Kis, is parametrised as a tuple of the

form (T;, X;), where Tis an identifying index and Xis one or more keystroke dynamics.
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Given a keystroke time series K5, of length n, it can be divided in to 7 subsequences

where [ € N and 1 <[ < n is the length of the derived subsequences.

Definition 4.3. A keystroke time series subsequence (s), of length 1, is a subsequence

of Kys that starts at the point p; within KCis and ends at point p;y;_1, thus:

5 = {pi; Pis1s- -, Piti-1}

A subsequence (s) of K5 can then be formally indicated using the notation:

s X Kis — Vp; € s,Eij S ICts|Pi = pj

The significance is that the proposed mechanisms, with respect to keystroke continuous
authentication, operate using such subsequences. The proposed idea is to monitor the
keyboard data stream and then periodically collate the points that have arrived so far
and package these into a subsequence that can then be analysed for the purpose of

continuous user authentication.

4.3 Data Cleaning

An issue with KTS represented using F* values is that these capture significant pauses
in keyboard activity and, on occasion, “away from keyboard” events. It was found that
such pauses could adversely affect the extraction of typing patterns from KTS. The
problem is illustrated in Figure where a time series, indicated using a black-dotted
line, is shown featuring 300 keystrokes and F! values where some of the values are
significantly higher than the rest. The keystroke time series stream has been taken from
the ACB data set presented in Chapter From the figure, it can be seen that there
is significant fluctuation in the amplitude of the curve, fluctuation which was found to
impede the effectiveness of any time series analysis applied. To address this issue, it was
decided to apply some data cleaning to the keystroke time series stream as it arrived so
that data with abnormally high F* values, in other words “noise” or “outlier” values,
could be removed.

To this end, a threshold, ¢, for acceptable values of ! was defined. The idea was
to use this threshold, not to remove points from time series subsequences, but to reduce
the associated F! value to the value of ¢ where F* > . Returning to Figure the
red time series indicates the same time series as the black-dotted time series but with a
 threshold of 2 seconds applied. Note that an alternative solution for handling noise
values in this context is by removing them; however, removing some values can discard
useful information for keystroke time series so this was not considered for the proposed
approaches.

In the context of the continuous authentication approaches proposed in this thesis,
the above was applied to each keystroke time series subsequence s as it was collated.

The pseudo code presented in Algorithm [I] describes the data cleaning process. The
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FIGURE 4.2: The effect of applying a threshold ¢ to a keystroke time series stream /Cy
so as to limit the F* values, ¢ = 2 (sec).

inputs are: a subsequence s where s CK;s and the points represent F* values, and a ¢
value. The output is a subsequence 5 with F values greater than ¢ reduced to the value
of .

The question that remains is what the value of ¢ should be. This is considered in
further detail in Chapter [6] where the results from a series of experiments are reported
on using a range of values for ¢ from 0.75 to 2.00 seconds increasing in steps of 0.25
seconds ({0.75,1.00,1.25,1.50,1.75,2.00}).

It should also be noted that key-hold time, X', is normally no longer than 1 second.
Inspection of the data sets used in this thesis indicated that the highest recorded value
of IKH! was 0.950 millisecond. Consequently, it was felt that no threshold needed to be
applied as in the case of F. However, the same solution as proposed in the case of flight

time can be proposed for key-hold noise data whenever it occurs in keystroke data.

Algorithm 1 Reducing Outlier Values of F* .

Input: s < subsequence of Ky, , ¢ + F' limit.
Output: 5 < subsequence with reduced F* .

LS =(pP1,02s s Pire-+»Pl)

2: [ < length of s

3: fori=1toi=1do

4 pi  (Fh) > Return F! value from p (a tuple point).
5: if p; >¢: then

6 pi ==

7 Update(s)

8 end if

9: end for

10: Return s
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4.4 Univariate and Multivariate Keystroke Streaming

The keystroke time series considered in this thesis, as noted above, comprises F¢ and
JCH! values. Consequently, the keystroke time series data can be considered in either
Univariate or Multivariate form. With respect to this thesis, both Univariate-Keystroke
Time Series (U-KTS) and Multivariate-Keystroke Time Series (M-KTS) were considered.

Thus, concerning the U-KTS form we have:

{70, Fi)o (T2, ), o Ty F) )

or:

{{T0, KHL), (T2, KH), -, (T, KH) Y

Because 7; is represented as an index, this index can be inferred from the ordering of

the points in the time series; and therefore, the above notation can be simplified to give:

{FL. 7o Fu}

and:

{KCHL, KHS, ... KHL)

Figures and give examples of U-KTS subsequences of length n = 300. Figures
shows four subsequences where the vertical axis records F* values, whilst Figure
shows four subsequences where the vertical axis records KH' values. The subsequences
were randomly selected from the ACB data set used for evaluation purposes as reported
on later in this thesis, and first introduced in Chapter two subsequences per subject (a
and b). From the figures, it can be seen that there are clear similarities in the keystroke
subsequences associated with the same subjects (despite the subsequences being related
to different texts), and clear dissimilarities in the keystroke subsequences associated with
different subjects. The uniqueness of the individual typing patterns clearly demonstrates
that distinct typing profiles (templates) exist with respect to individual users.

The argument against using U-K'TS is that not all the data is utilised. Hence M-KT'S

are also considered in this thesis. These have the form:

(T AFLKH = 1)), (To, {FLKHE —23), . (T AFL KH = n})}

Again because 7; can be inferred from the point ordering the above can be simplified to:

HFLRH — 1} {FL KH =2}, .. {FL KHE — n))
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Fims) a) Subject 1 2 Subject 2
2
1
ol JLMWMMN
. b) b)
1
oL J‘MWW ara

FIGURE 4.3: Four examples of U-KTS subsequences (n = 300), where the vertical
axis records F* values, for two subjects, two examples per subject (a and b), writing
unspecified free text.

Films) ] a) Subject 1 a) Subject 2
2
1 M WJMNM Sl
oL M
_b) b)
2

e U

FIGURE 4.4: Four examples of U-KTS subsequences (n = 300), where the vertical axis
records KH' , values, for two subjects, two examples per subject (a and b), writing
unspecified free text.

4.5 Keystroke Time Series Similarity using Dynamic Time

Warping

The key aspect of any form of time series analysis is the comparison of individual time
series. For many applications, we wish to know the similarity between two given time
series (or time series subsequences). This similarity is typically expressed as a distance

measure of some kind. How this distance is calculated depends very much on the end
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goal of the analysis |59, [164]. The simplest mechanism is the Euclidean distance mea-
sure. This is derived as follows. Given two keystroke time series sequences K5, and
Kts, (of the same length), the Euclidean distance between each point in Ky, and each
corresponding point in Ky, is calculated. The average distance is then calculated to give
an overall similarity measure, stm. If sim = 0 the two time series are identical. How-
ever, as indicated in Chapter [2| for many applications, the Euclidean distance approach
is considered to be over simplistic as it assumes a one-to-one correspondence of points.
Any “offsets” (phase and amplitude differences) that might exist in the time series being
compared is not considered. In the case of keystroke analytics, this can be illustrated by
considering the time series subsequences given in Figures and[£.4] Inspection of these
subsequences indicates that “shapelets” (patterns) within the subsequences related to
the same subject are similar, but that the “peaks” and “troughs” are offset from one
another. The Euclidean distance similarity mechanisms will not capture this noticeable
similarity.

To overcome this limitation, the work presented in this thesis used the Dynamic Time
Warping (DTW) mechanism to measure the similarity between keystroke time series
sequences. This is a well-established method [20, 137], which has been used effectively to
find the similarity between pairs of point (time) series (readers may wish to refer back
to Section where the background to the DTW approach was given). In summary,
DTW serves to warp the linearity of sequences (even of different lengths) so that any
phase shifting can be taken into consideration. This is done by calculating what is
referred to as a warping path. The length of this warping path, the minimum warping
distance, is then treated as a similarity measure; if the length is zero the two time
series under consideration are identical. Although the idea of DTW was presented in
Section further consideration of the DTW approach concerning keystroke time
series is presented, for completeness, in the following two sub-sections. Sub-section
considers DTW in the context of U-KTS and Sub-section [4.5.2] considers DTW in the
context of M-KTS.

4.5.1 DTW in Univariate-Keystroke Time Series (U-KTS)

Given two keystroke time series subsequences s1 = {pi,p2,...,Pi,-.., Pz} and sy =
{a1,92,...,4j,...,qy}, where x and y are the lengths of the two series respectively, and
the values represented by each point p; € s1 and each point g; € so are either F* or
KCH? values, the minimum warping distance between the two subsequences is computed
as follows. A matrix M of size (z — 1) x (y — 1), is first constructed whereby the value

held at each cell m; ; € M is the distance from point p; € s1 to point g; € sa:

mig = (pz' - %)2 (4'3)

The matrix M is used to find a minimum warping distance () which is then used as
a similarity measure. A warping distance is the accumulated sum of the values associated

with a warping path (P) from cell mq o to cell mgz_1,—1. A warping path in this context
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is a sequence of cell locations, P = {ki,ko,...}, such that given k, = m,; the follow
on location k41 is either m;11 ;, m; j41 or mit1 j41. The value for © associated with a

particular PP is then the sum of the values held at the locations in P:

O=) ky,cP (4.4)

To arrive at a minimum P, for each location the following location is chosen so as to
minimise the accumulated ©. The “best” warping path is thus that which serves to
minimise the distance from mgg to m;—1,—1. The value of O, for a pair of keystroke
time series, can, therefore, be interpreted as an indicator of the similarity between the
two keystroke time series under consideration. Note that if © = 0 the two keystroke time
series in question will be identical. Note that the computation cost of DTW between
the two time series is O(xy), where z and y are the lengths of the two keystroke time
series.

Figure shows examples of the application of DTW using four time series subse-
quences taken from the ACB evaluation data set. Figure (a) shows the warping path
[P (black line) that results when the DTW process is used to compare two keystroke time
series subsequences produced by the same subject, whilst Figure (b) shows the warp-
ing path P that results when the DTW process is used to compare two keystroke time
series subsequences produced by different subjects. In both cases, subjects were writing
unstructured and unknown texts. The red diagonal line, included in both figures, indi-
cates the minimum P that would have been obtained given two identical subsequences.
Although it is not entirely clear from inspection of the figures, the minimum warping
path for time series from the same subject is closer to the diagonal than that produced

using different subjects.
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Keystroke Time Series (KTS1) Keystroke Time Series (KTS1)

(a) (b)

FIGURE 4.5: Application of DTW: (a) the minimum warping path (P) obtained when

comparing two keystroke time series subsequences from the same subject, (b) the min-

imum warping path (P) obtained when comparing two keystroke time series subse-
quences from different subjects. In both cases the typed text was unstructured.
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4.5.2 DTW in Multivariate-Keystroke Time Series (M-KTS)

The method for determining ©, using DTW, adopted with respect to the work presented
in this thesis, directed at M-KTS, is to calculate two warping paths. This could be
achieved using two DTW matrices. However, it is more efficient to use a single matrix
with two values stored in each cell. An alternative approach would have been to store
3-D distances at each cell. Although much less storage would be required to store such
3-D distances the calculation of 3-D distances would be equivalent to calculating two
2-D distances. The main advantage offered by the proposed two 2-D distances approach
is simplicity.

Thus given two M-KTS sequences, such that s = {p1,p2,...,pi,..., Pz} and s9 =
{¢1,92,...,4¢j,...,qy}, where z and y are the lengths of the two series respectively, and
the values represented by each point p; € s; and each point ¢; € so comprise a tuple
of the form (F!, KH'), © is calculated as follows. First a DTW matrix M of size
(x —1) x (y — 1) is constructed. Each cell m;; € M then holds two distance values, the
difference between the F* value for point p; € s; and that for point ¢; € s9; and the
difference between the KH' value for point p; € s; and that for point ¢; € so.

t t t t 2
mij = \/((pgf ) - q](-f )+ @ - qj(m ))> (4.5)

Two warping paths are then calculated, Pz and Py4,:. Each warping path is deter-
mined in the same manner as for the univariate (U-KTS) case. Two minimum warping
distances are then determined, © z+ and ©-4,:. The final value for © is then the average

of these two values:

1

As in the univariate case, if the the value for © is zero both time series, s; and s
are the same. Note that the computation cost in the context of multivariate time series,

as proposed here, is O2(zy).

4.6 Summary

This chapter has presented both the formalism and some preliminaries concerning the
keystroke time series user authentication approaches presented later in this thesis. In
summary keystroke time series, as conceived of in this thesis, are sequences of discrete
data points such that each data point describes either: (i) the flight time F* or (ii) the
key-hold time KH' or (iii) both F* and KXH’. Thus either univariate or multivariate time
series. A key requirement for the proposed keystroke analysis approaches is to be able
to find the similarity between pairs of sequences. The adopted method was the Dynamic
Time Warping mechanism. Thus the chapter included detail concerning the application
of DTW in both the univariate and the multivariate cases. In the following chapter,

the first proposed approach, founded on the fundamentals presented in this chapter, is
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described and evaluated, namely the OKCA approach. This was essentially a proof of
concept approach and considered user authentication in the static context; the objective

being to investigate the validity of the proposed keyboard time series idea.



Chapter 5

Once-only Keystroke Continuous

Authentication

5.1 Introduction

In the previous chapter, a number of preliminaries and formalisms relevant to continuous
keystroke authentication were presented. In this chapter, the Once-only Keystroke Con-
tinuous Authentication (OKCA) system is presented, the first of a number of keystroke
time series authentication approaches presented in this thesis. As the name suggests,
the approach is directed at once only, or static, authentication, where the authentication
takes place once typing has been completed. Although the main focus of the work pre-
sented in this thesis is continuous iterative authentication, whilst typing is taking place,
the aim of the OKCA system was to establish the general principle of the proposed
Keystroke Time Series (KTS) based approach in a simple (static) context before consid-
ering the more challenging iterative continuous authentication problem. In other words,
OKCA was designed to provide a proof of concept of the utility of the KTS approach
in which typing patterns are extracted from free text, which can be then employed for
iterative continuous authentication.

The main idea of the OKCA system is that, given a new time series that it is
claimed belongs to a particular subject, to compare this to a set of k profiles held
in a typing template repository, that are known to belong to the claimed subject. The
comparison is conducted using the DTW approach described earlier in the thesis. In this
manner, a Warping Distance (WD) is determined, for each comparison, and an average
WD derived accordingly. If this is below some user specified similarity threshold o the
claimed identity of the subject is confirmed; otherwise the claimed identity is rejected.
Note that o in this context is calculated by computing the average WD of the k profiles
of the subject.

The remainder of this chapter is organised as follows. Section provides a detailed
description of the proposed OKCA system. This is followed by Section where an
extensive evaluation of the OKCA system is presented. In Section some further

61
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discussion is given, and finally in Section some conclusions concerning the material

presented in the chapter are provided.

5.2 Once-only Keystroke Continuous Authentication (OKCA)
System

From the preceding, the OKCA system operates simply by comparing a typing sample,
that it is claimed to belong to a particular subject, to a bank of typing templates (refer-
ences) that are known to belong to the subjects in the data set so that authentication can
take place. Central to this approach is time series comparison using DTW as described
earlier. The process is as shown in Figure

Three variations of the OKCA were generated, two directed at Univariate Keystroke
Time Series (U-KTS) representing either F* or KH', and one directed at Multivariate
Keystroke Time Series (M-KTS). The distinction between the two univariate time series
was that when using F! values the ¢ threshold (noise reduction limit), as described in

the previous chapter, was applied.

AT
o A

DTW

) Typing Templates
Comparison

(Repository)
Typing sample
v
No Yes
Match Found
Authentication Authentication
Unsuccessful Successful

FIGURE 5.1: Schematic illustrating the operation of the OKCA system.

5.2.1 OKCA Algorithm

The basic operation of OKCA is given by the pseudo code presented in Algorithm
The inputs are: (i) time series (keystroke stream) s = {p1, p2, ...} where p; is a single
value in the case of U-KTS, and a two item tuple in the case of M-KTS, (ii) a similarity
threshold o and (iii) a noise limit ¢, where F* values are used. The output is a true-

false binary value, true if the subject is deemed to be who he/she claims to be, and false
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otherwise. Note that the default result is “false” (line 1). If appropriate noise reduction
is applied to s (line 3). The set of profiles S for the claimed subject are then processed
in turn (loop from lines 5 to 9). On each iteration noise reduction is applied to each
template t; € S (line 6); this is not done when the templates are generated because a
different value for ¢ may be required on each run. The similarity between S and each
t; (the minimum warping distance), sim;, is then calculated (line 7), and a simIndex
value maintained (line 8). The warping distances are then averaged (line 10) and the
average distance compared with the o threshold (lines 11 to 13). Note that further detail
of how to obtain the value of ¢ is given in Sub-section below.

Algorithm 2 The General OKCA System Process.

Input: s = {p1,p2,...}, p, 0
Output: true or false

1: result = false

2: simIndex =0

3: s = NoiseReduction(s, ¢)

4: S ={t1,...,t;} set of templates from repository.
5. for Vt; € S do
6
7
8
9

t; = NoiseReduction(t;, ¢)
sim; = dtw(s, t;)
simIndex = simIndex + sim;

: end for
; Z?:‘S‘ simy;
10: simIndex = %
11: if simIndex < o then
12: result = true
13: end if

14: return result

5.3 OKCA Validation

The proposed OKCA approach was evaluated with respect to the following three objec-

tives:

1. To determine the effectiveness of the proposed approach in the context of Univari-
ate keystroke Time Series (U-KTS).

2. To determine the effectiveness of the proposed approach in the context of Multi-
variate keystroke Time Series (M-KTS).

3. To compare the operation of the KTS approach with the feature vector based

approach commonly used in the literature.

For the evaluation the data sets introduced in Chapter |3] were used. The evaluation
was conducted by considering a subject identification scenario as opposed to a subject

authentication scenario, the main focus of the work presented in this thesis. This was
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done so as to provide a more challenging evaluation of the proposed approach. Recall
that authentication only requires comparison with profiles that belong to the claimed
user, while identification requires comparison with all profiles in the repository.

To conduct the evaluation a “test harness” was first constructed; the nature of this
test harness is discussed in Sub-section[5.3.1. Then, in Sub-section[5.3.2]the experimental
setup is presented. The results, with respect to the proposed approach in the context
of U-KTS, are given in Sub-section whereas the reported results in the context of
M-KTS are discussed in Sub-section The outcomes with respect to the comparison

with feature vector based approach are presented in Sub-section [5.3.5

5.3.1 Test Harness

The fundamental idea underpinning the test harness was to divide vertically, each data
set from Chapter [3| so that each record comprised three equal time series subsequences.
Thus, given a time series s; this would be divided into three subsequences s;,, s;, and
;5. One of these subsequences could then be used as the time series to be identified and
the other two parts assigned to the required typing template repository (thus k = 2).

The partitions (groups) can be defined as follows: a = {s1,,...,51,}, b= {s2,,...,52,}
and ¢ = {s3,,...,s3,}, where n is the number of records (subjects) in the input data
set. Consequently, 3-fold cross-validation could be conducted. Note that the reason for
using 3-fold cross validation was to allow for a sufficient amount of data to be available
to construct typing profiles.

The pseudo code for the test harness is given in Algorithm [3| The input is a data
set D = {T1,...,T,} and a ¢ value (the flight time noise reduction limit). The output
is a |D| x |D| similarity matrix Sim holding ranked similarity values (DTW warping
distances). The process was commenced by dimensioning the matrix Sim in which to
hold similarity measures (line 1) and the empty groups (a, b and ¢) (line 2). The groups
are then populated in lines 3 to 13. In the pseudo code, it is assumed that the test group
is a; this, of course, does not have to be the case. Each time series in the test group a
is compared to each pair of time series in groups b and ¢ using DTW, and an average
warping distance, © (similarity value) obtained (line 20). If the corresponding samples to
be compared are from the same subject, such that dtw(si;, s2j) and dtw(sy;, s3j) where
i = j, the obtained average similarity, ©, serves as the value of threshold o for the
current subject ¢ (lines 21-24). Recall that in the test harness groups b and c represent
the typing template repository. Once all comparisons for a time series in group a have
been complete the column values in the matrix representing this time series are ranked in
ascending order. In this manner, we can observe whether the ranking value corresponds

to the same subject, if it is ranked first then the identification has been successful.

5.3.2 Experimental Setting

A number of experiments were conducted to investigate the three OKCA evaluation

objectives listed above. Experiments were conducted in terms of U-KTS and M-KTS
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Algorithm 3 A Test Harness for OKCA System.

Input: D={T1,...,T,}, ¢ (noise reduction limit).
Output: Return “highlighted” ranking similarity.
1: Sim = |D| x |D| similarity matrix
2:a=0,b=0and c= 0.
3: for VI; € D do
4: if 7! € T; then

T; = NoiseReduction(T;, )
end if
=4
3

gpl =A{p1,....,;m} €T;

92 ={pi1,---,pi11} €Ti
10 gp3=A{piti41,--,pmt €T
11: a=alUgpl

12: b=>bUgp2

13: c=cUgp3

14: end for

15: for i =1 to |D| do

16: S1;, = 81, €a

17: for j € |D| do

18: §2; = 82, €b

19: 83, = 83, €c
20. o— dtw(sli,szj);rdtw(sli,s%.)
21: if i = j then
22: c=0

23: highlight(o)
24: end if

25: end for

26: Sim = O U Sim
27: Rank(Sim)

28: end for

29: return Sim

TABLE 5.1: Evaluation data set summary.

’ Data set H # Sub. ‘ Txt. Env. Lang. ‘ # Sam. ‘ Dur. ‘ Avg. ‘ SD ‘

ACB 30 Unstr. | Uncont. | English 3 1 Day 3589 | 529

GP 31 | Unstr. | Uncont. | Italian 15 15 Days | 4315 1 9189
-6 mths

VHHS 39 | Unstr. | Cont. | English | 12 2Days | gi00 | 712
-11 mths

Key: Unstr. = Unstructured, Uncont. = Uncontrolled, Cont. = Controlled, mths = months.

using the three data sets presented earlier in Chapter |3, namely: ACB, GP and VHHS.
For convenience, Table previously presented in Section (Chapter , provides
a statistical summary of the data sets. Note that the GP data set cannot be used to
implement OKCA with respect to M-KTS as K#H! information was not provided in this
data set.
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As noted in the previous sub-section, although the pseudo code presented in Algo-
rithm [3|implies that the test set is always group 1 (a), this does not have to be the case.
Therefore, for each evaluation objective, three sets of experiments were conducted using
a different group as the test set in each case. Thus: (i) a v. {b,c}, (ii) b v. {a,c} and
(iii) ¢ v. {a,b} (as illustrated in Figure5.2)).

The value for ¢ was set to 2 seconds for all the experiments. Evaluation regarding
the effect of using different ¢ settings is presented later in this thesis in Chapter [6l The
evaluation metrics used were: (i) Accuracy (Acc.), (ii) Mean Reciprocal Rank (MRR)
and (iii) False Match Rate (FMR) and (iv) False Non-Match Rate (FNMR). Note also

that all experiments were conducted using a 3.2 GHz Intel Core i5 processor with 24

fii o
BXC®
OO

FIGURE 5.2: Schematic illustrating evaluation strategy using different groups.

5.3.3 Evaluation in Context of U-KTS

In the case of the univariate time series evaluation, the U-KTS evaluation, a total of

fifteen individual experiments were conducted:

3 group configuration x ((2 datasets x 2 time series formats (F' and KH'))

(5.1)

+(1 dataset x 1 time series format (F')))

Recall that the GP data set did not include ICH® values, hence, in the case of GP data
set, only U-KTS with F! could be considered.

The complete set of results is presented in Appendix [A; however, Table gives a
sample of the ranked Sim matrix, generated using the test harness described above, for
the ACB data set when using U-KTS with F* and assuming that the test group is group
a. The highlighted values (in bold font) refer to the value where a subject is compared
to itself. Thus, the last row in the table gives the ranking, r’ (or simply the threshold o),
of the correct match; in other words, these are the values where a subject is compared

to itself. Ideally, we would wish this comparison to be ranked first.
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TABLE 5.2: Sample of Sim matrix for a v. {b, c} using the ACB data set and U-KTS
with F* (correct identifications highlighted in bold font).

S1 Sa S3 S4 oo | Sor Sos Sa29 S30
0.0528 0.0329 | 0.0635| 0.0490( ... | 0.0580 | 0.0597 0.0385| 0.0677
0.0578 | 0.0374] 0.0655 | 0.0520 | ... | 0.0667 | 0.0616 | 0.0392 | 0.0697
0.0590 | 0.0401 | 0.0665 | 0.0530 | ... | 0.0668 | 0.0646 | 0.0435 | 0.0720
0.0598 | 0.0484 | 0.0683 | 0.0557 | ... | 0.0678 0.0699 | 0.0477 | 0.0724
0.0621 | 0.0487 | 0.0688 | 0.0579 | ... | 0.0679 | 0.0699 | 0.0490 | 0.0740
0.0631 | 0.0527 | 0.0719 | 0.0592 | ... | 0.0706 | 0.0705 | 0.0680 | 0.0751
1; 0.0635 | 0.0549 | 0.0740 | 0.0619 | ... | 0.0706 | 0.0712 | 0.0714 | 0.0770
_§ 0.0646 | 0.0550 | 0.0741 | 0.0668 | ... | 0.0706 | 0.0732 | 0.0761 | 0.0777
%‘ 0.0652 | 0.0551 | 0.0772 | 0.0685 | ... | 0.0707 | 0.0741 | 0.0765 | 0.0782
& | 0.0658 | 0.0575| 0.0773 | 0.0691 | ... | 0.0739 | 0.0742 | 0.0797 | 0.0786
% 0.0660 | 0.0581 | 0.0775 | 0.0710 | ... | 0.0741 | 0.0748 | 0.0814 | 0.0786
E 0.0682 | 0.0583 | 0.0778 | 0.0712 | ... | 0.0744 | 0.0751 | 0.0819 | 0.0787
é 0.0698 | 0.0640 | 0.0780 | 0.0713 | ... | 0.0763 | 0.0777 | 0.0896 | 0.0788
% 1 0.0725 | 0.0721 | 0.0781 | 0.0730 | ... | 0.0767 | 0.0786 | 0.0898 | 0.0811
<:C 0.0739 | 0.0732 | 0.0790 | 0.0756 | ... | 0.0796 | 0.0803 | 0.0920 | 0.0814
0.0748 | 0.0750 | 0.0834 | 0.0767 | ... | 0.0798 | 0.0832 | 0.0952 | 0.0817
0.0749 | 0.0799 | 0.0836 | 0.0786 | ... | 0.0798 | 0.0836 | 0.0990 | 0.0826
0.0753 | 0.0839 | 0.0846 | 0.0789 | ... | 0.0801 | 0.0845 | 0.1098 | 0.0832
0.0756 | 0.0906 | 0.0846 | 0.0837 | ... | 0.0810 | 0.0850 | 0.1134 | 0.0877
0.0805 | 0.0910 | 0.0847 | 0.0850 | ... | 0.0824 | 0.0855 | 0.1135 | 0.0901
0.0838 | 0.0961 | 0.0851 | 0.0864 | ... | 0.0826 | 0.0875 | 0.1135 | 0.0928
0.0883 | 0.1055 | 0.0864 | 0.0882 | ... | 0.0826 | 0.0883 | 0.1170 | 0.0928
0.0883 | 0.1063 | 0.0864 | 0.0882 | ... | 0.0838 | 0.0892 | 0.1200 | 0.0952
0.0892 | 0.1063 | 0.0865 | 0.0894 | ... | 0.0879 | 0.0898 | 0.1236 | 0.0955
0.0902 | 0.1099 | 0.0865 | 0.0914 | ... | 0.0896 | 0.1009 | 0.1243 | 0.0972
0.0907 | 0.1123 | 0.0870 | 0.0924 | ... | 0.0925 | 0.1033 | 0.1288 | 0.1001
0.0939 | 0.1195| 0.0924 | 0.0940 | ... | 0.0946 | 0.1079 | 0.1345 | 0.1038
0.0984 | 0.1232 | 0.1118 | 0.0947 | ... | 0.0957 | 0.1083 | 0.1649 | 0.1041
0.1137 | 0.1307 | 0.1302 | 0.0963 | ... | 0.1079| 0.1111 | 0.1677 | 0.1085
0.1177 | 0.1415| 0.1310 | 0.1002 | ... | 0.1134 | 0.1177 | 0.1747 | 0.1205
r 1 2 1 1 - 4 1 1 6

A summary of the results obtained, in terms of v’ values, is given in Tables to
for data sets ACB, GP and VHHS respectively. Note that Table ranking results
for GP data set, only presents the results for U-KTS with F?. In each table, the rows
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TABLE 5.3: The 7’ values obtained from the U-KTS evaluation using the ACB data
set.

U-KTS U-KTS
with F* with KH'
S av. {b,c} ‘ bv. {a,c} ‘ cv. {a,b} I av. {b,c} ‘ bv. {a,c} ‘ cv. {a,b}
1 1 1 2 1 1 2
2 2 1 2 2 3 2
3 1 1 1 4 3 1
4 1 1 2 | 2 4 3
5 2 2 2 | 3 2 3
6 1 2 1 | 5 4 6
7 5 4 2 I 10 8 8
8 1 1 1 | 5 7 6
9 2 1 1 6 6 4
10 2 2 2 1 2 1
11 3 3 2 5 5 6
12 3 3 3 4 6 7
13 2 2 1 | B 10 12
14 1 1 1 | 2 5 1
15 2 2 1 I 10 9 7
16 3 4 3 | 3 4 4
17 2 2 4 5 4 6
18 6 6 5 1 2 3
19 2 2 1 6 5 7
20 2 3 3 7 6 7
21 5 5 4 | 5 2 4
22 1 1 1 | 6 5 4
23 3 3 4 | 2 1 1
24 1 1 1 | 2 1 5
25 7 5 8 | 2 1 3
26 1 1 2 3 1 1
27 4 3 3 1 2 1
28 1 2 1 1 1 1
29 1 2 2 2 3 2
30 6 4 5 | 1 1 2

represent the subject to be identified (the identifier of the subject is listed in column

one). Results are presented with respect to each test group combination.

5.3.3.1 Subject Identification Accuracy

To obtain a single overall subject identification accuracy value (Acc) the ratio between
the number of incorrect identifications (¢) ranked prior to a correct match (r') and the

total number of comparisons (7) was computed:

.
Acc =

x 100 (5.2)
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TABLE 5.4: The r’ values obtained from the U-KTS evaluation using the GP data set.

U-KTS with F*
% av. {b,c}‘bv. {a,c}‘cv. {a,b}
1 1 2 2
2 1 2 1
3 2 2 1
4 3 2 2
5 2 3 2
6 3 3 3
7 2 1 1
8 ) 4 4
9 4 1 2
10 3 3 3
11 2 2 2
12 8 4 6
13 5) 3 5
14 2 4 4
15 7 ) 6
16 1 1 1
17 4 5 5
18 1 4 3
19 4 3 3
20 1 2 1
21 5) 4 3
22 2 1 2
23 1 4 1
24 8 8 7
25 6 3 5
26 2 2 2
27 4 4 4
28 1 1 2
29 2 4 1
30 2 1 3
31 1 1 1

In this context, ¢ and 7 are calculated as in Equations and as follows:

N

=Y (ri—1) (5.3)
=1

T =2(N?) (5.4)

where N is the number of subjects in the data sets. Recall that r; is the ranking of
the desired match for subject S;. Thus, with respect to Table we have £ = 56 and

T = 1800, and a consequent Acc value of 96.89% (12926 x 100 = 96.89%).
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TABLE 5.5: The 7’ values obtained from the U-KTS evaluation using the VHHS data
set.

U-KTS U-KTS
with F* with KH'
S av. {b,c} ‘ bv. {a,c} ‘ cv. {a,b} I av. {b,c} ‘ bv. {a,c} ‘ cv. {a,b}
1 1 2 1 2 3 1
2 1 1 1 2 1 1
3 2 2 2 3 3 5
4 3 2 3 i 1 2 3
5 2 3 2 | 1 2 2
6 9 8 8 | 1 9 9
7 2 3 2 | 3 5 4
8 4 4 6 | © 10 9
9 1 1 2 5 2 2
10 2 1 2 8 9 7
11 2 3 3 3 5 5
12 3 3 2 8 6 6
13 1 2 1 | 3 2 1
14 6 5 5 | 6 4 8
15 2 1 1 | 4 2 3
16 1 1 1 | 1 2 1
17 9 7 9 12 10 11
18 3 4 2 1 2 2
19 2 1 4 15 13 13
20 3 2 2 1 3 2
21 1 1 1 i 5 5 2
22 7 6 4 | 1 2 3
23 2 2 2 | 3 2 5
24 3 3 4 | 1 1 3
25 8 6 5 | 2 1 1
26 7 8 6 3 1 3
27 2 2 1 10 7 8
28 1 4 3 4 4 6
29 3 3 2 5 4 5
30 1 1 1 i 3 3 3
31 6 4 6 | 2 1 3
32 1 2 2 | 6 7 4
33 2 2 2 | 8 9 9
34 1 1 1 I 10 12 11
35 4 3 4 5 6 3
36 1 1 2 1 1 2
37 3 2 1 2 4 1
38 1 1 4 1 1 4
39 1 1 2 | 4 2 1

The complete set of subject identification accuracy results obtained are given in Table

The table includes the overall average accuracy and associated Standard Deviation
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(SD) with respect to this average accuracy. Inspection of the table demonstrates that
the proposed OKCA system produced promising results, indicating the potential benefits
that can be gained were the K'TS representation to be adopted for user authentication;
the best overall recorded accuracy was 97.21% (with an associated SD = 0.17) for the
VHHS data set. The table also indicates that better results were obtained using U-KTS
with F* than U-KTS with K#?!; thus an argument can be made that F?* is a more reliable

feature than ' in the context of the evaluation of keystroke time series.

TABLE 5.6: The subject identification accuracy (Acc.) results from U-KTS evaluation.

U-KTS with F* U-KTS with KH'
E ACB | GP [ VHHS || ACB | GP | VHHS
av. {b,c} | 96.89 [ 96.67 | 97.01 [/ 95.67 | x | 95.99
bv. {a,c} [ 97.06 | 96.98 | 97.34 || 96.00 | x | 96.12
cv. {a,b} | 97.22 [ 97.03 | 97.27 [ 9550 | x | 95.96
Avg. 97.06 | 96.90 | 97.21 [| 95.72 [ x | 96.02
SD 017 | 020 | 017 [] 025 [ x | 0.09

5.3.3.2 Mean Reciprocal Rank Evaluation

Table |5.7| presents Mean Reciprocal Rank (MRR) results obtained. MRR is a standard
evaluation measure used in Information Retrieval where it is typically used as a measure
of how close the position of a desired result is to the top of a ranked list [33]. MRR is

calculated as follows:

1 Q| 1
MRR = al ; - (5.5)
where: (i) @ is a set of queries (in our case queries as to whether we have the correct
subject or not), and (ii) r is the generated rank of the desired response to ;. An
MRR of 1.00 would indicate that all the results considered are correct; thus we wish to
maximise MRR.

From Table it can be seen that best MRR values were obtained with respect
to U-KTS with F! confirming the observation made earlier that F! is a better feature
than KCH! with respect to the analysis of keystroke time series data. The MRR results
obtained also indicate the potential of the proposed KTS representation for recognis-
ing typing patterns from free text for the purpose of the continuous authentication of

subjects taking (say) online assessments.

5.3.3.3 FMR and FNMR Evaluation

FMR and FNMR were calculated with respect to each combination of groups for each
data set and each U-KTS format supported by the data sets. FMR is the ratio of the
number of false accepts (false positives) against the number of comparisons. In the

context of OKCA, if the equivalent sample’s rank was not equal to 1, this meant that the
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TABLE 5.7: The MRR results obtained for U-KTS evaluation.

U-KTS with F* U-KTS with K#'
- ACB | GP [ VHHS || ACB | GP | VHHS
av. {b,c} [ 0.570 [ 0.530 | 0.540 [ 0.460 [ x | 0.440
bv. {a,c} | 0.540 [ 0.570 | 0.530 || 0.480 | x [ 0.430
cv. {a,b} [ 0.550 [ 0.530 | 0.500 [| 0.490 [ x | 0.420
Avg. 0.560 [ 0.550 | 0.530 [[ 0.470 [ x [ 0.430
SD 0.02 [ 0.02 | 002 [| 001 | x | 0.01

sample has been falsely rejected. In contrast, FNMR was calculated by computing the
ratio of the number of subjects that were ranked higher than the desired sample against
the total number of comparisons. The subjects ranked before the desired subject were
considered to represent false negatives, subjects that had been falsely accepted as real
subjects. Thus FMR and FNMR were computed as follows:

_ false positives

FMR

n

false negatives

FNMR =
n

where n is the total number of comparisons, for each group, such that:
n = true positives + true negatives + false positives + false negatives

Table presents the reported FMR and FNMR results obtained. The table gives
the overall average FMR and FNMR results from all three group combinations across
the ACB, GP and VHHS data sets. From the table, the obtained results are shown for
both U-KTS with F* and U-KTS with H!. Note again that GP data set has no results
for the KH' feature. From the table, it can be seen that, regardless of which data set was
considered, best results were obtained using U-KTS with F*; the best recorded values
were 2.78% and 0.91% for FMR and FNMR using the VHHS data set. The results thus
indicate that good performance can be realised where the proposed KTS approach is

used for keystroke continuous authentication where subjects are typing free text.

TABLE 5.8: The FMR and FNMR results obtained in U-KTS representation while
applying F* and KH' features.

Representation U-KTS with F* U-KTS with KH?
Metrics | pyviR - | PNMR | FMR | FNMR
Data set
ACB 2.94 1.13 4.28 1.24
GP 2.80 1.11 X X

VHHS 2.78 0.91 3.98 1.02
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5.3.4 Evaluation in Context of M-KTS

This sub-section presents the results obtained in the context of M-KTS; the second
evaluation objective. Recall that for the M-KTS evaluation only the ACB and VHHS
data sets were used. In this context, the constructed ACB and VHHS multivariate
(bivariate) time series comprised F' and KH' values. The evaluation was conducted
in a similar manner to the U-KTS evaluation reported on earlier. All three group
combinations were considered in turn and ranked similarity (minimum warping distance)
matrices constructed. The value for ¢, as in the case of the U-KTS evaluation, was
again set to 2 seconds. The complete set of results concerning the similarity matrices

are presented in the Appendix [A.

5.3.4.1 Subject Identification Accuracy

Table presents the subject identification accuracy results obtained. From the table,
and with reference to Table it can be seen that M-K'TS accuracy results obtained
were better than the U-KTS results obtained. The overall average accuracies were
Acc = 98.04% and Acec = 98.21% for the ACB and VHHS data sets receptively; obviously
better than Acc = 97.06% and Acc = 97.21% as was recorded in the case of U-KTS with
F! for the same data sets. The obtained results again provided further evidence of the

potential of the proposed KTS approach concerning continuous subject authentication.

TABLE 5.9: The subject identification accuracy (Acc.) results from M-KTS evaluation.

M-KTS
ACB VHHS
av. {b,c} | 97.94 98.09

bv. {a,c} || 98.00 98.22
cv. {a,b} || 98.17 98.32

Avg. 98.04 98.21
SD 012  0.12

5.3.4.2 Mean Reciprocal Rank Evaluation

Table presents the MRR results obtained. From the table, and comparing with
Table it can be seen that when using M-KTS better MRR results were also obtained
than in the case of U-KTS. The average obtained MRR average values were 0.640 and
0.570 using the ACB and VHHS data sets respectively, compared with 0.560 and 0.530
in the context of U-KTS.

5.3.4.3 FMR and FNMR Evaluation

Table presents the FMR and FNMR results obtained. Inspection of the table
indicates that superior performance, in terms of FMR and FNMR, is achieved in the
context of M-KT'S as opposed to U-KTS in all cases. The best recorded FMR value was
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TABLE 5.10: The MRR results obtained from the M-KTS evaluation.

M-KTS
ACB VHHS
av. {b,c} || 0.630 0.570

bv. {a,c} || 0.640 0.590
cv. {a,b} || 0.640 0.560

Avg. 0.640 0.570
SD 0.01 0.02

1.79%, whilst the best FNMR value was 0.89% (both in the context of the VHHS data
set).

TABLE 5.11: The FMR and FNMR results obtained from the M-KTS evaluation.

Representation M-KTS
Metrics
Data sot FMR FNMR
ACB 1.96 0.98
VHHS 1.79 0.89

5.3.5 OKCA and Feature Vector Representation (FVR)

The third objective of the evaluation presented here was to compare the operation of the
proposed KTS approach with that of the statistical feature vector based representation
(FVR) frequently encountered in the literature. In this context, feature vectors were
constructed using the average flight time p(f*) for the shared occurring di-graphs found

in two typing samples to be compared. Thus:

i=d
p(f) = é d F (5.8)
=1

where d is the number of identified shared di-graphs and F! is the flight time value
between the identified di-graphs. Each identified di-graph was thus a feature (dimension)
in a feature space with the range of average u(f*) values as the dimension.

The similarity between vectors was measured using the Cosine Similarity (CS) metric
(DTW would clearly be inappropriate); a well established method for finding similarity
between two non-zero vectors [143] extensively used in the context of information re-
trieval, data mining and pattern recognition. Recall that CS was used in this context
as a baseline to compare the proposed methods. Thus other similarity mechanisms,
concerning FVR, were not considered because the main focus of the thesis was the use
of time series methods.

Whatever the case, CS can be calculated using the following equation:

Ty

O59) = Tl x Tl (5:9)
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TABLE 5.12: Sample of CS similarity matrix for a v. {b,c} using the ACB data set
and the feature vector representation (correct matches highlighted in bold font).

S1 Sa S3 S4 Sa7 Sos Sa29 S30
0.6821 | 0.6409 | 0.7964 | 0.7776 0.6875 | 0.8155 | 0.7323 | 0.7654
0.6690 | 0.6403 | 0.7307 | 0.7667 0.6229 | 0.7202 | 0.6495| 0.7525
0.6680 | 0.6207 | 0.7241 | 0.7634 0.6051 | 0.6852 | 0.5867 | 0.7506
0.6567 | 0.6171 | 0.7063 | 0.7093 0.5985 | 0.6731 | 0.5537 | 0.7018
0.6137 | 0.6146 | 0.6725 | 0.6727 0.5713 | 0.6669 | 0.5249 | 0.6986
0.5881 | 0.5967 | 0.6443 | 0.6683 0.5696 | 0.6556| 0.5234 | 0.6936
1; 0.5689| 0.5957 | 0.6327 | 0.6651 0.5610 | 0.6491 | 0.5233 | 0.6890
_§ 0.5530 | 0.5934 | 0.6134 | 0.6595 0.5553 | 0.6471 | 0.5146 | 0.6778
%‘ 0.5487 | 0.5926 | 0.5880 | 0.6587 0.5481 | 0.6439 | 0.5044 | 0.6732
& | 0.5038 | 0.5895| 0.5826 | 0.6480 0.5374 | 0.6243 | 0.4677 | 0.6690
% 0.5032 | 0.5860 | 0.5809 | 0.6463 0.5244 | 0.6221 | 0.4672 | 0.6518
E 0.4953 | 0.5741 | 0.5805| 0.6463 0.5199 | 0.5876 | 0.4666 | 0.6432
é 0.4906 | 0.5726 | 0.5804 | 0.6391 0.5134 | 0.5840 | 0.4662 | 0.6316
% | 0.4830 | 0.5655 | 0.5597 | 0.6379| ... | 0.5110 0.5807 | 0.4598 | 0.6264
<:C 0.4824 | 0.5568 | 0.5516 | 0.6229 0.5047 | 0.5797 | 0.4576 | 0.6161
0.4770 | 0.5316 | 0.5505 | 0.6043 0.4931 | 0.5760 | 0.4498 | 0.6143
0.4763 | 0.5310 | 0.5434 | 0.5964 0.4676 | 0.5614 | 0.4491 | 0.5897
0.4580 | 0.5291 | 0.5388 | 0.5944 0.4635 | 0.5582 | 0.4416 | 0.5842
0.4575 | 0.5239 | 0.5351 | 0.5895 0.4577 | 0.5582 | 0.4386 | 0.5766
0.4530 | 0.5171 | 0.5212 | 0.5882 0.4530 | 0.5560 | 0.3948 | 0.5751
0.4509 | 0.5063 | 0.5137 | 0.5816 0.4444 | 0.5462 | 0.3937 | 0.5737
0.4384 | 0.4980 | 0.5094 | 0.5782 0.4374 | 0.5451 | 0.3908 | 0.5546
0.4371 | 0.4964 | 0.5013 | 0.5698 0.4333 | 0.5368 | 0.3908 | 0.5369
0.4236 | 0.4804 | 0.4897 | 0.5695 0.4273 | 0.5282 | 0.3898 | 0.5306
0.4236 | 0.4804 | 0.4750 | 0.5325 0.4013 | 0.5249 | 0.3893 | 0.5284
0.4180 | 0.4691 | 0.4333 | 0.5269 0.4013 | 0.4999 | 0.3845 | 0.5127
0.3945 | 0.4655 | 0.4247 | 0.5114 0.3967 | 0.4992 | 0.3770 | 0.4799
0.3897 | 0.4443 | 0.4064 | 0.5103 0.3780 | 0.4888 | 0.3700 | 0.4675
0.3821 | 0.4355 | 0.4064 | 0.5058 0.3521 | 0.4830 | 0.3667 | 0.4385
0.3449 | 0.3492 | 0.3898 | 0.4493 0.3463 | 0.4554 | 0.2727 | 0.4385
r 7 10 12 14 14 6 2 2

where x - y is the dot product between two feature vectors = and y, and |z| (Jy|) is the

magnitude of the vector x (y). Note that for the CS calculation to operate correctly the

feature vectors need to be of the same length (unlike in the case of DTW).
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TABLE 5.13: The average subject identification Acc., MRR, FMR and FNMR using
FVR approach across the ACB, GP and VHHS data sets.

Metrics || o | MRR | FMR | FNMR
Data set
ACB 81.54 | 0.148 | 18.46 | 1.61
GP 83.33 | 0.176 | 16.67 | 1.54
VHHS 87.72 | 0.249 | 12.28 | 1.12

For the comparison reported on in this section, a similarity matrix, of the form
constructed with respect to the experiments reported on earlier in this chapter, was
constructed using the feature vector based approach and CS values. Table[5.12]presents a
sample of the resulting CS similarity matrix. The entire matrix is presented in Appendix
E. As in earlier cases, the last row in the table gives the ranking, v/, of the correct match
(highlighted in bold font); in other words, the ranking where a subject is compared to
itself.

Using the rankings presented in the similarity matrix, subject identification accuracy
(Acc.), MRR, FMR and FNMR values were calculated in the same manner as before.
The average results, average from three group combinations, are presented in Table
Comparing these results with the results presented earlier in the context of U-KTS and
M-KTS, it can be seen that worse results were attained with respect to all four metrics
considered. It can thus be argued that the proposed KTS approach is superior to
the established feature vector approach in the context of subject identification using
keystroke dynamics, indicating that this is also likely to be the case concerning subject

authentication.

5.4 Evaluation Summary and Discussion

For completeness, this section summarises the main findings concerning the experiments
reported on in the previous section. The summary is firstly presented in terms of the ob-
tained 7’ values, and secondly is given in the context of the average subject identification
accuracy (Acc.), MRR, FMR and FNMR.

The 7’ analysis is presented using the sequence of “whisker plots” illustrated in
Figures and one for each data set. Each figure shows the whisker plot for
the ranking values with respect to the four representations used in the context of the
OKCA approach as follows:

1. U-KTS with F? (referred to in the figures as U-KTS+F?).
2. U-KTS with KH' (referred to in the figures as U-KTS+KH?).
3. M-KTS.

4. FVR.
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FIGURE 5.3: The statistical distribution for ranking values (r’) for U-KTS with F* (U-
KTS+F"), U-KTS with KH' (U-KTS+KH"), M-KTS and FVR applied to the ACB

data set.
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FIGURE 5.4: The statistical distribution for ranking values (') for U-KTS with F*
(U-KTS+F?) and FVR applied to the GP data set.

The four representations are thus listed along the horizontal axis in each figure, except in
the case of GP data set figure (Figure whereas only the results for U-KTS+F! and
FVR were used because the GP data set only featured F* values. The plots provide a
statistical interpretation of the distribution of the r’ values obtained in each case. More
specifically, the “red” line in each box shows the median of the ranking values (r’), while
the top and bottom of the box show the 75% and 25% quartile of the obtained rankings.

Recall that rankings of value 1 indicate a correct match. Thus the closer the median
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FIGURE 5.7: MRR summary.

is to one, the more accurate the performance of the approach. It can be seen from the
figures that M-KTS has yielded the best performance.
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Figures and present the average accuracy (Acc.), MRR, FMR and
FNMR results in the form of a set of histograms. Overall, the results, as presented in the

figures, confirm the earlier observation that the proposed KTS approach outperformed
the established FVR approach.

5.5 Summary

This chapter has presented the Once-only Keystroke Continuous Authentication (OKCA)
approach, a KTS “proof of concept” system. The operation of the OKCA system was
fully described and evaluated in the context of subject identification. Subject identifica-
tion was used, instead of subject authentication, the primary focus of the thesis, because
this was considered to be much more challenging. The evaluation was conducted using
the three evaluation data sets presented previously in Chapter |3 The results presented
demonstrated that the proposed KTS representation, coupled with DTW, produced
good results. More specifically M-KTS outperformed U-KTS, whilst U-KTS with F*
outperformed U-KTS with H? . In the following chapter, the first iterative keystroke

continuous authentication approach proposed in this thesis is presented.



Chapter 6

Iterative Keystroke Continuous

Authentication in Time Series

6.1 Introduction

In the previous chapter, the OKCA system was described, a static subject authenti-
cation system. This was a proof of concept system design to evidence the utility of
the proposed time series approach to analysing keystroke dynamics. This was done by
conducting a series of experiments directed at subject identification. The experimental
results demonstrated that the keystroke time series representation can be successfully
applied to recognising typing patterns from free text; without the disadvantages asso-
ciated with the feature vector approach. It was thus conjectured that the time series
approach could also be successfully applied for iterative continuous authentication using
keystroke dynamics, the target application that the research presented in this thesis seeks
to address. This chapter thus presents the first proposed approach to keystroke contin-
uous authentication presented in this thesis, namely the Iterative Continuous Keystroke
Authentication (IKCA) approach (the second approach is presented in the following
Chapter). Using the IKCA approach, typing activity is conceptualised in terms of a
continuous data stream (a time series), comprised of a sequence of press-and-release
temporal events. This data stream is then sampled so as to extract non-overlapping
shapelets using moving window mechanism. These shapelets can be generated from
both univariate (U-KTS) and multivariate (M-KTS) keystroke data streams.

The rest of this chapter is structured as follows. Section presents the primary
framework for the IKCA approach. Then, in Section the technical operation of
the IKCA is presented. Section presents an extensive evaluation concerning the
implementation of the IKCA using the real keystroke data sets given in Chapter
Finally, Section provides a comprehensive summary of the material presented in this

chapter.

80
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FI1GURE 6.1: The IKCA operational framework.

6.2 IKCA Framework

This section presents the operational framework for the IKCA system. An overview of
the framework is presented in Figure At a high-level, the framework operates in
a similar manner as other biometric pattern recognition mechanisms (see Sub-section
Chapter [2) in that it features two central components: (i) enrolment and (ii)
verification. Enrolment is the process whereby an enrolment database, a database of
profiles for legitimate subjects, is built up. Verification is the process whereby subjects
are authenticated. The first precedes the second.

With respect to the proposed IKCA system, the building up of the profile is con-
ducted by extracting time series subsequences, namely “shapelets”, from a sample key-
board time series provided by each legitimate subject. The concept of shapelets is
discussed further in Sub-section shapelets below. Enrolment also involves the generation
of individual thresholds (o values).

Further detail concerning the construction of the enrolment DataBase (DB), and o
value generation, is given in Sub-section The verification process is given in more
detail in Figure The process iterates over the keyboard input stream periodically
collecting shapelets. The first shapelet collected is compared to the templates for the
claimed subject in the DB profile, this is referred to as “start-up” authentication and
is described further in Sub-section If a match is found the process continues,

otherwise the process exits. Each subsequent shapelet is compared to the immediately
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FIGURE 6.2: The IKCA subject verification process.

preceding shapelet, if the match is unsuccessful a report is generated. The process

continues until the time series ends.

6.2.1 Shapelets

A key aspect of the IKCA methodology, with respect to both enrolment and verification,
is the usage of time series subsequences called shapelets. The concept of shapelets is well
established within the time series analysis community [95| [L69]; in the context of the
proposed IKCA system, shapelets are extracted using a sliding window of length w, where
w is user defined. More formally, given a keystroke time series Kis, = {p1,p02,---,0n},
where p; is some keystroke feature or set of features, a shapelet w of length w is the
subseries {pi, ..., pi+w].- The extracted shapelet can be then used as a typing template,
or to authenticate a subject, as appropriate. For the experiments reported later in this
chapter, a range of w values was considered from 25 to 150 increasing in steps of 25
({25,50,75,100,125,150}) so as to examine the effect of w on performance regarding
accuracy. It was anticipated that a small window size would provide efficiency gains,
desirable in the context of the IKCA approach; whilst a larger window would provide

accuracy gains. A trade-off between efficiency and accuracy was therefore expected.
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FIGURE 6.3: A schematic illustrating the process of constructing a user typing profile
UT for a single subject.

6.2.2 Enrolment Database Construction and ¢ Value Generation

From the foregoing, the IKCA system operates using an enrolment database, a “bank”

of user (subject) typing templates (profiles), one per user, defined as follows:

Definition 6.1. A user typing template (profile) UT is a set of m shapelets such that
Z/[T = {wl, wo, . .. ,wm}.

Note that the total length of the time series from which templates are generated must be
substantially greater than the window size w. Figure[6.3|simplifies the process whereby a
profile UT is generated. In this example, the windows are non-overlapping and abutting,
this does not have to be the case, but this was the mechanism adopted with respect to
the evaluation presented later in this chapter.

The profiles stored in the enrolment databases, as noted above, are also used to
derive a bespoke similarity threshold, o, for each user. This is calculated by comparing
all shapelets within a profile 47 using the DTW method, and obtaining an average

warping distance © which is then used as the value for o:

|
_ 1
c=0= 7l ; dtw(w;—1,w;) (6.1)

6.2.3 Authentication

The IKCA verification process is conducted by comparing the most recent shapelet win-
dow with previous shapelets extracted during the typing session, as shown in Figure
On “start-up”, as also shown in the figure, the subject’s identity is first confirmed; in
other words to confirm that the subject is who (s)he says (s)he is. As noted above this
initial process is called start-up authentication. In this context, the start-up authentica-
tion is done by comparing, using DTW, the first shapelet window collected, w1, with the
relevant user template profiles in U7 (stored in the enrolment database) and obtaining
an average similarity value (minimum warping distance). If the average similarity value
is less than or equal to o, the validation process proceeds accordingly. It has been shown
that averaging the warping distances associated with a set of time series can lead to an

effective and more accurate classification of streaming data than if only one warping
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Algorithm 4 IKCA Process.

Input: f = sampling frequency, w = shapelet window length, ¢ = similarity threshold
Output: Similarity “highlight” reporting

1: s1 = 0
2: 89 = @
3:t=0
4: isCollectingT S = false
5: loop
> Get next point
6: p; = Next point in data stream
> End of input stream
7 if p; == End of data stream marker then
Exit loop
> Start collecting a subsequence
9: else if remainder % =0 then
10: S9 = {pt}
11: 1sCollectingT'S = true
> Conduct comparison
12: else if remainder % =0 then
13: s9 = noiseReduction(sg)
14: if s; = () then
15: Compare s with U
16: else
17: wd = dtw(s1,52)
18: if wd > o then
19: highlight
20: end if
21: end if
22: S1 = 89
23: 1sCollectingT'S = false

> Continue collecting subsequence
24: else if isCollectingTS then
25: So = S9 U py
26: end if
> Increment counter
27: t=t+1
28: end loop

distance is considered [116]. Each subsequent shapelet window wy, (where k > 1) is then
compared with the preceding, previously collected, shapelet window wj_1 again utilising

DTW; in this way changes in typing behaviour can be detected.

6.3 The IKCA Process

The IKCA process is presented in more detail in this section. From the preceding,
the fundamental idea is that, as typing proceeds, we repeatedly collate shapelets of

length w and compare, on start-up, with &7; and then, once the process is underway,
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with the previously collected shapelet to the current shapelet. The process is given by
the pseudo code in Algorithm The algorithm takes as input: (i) the frequency f
with which keystroke time series shapelets are collected, (ii) the length w of a collected
shapelet and (iii) a similarity threshold o value. Note that f can be set so that either:
shapelets overlap (f < w), shapelets abut up against each other (f = w) or shapelets
are separated by additional keystrokes (f > w). For the evaluation presented in Section
f = w was used (as illustrated in Figure .

On start-up the sets s1 and sg are initialised to () (lines 1 and 2), a keystroke counter
t is initialised with the value 0 (line 3) and a Boolean flag isCollectingT'S, indicating
whether a shapelet is in the process of being collected or not, initialise to the value
false. The procedure then operates on a continuous loop. On each iteration, a single
key press is processed; there are five options: (i) stop processing as the end of the data
stream has been reached (lines 7 and 8), (ii) start collating a new shapelet (lines 9 to
11), (iii) shapelet collation is complete therefore test the shapelet (lines 12 to 23), (iv)
add the current keystroke to the current shapelet (lines 24 and 25) or (v) do nothing
(the process is between shapelet collection phases). At the end of each iteration, the
keystroke counter is incremented by one (line 27).

Whenever a shapelet window of length w has been obtained, the algorithm tests
whether the shapelet contains noise using the function noise Reduction() (line 13). Re-
call that the noise reduction is only applicable with respect to the flight time, F* , feature
(Section in Chapter . If there is no previous shapelet window, start-up authenti-
cation takes place (lines 14 and 15). Otherwise, the current shapelet is compared to the

previously collected shapelet (line 17 to 19).

6.4 IKCA Evaluation

The outcomes of the evaluation of the proposed IKCA approach are presented in this
section. A series of experiments were conducted to evaluate the IKCA approach to
determine how well it performed in terms of subject authentication and, conversely, the

detection of impersonators. The objectives of the evaluation were:

1. Enrolment Database Generation Time: To evaluate the processing time re-
quired to generate a user typing template, U7 and an associated threshold value

o using a range of w and ¢ values.

2. Authentication Performance: To determine how well the IKCA approach per-

formed concerning subject authentication; again using a range of w and ¢ values.

3. Comparison with Feature Vector Approach: To compare the operation of
IKCA approach with the established feature vector based approach, where feature
vectors are generated using n-graphs (as described in [54]), for keystroke continuous

authentication.
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The IKCA evaluation was conducted with respect to both U-KTS and M-KTS so
as to analyse which representation yielded the better results. Although U-KTS can be
presented in either F* or KH! feature, in the evaluation presented here F! was used.
The reason for this was that with respect to the OKCA system (given in Chapter [5)),
it was demonstrated that the use of F* outperformed K#!. This was also found to be
the case with respect to IKCA operation. However, for completeness, the U-KTS with
JCH! results are presented in Appendix |B], for further inspection and comparison with
the results of U-KTS with F* .

The evaluation experiments were conducted using the three data sets presented in
Chapter [3| (ACB, GP and VHHS). However, as in the case of the evaluation of the
OKCA system, the GP data set was not used for U-KTS with K#H?!, nor for M-KTS, as
the ICH! feature was not present in this data set. Nevertheless, the metrics used for the
evaluation were: (i) Authentication accuracy (Acc.), (ii) False Match Rate (FMR) and
(iii) False Non-Match Rate (FNMR). Recall that FMR and FNMR are the standard
metrics used to measure the performance of Biometric systems [154], although some
researchers, in the literature, have used the terms FMR (False Acceptance Rate) and
FRR (False Rejection Rate) instead.

The remainder of this section is organised as follows. The experimental setting is
presented in Sub-section The results with respect to each of the above objectives
are then discussed Sub-sections [6.4.2] [6.4.3] and [6.4.4] respectively.

6.4.1 Experimental Setting

For the evaluation, for each subject in each data set, the records were split into two so
that one-half could be used to create the enrolment database, or simply to construct U7,
and the other to simulate a typing stream. Thus the size of 47 (number of m shapelets)
depends on the defined w and the length (n) of one-half record, for each subject, such
that m = | 2].

The simulation was achieved by constructing a “test harness” whereby the keystroke
data was released in a manner that simulated real-time keyboard activity. Real-life
experiments were not conducted as the author wished to repeatedly use the same key-
board input data so that comparisons could be made. Wherever applicable two-fold
cross-validation was conducted (using different halves of the keystroke time series to
generate the enrolment database). Hence the results presented in the following sub-
sections are average results from the two cross-validations. For comparison with the
established feature vector based approach, the vector approach was re-implemented es-
pecially. All experiments were conducted using a 3.2 GHz Intel i5 processor with 24 GB
RAM.

6.4.2 Enrolment Database Generation Time

The first evaluation objective was to analyse the processing time required to generate
an enrolment database, including the associated o threshold value. Tables and
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give the run-time values (seconds) obtained using a range of w values (shapelet sizes)
and F! U-KTS and M-KTS respectively. The “per subject” values, in each table, were
obtained by dividing the total run time with the number of subjects (records) in the
relevant data set (see Table given in Chapter [3). Recall that the reason the GP data
set is not included in Table [6.2 was the KH! feature was not available in this case.
From the tables, it can be seen that, regardless of the KTS representation used,
processing time increased with corresponding increases in the size of w. This was to be
expected because the computation time required by the DTW would increase as the size
of the subsequences (w) considered increased (even though there might be less of them).
The reason the processing time in the context of M-KTS was worse than in the case of
U-KTS was also because the computational cost of DTW with respect to M-KTS was
more expensive. Figure[6.4] provides two comparisons, one for data set ACB and one for
data set VHHS, of run time against w. Inspection of the figure indicates that, as was
anticipated, the use of the U-KTS was more efficient than the use of M-KTS.
Regardless of whether U-KTS or M-KTS was used, the results show that the run time
requirements for enrolment database generation, using the time series based approach,
are within acceptable limits in which the authentication can be conducted within seconds
(an acceptable limit for authentication whether in the context of online learning or other
kind of application). From the results, it can also be seen that the time to compare two
shapelets will be less than the time required to compare m shapelets (where m > 2).
Therefore, it can be argued here that the proposed IKCA approach can be effectively

used for iterative authentication.

TABLE 6.1: Enrolment database generation run time (seconds) using F* U-KTS.

Entire data set Average per Subject
ACB GP | VHHS || ACB GP | VHHS
25 10.629 | 0.918 | 0.895 || 0.021 | 0.030 | 0.023
50 | 1.356 | 1.761 | 1.716 || 0.045 | 0.057 | 0.044
75 | 2.316 | 2.760 | 2.476 || 0.077 | 0.089 | 0.064
100 | 3.243 | 3.696 | 3.333 || 0.108 | 0.119 | 0.086
125 | 4.022 | 4.034 3.998 || 0.134 | 0.130 0.103
150 | 4.324 | 4.727 4.534 || 0.144 | 0.153 0.116

TABLE 6.2: Enrolment database generation run time (seconds) using M-KTS.

Entire data set Per Subject

ACB | VHHS || ACB | VHHS
25 1.007 | 1.180 || 0.034 | 0.030
50 1.969 | 1.570 || 0.066 | 0.040
75 2.980 | 3.523 || 0.099 | 0.090
100 | 5.095 | 6.244 || 0.170 | 0.160
125 | 7.940 | 9.742 || 0.265 | 0.250
150 | 12.000 | 14.130 || 0.400 | 0.362
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FIGURE 6.4: Enrolment database generation comparison using F* U-KTS and M-KTS:
(a) ACB data set, (b) VHHS data set.

6.4.3 Authentication Performance

To evaluate the effectiveness of iterative subject authentication (in terms of imperson-
ation detection) using the proposed IKCA system, for each data set and each subject,
the continuous typing process was simulated by presenting the keystroke dynamics for
each subject in the form of a data stream. In each case, the data stream was appended
to a randomly selected second data stream from another subject. The idea was to sim-
ulate one subject being impersonated by another halfway through a typing session. For
every comparison of every shapelet window w; with a previously stored shapelet win-
dow w;—1 (line 17 in Algorithm and both of length w) it was determined whether
the result was a True Positive (TP), a False Positive (FP), a False Negative (FN) or
a True Negative (TN). In this manner, a confusion matriz was built up from which

accuracy (Acc.), False Match Rate (FMR) and False Non-Match Rate (FNMR) could
be calculated (using Equations and below).
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TP +TN
Acc = 2
T TPIFP+FN+TN (6.2)
FP
FMR=——+ .
R= 57N (6.3)
FN
FNMR = g5 (6.4)

The experiments were run using the same range of w values as used previously and a
range of ¢ values from 0.75 to 2.00 incrementing in steps of 0.25. Each experiment was
also run twice, each time using a different half of the data for authentication (the other
half being used for user typing template generation); the results presented are therefore
averages.

In the context of the U-KTS with F! representation, Figure gives the accuracy
results obtained, in the form of 3-D histograms, one per data set. In the figure, the
vertical axis indicates accuracy while the horizontal axises represent the shapelet window
size (w) and the limit value (¢). From the figure, it can be seen that w = 100 tended
to produce best accuracy results for all three data sets; the red bars in the figure shows
the best results with w = 100 across a range of ¢ values. From the figures it can also be
observed that the selection of ¢ does not seem to have as much impact as the selection of
w; best accuracy results were recorded with ¢ = 1.25. It can also be observed from the
figure that accuracy tends to decrease if the selected w value was too small; in contrast,
the performance tended to stabilise when w > 100. This meant that a best performance
could be obtained using relatively short keystroke shapelets. Overall, the best accuracy
results obtained (at: w = 100 and ¢ = 1.25) were 96.20%, 95.17% and 94.83% for ACB,
GP and VHHS data sets respectively.

With respect to FMR and FNMR, the obtained results are presented in Tables
and [6.4) with respect to each data set; the best-recorded values are displayed in bold font.
From the tables, it can be seen that the best FMR and FNMR values were obtained
using w settings of 100, 125 and 150, and ¢ = 1.25. The best recorded FMR results
were 0.580, 0.731 and 1.045 whereas the best FNMR results were 1.970, 1.895 and 2.020
for ACB, GP and VHHS respectively. Note that these results were obtained at w = 100
and ¢ = 1.25; the same values as obtained in the case of Acc.

In the context of the M-KTS, Figure presents the accuracy results obtained,
again in the form of 3-D histograms. Recall that in this context the GP data set was not
included. It should also be noted that, in the same way as the experiments directed at
U-KTS, the experiments were run twice, each time with a different half of the data; the
results presented are therefore averages. From the figure, it can be observed that a w
value of 125 tended to produce best results for all the data sets (highlighted in red); the
best accuracy result recorded for ACB was 98.39%, whereas the best recorded result for
VHHS was 97.32%, both with ¢ = 1.25. Similar to what has been observed in the case
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ACB dataset
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FI1GURE 6.5: 3-D histograms showing recorded accuracy against a range of values for w
(shapelet window size) and ¢ (F* limit), for ACB, GP and VHHS, when using U-KTS
with JF?.

of U-KTS, the selection of ¢ did not seem to have as much impact on accuracy as the
selection of w, and that the accuracy tended to decrease if the selected w value was too
small. With regards to FMR and FNMR, Tables and [6.6] show the obtained results;
the best results are highlighted in bold font. From the tables, it can be observed that
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TABLE 6.3: The obtained FMR values (%) using different settings of w and ¢, in the
context U-KTS, for the ACB, GP and VHHS data sets.

w ¢ 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

25 0.668 | 0.658 | 0.598 | 0.658 | 0.737 | 1.011

50 0.665 | 0.655 | 0.595 | 0.655 | 0.734 | 0.948

8 75 0.661 | 0.651 | 0.591 | 0.651 | 0.73 | 0.944
< 100 0.656 | 0.646 | 0.580 | 0.59 | 0.725 | 0.939
125 0.655 | 0.645 | 0.599 | 0.645 | 0.724 | 0.938

150 0.648 | 0.638 | 0.586 | 0.638 | 0.717 | 0.931

25 0.742 | 0.764 | 0.74 0.74 | 0.741 | 0.742

50 0.743 | 0.743 | 0.739 | 0.739 | 0.74 | 0.74

o 75 0.74 | 0.739 | 0.739 | 0.738 | 0.739 | 0.74
O 100 0.736 | 0.735 | 0.731 | 0.733 | 0.738 | 0.735
125 0.738 | 0.739 | 0.735 | 0.734 | 0.734 | 0.736

150 0.739 | 0.738 | 0.736 | 0.735 | 0.735 | 0.736

25 1.267 | 1.228 | 1.048 | 1.078 | 1.071 | 1.092

" 50 1.178 | 1.125 | 1.045 | 1.075 | 1.068 | 1.089
o 75 1.106 | 1.107 | 1.047 | 1.077 | 1.07 | 1.091
o 100 1.077 | 1.076 | 1.045 | 1.075 | 1.078 | 1.078
> 125 1.075 | 1.068 | 1.06 | 1.068 | 1.061 | 1.062
150 1.075 | 1.077 | 1.069 | 1.077 | 1.07 | 1.071

TABLE 6.4: The obtained FNMR values (%) using different settings of w and ¢, in
the context U-KTS, for the ACB, GP and VHHS data sets.

w ¥ 0.75 | 1.00 1.25 1.50 | 1.75 | 2.00
25 | 2.000 | 2.070 | 2.025 | 2.030 | 2.025 | 2.029

50 | 2.020 | 2.090 | 1.990 | 1.980 | 1.980 | 1.990

@ 75 | 1.992 | 2.022 | 1.990 | 1.980 | 1.984 | 1.980
S 100 | 1.989 | 2.059 | 1.970 | 1.972 | 1.950 | 1.950
125 | 1.995 | 2.065 | 1.979 | 1.979 | 1.979 | 1.950

150 | 1.980 | 2.050 | 1.978 | 1.976 | 1.079 | 1.981

25 | 1.956 | 1.971 | 1.901 | 1.960 | 1.961 | 1.936

50 | 1.951 | 1.966 | 1.955 | 1.955 | 1.956 | 1.961

o[ 75 | 1.950 | 1.965 | 1.950 | 1.954 | 1.955 | 1.954
O 100 | 1.901 | 1.807 | 1.895 | 1.807 | 1.806 | 1.896
125 | 1.957 | 1.942 | 1.040 | 1.942 | 1.942 | 1.945

150 | 1.040 | 1.945 | 1.943 | 1.948 | 1.948 | 1.943

25 | 2.133 | 2.131 | 2.052 | 2.077 | 2.068 | 2.06

| 50 | 2035 2.033 | 2.033 | 2.034 | 2.031 | 2.035
T 75 | 2.027 | 2.025 | 2025 | 2.027 | 2.026 | 2.026
T 100 | 2.021 | 2.022 | 2.020 | 2.023 | 2.023 | 2.024
> 125 | 2.027 | 2.025 | 2.024 | 2.024 | 2.025 | 2.025
150 | 2.031 | 2.029 | 2.020 | 2.03 | 2.03 | 2.029

best FMR and FNMR were recorded using a combination of w = 125 and ¢ = 1.50.
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FIGURE 6.6: 3-D histograms showing recorded accuracy against a range of values for
w (shapelet window size) and ¢ (the F* limit), for ACB and VHHS, using M-KTS.

Overall, the performance of M-KTS tended to be more accurate than U-KTS with
F!. For comparison purposes, the best obtained results for all metrics, using the IKCA
system with respect to F¢ U-KTS and M-KTS are summarised in Table The table

also gives the average (Avg.) and Standard Deviation (SD) in each case.

6.4.4 Comparison with Feature Vector Approach

This sub-section reports on the results obtained when the operation of the proposed
IKCA approach was compared with a Feature Vector Representation (FVR) based ap-
proach of the form frequently referenced in the literature. As noted in Chapter [2| (Sub-
section , there are a number of reports where FVRs, made up of keystroke dynam-
ics related to n-graphs, have been applied to the keystroke continuous authentication
problem, although not in an iterative manner (authentication was conducted on typing
completion, thus static authentication as in the case of the OKCA systems). Of these,

the approach described in [54] was selected (as a baseline) for the comparison reported

on here for the following reasons:
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TaBLE 6.5: FMR values (%) using different settings of w and ¢, in the context of
M-KTS, for the ACB and VHHS data sets.

w 4 0.76 | 1.00 | 1.256 | 1.50 | 1.75 | 2.00

25 0.051 | 0.052 | 0.049 | 0.048 | 0.048 | 0.048

50 0.049 | 0.049 | 0.047 | 0.046 | 0.046 | 0.047

% 75 0.048 | 0.0.47 | 0.048 | 0.048 | 0.049 | 0.049
< 100 0.047 | 0.046 | 0.046 | 0.046 | 0.046 | 0.046
125 0.047 | 0.046 | 0.046 | 0.045 | 0.046 | 0.046

150 0.046 | 0.046 | 0.046 | 0.045 | 0.046 | 0.047

25 0.031 | 0.030 | 0.031 | 0.030 | 0.030 | 0.031

" 50 0.031 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032
) 75 0.030 | 0.030 | 0.030 | 0.030 | 0.030 | 0.030
e 100 0.029 | 0.029 | 0.028 | 0.028 | 0.028 | 0.028
> 125 0.028 | 0.028 | 0.028 | 0.027 | 0.028 | 0.028
150 0.029 | 0.029 | 0.029 | 0.029 | 0.029 | 0.030

TABLE 6.6: FNMR values (%) using different settings of w and ¢, in the context of
M-KTS, for ACB and VHHD data sets.

w 4 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

25 1.167 | 1.167 | 1.101 | 1.101 | 1.101 | 1.101

50 1.099 | 1.099 | 1.099 | 1.099 | 1.099 | 1.099

g 75 1.097 | 1.097 | 1.096 | 1.096 | 1.973 | 1.096
< 100 1.096 | 1.096 | 1.096 | 1.096 | 1.096 | 1.096
125 1.095 | 1.094 | 1.094 | 1.093 | 1.094 | 1.094

150 1.096 | 1.095 | 1.095 | 1.095 | 1.095 | 1.095

25 1.100 | 1.100 | 1.100 | 1.099 | 1.099 | 1.100

" 50 1.098 | 1.098 | 1.097 | 1.097 | 1.097 | 1.098
T 75 1.097 | 1.097 | 1.096 | 1.096 | 1.097 | 1.097
e 100 1.097 | 1.096 | 1.096 | 1.096 | 1.096 | 1.096
> 125 1.096 | 1.096 | 1.096 | 1.095 | 1.096 | 1.096
150 1..097 | 1.097 | 1.097 | 1.096 | 1.096 | 1.097

1. The study obtained, to the best knowledge of the author, the best reported FMR
and FNMR (although referred to as FAR and FRR) results to date.

2. The data set used for the study was publicly available (although with some records

missing).

3. The approach was well explained in the literature; therefore it was easy to repro-

duce.

Because, as noted above, the study reported in [54] was conducted in 2005 it was consid-
ered inappropriate to compare directly with the reported results; instead, the approach
was re-implemented and re-run in an iterative manner, as described for the IKCA pro-

posed system, so that meaningful comparisons could be made. The features used were
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TABLE 6.7: Summarisation of IKCA results in the context of U-KTS with F!, and
M-KTS using the ACB, GP and VHHS data sets.

Data sot U-KTS M-KTS
Acc. | FMR | FNMR || Acc. | FMR | FNMR
ACB 96.20 | 0.580 | 1.970 || 98.39 | 0.045 | 1.093
GP 96.31 | 0.731 | 1.895 x x x
VHHS || 94.83 | 1.045 | 2.020 || 97.32 | 0.027 | 1.095
Avg. 95.78 | 0.785 | 1.962 || 97.85 | 0.036 | 1.094
SD 0.825 | 0.237 | 0.063 [ 0.757 | 0.013 | 0.001

TABLE 6.8: Summarisation of IKCA results using: (i) U-KTS, (ii) M-KTS and (iii)
FVR across the ACB, GP and VHHS data sets.

Data sot U-KTS M-KTS FVR

Acc. | FMR | FNMR || Acc. | FMR | FNMR || Acc. | FMR | FNMR
ACB 96.20 | 0.580 | 1.970 [| 98.39 | 0.045 | 1.093 | 80.82 | 8.60 | 11.10
GP 96.31 | 0.031 | 1.094 x x x 90.15 | 6.05 | 2.06
VHHS || 94.83 | 1.040 | 2.049 | 97.32 | 0.027 | 1.095 [ 89.15 | 9.09 | 7.13
Avg. 95.78 [ 0.550 | 1.704 [[ 97.85 [ 0.036 | 1.094 [[ 86.70 [ 7.918 [ 7.422
SD 0.825 | 0.505 | 0.530 || 0.757 | 0.013 | 0.001 | 5.122 | 1.634 | 4.748

the F* values for all shared digraph, trigraphs and quadgraphs in each data set. Authen-
tication was otherwise conducted for each subject (user) as described in [54], see also
Sub-section The metrics used were, again, accuracy (Acc.), FMR and FNMR.

The results are presented in Table For comparison purposes, the table includes
the Acc., FMR and FNMR results presented earlier with respect to the proposed U-
KTS and M-KTS representations in Table From Table it can be observed
that the proposed IKCA system produced much better performances than the feature
vector-based approach, with respect to all three data sets. This, therefore, confirmed
the hypothesis posed by the author, in the introduction to the thesis, that a time series
representation would serve to more effectively encapsulate keystroke dynamics than the
feature vector based approach that has typically been adopted to date. Furthermore,
from the table, it can be observed that a better performance was obtained using M-
KTS than U-KTS with respect to all three data sets. In other words, M-KTS serves
to better encapsulate keystroke dynamics than U-KTS with F¢ and the feature vector
based approach that has typically been used to date. For completeness, Figure
presents the best accuracy results in a graphical form.

It should also be noted here that the FMR and FNMR result obtained for the GP
data set, of 6.05% and 2.06% respectively, are worse than the 5.00% and 0.005% reported
in the original study [54], despite using the same mechanism. It was conjectured that
this was because of the change in the data set size that had occurred since the original
study and that reported on here, where the original data set consisted of 40 subjects,
but the publicly available version only had 31 subjects. Also, in [54], an additional 165

samples that served as imposter samples were used; however, they were not used in the
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FIGURE 6.7: The accuracy results obtained using U-KTS, M-KTS and FVR with
respect to the IKCA approach.

evaluation given in this chapter (the reasons for not including the imposter samples in
the GP data set were given in Sub—section of Chapte.

Moreover, with respect to the efficiency, where it is desirable to construct &7 and
verification, a better efficiency was obtained in the case of IKCA than FVRs. According
to [54] the run-time for verifying a single typing sample was given as 140 seconds,
although in the case of the re-implementation, the run time was approximately 120
seconds due to the processing power used not being the same as that used with respect
to that used to obtain the results reported on in [54]. Using the same data set (GP),
in the IKCA approach a single verification takes less than 0.362 seconds to compute (in
the worst case) thus, we have a worst case runtime ratio 1 : 23; a significant “speed-up”.
The reason for the speed up when using the proposed time series analysis approach was
that there was no need to search through the time series to identify the n-graphs of

interest or any requirement for the subsequent statistical feature calculation.

6.5 Summary

This chapter has presented a novel approach to keystroke continuous authentication,
namely the Iterative Keystroke Continuous Authentication (IKCA) system. Intuitively,
IKCA serves as a biometric recognition system whereby impersonation can be effectively
detected. The essential advantage of the IKCA, in comparison with the established
feature vector representations, was that it was more accurate and more efficient, which
in turn meant that it would be suitable for authentication in the context of the online
assessments frequently used in eLearning and MOOC environments.

The IKCA system operated in an iterative manner as typing proceeds by extracting

keystroke time series subsequences called shapelets. Each extracted shapelet, of length
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w, is compared to the previously extracted shapelet except on start-up, when the first
shapelet is compared with the content of a previously constructed enrolment database
for the subject. For the system, DTW similarity comparison was adopted, although
other techniques might also be appropriate.

The evaluation demonstrated that M-KTS produced a better performance than U-
KTS with F?, although both approaches improved upon the Feature Vector based Rep-
resentation (FVR) approach. However, the efficiency of M-KT'S was not as good as that
of U-KTS. The evaluation was also conducted using a range of values for the shapelet
size, w, and the noise reduction limit, ¢, to determine the effect of these parameters on
IKCA performance. The reported results showed that w = 100 and ¢ = 1.25 were the
best values that can be used for IKCA.

In the next chapter, the KCASA approach is presented, an extension of the IKCA
approach presented in this chapter. The motivation for the KCASA approach was to
improve both the authentication performance and the efficiency of the authentication,
by transforming the keystroke time series data from the time domain to the spectral

domalin.



Chapter 7

Keystroke Continuous
Authentication based Spectral
Analysis

7.1 Introduction

In the preceding chapter, a novel approach for keystroke continuous authentication was
introduced, the Iterative Keystroke Continuous Authentication IKCA approach. The
IKCA approach used time series analysis techniques to recognise typing patterns from
free text in a manner suited to iterative continuous authentication. The keystroke data
was processed in its raw form as a continuous data stream; periodically this data stream
was sampled and shapelets extracted which were then analysed for authentication pur-
poses by comparing to either a previously extracted shapelet or, on start-up, to a bank
of shapelets that are known to belong to the claimed user. The data streams (shapelets)
were considered either in terms of flight time (F* ) or hold time (KH' ) or both; thus
either: (i) Univariate Keystroke Time Series (U-KTS) or (ii) Multivariate Keystroke
Time Series (M-KTS). However, a limitation of the approach was that it became less
efficient as the authentication accuracy increased. This was clearly observed when com-
paring the effectiveness and efficiency of using M-KTS with using U-KTS. Moreover,
although TKCA was shown to be a good biometric approach, it was thought that there
was potential to enhance the authentication accuracy using time series analytics with
keystroke dynamics.

Consequently, it was conjectured that better results might be obtained if the time
series data (shapelets) were transformed from the temporal domain to the spectral do-
main. The intuition behind this idea was the observation that with respect to other time
series applications, such as time series indexing [45] and time series pattern extraction
[146], usage of the spectral domain could significantly improve the analysis in terms of
both speed and accuracy (see also [2, 127, 128, [77), [159, [164]). The idea was thus built into

97
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an alternative keystroke continuous authentication approach, the Keystroke Continuous
Authentication based Spectral Analysis (KCASA) approach.
The proposed KCASA approach was also motivated by the desire to provide an

answer to the following subsidiary research question given in Chapter

e What is the most effective process whereby continuous, real-time, authentication

can be conducted in the context of online assessment and more generally?

Providing an answer to this subsidiary research question would contribute to addressing
the main research question also postulated in the introductory chapter of this thesis.
Note that to the best knowledge of the author, the idea of spectral analysis in the context
of keystroke continuous authentication (free text) has not been considered previously.
The proposed KCASA approach is fully described in this chapter. Two types of
spectral transform were considered within the context of the proposed KCASA approach:
(i) Discrete Fourier Transformation (DFT) and (ii) Discrete Wavelet Transform (DWT).
Also, as in the case of the IKCA approach, variations directed at both U-KTS and M-
KTS were considered. The remainder of this chapter is organised as follows. Section
details the basic framework and fundamentals of the KCASA approach. Algorithmic
detail concerning the KCASA approach is then given in Section This is followed
by Section where the evaluation of the proposed KCASA approach is presented. In
Section [7.5] some discussion is provided concerning the evaluation, whilst Section |7.6

summarises and concludes the chapter.

7.2 KCASA Framework

The generic framework for the KCASA approach is presented in this section. Figure[7.1

illustrates the fundamental framework in terms of its steps:

1. Shapelet Extraction.
2. Noise Reduction.

3. Transformation.

4. Similarity Comparison.

5. Template Construction.

Each of the above steps is considered in further details in the following five sub-sections,
Sub-section [7.2.1] to [7.2.5]
7.2.1 Shapelet Extraction

As in the case of the IKCA approach, the proposed KCASA approach operated by peri-

odically extracting shapelets from the input data stream using a windowing mechanism.
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FIGURE 7.1: The main components within the KCASA framework.

In Chapter 4] it was noted that the process of typing produces a keystroke time series
Kis, such that Kiys = {p1,p2,...,pi,--.,pn} where p; is a parametrised point that rep-
resents a typing event, F* and/or KH' , and n is the length of K. Using the widowing
mechanism, an order collection of keystroke time series subsequences (shapelets) was
produced {si, s2,...} such that for each shapelet s; = {p;, pit1, ..., Pitw—n},  is some
“start” point in K5 and w is the window length (and Vs; C Kys). The frequency with

which shapelets were collected was again defined by a sampling rate parameter f (where

f=w).

7.2.2 Noise Reduction

Prior to any further processing being conducted, as in the case of the IKCA approach,
each newly collated shapelet was cleaned. As noted in Chapter [4] the issue here was
that F! values can be large, for example when the subject has paused typing or as a
consequence of an “away from keyboard” event. As in the case of the IKCA approach a
limit was placed on the F* values using a maximum flight time threshold value (. Given
an F value in excess of ¢, the value was replaced with the ¢ value. For the evaluation
presented later in this chapter, a range of values for ¢ were considered, from 0.750 to
2.00 seconds, increasing in steps of 0.25 seconds (thus {0.75,1.00,1.25,1.50,1.75,2.00}).
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7.2.3 Transformation

The next component in the KCASA approach, and the novel element of the approach,
was the transformation of the extracted shapelets to the spectral domain. As noted in
the introduction to this chapter two spectral transforms were considered: (i) Discrete
Fourier Transformation (DFT) and (ii) Discrete Wavelet Transform (DWT). Both are
considered in further details in the following two sub-sections, Sub-sections and
[7.2.3.2]

7.2.3.1 DFT for Keystroke Time Series

The fundamental idea of the DFT is to transform a given time series (shapelet) from
the temporal domain into the frequency domain. The resulting frequency-domain rep-
resentation shows how much of a given signal lies within each given frequency band over
a range of frequencies, we refer to the result as the Fourier spectrum. The fundamental
benefit is that the DFT serves to compact the data without loosing any salient informa-
tion [69]. The compression is conducted by first representing the time series as a linear
combination of sinusoidal coefficients, and then computing the similarity between the
transformed coefficients for any pair of corresponding signals.

Given a KCASA sequence of keystroke dynamics s = {p1,p2,...,pi,.- ., pw}, Where
p; is some keystroke timing feature, and w is the length of the subsequence, the DFT

transform (S) for the subsequence s is given by:

—j2mim

1 w
Sy = —— e w =0,1,...,w—1 7.1
m \/Ei—zlple ) m w ( )

where j = 4/—1 is the imaginary part. In more detail, the DFT transform typically
compresses the subsequence s into a linear set of sinusoidal functions X with amplitudes
p, q¢ and phase w, thus the DFT for a given s can be alternatively written as in the

following equation:

w

X = Z(piCos(Zﬂwipi) + ¢ Sin(2mw;p;)) (7.2)
i=1
Note that the time complexity to transform (each) s is O(w log w) using the Radix 2
DFT algorithm [31} 69].

Using the DFT transform, the obtained keystroke subsequence s is composed of a
new magnitude (the amplitude of the discrete coefficients) and phase spectral shape
in which can be compared with other transformed keystroke time series subsequences.
Figures and illustrate the intuition behind the DFT as applied to keystroke time
series within the context of the proposed KCASA approach. The figures show keystroke
subsequences and their DFT transforms for two subjects taken from the ACB data set
used throughout this thesis; Figure for subject A and Figure for subject B,

where for each subject, two typing samples from unstructured text were provided. In
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FI1GURE 7.2: Example application of DFT for subject A from ACB data set.

each figure, on the left-hand side the raw, time domain, keystroke subsequences are
shown, whilst on the right-hand side the DF'T equivalents are shown. Form the figures,
it can be noted that the DFT signals describe distinctive patterns of typing behaviour

for the same subject.

7.2.3.2 DWT for Keystroke Time Series

The Discrete Wavelet Transform (DWT) is an alternative form of time series representa-
tions that considers the time series according to the frequencies that are present. DWT
is sometimes claimed to provide a better transformation than DFT in that it retains
more information [28]. DWT can be applied to time series according to different scales,
orthogonal [57] and non-orthogonal [49]. For the work presented in this chapter the
orthogonal scale was used, more specifically the well known Haar transform [57] as de-
scribed in [28]. Fundamentally a Haar Wavelet is simply a sequence of functions which
together form a wavelet comprised of a series of square shapes. The Haar transform is
considered to be the simplest form of DWT; however, it has been shown to offer advan-
tages with respect to time series analysis where the time series feature sudden changes.
The transformation is usually described as in Equation where, in the context of this

thesis, x is a keystroke timing feature.
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1, if 0<t<i
plx) =< -1, if ;<t<l1 (7.3)
0, otherwise

The time complexity for the Haar transform is O(w) for each K;s. Note that in the
context of the Haar transform, the length of a given time series should be an integral
power of 2 [77], thus 2, 4, 8, 16 and so on. For further detail concerning the DWT

interested readers are to referred to [24] and [42].

The principle of DWT, as adopted with respect to the KCASA approach, is illus-
trated in Figures [7.4] and The figures show the DWT coefficients for keystroke
subsequences obtained from two subjects, A and B; the same keystroke subsequences
as given in Figures and The figures clearly show that DW'T coefficients are

distinctive in the context of keystroke data from the same subjects.

7.2.4 Similarity Comparison

As in the case of the IKCA approach, DTW as described in Chapter [4] was adopted
for the purpose of measuring the similarity between DFT/DWT keystroke time series.
Recall that using DTW a minimum warping path P is found from which a minimum
warping distance © is extracted which is used as a similarity measure. Figures and|[7.7]
showing two warping paths (IP) resulting from the the application of the DTW process to
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FIGURE 7.4: Example application of DWT for subject A from ACB data set.

DFT and DWT represented time series. Figures [7.6{a) and [7.7|(a) show warping paths
obtained when DTW was applied to time series for the same subject writing free text;
Figures b) and b) when DTW was applied to time series from different subjects
writing free text. From the figures, it can be seen that the minimum warping paths
P associated with the same subject is closer to the diagonally than in the case of the

minimum warping paths associated different subjects.

7.2.5 Template Construction

As in the case of the previous IKCA approach, the proposed KCASA approach uses a
set of user profiles for initial authentication on start-up of a typing session. The bank of
user profiles was constructed in much the same way as for the IKCA approach, except
that they were stored in the form of DFT or DWT keystroke time series. Thus each
subject has a user typing template U7 (as defined in Sub-section of Chapter @ As
before a bespoke o threshold was computed by summing the warping distances between

the collected samples, for each subject, and calculating an average value.

7.3 KCASA Operation

The fundamental operation of the KCASA approach was similar to the IKCA approach,

see Figure[7.8] Keystroke time series sub-sequences, of length w, were sampled at regular
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FIGURE 7.5: Example application of DWT for subject B from ACB data set.

intervals and transformed into the spectral domain. As before, the first collected sub-
sequence, w;, was compared with the subjects profile (see above), while each subsequent
sub-sequence w; was compared with the previous sub-sequence w;_1.

The operation of the proposed KCASA approach is presented in the form of pseudo
code in Algorithm [ The algorithm takes as input: (i) the window size w and (ii) the
similarity threshold o (derived as described above in Sub-Section and (iii) a ¢
threshold for limiting the F* feature. The process operates continuously, following a
loop, until the typing session is terminated (the user completes the assessment, times
out or logs-out) (lines 4-6). Values for p are recorded as soon as the typing session
starts (line 7). Note that in the case of flight time the value will be checked, and if
necessary reduced, according to ¢ (lines 8 to 10). The p value is then appended to the
time series Kts. The counter is monitored and subsequences are extracted whenever w
keystrokes have been obtained. Each extracted subsequence w is then transformed into
DFT or DWT as required. The first transformed time series sub-sequence (wy € Kys),
the start-up time series, is compared with the stored profile for the subject in question;
while each subsequent sub-sequence w; is compared, using DTW, with the previous w;_;

sub-sequence.
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(b)

FIGURE 7.6: Examples of DTW applied to DFT data: (a) warping path obtained

from the comparison of two DFT keystroke time series from the same subject typing

free text, (b) warping path obtained from the comparison of two DFT keystroke time
series from two different subjects typing free text.

7.4 Evaluation

This section presents a review of the evaluation conducted with respect to the KCASA

approach. The objectives of the evaluation were:

1. Typing Template Construction Efficiency: To determine the efficiency of
constructing the typing templates using the proposed KCASA approach.
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(b)

FIGURE 7.7: Example of DTW applied to DWT data: (a) warping path obtained

from the comparison of two DW'T keystroke time series from the same subject typing

free text, (b) warping path obtained from the comparison of two DWT keystroke time
series from two different subjects typing free text.

2. Authentication Performance: To evaluate the effectiveness of the iterative
authentication, in terms of impersonation detection, using different values for w

(the sampling window size) and ¢ (the noise reduction threshold value).

The metrics used for the evaluation were: (i) Authentication accuracy (Acc.), (ii) False
Match Rate (FMR) and (iii) False Non-Match Rate (FNMR).

The proposed approach was applied to both U-KTS and M-KTS using either DFT or
DWT. In other words, four variations of the proposed KCASA approach were considered:
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FIGURE 7.8: The KCASA subject verification process. Note that it is similar to the
IKCA verification process proposed in Chapter @

1 KCASA DFT+U-KTS: KCASA using DFT applied to U-KTS.
2 KCASA DWT+U-KTS: KCASA using DWT applied to U-KTS.
3 KCASA DFT+M-KTS: KCASA using DFT applied to M-KTS.

4 KCASA DWT+M-KTS: KCASA using DWT applied to M-KTS.

Note that, in the context of the U-KTS representation, results using F* are presented
here because the evaluation presented in earlier chapters demonstrated that this pro-
duced better results than when KH! was used. However, for completeness, the results
obtained using U-KTS KH! are presented in Appendix

The rest of this section is organised as follows. The experimental setup is detailed in
Sub-section[7.4.1l The results with respect to the efficiency evaluation are then presented
in Sub-section [7.4.2) whilst the results with respect to the authentication performance

evaluation are presented in Sub-section [7.4.3
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Algorithm 5 KCASA Algorithm

Input: w, g, ¢.

Output: Continuous authentication commentary.
1: counter =0

2: Kis = 0

3: loop

4: if terminated signal received then

5: break

6: end if

T: p = keystroke feature (e.g. F* or KH' )

8: if (F' € p) > ¢ then

9: p= > Noise reduction.
10: end if

11: Kis = Kis U (counter, k)

12: counter + +

13: if REM (counter/w) == 0 then

14: w; = subsequence {Ks_oior o - Kiseounter |

15: if counter = w then > Start-up situation
16: Trans form(w) > Transform w to (DFT)/(DWT)
17: Start-up: authenticate w; w.r.t U’ and o, and report

18: else

19: Authenticate w; w.r.t. w;—1 and o, and report

20: end if

21: end if

22: end loop

7.4.1 Experimental Setting

The evaluation was conducted using the three data sets given in Chapter [3t ACB, GP
and VHHS. Recall that for the GP data set only the F! feature was available; therefore
the performance of KCASA using M-KTS could not be conducted using the GP data
set.

As indicated in Sub-section [7.2.3.2]that DWT transform can only support time series
data whose length is defined as an integral power of 2, thus for the evaluation the range
of w values considered was {16, 32,64, 128,256,512}. The range of ¢ values considered
was {0.750,1.00,1.25,1.50,2.00} seconds.

As for the previously reported experiments conducted to evaluate the IKCA ap-
proach, each record in each data set was divided into two, the first half used to construct
the typing template (profile), and the second half used for the continuous authentication
evaluation. Two-fold cross-validation was therefore conducted; the results reported in
the following sub-sections are thus averages. All experiments were conducted using a
3.2 GHz Intel i5 processor with 24 GB RAM.
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7.4.2 Typing Template Construction Efficiency

Tables[7.1]and 7.2 present the average run-time complexity (seconds) for the construction
of the typing template for each subject; in other words, the tables can be interpreted
as the average time required to create the typing template for a single subject. More
specifically, Table reports the time complexity for KCASA applied to U-KTS, whilst
Table[7.2] reports the time complexity for KCASA applied to M-KTS. From the tables, it
can be seen that the time complexity increases as w increases. This was to be expected, as
noted in Chapter @ (in the context of the IKCA approach), because the time complexity
to compute the DTW increases as the value for w increases. Nonetheless, the process
of constructing the typing template gained considerable efficiency; the worst run-time is
less than one second. It can also be observed that DFT was more efficient than DW'T,
and that KCASA U-KTS required less resource than KCASA M-KTS.

TABLE 7.1: Typing template generation complexity (seconds) for KCASA applied to
U-KTS (KCASA_U-KTS+DFT and KCASA_U-KTS+DWT ).

KCASA U-KTS+DFT || KCASA_U-KTS+DWT
ACB [ GP | VHHS| ACB | GP [ VHHS

16 0.001 | 0.015 | 0.001 || 0.005 | 0.029 | 0.005
32 0.002 | 0.025 | 0.001 || 0.010 | 0.056 | 0.010
64 0.003 | 0.063 | 0.002 || 0.015 | 0.078 | 0.016
128 | 0.006 | 0.081 | 0.004 || 0.019 | 0.114 | 0.024
266 | 0.009 | 0.110 | 0.006 || 0.023 | 0.125 | 0.029
512 | 0.013 | 0.120 | 0.009 || 0.027 | 0.140 | 0.037

TABLE 7.2: Typing template generation complexity (seconds) for KCASA applied to
M-KTS (KCASA M-KTS+DFT and KCASA M-KTS+DWT ).

w KCASA_M-KTS+DFT || KCASA_M-KTS+DWT
ACB \ VHHS ACB \ VHHS
16 0.013 0.012 0.021 0.022
32 0.022 0.023 0.042 0.043
64 0.051 0.035 0.071 0.052
128 0.076 0.065 0.098 0.071
256 0.095 0.089 0.122 0.094
512 0.102 0.099 0.132 0.105

7.4.3 Authentication Performance

For evaluating the authentication performance, the typing process was simulated by
streaming the data for each subject in each data set. The idea was therefore to pretend
one subject being alleged as another subject through typing session. For each comparison
of a collected (and transformed) time series subsequence with the previously collected
subsequence, the outcome would be either: (i) True Positive-TP, (ii) False Positive-
FP, (iii) False Negative-FN or (iv) True Negative-TN. Consequently, the accuracy, FMR
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and FNMR could be calculated using the equations given previously in Sub-section

(Chapter @ For convenience, these equations are restated here:

TP +TN

Acc = 4
T TPIFP+FN+TN (7.4)
FP

FMR= ——* 75
FP+TN (7.5)

FN

FNMR = —— " .

R=%N+TP (7.6)

Recall that the authentication performance was evaluated using ranges of values
for the w and ¢ parameters. Recall also that the evaluation of the proposed KCASA
approach was conducted by applying it to both U-KTS and M-KTS. Thus the obtained
results are considered in terms of U-KTS and M-KTS in the following two sub-sections
starting with U-KTS. Some further comparison is presented in Sub-section

7.4.3.1 Results in Context of U-KTS

Figures and present the performance results obtained when KCASA was
applied to U-KTS, in the form of 3D bar charts, with respect to the three data sets
considered. Each figure includes two such charts, with DFT on the left and DWT on
the right. The x- and y-axis are w and ¢, whilst the vertical axis (the z-axis) shows overall
accuracy. Inspection of the figures shows that w = 64 (highlighted in red) produced the
best accuracy results for all three data sets with respect to both DFT and DWT. It can
also be observed that when the value for w increases beyond 64 the effect on accuracy
is marginal.

With respect to the ¢ parameter, it can be seen that this has less effect on the
overall authentication performance, although ¢ = 1.25 (seconds) tended to produce
better results. In other words, the selection of ¢ does not seem to have as much impact
as the selection of the w parameter.

The accuracy (Acc.), FMR and FNMR results obtained, in the context of U-KTS
when using w = 64 and ¢ = 1.25, are presented in tabular form in Table[7.3] The table
includes overall average values (Avg.), and the associated Standard Deviation (SD),
across all data sets. From the table, it can be observed that the DWT representation
produced the best overall accuracy (average accuracy of 98.24% with an associated SD of
1.08). Moreover, it can also be noted that the DWT representation gave the best FMR
and FNMR results with an average of 0.032 and 1.500 respectively; with associated SD
values of 0.008 and 0.141.
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F1GURE 7.9: The effect of w and ¢ parameter settings on accuracy using U-KTS and
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FIGURE 7.11: The effect of w and ¢ parameter settings on accuracy using U-KTS

and the VHHS data set.
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TABLE 7.3: Reported performance results of KCASA, in the context of U-KTS, using
w =64 and ¢ = 1.25.

Data set DF'T DWT

Acc. \ FMR \ FNMR || Acc. \ FMR \ FNMR
ACB 97.43 | 0.030 | 1.500 99.22 | 0.029 | 1.370
GP 96.94 | 0.034 | 1.720 98.41 | 0.032 | 1.480
VHHS 97.42 | 0.045 | 1.850 97.09 | 0.036 | 1.650
Avg. 97.26 | 0.036 | 1.690 98.24 | 0.032 | 1.500
SD 0.28 | 0.008 | 0.177 1.08 0.004 | 0.141

7.4.3.2 Results in Context of M-KTS

The reported results of the KCASA approach, when applied to M-KTS, are presented
in this sub-section. Recall that the GP data set was not used here because it was
not possible to construct multivariate data for this data set. Moreover, it should be
mentioned that the evaluation was conducted using the same selections of w and ¢
values as in the case of the U-KTS evaluation given above.

As before, the obtained accuracy results are given in the form of 3D bar charts in
Figures and for the ACB and VHHS data sets respectively. Again, best results
are highlighted in red. From the figures, it can be observed that in the context of DFT
a best accuracy was obtained when using w = 64 whilst in the context of DWT a best
accuracy was obtained when using w = 32 (with respect to both data sets). This means
that good accuracy authentication can be gained using short time series subsequences;
in other words, an accurate authentication can be obtained using only a small portion
of the keystroke data stream; an important advantage for “real-time” authentication as
might be desirable in the context of the online assessments frequently used concerning
eLearning and MOOC:s.

With respect to the ¢ parameter, the best recorded performance was obtained using
© = 1.25 seconds, although, as in the case of the U-KTS experiments, it can be noted
that the ¢ setting had less effect on authentication performance than the w setting.

The accuracy (Acc.), FMR and FNMR results obtained, in the context of M-KTS
when using w = 32 and ¢ = 1.25, are presented in tabular form in Table The
table also gives the overall average values and the associated SD in each case. The table
clearly shows that the DWT produced the best performance, with an average accuracy
of 99.12% (and an associated SD of 0.77). For FMR and FNMR, the best obtained
results were 0.010 and 0.816, again using DW'T.

7.4.3.3 Comparison of KCASA U-KTS versus KCASA M-KTS

Tables and [7.7] present a summary of the results presented in the previous two
sub-sections so that some comparisons can be made between the operation of KCASA
with U-KTS and KCASA with M-KTS. The results presented in the tables are those

obtained using the most appropriate parameter settings for w and ¢, namely w = 64 and
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TABLE 7.4: Reported performance results of KCASA | in the context of M-KTS, using

Accuracy(%)

and the ACB data set.

Accuracy(%)

and the VHHS data set.

w =32 and ¢ = 1.25.

Data sot DFT DWT

W45 "Ace. [FMR | FNMR || Acc. | FMR | FNMR
ACB 98.78 [ 0.016 | 0.868 || 99.67 | 0.009 | 0.700
VHHS | 98.30 | 0.018 | 0.941 || 98.58 | 0.011 | 0.932
Avg. 08.54 [ 0.017 | 0.904 | 99.12 | 0.010 | 0.816
SD 0.34 | 0.002 | 0.051 || 0.77 | 0.001 | 0.165

¢ = 1.25 for KCASA U-KTS, and w = 32 and ¢ = 1.25 for KCASA M-KTS. Overall,
the tables show that DWT, in the context of M-KTS, outperformed the other considered
variations of the KCASA approach.
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TABLE 7.5: Summary of the obtained accuracy (Acc.) results for the KCASA ap-

proach.
Data set KCASA_DFT | KCASA_DWT | KCASADFT | KCASA_DWT
+U-KTS +U-KTS +M-KTS +M-KTS
ACB 97.43 99.22 98.78 99.67
GP 96.94 98.41 - -
VHHS 97.42 97.09 98.30 98.58

TABLE 7.6: Summary of the obtained FMR results for the KCASA approach.

Data sot KCASA DFT | KCASA_DWT | KCASA DFT | KCASA DWT
+U-KTS +U-KTS +M-KTS +M-KTS

ACB 0.030 0.029 0.016 0.009

GP 0.034 0.032 - -

VHHS 0.045 0.036 0.018 0.011

TABLE 7.7: Summary of the obtained FNMR results for the KCASA approach.

Data sot KCASADFT | KCASADWT | KCASADFT | KCASA_DWT
+U-KTS +U-KTS +M-KTS +M-KTS

ACB 1.500 1.370 0.868 0.700

GP 1.720 1.480 - -

VHHS 1.850 1.650 0.941 0.932

7.5 KCASA versus IKCA

As indicated in the introduction to this chapter, the proposed KCASA approach is

an alternative to the IKCA approach presented in Chapter [6l This section presents

a comparison of the approaches. Both approaches were directed at keystroke iterative

authentication using keystroke time series and both operated, at least at a high level,

in a similar manner.

However, the distinction between the two is that the KCASA

approach transforms the collected time series into the spectral domain; both approaches

were applied to both U-KTS and M-KTS keystroke time series. The two approaches,

and their variations, can thus be summarised as follows:

1 IKCA+U-KTS: Iterative authentication where IKCA was applied to univariate

keystroke time series.

2 IKCA+M-KTS: Iterative authentication where IKCA was applied to multivariate

keystroke time series.

3 KCASA DFTHU-KTS: Iterative authentication where KCASA was coupled with

DFT and applied to univariate keystroke time series.

4 KCASA DWT+HU-KTS: Iterative authentication where KCASA was coupled with

DWT and applied to univariate keystroke time series.

5 KCASA DFT+M-KTS: Iterative authentication where KCASA was coupled with

DFT and applied to multivariate keystroke time series.
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6 KCASA DWT+M-KTS: Iterative authentication where KCASA was coupled with

DWT and applied to multivariate keystroke time series.

Each of the above was evaluated, in terms of its authentication performance, using
the three test data sets, ACB, GP and VHHS;, introduced earlier in this thesis. Moreover,
the Binomial proportion confidence intervals were calculate at p < 0.01 so as to
determine the statistical significance for each method.

The best results obtained are summarised in Tables and [7.10 in terms of ac-
curacy, FMR and FNMR. Tables considers the ACB data set, Table[7.9]the GP data
set and Table[7.10/the VHHS data set. In each case the best performing w and ¢ param-
eters are also listed. From the tables, it can be observed that KCASA_M-KTS+DWT
variation produced the best performance statistically out of all the variations considered
with respect to all the evaluation metrics. The best accuracy was 99.67% with FMR and
FNMR of 0.009 and 0.700 respectively for ACB data set. Best results, in the context of
KCASA_M-KTS+DWT , were obtained using w = 32 and ¢ = 1.25.

TABLE 7.8: Results of KCASA and IKCA variations for ACB data set.

Method Acc. FMR FNMR || Best Parameters
w ¥
IKCA+U-KTS 96.20 0.580 1.970 100 1.25
IKCA+M-KTS 98.39 0.045 1.093 125 1.50
KCASA DFT+U-KTS 97.43 0.130 1.500 64 1.25
KCASA_DWT+U-KTS || 99.22 0.029  1.070 64 1.25
KCASA_DFT+M-KTS || 98.78 0.036  1.091 64 1.25
KCASA_DWT+M-KTS || 99.67 0.009 0.700 32 1.25

TABLE 7.9: Results of KCASA and IKCA variations for GP data set.

Method Acc. FMR FNMR Best Parameters
w P
IKCA+U-KTS 96.31 0.730 1.895 100 1.25
KCASA_DFT+U-KTS 96.94 0.034 1.720 64 1.25
KCASA_ DWT-+U-KTS || 98.41 0.032 1.480 64 1.25

TABLE 7.10: Results of KCASA and IKCA variations for VHHS data set.

Method Acc. FMR FNMR || Best Parameters
w 4
IKCA+U-KTS 94.83 1.045  2.020 100 1.25
IKCA+M-KTS 97.32 0.057  1.095 125 1.50
KCASA_DFT+U-KTS 97.42  0.045 1.085 64 1.25
KCASA_DWT+U-KTS || 97.09 0.059 1.098 64 1.25
KCASA_DFT+M-KTS 98.30 0.018  0.941 64 1.25
KCASA_DWT+M-KTS || 98.58 0.011 0.932 32 1.25

'A well-known statistical significant test, see [160} [163] for further details.
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FIGURE 7.14: Template construction runtime (seconds) comparison using variations
of IKCA and KCASA with respect to ACB data set.
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FIGURE 7.15: Template construction runtime (seconds) comparison using variations
of IKCA and KCASA with respect to GP data set.

Evaluation was also conducted to measure the efficiency of constructing the required
typing templates (the biometric database) and the bespoke threshold generation for each
subject. Figures|7.14][7.15 and [7.16| summaries the run-time (seconds) results obtained
with respect to the ACB, GP and VHHS data sets receptively. From the figures, it

can be seen that, regardless of which approach was used and which variation, in all

cases, the runtime increased as w increased. As noted earlier, this was to be anticipated
because the computation time required for the DTW would increase as the w value
increased. Overall the template construction efficiency results indicate that when using
the proposed KCASA approach, efficiency gains were made over the IKCA approach,
with DFT producing better runtime results than DWT.
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FIGURE 7.16: Template construction runtime (seconds) comparison using variations
of IKCA and KCASA with respect to VHHS data set.

7.6 Summary

This chapter has introduced a novel approach for iterative continuous keystroke au-
thentication, namely the Keystroke Continuous Authentication based Spectral Analysis
(KCASA) approach. The fundamental idea of KCASA was to sample keystroke time
series subsequences, of length w, and then transform each collected time series sub-
sequence from the temporal domain to the spectral domain. The intuition was that
such time series transformations would provide for efficiency gains and improved perfor-
mance. Two spectral transformations were considered: (i) Discrete Fourier Transform
(DFT) and (ii) Discrete Wavelet Transform (DWT). The comparison between trans-
formed keystroke signals, as in the case of the IKCA approach, was conducted using
Dynamic Time Warping (DTW) due to the advantages that DTW offered with respect
to capturing time shifting (offsets) between corresponding sub-sequences.

The proposed KCASA approach was evaluated with respect to both univariate and
multivariate keystroke time series (U-KTS and M-KTS). The evaluation also considered
the effect of different parameter settings for the window size (w) and the noise reduc-
tion limit (). The experimental results indicated that KCASA coupled with DWT
significantly outperformed KCASA coupled with DFT in terms of authentication per-
formance. The best result was obtained using w = 32 keystrokes, and ¢ = 1.5 seconds,
when KCASA was applied to M-KTS. However, KCASA coupled with DFT was found
to be the most efficient. It was observed that the KCASA approach produced signifi-
cantly superior performance, in terms of authentication and efficiency, than the IKCA
analogue approach proposed in the previous chapter (Chapter @ and by extension the
feature vector based approach form the literature.

In the following chapter, the thesis is concluded with a summary and an overview

of the main findings in terms of the original research question and subsidiary research
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questions postulated in Chapter Il The chapter also considers some potential directions

for future work whereby the work presented in this thesis can be extended.



Chapter 8

Conclusion and Future Work

8.1 Introduction

This chapter concludes the work presented in this thesis. The chapter commences,
Section with a summary of the material presented. The chapter then goes on in
Section to present the main findings and contributions of the work in the context
of the postulated research question, and subsidiary research questions, presented in
Chapter |1l The chapter is concluded, in Section with a review of potential areas for

future research that build upon the work presented in the thesis.

8.2 Summary of Thesis

The work presented in this thesis commenced with a scene-setting chapter, Chapter
where a “roadmap” for the thesis was presented, including the motivations, the research
question and subsidiary research questions, the main contributions of the research and
the adopted research methodology. The central theme proposed in the thesis is iterative
user keyboard authentication using techniques taken from the domain of time series
analysis.

The main motivation for keyboard user authentication, or simply keystroke authen-
tication, was the substantial increase of internet-facilitated remote learning domains,
such as eLearning platforms and Massive Open Online Courses (MOOCs). This, in
turn, has led to the requirement for techniques whereby the claimed identity of distance
learners can be reliably authenticated. A commonly utilised authentication method, in
this context, is through the use of user credentials (usernames and passwords). This
type of methods is typically known as “once only” authentication. However, in the case
of online assessments and exams there is a requirement to monitor the identity of users
throughout the course of an entire assessment; in other words, “iterative” continuous
authentication is required. The aim was thus to detect impersonations in the context of

remote learning assessments.

119
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From the literature, the “standard” solution to provide iterative continuous authen-
tication was to use some form of biometrics such as continuous iris recognition or fin-
gerprint recognition, but this requires specialist equipment and technology not readily
available to the typical distance learner. Consequently, the selected focus of the thesis
was keystroke dynamics (typing patterns), a form of behavioural biometric, because this
was seen as a promising cost-effective solution to the iterative continuous authentication
problem for online assessment. A promising solution because, again from the literature,
it had been shown that individuals have distinctive keyboard usage styles.

The aim of iterative keystroke continuous authentication is to recognise typing pat-
terns as typing progresses and regardless of what text is actually being typed. In other
words, typing patterns need to be recognised from free text so that keystroke continuous
(iterative) authentication can be realised. This is a non-trivial task. From the literature,
the prominent methods used to recognise typing patterns in the context of continuous
authentication was by constructing feature vectors based on keystroke timing informa-
tion. Feature vectors, in this context, usually comprise statistical information concerning
keystroke dynamics, such as the mean and standard deviation of the keystroke dynam-
ics associated with sets of n-graphs. However, the main criticism of the feature vector
approach was that the feature vector values are either typing pattern abstractions (for
example average hold times) or only consider a subset of the data (for example only
frequently occurring digraphs). There are also more specific limitations of the feature
vector based approach depending on how the feature vectors are constructed. For exam-
ple, where the feature vectors are constructed using the average flight time of n-graphs
contained in a training data set, it can be argued that these might not be represen-
tative of the n-graphs in the samples to be authenticated. Consequently, this thesis
presented a novel approach to keystroke continuous authentication using time series
analysis whereby all keystroke features are taken into consideration, rather than those

associated with specific n-graphs. More specifically three approaches were presented:

1. A benchmark, proof-of-concept, system, the Once-only Keystroke Continuous Au-
thentication (OKCA) system, directed at static, as opposed to continuous, user

authentication.

2. The Iterative Keystroke Continuous Authentication (IKCA) system, an improved

variation of the benchmark system directed at continuous authentication.

3. The Keystroke Continuous Authentication-based Spectral Analysis (KCASA) sys-
tem, an extension of the previous system where time series is transformed into the

spectral domain as opposed to being considered in the temporal domain.

In Chapter |2 the background to the work presented in the thesis was presented. The
chapter commenced with a review of keyboard authentication fundamentals; in particu-
lar the distinction between static authentication and continuous authentication as well

as the distinction between user authentication and user identification. This was followed
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by a review of existing authentication methods. These methods were classified as being
either: (i)Token-based or (ii) Biometric-based; further detail was presented with respect
to each category. The chapter also considered related work concerning keystroke con-
tinuous authentication approaches; especially the state-of-the-art of keystroke dynamics
in the context of free text analysis. Time series techniques, pertinent to the work pre-
sented in this thesis, were also reviewed including similarity comparison methods. The
adopted similarity method used with respect to all the systems presented in the thesis
was Dynamics Time Warping (DTW) which was therefore considered in detail in the
chapter.

Chapter [3|then went to introduce the evaluation data sets that were used for evalu-
ating the proposed keystroke continuous authentication approaches. The chapter com-
menced with a discussion of the factors to be considered when attempting to collect
typing samples. It was noted that, in the context of user authentication directed at
those completing online assessments, it was most appropriate to obtain unstructured
text within uncontrolled environments as this best simulated the process of online as-
sessment. The presented data sets were as follows: (i) The University of Liverpool ACB
data set collated by the author, (ii) The University of Torino GP data set collected by
[54] and (iii) The Clarkson University VHHS data set collected by [161]. The mechanism
and process used to collect each data set were fully described in the chapter. Moreover,
statistical information for each data set was also presented so as to provide the reader
with a better understanding of the characteristics of each data set.

Chapter 4] presented a formalism for the keyboard continuous authentication prob-
lem in terms of time series. Intuitively, a keystroke time series is a sequence of discrete
real-valued data points representing either: (i) the flight time F* or (ii) the key-hold
time KH' or (iii) both F* and KH' . Thus each keystroke point was conceptualised to
be a dimensional discrete (indexed) temporal event (p;) forming a sequence of multidi-
mensional events {p1, ps, ...} where each p holds timing information concerning the F*
and/or KH' timing features. Consequently, Univariate-Keystroke Time series (U-KTS)
and Multivariate-Keystroke Time Series (M-KTS) could be constructed.

Chapter [5| introduced the first time series-based keystroke authentication system
considered in the thesis, namely the Once-only Keystroke Continuous Authentication
(OKCA) system. The principle idea of OKCA was to provide a proof of concept sys-
tem to evaluate the effectiveness of the idea of using time series analysis techniques
for the purpose of keyboard user authentication. For this purpose, the OKCA system
was directed at static user identification. Three variations of the OKCA system were
constructed according to the nature of the time series to be considered as follows: (i)
U-KTS with F* | (ii) U-KTS with KH' and (ii) M-KTS. The evaluation of the OKCA
system was conducted using the three evaluation data sets presented earlier in the the-
sis in Chapter A comparison was performed with the feature vector representation
method as proposed in the earlier work on user authentication/identification directed

at keystroke dynamics from free text. The reported evaluation indicated that the use
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of time series showed promise with respect to typing patterns extraction from free text
which could then be fruitfully employed for iterative (real-time) keystroke continuous
authentication.

In Chapter @, the Iterative Keystroke Continuous Authentication (IKCA) approach
was introduced. The IKCA approach was founded on the OKCA proof-of-concept ap-
proach from the previous chapter, but directed at continuous keyboard user authentica-
tion. More specifically, the IKCA approach was designed to operate in an iterative man-
ner, as typing proceeded, by repeatedly extracting keystroke time series subsequences, of
length w, called shapelets. The extracted shapelets were either in the form of U-KTS or
M-KTS. The idea was that the first extracted shapelet would be compared with a pre-
viously constructed biometric enrolment database to verify the identity of the claimed
subject; this process was defined as a start-up authentication. As typing proceeded,
each further extracted shapelet was compared with the previously extracted shapelet.
In this manner, continuous authentication could be realised. A novel feature of the IKCA
approach was that a bespoke similarity threshold ¢ was computed for each subject in
the data set. The evaluation of the IKCA approach demonstrated that IKCA coupled
with M-KTS produced a better performance compared with IKCA coupled with U-KTS
and a comparator feature vector-based approach. Moreover, it was concluded that the
performance of the IKCA approach was better than the established feature vector based
approaches for keystroke continuous authentication in terms of both accuracy and effi-
ciency. This confirmed the hypothesis central to the thesis that time series analytics is
an effective iterative keystroke authentication mechanism.

In Chapter [7| the Keystroke Continuous Authentication based Spectral Analysis
(KCASA) approach was presented. The central idea underpinning the KCASA ap-
proach was to apply a spectral transform to the collected keystroke time series prior
to any authentication taking place. The conjecture was that transformation into the
spectral domain would lead to more accurate and faster authentication. In the KCASA
approach, two spectral transformations were considered: (i) Discrete Fourier Transform
(DFT) and (ii) Discrete Wavelet Transform (DWT). The approach was evaluated by
applying both U-KTS and M-KTS. The reported results showed that DWT, coupled
with M-KTS, outperformed DFT, in all cases, with respect to authentication perfor-
mance. However, DFT was found to be more efficient. Moreover, it was observed that
the KCASA approach obtained a significantly superior performance, in terms of both au-

thentication and efficiency, comparing to the IKCA approach from the previous chapter
(Chapter [6).

8.3 Main Findings and Contributions

The main findings and contributions from the work presented in this thesis are given in
this section. The principle motivation for the work was formulated in a single research

question as follows:
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“Is it possible to continuously authenticate individuals, according to their keyboard
usage patterns; and if so what are the most appropriate mechanisms for achieving
this?”

The provision of an answer to this research question entailed the resolution of a number
of subsidiary questions. Thus, the main findings for the work presented in this thesis
are presented here in the light of each of the subsidiary questions, and then in terms of

the overriding initial research question, as follows:

1. How can we best represent keyboard usage patterns in a way that avoids the disad-

vantages associated with the feature vector representation used to date?

Keyboard usage patterns can be extracted, as noted in Chapter [2] from either fixed
text or free text. The “standard” approach is to use a feature vector representation.
However, in the context of free text, there is a substantial overhead with respect to
the generation of the feature vectors; there is also a question about how effective
they are. The proposed solution was to consider keystroke dynamics in terms of
time series data, in which typing patterns can be recognised from free text and
used for continuous authentication. Thus, in the proposed representation,
each keystroke was represented as a temporal event (a press-and-release
event) where two principal timing features, flight time 7' and key-hold
time KH! , were considered as these encapsulate other features that
might also be considered. The intuition of using keystroke time series was that
the sequence of temporal typing events produced distinctive shapelets for each
user; thus these shapelets would provide for an authentication mechanism. Two
categories of keystroke time series were considered univariate and multivariate (U-
KTS and M-KTS). Time series in both the temporal domain and transformed to
the spectral domain were experimented with. With respect to the spectral domain,
two transforms were considered: Discrete Fourier Transform (DFT) and Discrete
Wavelet Transform (DWT). The most appropriate mechanism for representing
keyboard usage patterns was found to be the DW'T representation when applied
to M-KTS in terms of authentication accuracy, and the DFT representation in

terms of efficiency.

2. Given a collection of patterns, what is the most appropriate mechanism whereby
a new pattern can be compared with an existing pattern, for the purpose of user

authentication?

Given a typing stream represented as a keystroke time series, user authentica-
tion requires frequent comparison of time series subsequences. The established,
and most straightforward, mechanism for comparing two time series is to use ED
measurement. This requires the two time series to be compared to be of the same
length; however, a more significant issue with respect to keyboard time series com-

parison is that it does not allow for offsets in the time series (where distinctive
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subsequences are not aligned). The adopted method was therefore to use
Dynamic Time Warping (DTW) which addresses the disadvantages as-
sociated with ED similarity measurement. The derived similarity measure
(the DTW minimum warping path distance) was then compared to a threshold o.
If the distance was less than the threshold then the subject was deemed to be who
they claimed to be; otherwise, a warning was issued. An interesting “twist” to
the proposed process was that a bespoke o value was determined for each subject,
as a oppose to a “blanket” threshold. This was in recognition of the observation
that there is no “one size fits all” o threshold value. The approach produced some

excellent results; a best accuracy of 99.12% was recorded.

3. Given solutions to 1 and 2 above, how do we go about evaluating whether a good

solution has been discovered (or not)?

Biometric systems are typically evaluated using Accuracy (Acc.), False
Match Rate (FMR) and False Non-Match Rate (FNMR); these met-
rics were therefore also selected for evaluating the proposed keyboard
continuous user authentication approaches. More specifically, a number of
data sets were used, one collated by the author and two more from the literature.
Each record for each subject was split into two, one for building the user typ-
ing template required by the authentication mechanism and one to represent the
keystroke data stream. To simulate the presence of an imposter, a test stream from
another subject was appended to that of the current subject. Experiments were
then conducted to determine whether the imposter was detected or not. Using
this approach, the comparison between the two keystroke continuous authentica-
tion approaches proposed in the thesis (IKCA and KCASA) were conducted and
compared with the established (from the literature) feature vector-based approach.

This evaluation mechanism seemed to work well.

4. What is the most effective process whereby continuous, real-time, authentication

can be conducted in the context of online assessment and more generally?

The mechanism presented in the thesis to address continuous, real-time,
authentication was to periodically sample the keystroke input stream
and extract time series subsequences called shapelets. Each shapelet was
then compared to the previously collected shapelet. The exception was the first
shapelet in a typing session, which was compared with a previously collected set
of profiles that was known to belong to the claimed subject. As noted above,
an interesting “twist” to the proposed mechanism was that a bespoke o similar-
ity threshold was determined for each subject. Some excellent results were thus

produced.

5. In the context of 4 above, how should the process deal with “away from keyboard”

events?
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The issue of “away from keyboard” events was significant as their occurrence dis-
torted the nature of the collected time series in the context of flight time F* . This
was established by a process of inspection of keystroke time series that included
F! values. The proposed solution was to introduce a limit, ¢, for accept-
able values of F! . More specifically, in the event of a F! value that exceeded
the ¢ value the idea was to reduce the “outlier” value to the ¢ value. This was
conceived of as a form of noise reduction. A number of potential values for ¢
were evaluated ranging from 0.750 seconds to 2.00 seconds increasing in steps of
0.25 seconds. The reported evaluation demonstrated that the limit of ¢ = 1.25
seconds produced good authentication results with respect to the proposed IKCA

and KCASA keystroke continuous authentication approaches.

6. Can we recognise typing patterns in a way that avoids the knowledge of the text

that is being typed by the user so as to avoid data privacy concerns?

For reasons of data confidentiality, it was seen as important that what was actually
being typed was not used in the context of subject authentication. This was not
the case with respect to the n-graphs approaches reported on in the literature.
Therefore, the proposed approaches, OKCA, IKCA and KCASA, made
no use of the content of the text being typed using time series context.
The proposed approaches could therefore be applied by a third party without
contravening any data protection requirement as the system has no cognisance
of what was being typed. This demonstrated the advantage that the proposed
keystroke time series authentication approaches presented in this thesis can avoid

data privacy concerns.

Returning to the central research question of the thesis, it can be stated that it
is possible to continuously authenticate individuals according to their keyboard usage
patterns. More specifically, it is possible to successfully authenticate individuals in an
iterative manner according to their keyboard usage patterns. The most appropriate
mechanisms for achieving this is by considering keystroke dynamics from free text as
a time series and to use then the time series represented keystroke data to find typing
patterns that are indicative of individuals which can, in turn, be used for authentication
purposes. The evaluation conducted, and reported on in this thesis, indicated that good
results can consistently be achieved.

For completeness, the main contributions for the work presented in this thesis are
restated from Chapter [1] as follows:

1. Enhancement of the accuracy of current pattern detection mechanisms for keystroke
continuous authentication; reported keyboard dynamics continuous authentication

accuracy to date has been generally poor [151].

2. Confirmation that keystroke dynamics can be effectively encapsulated in the form

of a discrete time series representation.
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3. A system for real-time/continuous keystroke authentication that is independent of

the keyboard layout, and therefore generic, as required with respect to eLearning

and MOOC systems; some of reported work to date has only been directed at

controlled environments using prescribed keyboards,

4. A keystroke modeling technique that is a privacy-preserving in that knowledge of

which keys are being pressed is not required.

5. A keyboard authentication mechanism that, although intended for use with respect

to online assessment, has general applicability. For example, it may equally well be

used to detect certain human conditions, such as detecting keyboard user emotions
as described in [132].

6. A keystroke online data capture tool, namely the Web-Based Timestamp Keystroke
Recorder (WBTKR), which facilitates the collection of keystroke data sets.

7. A keystroke dynamics data set, collected from real users in an uncontrolled envi-

ronment, available for public use.

8. Eight competing techniques directed at keystroke dynamics authentication as fol-

lows:

i

ii

iii

iv

vi

vii

viii

Static authentication using univariate keystroke time series representation with

flight time (the benchmark algorithm).

Static authentication using multivariate keystroke time series representation
with flight time and key-hold time (the benchmark algorithm).

Continuous authentication using univariate keystroke time series representa-

tion with flight time.

Continuous authentication using multivariate keystroke time series representa-
tion with flight time and hold time.

Continuous authentication using DFT spectral (transformed) univariate keystroke

time series with flight time.

Continuous authentication using DFT spectral (transformed) multivariate keystroke

time series with flight time and hold time.

Continuous authentication using DWT spectral (transformed) univariate keystroke

time series with flight time.

Continuous authentication using DWT spectral (transformed) multivariate keystroke

time series with flight time and hold time.

8.4 Future Work

The work presented in this thesis has proposed an approach to keystroke continuous

authentication directed at detecting impersonation with respect to applications such as
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online assessments. In this section, a number of potential directions for future work
are introduced. Generally speaking, the future work can be divided into immedi-
ate and longer contexts. The immediate context is concerned with aspects where the
current work can be extended/improved. The longer context is concerned with direc-
tions whereby the proposed approaches can be used to explore more speculative areas.
Therefore, the future work discussed in this subsection is presented with respect to this

categorisation as follows:
e Future Work in The Immediate Context

1. DTW Complexity: DTW was used to compare time series subsequences
(shapelets) because of the advantage that it offers with respect capturing
the similarity between time series where offsets exist. This is because of the
ability of DTW to “warp” the linearity of the time series. However, this ad-
vantage is gained at the expensive of computation time (Euclidean similarity
calculation is much faster although it does not take account of offsets). In
the literature, there are various solutions to mitigate against the complexity
of DTW, for example, the work presented in [62] and [138]. In this thesis,
no such mitigation was applied with respect to the experiments reported on,
although this could clearly be done. It is thought that adopting such DTW
mitigation techniques, to the approaches presented in the thesis, can provide
for additional efficiency gains, especially where real-time authentication is
desired. Thus, the time complexity of DTW, in the context of the proposed

keystroke time series representations, remains an open topic for future work.

2. Overlapped Windows: In the proposed approaches for continuous authen-
tication, the continuous authentication processes operated by extracting time
series subsequences (shapelets) using a window of length w. The frequency
with which shapelets were collected can be defined according to a variable
f- Thus when f > w we talk of non-overlapping time series, when f = w we
talk about abutting time series and when f < w we talk of overlapping time
series. However, in the thesis, the use of such a variable and consequently
the use of overlapped time series (f < w) was not considered. It might be
the case that this produces a better performance, and thus this is identified

as another area suitable for further investigation.

3. Alternative Representation: The work described in this thesis used a time
series representation to represent keystroke dynamics; this was indeed one of
the main motivations for this work because there was no other work in the
literature that considered time series representation for keystroke continu-
ous authentication. Although good experimental results were reported using
the proposed time series representations, some alternative time series repre-
sentations might produce further improvements. For example, with respect
to the considered keystroke DWT representation (included in the KCASA
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approach), there is a drawback, when using the Haar transform, that the
keystroke time series must have a length which is an integral power of two.
An alternative, not considered in the thesis, is Piecewise Aggregate Approx-
imation (PAA) [78] which operates using any time series length using an
approximation of the DWT representation [77]. Consequently, the use of al-
ternative time series representations, with respect to, keystroke time series

authentication is another fruitful topic for further research.

4. Controlled Environment: The focus for the work presented in this thesis
was continuous authentication using typing samples collected within an un-
controlled environment, such as when individuals are typing free text using
whatever keyboard they have at hand. This was seen as desirable concerning
applications such as user authentication in the context of online assessments.
However, the use of typing samples collected in controlled conditions, such as
transcribed (fixed) text, is an alternative way whereby the keystroke dynamics
approach can operate; this is especially the case where static authentication
is required. Therefore, the question remains as to how the proposed keystroke
representation could perform under such conditions. The importance of pro-
viding an answer to this question is that there are many applications where
static authentication is a requirement. Thus an investigation of using the
proposed keystroke representation for alternative (static) applications would

be a useful direction for future work.

e Future Work in The Longer Context

1. Alternative Domains: It was noticed in Section [L.5] Chapter [1 that one
contribution of the work presented in this thesis was to introduce a general
framework in which keystroke dynamics can be applied in the context of
different domains rather than the authentication domain. For example, the
proposed keystroke time series representation could be utilised to detect cer-
tain human conditions such as Parkinson’s disease (see for example [51]). A
further alternative domain where the proposed work presented in this thesis
can equally well be used, is in the context of user emotions detection (see for
instance [132] where keystroke dynamics were used for user emotion detec-
tion). Investigation of these alternative domains thus provides for a further

opportunity to extend the investigation presented in this thesis.
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Appendix A

Further Results Concerning
OKCA Approach Presented in
Chapter |5

A.1 Overview

This appendix presents some additional results concerning the experiments using the
OKCA approach presented in Chapter [5l In particular, the ranked Sim matrix results,
as introduced in Table for all combination groups, across all data sets. For ease of
understanding, Table shows the structure (interpretation) of Sim ranking tables as

given in this appendix.

TABLE A.1: Structure of tables presented in the appendix.

Data set || Feature | Combination Group Table
aV{b,c} Table [A.2
a bV{a,c} Table |A.3
cVHa,b} Table [A.4
aV{b,c} Table |A.5
KH? bV {a,c} Table |A.6
cV{a,b} Table [A.7
ACB
aV {b,c} Table |A.8
Multi. bV{a,c} Table |A.9
cV{a,b} Table |A.10
aV{b,c} Table [A.11
FVR bV{a,c} Table [A.12
cV {a, b} Table [A.13)
aV {b,c} Table |A.14
Ft bV{a,c} Table [A.15
QP Continued on next page
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cV{a,b} Table [A.16

aV{b,c} Table |A.17

FVR bV {a,c} Table [A.18
cV{a,b} Table [A.19

aV {b,c} Table |A.20

Ft bV {a,c} Table [A.21
cV{a,b} Table |A.22

aV{b,c} Table [A.23

KH? bV {a,c} Table [A.24
cVa,b} Table [A.25

VHHS

aV{b,c} Table |A.26

Multi. bV {a,c} Table [A.27
cV{a,b} Table [A.28

aV{b,c} Table [A.29

FVR bV {a,c} Table [A.30
eV {a,b} Table [A.31
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TABLE A.2: Ranked sim values for (a V {b,c}) in ACB dataset using U-KTS F* .

S1

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group b and ¢

0.0528
0.0578
0.0590
0.0598
0.0621
0.0631
0.0635
0.0646
0.0652
0.0658
0.0660
0.0682
0.0698
0.0725
0.0739
0.0748
0.0749
0.0753
0.0756
0.0805
0.0838
0.0883
0.0883
0.0892
0.0902
0.0907
0.0939
0.0984
0.1137
0.1177

0.0329
0.0374
0.0401
0.0484
0.0487
0.0527
0.0549
0.0550
0.0551
0.0575
0.0581
0.0583
0.0640
0.0721
0.0732
0.0750
0.0799
0.0839
0.0906
0.0910
0.0961
0.1055
0.1063
0.1063
0.1099
0.1123
0.1195
0.1232
0.1307
0.1415

0.0635
0.0655
0.0665
0.0683
0.0688
0.0719
0.0740
0.0741
0.0772
0.0773
0.0775
0.0778
0.0780
0.0781
0.0790
0.0834
0.0836
0.0846
0.0846
0.0847
0.0851
0.0864
0.0864
0.0865
0.0865
0.0870
0.0924
0.1118
0.1302
0.1310

0.0490
0.0520
0.0530
0.0557
0.0579
0.0592
0.0619
0.0668
0.0685
0.0691
0.0710
0.0712
0.0713
0.0730
0.0756
0.0767
0.0786
0.0789
0.0837
0.0850
0.0864
0.0882
0.0882
0.0894
0.0914
0.0924
0.0940
0.0947
0.0963
0.1002

0.0725
0.0746
0.0750
0.0751
0.0753
0.0755
0.0798
0.0843
0.0858
0.0865
0.0889
0.0892
0.0908
0.0917
0.0918
0.0926
0.0926
0.0933
0.0970
0.0978
0.0986
0.1026
0.1035
0.1068
0.1138
0.1151
0.1182
0.1195
0.1211
0.1225

0.0314
0.0413
0.0447
0.0479
0.0501
0.0515
0.0539
0.0558
0.0582
0.0583
0.0585
0.0613
0.0634
0.0686
0.0686
0.0720
0.0764
0.0807
0.0854
0.0915
0.0999
0.1012
0.1045
0.1076
0.1076
0.1087
0.1124
0.1214
0.1218
0.1235

0.0782
0.0808
0.0823
0.0885
0.0889
0.0897
0.0927
0.0928
0.0957
0.0992
0.1020
0.1037
0.1039
0.1054
0.1061
0.1065
0.1066
0.1119
0.1122
0.1135
0.1136
0.1186
0.1221
0.1241
0.1258
0.1261
0.1261
0.1307
0.1336
0.1513

0.0613
0.0614
0.0636
0.0683
0.0685
0.0700
0.0702
0.0702
0.0704
0.0719
0.0741
0.0745
0.0769
0.0770
0.0794
0.0815
0.0819
0.0863
0.0874
0.0881
0.0935
0.0949
0.0949
0.0956
0.0959
0.0961
0.0962
0.0974
0.0978
0.1011

0.0467
0.0469
0.0469
0.0512
0.0524
0.0532
0.0587
0.0603
0.0606
0.0613
0.0644
0.0645
0.0705
0.0744
0.0756
0.0766
0.0770
0.0891
0.0898
0.0899
0.0931
0.0931
0.0935
0.0950
0.0977
0.1058
0.1065
0.1235
0.1330
0.1453

0.0974
0.1097
0.1187
0.1198
0.1198
0.1207
0.1221
0.1233
0.1242
0.1262
0.1327
0.1346
0.1369
0.1386
0.1414
0.1436
0.1446
0.1449
0.1504
0.1559
0.1626
0.1641
0.1645
0.1652
0.1690
0.1726
0.1859
0.1864
0.1944
0.2155
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group b and ¢

0.0500
0.0548
0.0551
0.0598
0.0670
0.0680
0.0693
0.0708
0.0719
0.0720
0.0759
0.0766
0.0772
0.0796
0.0805
0.0806
0.0806
0.0821
0.0853
0.0925
0.0932
0.0932
0.0938
0.0938
0.0954
0.0960
0.0975
0.0977
0.1000
0.1017

0.0369
0.0391
0.0412
0.0423
0.0460
0.0477
0.0487
0.0509
0.0510
0.0532
0.0537
0.0545
0.0592
0.0595
0.0606
0.0656
0.0744
0.0806
0.0806
0.0834
0.0856
0.0932
0.0953
0.0992
0.0992
0.1009
0.1017
0.1164
0.1268
0.1492

0.0343
0.0377
0.0451
0.0479
0.0482
0.0511
0.0520
0.0538
0.0550
0.0618
0.0647
0.0662
0.0681
0.0691
0.0745
0.0803
0.0827
0.0858
0.0904
0.0916
0.0930
0.0939
0.0956
0.0956
0.1018
0.1041
0.1059
0.1153
0.1224
0.1357

0.0472
0.0517
0.0529
0.0539
0.0560
0.0561
0.0570
0.0573
0.0577
0.0578
0.0609
0.0615
0.0670
0.0676
0.0689
0.0691
0.0767
0.0775
0.0782
0.0793
0.0889
0.0891
0.0918
0.0972
0.1012
0.1033
0.1047
0.1068
0.1068
0.1187

0.0396
0.0442
0.0456
0.0456
0.0461
0.0467
0.0472
0.0480
0.0502
0.0513
0.0518
0.0521
0.0607
0.0607
0.0609
0.0651
0.0746
0.0773
0.0820
0.0870
0.0879
0.0960
0.0960
0.0963
0.0981
0.1022
0.1034
0.1140
0.1261
0.1336

0.0361
0.0384
0.0388
0.0446
0.0447
0.0480
0.0499
0.0504
0.0514
0.0551
0.0555
0.0601
0.0614
0.0633
0.0654
0.0740
0.0882
0.0929
0.0968
0.0973
0.0978
0.1001
0.1058
0.1065
0.1065
0.1088
0.1160
0.1281
0.1349
0.1530

0.0470
0.0480
0.0490
0.0491
0.0528
0.0543
0.0572
0.0573
0.0575
0.0586
0.0605
0.0622
0.0630
0.0657
0.0685
0.0693
0.0713
0.0750
0.0765
0.0770
0.0821
0.0893
0.0899
0.0899
0.0950
0.1005
0.1008
0.1094
0.1194
0.1365

0.0365
0.0387
0.0403
0.0410
0.0447
0.0489
0.0536
0.0554
0.0579
0.0587
0.0594
0.0628
0.0643
0.0655
0.0689
0.0719
0.0794
0.0812
0.0842
0.0920
0.0948
0.0961
0.0961
0.0970
0.0979
0.0991
0.1030
0.1167
0.1343
0.1590

0.0588
0.0624
0.0670
0.0675
0.0678
0.0731
0.0755
0.0795
0.0797
0.0797
0.0802
0.0803
0.0804
0.0807
0.0817
0.0847
0.0884
0.0886
0.0893
0.0900
0.0907
0.0961
0.1035
0.1049
0.1053
0.1106
0.1121
0.1166
0.1166
0.1265

10
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group b and ¢

0.0332
0.0387
0.0454
0.0467
0.0502
0.0511
0.0520
0.0523
0.0587
0.0595
0.0608
0.0644
0.0649
0.0677
0.0718
0.0723
0.0812
0.0921
0.0932
0.0951
0.0966
0.1037
0.1037
0.1057
0.1089
0.1095
0.1132
0.1254
0.1395
0.1617

0.0622
0.0668
0.0687
0.0722
0.0748
0.0766
0.0767
0.0768
0.0779
0.0780
0.0792
0.0794
0.0803
0.0806
0.0810
0.0810
0.0811
0.0812
0.0824
0.0827
0.0827
0.0829
0.0875
0.0905
0.0971
0.0977
0.1001
0.1148
0.1203
0.1252

0.0559
0.0598
0.0616
0.0649
0.0649
0.0672
0.0695
0.0713
0.0716
0.0723
0.0732
0.0745
0.0762
0.0775
0.0790
0.0803
0.0836
0.0872
0.0898
0.0898
0.0949
0.0963
0.0970
0.0978
0.0981
0.1022
0.1111
0.1147
0.1260
0.1278

0.0519
0.0589
0.0645
0.0683
0.0718
0.0718
0.0766
0.0773
0.0792
0.0797
0.0803
0.0808
0.0810
0.0813
0.0817
0.0823
0.0887
0.0918
0.0919
0.0922
0.0929
0.0989
0.0999
0.1024
0.1024
0.1116
0.1191
0.1325
0.1605
0.1643

0.0465
0.0533
0.0543
0.0549
0.0554
0.0558
0.0565
0.0565
0.0565
0.0579
0.0614
0.0615
0.0617
0.0654
0.0666
0.0674
0.0730
0.0741
0.0771
0.0835
0.0838
0.0854
0.0878
0.0956
0.0956
0.0986
0.0993
0.1060
0.1142
0.1291

0.0580
0.0667
0.0668
0.0678
0.0679
0.0706
0.0706
0.0706
0.0707
0.0739
0.0741
0.0744
0.0763
0.0767
0.0796
0.0798
0.0798
0.0801
0.0810
0.0824
0.0826
0.0826
0.0838
0.0879
0.0896
0.0925
0.0946
0.0957
0.1079
0.1134

0.0597
0.0616
0.0646
0.0699
0.0699
0.0705
0.0712
0.0732
0.0741
0.0742
0.0748
0.0751
0.0777
0.0786
0.0803
0.0832
0.0836
0.0845
0.0850
0.0855
0.0875
0.0883
0.0892
0.0898
0.1009
0.1033
0.1079
0.1083
0.1111
0.1177

0.0385
0.0392
0.0435
0.0477
0.0490
0.0680
0.0714
0.0761
0.0765
0.0797
0.0814
0.0819
0.0896
0.0898
0.0920
0.0952
0.0990
0.1098
0.1134
0.1135
0.1135
0.1170
0.1200
0.1236
0.1243
0.1288
0.1345
0.1649
0.1677
0.1747

0.0677
0.0697
0.0720
0.0724
0.0740
0.0751
0.0770
0.0777
0.0782
0.0786
0.0786
0.0787
0.0788
0.0811
0.0814
0.0817
0.0826
0.0832
0.0877
0.0901
0.0928
0.0928
0.0952
0.0955
0.0972
0.1001
0.1038
0.1041
0.1085
0.1205
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TABLE A.3: Ranked sim values for (bV {a,c}) in ACB dataset using U-KTS F* .

S1

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group a and ¢

0.0799
0.0803
0.0874
0.0882
0.0884
0.0886
0.0891
0.0891
0.0917
0.0939
0.0941
0.0948
0.0952
0.0957
0.0960
0.0966
0.0974
0.0982
0.0983
0.0988
0.0998
0.1009
0.1025
0.1033
0.1035
0.1046
0.1091
0.1123
0.1258
0.1266

0.0769
0.0785
0.0830
0.0844
0.0858
0.0858
0.0866
0.0881
0.0885
0.0890
0.0898
0.0900
0.0904
0.0907
0.0912
0.0912
0.0918
0.0921
0.0924
0.0925
0.0931
0.0950
0.0954
0.0963
0.0991
0.0997
0.1061
0.1071
0.1194
0.1317

0.0903
0.0944
0.0969
0.0971
0.0981
0.0994
0.1002
0.1002
0.1002
0.1015
0.1017
0.1057
0.1061
0.1062
0.1071
0.1089
0.1091
0.1094
0.1110
0.1111
0.1127
0.1127
0.1129
0.1142
0.1156
0.1181
0.1186
0.1187
0.1258
0.1278

0.1340
0.1409
0.1425
0.1453
0.1485
0.1491
0.1491
0.1498
0.1523
0.1530
0.1531
0.1542
0.1556
0.1560
0.1575
0.1579
0.1580
0.1634
0.1642
0.1651
0.1658
0.1679
0.1696
0.1696
0.1706
0.1717
0.1721
0.1763
0.1763
0.1875

0.0810
0.0905
0.0935
0.0958
0.0963
0.0977
0.1016
0.1019
0.1022
0.1031
0.1031
0.1033
0.1059
0.1064
0.1076
0.1102
0.1113
0.1127
0.1151
0.1151
0.1152
0.1166
0.1179
0.1189
0.1203
0.1210
0.1223
0.1225
0.1258
0.1381

0.0602
0.0602
0.0609
0.0618
0.0621
0.0622
0.0622
0.0632
0.0634
0.0637
0.0642
0.0649
0.0653
0.0657
0.0663
0.0665
0.0667
0.0667
0.0673
0.0676
0.0701
0.0707
0.0728
0.0729
0.0730
0.0751
0.0754
0.0819
0.0848
0.0892

0.0988
0.1057
0.1104
0.1113
0.1136
0.1136
0.1141
0.1171
0.1172
0.1184
0.1189
0.1197
0.1236
0.1267
0.1275
0.1276
0.1278
0.1284
0.1284
0.1325
0.1351
0.1363
0.1369
0.1373
0.1441
0.1455
0.1462
0.1487
0.1519
0.1520

0.1046
0.1113
0.1133
0.1147
0.1156
0.1156
0.1163
0.1163
0.1189
0.1192
0.1193
0.1205
0.1207
0.1213
0.1221
0.1231
0.1232
0.1233
0.1241
0.1249
0.1268
0.1289
0.1298
0.1311
0.1315
0.1321
0.1342
0.1360
0.1372
0.1432

0.0587
0.0588
0.0600
0.0602
0.0611
0.0613
0.0623
0.0623
0.0624
0.0633
0.0633
0.0641
0.0644
0.0644
0.0661
0.0666
0.0667
0.0669
0.0672
0.0679
0.0688
0.0705
0.0708
0.0709
0.0713
0.0734
0.0758
0.0803
0.1096
0.1144

0.1531
0.1558
0.1643
0.1675
0.1677
0.1715
0.1735
0.1771
0.1781
0.1785
0.1787
0.1787
0.1787
0.1830
0.1873
0.1886
0.1889
0.1959
0.1972
0.2003
0.2035
0.2049
0.2059
0.2068
0.2071
0.2088
0.2133
0.2153
0.2154
0.2156
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and ¢

0.0920
0.0982
0.0984
0.1010
0.1010
0.1010
0.1018
0.1028
0.1041
0.1042
0.1046
0.1046
0.1063
0.1082
0.1094
0.1096
0.1112
0.1115
0.1118
0.1119
0.1122
0.1147
0.1147
0.1159
0.1169
0.1177
0.1201
0.1236
0.1242
0.1319

0.0542
0.0562
0.0583
0.0583
0.0586
0.0605
0.0605
0.0608
0.0613
0.0615
0.0620
0.0620
0.0621
0.0622
0.0626
0.0627
0.0628
0.0636
0.0641
0.0648
0.0648
0.0651
0.0660
0.0660
0.0663
0.0705
0.0747
0.0750
0.0989
0.1142

0.0807
0.0860
0.0864
0.0871
0.0872
0.0872
0.0873
0.0881
0.0904
0.0918
0.0918
0.0927
0.0931
0.0943
0.0944
0.0957
0.0967
0.0973
0.0979
0.0991
0.1002
0.1012
0.1013
0.1018
0.1023
0.1031
0.1068
0.1089
0.1165
0.1171

0.0795
0.0839
0.0843
0.0846
0.0879
0.0890
0.0893
0.0909
0.0911
0.0913
0.0918
0.0919
0.0919
0.0934
0.0948
0.0948
0.0971
0.0974
0.0974
0.0996
0.0999
0.1012
0.1014
0.1036
0.1037
0.1039
0.1041
0.1146
0.1147
0.1190

0.0542
0.0551
0.0563
0.0576
0.0581
0.0585
0.0589
0.0592
0.0595
0.0609
0.0614
0.0614
0.0620
0.0622
0.0630
0.0630
0.0634
0.0634
0.0639
0.0652
0.0653
0.0653
0.0660
0.0669
0.0684
0.0707
0.0739
0.0754
0.0893
0.1105

0.0924
0.0933
0.0935
0.0938
0.0954
0.0971
0.1004
0.1004
0.1004
0.1005
0.1027
0.1034
0.1044
0.1045
0.1048
0.1053
0.1054
0.1060
0.1071
0.1073
0.1078
0.1101
0.1102
0.1102
0.1108
0.1172
0.1193
0.1231
0.1239
0.1299

0.0613
0.0615
0.0630
0.0635
0.0641
0.0642
0.0643
0.0650
0.0654
0.0666
0.0676
0.0677
0.0682
0.0695
0.0701
0.0735
0.0737
0.0738
0.0740
0.0742
0.0742
0.0749
0.0760
0.0771
0.0771
0.0778
0.0811
0.0879
0.1239
0.1338

0.0529
0.0546
0.0565
0.0573
0.0581
0.0591
0.0594
0.0600
0.0607
0.0607
0.0607
0.0611
0.0620
0.0623
0.0627
0.0630
0.0632
0.0652
0.0657
0.0663
0.0664
0.0665
0.0686
0.0694
0.0727
0.0728
0.0741
0.0787
0.1164
0.1290

0.1253
0.1254
0.1279
0.1280
0.1336
0.1336
0.1343
0.1346
0.1357
0.1365
0.1372
0.1379
0.1382
0.1392
0.1398
0.1401
0.1403
0.1444
0.1456
0.1463
0.1474
0.1474
0.1478
0.1482
0.1526
0.1536
0.1548
0.1554
0.1603
0.1670
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and ¢

0.0712
0.0723
0.0751
0.0753
0.0757
0.0769
0.0769
0.0778
0.0784
0.0784
0.0787
0.0791
0.0793
0.0793
0.0796
0.0797
0.0800
0.0807
0.0812
0.0816
0.0818
0.0821
0.0824
0.0835
0.0842
0.0843
0.0868
0.0985
0.1267
0.1269

0.1366
0.1422
0.1453
0.1453
0.1453
0.1471
0.1474
0.1482
0.1483
0.1483
0.1490
0.1543
0.1557
0.1567
0.1581
0.1585
0.1587
0.1603
0.1607
0.1609
0.1615
0.1625
0.1629
0.1638
0.1643
0.1663
0.1664
0.1678
0.1703
0.1723

0.1235
0.1297
0.1354
0.1367
0.1372
0.1372
0.1375
0.1389
0.1401
0.1402
0.1431
0.1448
0.1486
0.1507
0.1515
0.1516
0.1529
0.1545
0.1553
0.1553
0.1557
0.1582
0.1605
0.1613
0.1614
0.1617
0.1633
0.1643
0.1669
0.1690

0.1475
0.1489
0.1504
0.1507
0.1507
0.1531
0.1532
0.1538
0.1542
0.1570
0.1574
0.1576
0.1592
0.1594
0.1624
0.1627
0.1628
0.1672
0.1673
0.1681
0.1684
0.1688
0.1699
0.1701
0.1741
0.1748
0.1760
0.1764
0.1777
0.1802

0.0910
0.0966
0.0982
0.0984
0.1005
0.1031
0.1031
0.1032
0.1044
0.1045
0.1047
0.1056
0.1076
0.1092
0.1097
0.1107
0.1129
0.1132
0.1146
0.1151
0.1157
0.1159
0.1161
0.1163
0.1171
0.1179
0.1211
0.1299
0.1318
0.1318

0.1096
0.1110
0.1161
0.1176
0.1182
0.1189
0.1199
0.1199
0.1201
0.1203
0.1213
0.1222
0.1238
0.1259
0.1269
0.1271
0.1277
0.1287
0.1295
0.1299
0.1300
0.1311
0.1318
0.1336
0.1337
0.1367
0.1374
0.1394
0.1414
0.1416

0.1115
0.1119
0.1148
0.1181
0.1184
0.1184
0.1197
0.1211
0.1216
0.1218
0.1223
0.1256
0.1264
0.1267
0.1269
0.1277
0.1309
0.1311
0.1324
0.1324
0.1328
0.1339
0.1355
0.1356
0.1364
0.1374
0.1402
0.1440
0.1450
0.1500

0.1026
0.1027
0.1035
0.1054
0.1056
0.1065
0.1074
0.1077
0.1077
0.1085
0.1099
0.1103
0.1124
0.1132
0.1147
0.1155
0.1162
0.1163
0.1164
0.1169
0.1172
0.1193
0.1209
0.1223
0.1235
0.1242
0.1246
0.1270
0.1305
0.1432

0.1080
0.1081
0.1105
0.1107
0.1113
0.1116
0.1116
0.1119
0.1143
0.1145
0.1146
0.1158
0.1159
0.1171
0.1173
0.1177
0.1185
0.1185
0.1190
0.1190
0.1229
0.1239
0.1241
0.1242
0.1272
0.1274
0.1290
0.1305
0.1315
0.1383
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TABLE A.4: Ranked sim values for (¢ V {a,b}) in ACB dataset using U-KTS F* .

S1

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group a and b

0.0829
0.0868
0.0870
0.0888
0.0889
0.0901
0.0903
0.0904
0.0915
0.0917
0.0920
0.0923
0.0925
0.0925
0.0938
0.0949
0.0951
0.0952
0.0953
0.0969
0.0972
0.0990
0.0999
0.1020
0.1028
0.1063
0.1070
0.1089
0.1107
0.1132

0.0769
0.0812
0.0813
0.0841
0.0851
0.0855
0.0855
0.0859
0.0863
0.0863
0.0866
0.0877
0.0880
0.0886
0.0889
0.0899
0.0904
0.0916
0.0923
0.0924
0.0930
0.0933
0.0968
0.0983
0.0995
0.1005
0.1015
0.1063
0.1080
0.1235

0.0941
0.0946
0.0960
0.0970
0.1003
0.1003
0.1004
0.1016
0.1033
0.1036
0.1043
0.1043
0.1047
0.1057
0.1061
0.1064
0.1064
0.1065
0.1084
0.1085
0.1096
0.1100
0.1101
0.1102
0.1104
0.1104
0.1123
0.1177
0.1178
0.1187

0.1353
0.1358
0.1371
0.1396
0.1449
0.1480
0.1511
0.1516
0.1517
0.1522
0.1523
0.1546
0.1553
0.1555
0.1559
0.1559
0.1559
0.1569
0.1598
0.1599
0.1607
0.1610
0.1614
0.1616
0.1620
0.1640
0.1672
0.1772
0.1781
0.1852

0.0869
0.0919
0.0924
0.0930
0.0966
0.0970
0.0971
0.0972
0.0981
0.0982
0.0986
0.1009
0.1045
0.1056
0.1063
0.1081
0.1083
0.1092
0.1092
0.1092
0.1102
0.1104
0.1114
0.1118
0.1192
0.1192
0.1253
0.1275
0.1280
0.1347

0.0573
0.0600
0.0601
0.0621
0.0624
0.0633
0.0643
0.0648
0.0653
0.0659
0.0675
0.0683
0.0685
0.0686
0.0688
0.0689
0.0698
0.0700
0.0708
0.0711
0.0714
0.0738
0.0738
0.0740
0.0758
0.0758
0.0764
0.0785
0.0808
0.0829

0.0913
0.0961
0.1070
0.1077
0.1094
0.1167
0.1178
0.1205
0.1217
0.1225
0.1225
0.1226
0.1238
0.1243
0.1251
0.1254
0.1267
0.1278
0.1291
0.1291
0.1312
0.1312
0.1335
0.1357
0.1375
0.1385
0.1435
0.1450
0.1470
0.1610

0.1048
0.1099
0.1127
0.1130
0.1130
0.1136
0.1144
0.1149
0.1154
0.1164
0.1169
0.1177
0.1179
0.1183
0.1184
0.1196
0.1201
0.1202
0.1215
0.1223
0.1224
0.1233
0.1240
0.1261
0.1263
0.1285
0.1314
0.1321
0.1358
0.1371

0.0594
0.0599
0.0608
0.0609
0.0615
0.0627
0.0642
0.0648
0.0648
0.0649
0.0651
0.0666
0.0680
0.0683
0.0683
0.0685
0.0685
0.0687
0.0693
0.0704
0.0714
0.0716
0.0720
0.0724
0.0726
0.0726
0.0837
0.0876
0.0909
0.1067

0.1422
0.1438
0.1517
0.1546
0.1581
0.1680
0.1696
0.1711
0.1758
0.1773
0.1787
0.1816
0.1828
0.1828
0.1834
0.1834
0.1839
0.1845
0.1865
0.1876
0.1899
0.1904
0.1951
0.1956
0.1974
0.2008
0.2065
0.2078
0.2138
0.2186
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and b

0.0895
0.0954
0.0956
0.0961
0.0981
0.0981
0.0989
0.0996
0.0997
0.1003
0.1018
0.1023
0.1025
0.1030
0.1057
0.1072
0.1075
0.1078
0.1094
0.1106
0.1107
0.1107
0.1117
0.1134
0.1138
0.1153
0.1181
0.1206
0.1215
0.1249

0.0525
0.0571
0.0577
0.0579
0.0604
0.0608
0.0612
0.0613
0.0613
0.0613
0.0616
0.0624
0.0624
0.0629
0.0632
0.0637
0.0638
0.0652
0.0654
0.0656
0.0663
0.0663
0.0664
0.0672
0.0677
0.0709
0.0754
0.0824
0.0833
0.1026

0.0837
0.0848
0.0870
0.0873
0.0876
0.0876
0.0891
0.0901
0.0922
0.0925
0.0931
0.0932
0.0932
0.0940
0.0940
0.0948
0.0955
0.0956
0.0968
0.0969
0.0986
0.0987
0.1012
0.1014
0.1037
0.1053
0.1057
0.1074
0.1082
0.1108

0.0821
0.0832
0.0839
0.0877
0.0888
0.0888
0.0889
0.0891
0.0897
0.0906
0.0910
0.0910
0.0910
0.0924
0.0937
0.0943
0.0947
0.0958
0.0958
0.0964
0.0976
0.0978
0.0989
0.0992
0.1009
0.1033
0.1040
0.1076
0.1114
0.1137

0.0561
0.0569
0.0577
0.0580
0.0593
0.0594
0.0605
0.0616
0.0618
0.0618
0.0623
0.0624
0.0638
0.0648
0.0648
0.0652
0.0656
0.0661
0.0676
0.0686
0.0700
0.0707
0.0717
0.0717
0.0743
0.0746
0.0781
0.0807
0.0834
0.0925

0.0908
0.0929
0.0931
0.0950
0.0986
0.0986
0.0988
0.0989
0.0992
0.0996
0.1005
0.1011
0.1015
0.1018
0.1026
0.1033
0.1034
0.1041
0.1051
0.1070
0.1075
0.1082
0.1085
0.1085
0.1093
0.1130
0.1147
0.1155
0.1205
0.1212

0.0616
0.0635
0.0636
0.0639
0.0649
0.0655
0.0675
0.0676
0.0677
0.0677
0.0680
0.0680
0.0691
0.0699
0.0701
0.0707
0.0708
0.0719
0.0736
0.0740
0.0741
0.0765
0.0771
0.0799
0.0799
0.0821
0.0899
0.0949
0.1023
0.1171

0.0566
0.0567
0.0577
0.0579
0.0583
0.0586
0.0588
0.0592
0.0597
0.0603
0.0609
0.0609
0.0611
0.0619
0.0626
0.0633
0.0645
0.0645
0.0645
0.0670
0.0673
0.0677
0.0692
0.0699
0.0701
0.0704
0.0798
0.0835
0.0845
0.0946

0.1175
0.1197
0.1234
0.1236
0.1249
0.1310
0.1349
0.1351
0.1359
0.1367
0.1371
0.1390
0.1396
0.1398
0.1405
0.1405
0.1408
0.1411
0.1413
0.1415
0.1423
0.1426
0.1426
0.1439
0.1461
0.1544
0.1563
0.1564
0.1577
0.1609
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and b

0.0729
0.0750
0.0753
0.0756
0.0759
0.0759
0.0762
0.0764
0.0769
0.0769
0.0769
0.0781
0.0789
0.0789
0.0791
0.0795
0.0803
0.0803
0.0807
0.0812
0.0832
0.0838
0.0863
0.0872
0.0874
0.0875
0.0929
0.1016
0.1029
0.1211

0.1407
0.1411
0.1438
0.1479
0.1490
0.1497
0.1498
0.1500
0.1500
0.1507
0.1521
0.1525
0.1547
0.1549
0.1551
0.1553
0.1555
0.1559
0.1568
0.1572
0.1574
0.1602
0.1604
0.1611
0.1614
0.1619
0.1637
0.1644
0.1672
0.1741

0.1275
0.1304
0.1314
0.1337
0.1369
0.1369
0.1375
0.1395
0.1399
0.1402
0.1409
0.1416
0.1416
0.1467
0.1468
0.1476
0.1479
0.1480
0.1490
0.1495
0.1497
0.1498
0.1524
0.1529
0.1537
0.1576
0.1578
0.1625
0.1640
0.1702

0.1425
0.1449
0.1503
0.1528
0.1556
0.1562
0.1565
0.1569
0.1571
0.1576
0.1590
0.1591
0.1597
0.1597
0.1614
0.1615
0.1625
0.1632
0.1638
0.1639
0.1642
0.1653
0.1657
0.1660
0.1660
0.1689
0.1707
0.1715
0.1756
0.1837

0.0912
0.0979
0.0994
0.1000
0.1009
0.1021
0.1028
0.1045
0.1046
0.1046
0.1050
0.1055
0.1056
0.1061
0.1073
0.1086
0.1086
0.1090
0.1098
0.1106
0.1110
0.1111
0.1128
0.1137
0.1153
0.1175
0.1180
0.1213
0.1233
0.1245

0.1088
0.1088
0.1120
0.1129
0.1153
0.1161
0.1168
0.1194
0.1204
0.1206
0.1225
0.1226
0.1227
0.1230
0.1233
0.1237
0.1249
0.1261
0.1263
0.1270
0.1280
0.1282
0.1296
0.1305
0.1312
0.1312
0.1314
0.1369
0.1401
0.1402

0.1078
0.1144
0.1154
0.1165
0.1205
0.1212
0.1213
0.1216
0.1218
0.1220
0.1220
0.1225
0.1230
0.1237
0.1252
0.1252
0.1257
0.1259
0.1270
0.1273
0.1275
0.1278
0.1281
0.1282
0.1316
0.1317
0.1324
0.1334
0.1359
0.1464

0.1041
0.1089
0.1091
0.1095
0.1099
0.1101
0.1103
0.1103
0.1103
0.1104
0.1105
0.1106
0.1112
0.1127
0.1129
0.1130
0.1138
0.1141
0.1163
0.1163
0.1179
0.1180
0.1185
0.1186
0.1188
0.1190
0.1243
0.1276
0.1278
0.1298

0.1022
0.1068
0.1092
0.1095
0.1099
0.1110
0.1134
0.1135
0.1135
0.1135
0.1137
0.1140
0.1140
0.1147
0.1150
0.1164
0.1181
0.1185
0.1185
0.1185
0.1190
0.1190
0.1193
0.1202
0.1211
0.1213
0.1239
0.1263
0.1290
0.1305




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 155

—

TABLE A.5: Ranked sim values for (a V {b,c}) in ACB dataset using U-KTS KH' .

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group b and ¢

0.0115
0.0118
0.0136
0.0138
0.0138
0.0139
0.0148
0.0148
0.0154
0.0154
0.0154
0.0158
0.0158
0.0159
0.0161
0.0164
0.0166
0.0166
0.0177
0.0178
0.0183
0.0189
0.0199
0.0206
0.0210
0.0211
0.0214
0.0255
0.0302
0.4421

0.1910
0.1953
0.2072
0.2146
0.2245
0.2259
0.2421
0.2451
0.2458
0.2459
0.2464
0.2478
0.2479
0.2481
0.2481
0.2482
0.2485
0.2499
0.2506
0.2519
0.2531
0.2545
0.2546
0.2552
0.2555
0.2559
0.2573
0.2592
0.2598
0.2653

0.0129
0.0129
0.0129
0.0130
0.0133
0.0135
0.0136
0.0138
0.0139
0.0141
0.0142
0.0145
0.0145
0.0146
0.0147
0.0148
0.0149
0.0149
0.0151
0.0152
0.0158
0.0163
0.0165
0.0204
0.0206
0.0208
0.0217
0.0249
0.0259
0.4554

0.0062
0.0067
0.0078
0.0079
0.0080
0.0084
0.0094
0.0095
0.0103
0.0105
0.0106
0.0110
0.0113
0.0114
0.0114
0.0120
0.0126
0.0138
0.0149
0.0150
0.0152
0.0152
0.0155
0.0157
0.0171
0.0181
0.0188
0.0195
0.0218
0.4548

0.0125
0.0134
0.0135
0.0137
0.0138
0.0141
0.0141
0.0143
0.0146
0.0146
0.0148
0.0151
0.0151
0.0153
0.0157
0.0157
0.0158
0.0160
0.0160
0.0162
0.0163
0.0169
0.0177
0.0192
0.0195
0.0209
0.0234
0.0243
0.0266
0.4579

0.0060
0.0115
0.0122
0.0123
0.0132
0.0141
0.0142
0.0143
0.0156
0.0173
0.0174
0.0185
0.0190
0.0194
0.0194
0.0194
0.0194
0.0198
0.0209
0.0212
0.0213
0.0219
0.0226
0.0226
0.0242
0.0291
0.0295
0.0383
0.0439
0.4771

0.0174
0.0185
0.0221
0.0225
0.0226
0.0230
0.0238
0.0241
0.0247
0.0250
0.0250
0.0251
0.0252
0.0257
0.0258
0.0260
0.0267
0.0268
0.0274
0.0293
0.0293
0.0295
0.0296
0.0299
0.0303
0.0309
0.0313
0.0323
0.0389
0.4265

0.0090
0.0090
0.0095
0.0097
0.0102
0.0103
0.0103
0.0104
0.0112
0.0114
0.0115
0.0115
0.0116
0.0119
0.0122
0.0127
0.0129
0.0131
0.0138
0.0140
0.0140
0.0145
0.0148
0.0157
0.0187
0.0188
0.0188
0.0222
0.0227
0.4541

0.0110
0.0122
0.0126
0.0130
0.0130
0.0133
0.0135
0.0135
0.0141
0.0145
0.0147
0.0155
0.0156
0.0164
0.0167
0.0173
0.0173
0.0179
0.0185
0.0185
0.0188
0.0190
0.0199
0.0235
0.0265
0.0266
0.0290
0.0385
0.0391
0.4757

0.0132
0.0135
0.0136
0.0137
0.0140
0.0149
0.0153
0.0154
0.0155
0.0157
0.0157
0.0166
0.0172
0.0174
0.0174
0.0175
0.0177
0.0180
0.0188
0.0189
0.0190
0.0196
0.0198
0.0198
0.0202
0.0206
0.0209
0.0259
0.0271
0.4397

1
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group b and ¢

0.0125
0.0127
0.0132
0.0133
0.0133
0.0133
0.0137
0.0140
0.0143
0.0145
0.0146
0.0151
0.0151
0.0155
0.0157
0.0158
0.0160
0.0162
0.0168
0.0170
0.0170
0.0179
0.0179
0.0197
0.0228
0.0238
0.0250
0.0280
0.0304
0.4617

0.0074
0.0076
0.0082
0.0086
0.0094
0.0095
0.0098
0.0100
0.0103
0.0105
0.0110
0.0121
0.0123
0.0139
0.0147
0.0147
0.0157
0.0159
0.0170
0.0170
0.0176
0.0176
0.0178
0.0179
0.0185
0.0211
0.0238
0.0328
0.0332
0.4692

0.0062
0.0065
0.0067
0.0069
0.0075
0.0081
0.0081
0.0083
0.0083
0.0107
0.0111
0.0117
0.0117
0.0123
0.0124
0.0124
0.0138
0.0140
0.0144
0.0145
0.0150
0.0161
0.0165
0.0165
0.0167
0.0190
0.0206
0.0237
0.0279
0.4619

0.0084
0.0086
0.0087
0.0092
0.0093
0.0097
0.0098
0.0109
0.0109
0.0111
0.0111
0.0114
0.0137
0.0138
0.0140
0.0140
0.0140
0.0153
0.0163
0.0170
0.0174
0.0176
0.0177
0.0180
0.0184
0.0216
0.0216
0.0304
0.0321
0.4686

0.0074
0.0077
0.0081
0.0083
0.0087
0.0092
0.0097
0.0102
0.0102
0.0105
0.0108
0.0108
0.0114
0.0115
0.0123
0.0135
0.0138
0.0139
0.0139
0.0140
0.0142
0.0145
0.0150
0.0165
0.0186
0.0187
0.0195
0.0257
0.0274
0.4613

0.0085
0.0091
0.0092
0.0097
0.0100
0.0109
0.0111
0.0117
0.0117
0.0117
0.0118
0.0121
0.0123
0.0129
0.0135
0.0136
0.0142
0.0144
0.0153
0.0156
0.0160
0.0167
0.0170
0.0181
0.0208
0.0238
0.0249
0.0322
0.0326
0.4695

0.0066
0.0079
0.0085
0.0093
0.0094
0.0103
0.0106
0.0106
0.0106
0.0106
0.0107
0.0109
0.0112
0.0115
0.0121
0.0123
0.0134
0.0136
0.0142
0.0144
0.0145
0.0149
0.0155
0.0155
0.0166
0.0170
0.0174
0.0198
0.0218
0.4538

0.0063
0.0068
0.0070
0.0073
0.0077
0.0081
0.0082
0.0082
0.0099
0.0101
0.0111
0.0118
0.0118
0.0120
0.0122
0.0125
0.0126
0.0136
0.0140
0.0150
0.0156
0.0156
0.0163
0.0163
0.0170
0.0187
0.0193
0.0262
0.0276
0.4627

0.0134
0.0137
0.0139
0.0141
0.0144
0.0149
0.0154
0.0156
0.0158
0.0159
0.0159
0.0160
0.0163
0.0166
0.0168
0.0169
0.0173
0.0179
0.0182
0.0189
0.0189
0.0190
0.0193
0.0193
0.0196
0.0207
0.0210
0.0250
0.0252
0.4986
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group b and ¢

0.0060
0.0064
0.0068
0.0071
0.0075
0.0076
0.0078
0.0081
0.0086
0.0100
0.0100
0.0105
0.0105
0.0113
0.0125
0.0128
0.0131
0.0131
0.0135
0.0148
0.0151
0.0157
0.0158
0.0160
0.0167
0.0185
0.0198
0.0247
0.0265
0.4621

0.0125
0.0126
0.0127
0.0131
0.0131
0.0134
0.0134
0.0135
0.0136
0.0138
0.0156
0.0157
0.0160
0.0163
0.0163
0.0164
0.0164
0.0165
0.0171
0.0172
0.0172
0.0173
0.0175
0.0198
0.0200
0.0218
0.0226
0.0239
0.0245
0.4532

0.0074
0.0088
0.0090
0.0093
0.0095
0.0097
0.0101
0.0103
0.0107
0.0109
0.0112
0.0113
0.0118
0.0128
0.0137
0.0141
0.0141
0.0147
0.0155
0.0159
0.0162
0.0162
0.0163
0.0173
0.0174
0.0211
0.0242
0.0303
0.0312
0.4682

0.3251
0.4313
0.4317
0.4419
0.4431
0.4492
0.4522
0.4530
0.4531
0.4536
0.4549
0.4550
0.4552
0.4553
0.4553
0.4554
0.4556
0.4570
0.4578
0.4590
0.4603
0.4617
0.4618
0.4624
0.4627
0.4630
0.4644
0.4664
0.4669
0.4725

0.0090
0.0099
0.0111
0.0119
0.0121
0.0121
0.0127
0.0131
0.0132
0.0132
0.0134
0.0135
0.0140
0.0141
0.0142
0.0148
0.0152
0.0152
0.0155
0.0156
0.0158
0.0162
0.0172
0.0177
0.0186
0.0187
0.0213
0.0222
0.0241
0.4443

0.0105
0.0108
0.0121
0.0123
0.0124
0.0128
0.0134
0.0134
0.0135
0.0137
0.0139
0.0139
0.0139
0.0140
0.0145
0.0149
0.0150
0.0151
0.0156
0.0158
0.0159
0.0160
0.0162
0.0168
0.0171
0.0186
0.0188
0.0216
0.0232
0.4473

0.0087
0.0093
0.0094
0.0095
0.0095
0.0095
0.0096
0.0097
0.0101
0.0119
0.0123
0.0123
0.0123
0.0126
0.0126
0.0126
0.0127
0.0133
0.0135
0.0138
0.0143
0.0148
0.0154
0.0156
0.0181
0.0189
0.0190
0.0191
0.0236
0.4586

0.0119
0.0130
0.0135
0.0137
0.0148
0.0151
0.0152
0.0153
0.0158
0.0160
0.0172
0.0182
0.0183
0.0186
0.0188
0.0193
0.0193
0.0196
0.0200
0.0203
0.0205
0.0220
0.0221
0.0234
0.0269
0.0317
0.0334
0.0432
0.0435
0.4797

0.0140
0.0142
0.0145
0.0152
0.0156
0.0156
0.0162
0.0164
0.0165
0.0169
0.0180
0.0185
0.0186
0.0189
0.0190
0.0193
0.0193
0.0198
0.0200
0.0204
0.0206
0.0211
0.0212
0.0221
0.0222
0.0245
0.0268
0.0270
0.0299
0.4458
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TABLE A.6: Ranked sim values for (bV {a,c}) in ACB dataset using U-KTS KH' .

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and ¢

0.0180
0.0180
0.0189
0.0189
0.0191
0.0194
0.0196
0.0197
0.0199
0.0201
0.0204
0.0204
0.0206
0.0212
0.0213
0.0213
0.0224
0.0229
0.0230
0.0233
0.0233
0.0246
0.0254
0.0258
0.0279
0.0283
0.0305
0.0366
0.2072
0.9055

0.0192
0.0200
0.0200
0.0206
0.0207
0.0209
0.0212
0.0213
0.0214
0.0214
0.0216
0.0217
0.0217
0.0217
0.0220
0.0220
0.0226
0.0226
0.0229
0.0230
0.0230
0.0235
0.0235
0.0240
0.0242
0.0269
0.0273
0.0298
0.2128
0.9171

0.0170
0.0171
0.0172
0.0172
0.0174
0.0175
0.0175
0.0175
0.0175
0.0177
0.0179
0.0180
0.0181
0.0181
0.0184
0.0188
0.0189
0.0190
0.0191
0.0191
0.0192
0.0199
0.0201
0.0207
0.0208
0.0215
0.0232
0.0256
0.2286
0.9274

0.0094
0.0107
0.0108
0.0112
0.0114
0.0117
0.0119
0.0120
0.0121
0.0124
0.0127
0.0127
0.0127
0.0129
0.0134
0.0134
0.0134
0.0136
0.0136
0.0137
0.0139
0.0140
0.0145
0.0147
0.0149
0.0154
0.0184
0.0188
0.2282
0.9269

0.0144
0.0144
0.0145
0.0146
0.0146
0.0147
0.0151
0.0153
0.0154
0.0156
0.0157
0.0158
0.0158
0.0158
0.0159
0.0160
0.0161
0.0166
0.0166
0.0167
0.0169
0.0171
0.0171
0.0173
0.0180
0.0192
0.0203
0.0220
0.2295
0.9282

0.0131
0.0136
0.0137
0.0144
0.0154
0.0155
0.0160
0.0163
0.0166
0.0168
0.0171
0.0172
0.0173
0.0173
0.0174
0.0175
0.0177
0.0183
0.0186
0.0188
0.0188
0.0188
0.0196
0.0204
0.0218
0.0223
0.0244
0.0280
0.2538
0.9522

0.0265
0.0296
0.0304
0.0309
0.0318
0.0318
0.0323
0.0327
0.0328
0.0329
0.0331
0.0333
0.0333
0.0342
0.0348
0.0354
0.0362
0.0368
0.0377
0.0385
0.0395
0.0396
0.0398
0.0406
0.0426
0.0439
0.0457
0.0498
0.1857
0.8886

0.0176
0.0177
0.0181
0.0182
0.0183
0.0184
0.0184
0.0185
0.0186
0.0187
0.0187
0.0189
0.0190
0.0191
0.0191
0.0195
0.0199
0.0204
0.0204
0.0208
0.0210
0.0213
0.0214
0.0216
0.0221
0.0222
0.0222
0.0250
0.2337
0.9354

0.0162
0.0169
0.0172
0.0178
0.0179
0.0180
0.0181
0.0183
0.0185
0.0187
0.0187
0.0187
0.0188
0.0190
0.0192
0.0193
0.0196
0.0196
0.0199
0.0217
0.0217
0.0219
0.0219
0.0223
0.0230
0.0230
0.0236
0.0282
0.2462
0.9449

0.0218
0.0221
0.0230
0.0231
0.0231
0.0231
0.0232
0.0236
0.0238
0.0239
0.0245
0.0246
0.0247
0.0248
0.0252
0.0254
0.0254
0.0260
0.0262
0.0267
0.0276
0.0279
0.0282
0.0288
0.0291
0.0298
0.0310
0.0393
0.1998
0.9054
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and ¢

0.0252
0.0258
0.0258
0.0261
0.0266
0.0268
0.0280
0.0281
0.0287
0.0288
0.0288
0.0290
0.0290
0.0294
0.0294
0.0295
0.0298
0.0299
0.0302
0.0308
0.0309
0.0310
0.0310
0.0311
0.0313
0.0315
0.0337
0.0361
0.2249
0.9284

0.0118
0.0122
0.0126
0.0126
0.0127
0.0128
0.0133
0.0141
0.0141
0.0143
0.0144
0.0150
0.0159
0.0159
0.0160
0.0161
0.0165
0.0171
0.0173
0.0173
0.0175
0.0175
0.0183
0.0188
0.0203
0.0204
0.0212
0.0240
0.2516
0.9503

0.0112
0.0119
0.0120
0.0123
0.0128
0.0129
0.0130
0.0132
0.0135
0.0135
0.0137
0.0138
0.0141
0.0149
0.0151
0.0152
0.0152
0.0153
0.0156
0.0158
0.0162
0.0165
0.0167
0.0167
0.0172
0.0175
0.0176
0.0205
0.2382
0.9369

0.0131
0.0135
0.0135
0.0137
0.0138
0.0139
0.0142
0.0150
0.0152
0.0153
0.0154
0.0157
0.0160
0.0165
0.0166
0.0170
0.0170
0.0175
0.0179
0.0185
0.0185
0.0186
0.0187
0.0188
0.0202
0.0217
0.0230
0.0254
0.2487
0.9475

0.0124
0.0130
0.0131
0.0132
0.0138
0.0138
0.0139
0.0141
0.0143
0.0145
0.0145
0.0146
0.0146
0.0147
0.0148
0.0150
0.0150
0.0150
0.0152
0.0152
0.0152
0.0153
0.0158
0.0160
0.0165
0.0166
0.0195
0.0208
0.2311
0.9298

0.0177
0.0180
0.0181
0.0182
0.0187
0.0189
0.0189
0.0189
0.0189
0.0189
0.0191
0.0191
0.0194
0.0195
0.0195
0.0197
0.0204
0.0207
0.0207
0.0208
0.0211
0.0211
0.0216
0.0231
0.0233
0.0241
0.0241
0.0264
0.2419
0.9442

0.0112
0.0116
0.0118
0.0118
0.0123
0.0123
0.0126
0.0128
0.0129
0.0130
0.0132
0.0133
0.0134
0.0135
0.0141
0.0142
0.0143
0.0145
0.0145
0.0151
0.0156
0.0162
0.0162
0.0162
0.0163
0.0165
0.0171
0.0189
0.2357
0.9344

0.0106
0.0109
0.0110
0.0115
0.0116
0.0118
0.0120
0.0122
0.0123
0.0125
0.0125
0.0127
0.0141
0.0144
0.0144
0.0145
0.0145
0.0146
0.0149
0.0150
0.0150
0.0155
0.0156
0.0160
0.0165
0.0167
0.0181
0.0205
0.2431
0.9419

0.0215
0.0223
0.0224
0.0228
0.0228
0.0229
0.0230
0.0230
0.0231
0.0231
0.0232
0.0232
0.0235
0.0237
0.0240
0.0246
0.0246
0.0249
0.0251
0.0252
0.0259
0.0260
0.0263
0.0265
0.0276
0.0278
0.0288
0.0359
0.2156
0.9144
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and ¢

0.0137
0.0138
0.0139
0.0143
0.0145
0.0145
0.0146
0.0149
0.0149
0.0150
0.0154
0.0157
0.0162
0.0169
0.0170
0.0172
0.0172
0.0173
0.0176
0.0176
0.0176
0.0177
0.0177
0.0185
0.0189
0.0190
0.0192
0.0234
0.2421
0.9408

0.0200
0.0202
0.0202
0.0203
0.0204
0.0204
0.0205
0.0206
0.0208
0.0208
0.0208
0.0209
0.0209
0.0209
0.0212
0.0214
0.0215
0.0216
0.0217
0.0223
0.0226
0.0227
0.0230
0.0233
0.0233
0.0235
0.0261
0.0270
0.2310
0.9297

0.0111
0.0115
0.0115
0.0115
0.0117
0.0118
0.0124
0.0129
0.0130
0.0132
0.0134
0.0137
0.0139
0.0144
0.0146
0.0146
0.0147
0.0155
0.0155
0.0157
0.0158
0.0160
0.0162
0.0169
0.0182
0.0184
0.0187
0.0220
0.2480
0.9467

0.1846
0.2283
0.3049
0.3165
0.3187
0.3206
0.3208
0.3211
0.3246
0.3263
0.3263
0.3265
0.3294
0.3302
0.3318
0.3334
0.3353
0.3385
0.3406
0.3447
0.3476
0.3481
0.3491
0.3496
0.3500
0.3523
0.3551
0.3556
0.3558
0.5738

0.0176
0.0180
0.0180
0.0187
0.0191
0.0191
0.0204
0.0207
0.0209
0.0209
0.0211
0.0218
0.0218
0.0220
0.0220
0.0221
0.0238
0.0239
0.0241
0.0242
0.0247
0.0262
0.0269
0.0270
0.0287
0.0301
0.0321
0.0425
0.1930
0.8970

0.0170
0.0178
0.0181
0.0182
0.0183
0.0183
0.0184
0.0184
0.0186
0.0188
0.0189
0.0189
0.0190
0.0192
0.0193
0.0194
0.0196
0.0199
0.0202
0.0208
0.0208
0.0210
0.0212
0.0221
0.0222
0.0224
0.0234
0.0296
0.2225
0.9213

0.0163
0.0168
0.0170
0.0172
0.0174
0.0174
0.0175
0.0175
0.0175
0.0176
0.0177
0.0178
0.0180
0.0181
0.0183
0.0183
0.0185
0.0189
0.0191
0.0198
0.0200
0.0202
0.0202
0.0205
0.0214
0.0218
0.0225
0.0268
0.2244
0.9232

0.0215
0.0225
0.0228
0.0229
0.0232
0.0232
0.0232
0.0233
0.0236
0.0236
0.0237
0.0238
0.0238
0.0239
0.0240
0.0241
0.0242
0.0246
0.0251
0.0253
0.0254
0.0259
0.0266
0.0267
0.0275
0.0277
0.0287
0.0332
0.2241
0.9228

0.0190
0.0196
0.0196
0.0199
0.0200
0.0201
0.0203
0.0203
0.0204
0.0206
0.0210
0.0211
0.0214
0.0215
0.0215
0.0217
0.0218
0.0222
0.0224
0.0231
0.0233
0.0234
0.0240
0.0241
0.0254
0.0256
0.0259
0.0319
0.2226
0.9214
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TABLE A.7: Ranked sim values for (cV {a,b}) in ACB dataset using U-KTS KH" .

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and b

0.0188
0.0191
0.0191
0.0193
0.0199
0.0199
0.0203
0.0205
0.0205
0.0206
0.0207
0.0210
0.0215
0.0217
0.0217
0.0217
0.0217
0.0221
0.0221
0.0226
0.0230
0.0231
0.0232
0.0238
0.0239
0.0239
0.0240
0.0265
0.0315
0.9055

0.0192
0.0199
0.0203
0.0204
0.0207
0.0208
0.0209
0.0209
0.0209
0.0210
0.0210
0.0211
0.0214
0.0214
0.0214
0.0217
0.0218
0.0219
0.0219
0.0219
0.0224
0.0227
0.0227
0.0229
0.0229
0.0236
0.0248
0.0253
0.0265
0.9171

0.0164
0.0167
0.0170
0.0170
0.0170
0.0170
0.0173
0.0175
0.0176
0.0177
0.0177
0.0177
0.0178
0.0178
0.0179
0.0179
0.0179
0.0180
0.0182
0.0182
0.0183
0.0189
0.0195
0.0201
0.0213
0.0219
0.0222
0.0224
0.0227
0.9274

0.0102
0.0108
0.0109
0.0109
0.0113
0.0113
0.0114
0.0114
0.0115
0.0117
0.0117
0.0120
0.0125
0.0126
0.0129
0.0131
0.0131
0.0132
0.0133
0.0134
0.0134
0.0140
0.0146
0.0148
0.0155
0.0159
0.0161
0.0168
0.0177
0.9269

0.0135
0.0141
0.0141
0.0141
0.0144
0.0144
0.0148
0.0149
0.0151
0.0152
0.0152
0.0153
0.0154
0.0154
0.0155
0.0156
0.0156
0.0157
0.0158
0.0159
0.0164
0.0171
0.0175
0.0179
0.0183
0.0195
0.0196
0.0201
0.0201
0.9282

0.0121
0.0133
0.0141
0.0145
0.0149
0.0150
0.0153
0.0158
0.0162
0.0163
0.0168
0.0169
0.0169
0.0170
0.0171
0.0181
0.0182
0.0182
0.0187
0.0189
0.0189
0.0196
0.0199
0.0200
0.0204
0.0213
0.0226
0.0229
0.0376
0.9522

0.0282
0.0301
0.0313
0.0318
0.0320
0.0327
0.0332
0.0332
0.0335
0.0335
0.0336
0.0337
0.0341
0.0349
0.0349
0.0351
0.0352
0.0356
0.0360
0.0363
0.0374
0.0376
0.0376
0.0377
0.0381
0.0385
0.0387
0.0388
0.0430
0.8886

0.0181
0.0182
0.0183
0.0184
0.0184
0.0184
0.0184
0.0185
0.0186
0.0186
0.0186
0.0188
0.0189
0.0190
0.0192
0.0193
0.0193
0.0194
0.0194
0.0195
0.0197
0.0199
0.0200
0.0202
0.0206
0.0224
0.0227
0.0238
0.0256
0.9354

0.0172
0.0175
0.0177
0.0178
0.0179
0.0182
0.0182
0.0182
0.0182
0.0183
0.0183
0.0186
0.0188
0.0189
0.0190
0.0190
0.0191
0.0192
0.0196
0.0197
0.0200
0.0209
0.0212
0.0213
0.0216
0.0230
0.0237
0.0273
0.0297
0.9449

0.0227
0.0231
0.0232
0.0232
0.0234
0.0235
0.0237
0.0238
0.0238
0.0239
0.0240
0.0246
0.0248
0.0249
0.0250
0.0251
0.0260
0.0262
0.0263
0.0266
0.0268
0.0269
0.0269
0.0270
0.0272
0.0273
0.0273
0.0279
0.0351
0.9054
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and b

0.0301
0.0301
0.0302
0.0304
0.0306
0.0309
0.0310
0.0311
0.0312
0.0313
0.0314
0.0318
0.0320
0.0322
0.0324
0.0326
0.0327
0.0327
0.0329
0.0331
0.0331
0.0332
0.0334
0.0336
0.0341
0.0354
0.0363
0.0368
0.0381
0.9229

0.0127
0.0132
0.0133
0.0135
0.0137
0.0137
0.0138
0.0147
0.0147
0.0150
0.0151
0.0152
0.0156
0.0157
0.0160
0.0162
0.0162
0.0164
0.0164
0.0164
0.0168
0.0174
0.0175
0.0176
0.0179
0.0197
0.0200
0.0235
0.0263
0.9503

0.0116
0.0119
0.0120
0.0122
0.0125
0.0128
0.0129
0.0133
0.0134
0.0135
0.0135
0.0138
0.0142
0.0142
0.0143
0.0143
0.0147
0.0149
0.0151
0.0153
0.0154
0.0159
0.0159
0.0160
0.0167
0.0176
0.0181
0.0200
0.0212
0.9369

0.0131
0.0135
0.0139
0.0143
0.0144
0.0145
0.0145
0.0146
0.0155
0.0157
0.0157
0.0158
0.0160
0.0160
0.0160
0.0161
0.0162
0.0174
0.0177
0.0177
0.0184
0.0184
0.0185
0.0186
0.0187
0.0191
0.0205
0.0243
0.0296
0.9475

0.0129
0.0130
0.0132
0.0132
0.0132
0.0133
0.0136
0.0136
0.0138
0.0139
0.0140
0.0141
0.0143
0.0144
0.0144
0.0144
0.0145
0.0145
0.0146
0.0147
0.0153
0.0154
0.0158
0.0167
0.0175
0.0175
0.0183
0.0195
0.0199
0.9298

0.0174
0.0178
0.0178
0.0182
0.0186
0.0188
0.0189
0.0189
0.0189
0.0190
0.0192
0.0192
0.0194
0.0194
0.0198
0.0198
0.0198
0.0198
0.0200
0.0202
0.0207
0.0210
0.0214
0.0216
0.0217
0.0217
0.0257
0.0270
0.0286
0.9442

0.0108
0.0115
0.0117
0.0120
0.0120
0.0120
0.0121
0.0123
0.0124
0.0124
0.0126
0.0126
0.0127
0.0129
0.0136
0.0137
0.0138
0.0139
0.0140
0.0145
0.0145
0.0146
0.0149
0.0152
0.0157
0.0158
0.0159
0.0181
0.0191
0.9344

0.0112
0.0112
0.0114
0.0114
0.0116
0.0116
0.0121
0.0122
0.0124
0.0125
0.0126
0.0128
0.0129
0.0131
0.0131
0.0133
0.0133
0.0137
0.0138
0.0141
0.0144
0.0144
0.0149
0.0151
0.0165
0.0167
0.0169
0.0194
0.0205
0.9419

0.0218
0.0219
0.0223
0.0228
0.0228
0.0230
0.0230
0.0232
0.0233
0.0233
0.0234
0.0236
0.0237
0.0239
0.0240
0.0241
0.0244
0.0245
0.0247
0.0248
0.0250
0.0252
0.0253
0.0253
0.0255
0.0257
0.0263
0.0288
0.0306
0.9144
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and b

0.0140
0.0140
0.0143
0.0144
0.0145
0.0145
0.0145
0.0146
0.0147
0.0151
0.0151
0.0152
0.0156
0.0157
0.0159
0.0159
0.0163
0.0164
0.0165
0.0165
0.0170
0.0172
0.0178
0.0182
0.0184
0.0199
0.0201
0.0228
0.0229
0.9408

0.0195
0.0199
0.0199
0.0199
0.0203
0.0204
0.0204
0.0204
0.0205
0.0205
0.0208
0.0209
0.0210
0.0210
0.0211
0.0212
0.0212
0.0212
0.0213
0.0218
0.0219
0.0219
0.0220
0.0229
0.0246
0.0247
0.0250
0.0253
0.0253
0.9297

0.0117
0.0117
0.0119
0.0121
0.0121
0.0122
0.0127
0.0128
0.0130
0.0132
0.0133
0.0134
0.0135
0.0135
0.0141
0.0142
0.0145
0.0145
0.0146
0.0154
0.0154
0.0156
0.0160
0.0161
0.0163
0.0177
0.0185
0.0223
0.0241
0.9467

0.1774
0.1872
0.2301
0.2508
0.2950
0.2962
0.3188
0.3241
0.3268
0.3291
0.3295
0.3295
0.3302
0.3328
0.3332
0.3339
0.3341
0.3365
0.3378
0.3413
0.3416
0.3421
0.3421
0.3422
0.3437
0.3452
0.3461
0.3493
0.3557
0.5738

0.0166
0.0188
0.0199
0.0203
0.0204
0.0206
0.0206
0.0207
0.0207
0.0208
0.0213
0.0213
0.0221
0.0222
0.0224
0.0224
0.0227
0.0227
0.0228
0.0237
0.0240
0.0243
0.0247
0.0251
0.0257
0.0258
0.0261
0.0285
0.0329
0.8970

0.0177
0.0178
0.0180
0.0181
0.0183
0.0183
0.0184
0.0185
0.0186
0.0186
0.0189
0.0189
0.0189
0.0191
0.0195
0.0195
0.0196
0.0198
0.0199
0.0201
0.0202
0.0202
0.0204
0.0213
0.0217
0.0221
0.0224
0.0240
0.0258
0.9213

0.0161
0.0167
0.0168
0.0169
0.0170
0.0170
0.0171
0.0171
0.0172
0.0172
0.0173
0.0175
0.0177
0.0177
0.0178
0.0180
0.0182
0.0185
0.0186
0.0186
0.0186
0.0194
0.0197
0.0200
0.0201
0.0206
0.0208
0.0229
0.0235
0.9232

0.0219
0.0225
0.0228
0.0228
0.0231
0.0232
0.0232
0.0232
0.0233
0.0236
0.0236
0.0236
0.0236
0.0242
0.0242
0.0243
0.0243
0.0243
0.0245
0.0246
0.0249
0.0249
0.0254
0.0258
0.0260
0.0266
0.0273
0.0288
0.0298
0.9228

0.0194
0.0194
0.0194
0.0197
0.0202
0.0202
0.0203
0.0205
0.0207
0.0208
0.0209
0.0210
0.0210
0.0211
0.0212
0.0214
0.0215
0.0215
0.0219
0.0222
0.0223
0.0225
0.0226
0.0230
0.0231
0.0234
0.0249
0.0271
0.0284
0.9214
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B

TABLE A.8: Ranked sim values for (a V {b,c}) in ACB dataset using M-KTS.

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group b and ¢

0.0715
0.0754
0.0770
0.0775
0.0789
0.0808
0.0812
0.0839
0.0839
0.0880
0.0886
0.0934
0.0946
0.0971
0.0971
0.0971
0.0975
0.1014
0.1030
0.1031
0.1050
0.1057
0.1066
0.1107
0.1221
0.1233
0.1475
0.1831
0.3221
0.5823

0.0580
0.0644
0.0717
0.0753
0.0761
0.0791
0.0835
0.0845
0.0858
0.0912
0.0916
0.0922
0.0976
0.0988
0.1082
0.1139
0.1166
0.1181
0.1192
0.1192
0.1232
0.1300
0.1310
0.1316
0.1348
0.1599
0.1980
0.2514
0.2549
0.5441

0.0761
0.0773
0.0800
0.0808
0.0810
0.0817
0.0825
0.0825
0.0829
0.0839
0.0841
0.0842
0.0845
0.0849
0.0871
0.0902
0.0943
0.0943
0.0956
0.0972
0.0974
0.0977
0.0984
0.0990
0.1057
0.1342
0.1444
0.1753
0.3568
0.5992

0.0809
0.0898
0.0921
0.0926
0.0928
0.0948
0.0983
0.0996
0.1001
0.1004
0.1007
0.1024
0.1026
0.1027
0.1035
0.1035
0.1037
0.1050
0.1072
0.1118
0.1140
0.1147
0.1158
0.1182
0.1194
0.1206
0.1580
0.1592
0.3663
0.6230

0.1070
0.1088
0.1128
0.1171
0.1171
0.1179
0.1197
0.1241
0.1267
0.1303
0.1309
0.1310
0.1352
0.1377
0.1388
0.1393
0.1394
0.1432
0.1440
0.1470
0.1481
0.1499
0.1513
0.1553
0.1566
0.1569
0.1604
0.2088
0.4044
0.6417

0.0403
0.0592
0.0649
0.0650
0.0658
0.0716
0.0732
0.0737
0.0760
0.0795
0.0815
0.0870
0.0898
0.0933
0.0979
0.1042
0.1049
0.1072
0.1072
0.1079
0.1102
0.1144
0.1156
0.1163
0.1207
0.1355
0.1526
0.2144
0.3455
0.6067

0.1232
0.1291
0.1300
0.1315
0.1354
0.1402
0.1404
0.1477
0.1477
0.1486
0.1548
0.1549
0.1587
0.1614
0.1652
0.1672
0.1736
0.1746
0.1753
0.1763
0.1763
0.1791
0.1948
0.1954
0.2003
0.2038
0.2081
0.2430
0.4219
0.6414

0.0564
0.0662
0.0719
0.0741
0.0744
0.0772
0.0793
0.0804
0.0806
0.0826
0.0847
0.0848
0.0864
0.0883
0.0915
0.0962
0.0962
0.0963
0.0969
0.0982
0.0990
0.1028
0.1125
0.1125
0.1186
0.1288
0.1477
0.2018
0.3320
0.6011

0.0641
0.0664
0.0678
0.0726
0.0744
0.0746
0.0766
0.0769
0.0779
0.0779
0.0801
0.0804
0.0831
0.0863
0.0906
0.0913
0.0917
0.0936
0.0936
0.0938
0.0947
0.0973
0.0989
0.1019
0.1108
0.1297
0.1466
0.2007
0.3380
0.5784

0.1059
0.1059
0.1148
0.1154
0.1182
0.1210
0.1267
0.1298
0.1300
0.1329
0.1333
0.1337
0.1341
0.1357
0.1380
0.1382
0.1384
0.1398
0.1403
0.1415
0.1448
0.1452
0.1467
0.1481
0.1484
0.1493
0.1578
0.1799
0.3845
0.5949
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group b and ¢

0.0692
0.0756
0.0758
0.0788
0.0816
0.0817
0.0819
0.0849
0.0849
0.0854
0.0862
0.0894
0.0897
0.0936
0.0949
0.0949
0.0969
0.0969
0.0992
0.1006
0.1022
0.1037
0.1111
0.1112
0.1221
0.1231
0.1396
0.1996
0.3351
0.5958

0.0628
0.0641
0.0665
0.0698
0.0699
0.0700
0.0722
0.0734
0.0743
0.0766
0.0778
0.0844
0.0870
0.0903
0.0943
0.0950
0.0973
0.1028
0.1028
0.1033
0.1033
0.1087
0.1100
0.1115
0.1133
0.1354
0.1515
0.1913
0.3341
0.6064

0.0745
0.0762
0.0799
0.0808
0.0813
0.0836
0.0849
0.0861
0.0878
0.0888
0.0896
0.0942
0.0942
0.0964
0.0971
0.0977
0.0997
0.0999
0.1002
0.1033
0.1034
0.1036
0.1074
0.1106
0.1160
0.1246
0.1660
0.1775
0.3490
0.6147

0.0841
0.0853
0.0888
0.0897
0.0898
0.0905
0.0914
0.0962
0.0967
0.0971
0.0974
0.0996
0.1018
0.1022
0.1028
0.1063
0.1122
0.1138
0.1138
0.1155
0.1161
0.1185
0.1215
0.1216
0.1302
0.1329
0.1672
0.1929
0.3443
0.6047

0.0629
0.0662
0.0702
0.0759
0.0763
0.0813
0.0838
0.0851
0.0858
0.0869
0.0875
0.0888
0.0889
0.0919
0.0933
0.0947
0.0947
0.0968
0.0973
0.1011
0.1016
0.1028
0.1048
0.1067
0.1216
0.1270
0.1281
0.1728
0.3434
0.5918

0.0960
0.0967
0.1036
0.1039
0.1054
0.1090
0.1108
0.1113
0.1116
0.1119
0.1121
0.1125
0.1126
0.1129
0.1129
0.1139
0.1142
0.1145
0.1146
0.1162
0.1167
0.1179
0.1184
0.1186
0.1330
0.1501
0.1560
0.1743
0.3791
0.6598

0.0516
0.0522
0.0551
0.0596
0.0615
0.0625
0.0666
0.0697
0.0739
0.0759
0.0759
0.0783
0.0794
0.0905
0.0969
0.0990
0.1013
0.1013
0.1015
0.1040
0.1098
0.1121
0.1165
0.1184
0.1215
0.1488
0.1863
0.2280
0.3063
0.5521

0.0533
0.0636
0.0650
0.0679
0.0684
0.0691
0.0725
0.0765
0.0795
0.0814
0.0822
0.0855
0.0870
0.0877
0.0899
0.0932
0.0945
0.0966
0.0966
0.0977
0.0993
0.1036
0.1082
0.1084
0.1132
0.1197
0.1570
0.1919
0.3304
0.5746

0.1139
0.1224
0.1248
0.1258
0.1294
0.1329
0.1329
0.1347
0.1355
0.1366
0.1371
0.1423
0.1431
0.1436
0.1473
0.1482
0.1518
0.1528
0.1548
0.1565
0.1568
0.1580
0.1581
0.1666
0.1678
0.1689
0.1750
0.2237
0.4300
0.6766




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 166

Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group b and ¢

0.0469
0.0541
0.0550
0.0560
0.0591
0.0646
0.0660
0.0712
0.0736
0.0754
0.0769
0.0797
0.0822
0.0847
0.0902
0.0925
0.0967
0.1005
0.1006
0.1006
0.1018
0.1025
0.1101
0.1122
0.1131
0.1447
0.1800
0.2282
0.3181
0.5775

0.0877
0.0906
0.0938
0.0973
0.0979
0.0980
0.0984
0.0986
0.1008
0.1019
0.1019
0.1031
0.1046
0.1047
0.1058
0.1059
0.1065
0.1074
0.1084
0.1105
0.1121
0.1121
0.1134
0.1157
0.1166
0.1254
0.1453
0.1658
0.3505
0.5980

0.1027
0.1080
0.1095
0.1100
0.1135
0.1154
0.1159
0.1163
0.1176
0.1184
0.1191
0.1210
0.1218
0.1237
0.1238
0.1240
0.1241
0.1241
0.1262
0.1266
0.1266
0.1273
0.1291
0.1335
0.1388
0.1520
0.1613
0.1677
0.3843
0.6505

0.0919
0.3118
0.5761
0.5804
0.5865
0.5893
0.5906
0.5910
0.5933
0.5965
0.5970
0.6009
0.6018
0.6045
0.6050
0.6056
0.6056
0.6083
0.6106
0.6137
0.6154
0.6155
0.6171
0.6180
0.6245
0.6257
0.6288
0.6313
0.6567
0.6579

0.1006
0.1018
0.1062
0.1092
0.1092
0.1117
0.1118
0.1155
0.1215
0.1221
0.1223
0.1233
0.1247
0.1270
0.1288
0.1313
0.1365
0.1380
0.1386
0.1409
0.1436
0.1451
0.1467
0.1537
0.1547
0.1588
0.1693
0.1938
0.3519
0.6120

0.0924
0.1052
0.1058
0.1071
0.1072
0.1072
0.1077
0.1078
0.1136
0.1151
0.1161
0.1164
0.1169
0.1184
0.1188
0.1188
0.1191
0.1214
0.1216
0.1219
0.1238
0.1311
0.1313
0.1367
0.1437
0.1501
0.1543
0.1662
0.3748
0.6169

0.0933
0.0961
0.0974
0.0984
0.0990
0.1000
0.1001
0.1018
0.1028
0.1028
0.1046
0.1055
0.1072
0.1075
0.1139
0.1139
0.1141
0.1146
0.1155
0.1161
0.1182
0.1197
0.1241
0.1257
0.1262
0.1269
0.1393
0.1596
0.3631
0.6101

0.0651
0.0715
0.0735
0.0735
0.0808
0.0852
0.0861
0.0878
0.0903
0.0913
0.0948
0.0999
0.1001
0.1027
0.1095
0.1095
0.1114
0.1121
0.1164
0.1166
0.1194
0.1261
0.1269
0.1270
0.1391
0.1558
0.1897
0.2275
0.3296
0.5720

0.0714
0.0736
0.0775
0.0831
0.0847
0.0866
0.0903
0.0917
0.0932
0.0937
0.0944
0.0948
0.0950
0.0956
0.0963
0.1029
0.1083
0.1083
0.1083
0.1086
0.1105
0.1141
0.1198
0.1214
0.1280
0.1452
0.1671
0.2044
0.3302
0.5836
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B

TABLE A.9: Ranked sim values for (bV {a,c}) in ACB dataset using M-KTS.

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group a and ¢

0.1124
0.1128
0.1167
0.1180
0.1187
0.1198
0.1211
0.1211
0.1224
0.1247
0.1257
0.1272
0.1289
0.1297
0.1297
0.1314
0.1327
0.1328
0.1366
0.1378
0.1402
0.1407
0.1425
0.1466
0.1505
0.1548
0.1605
0.1651
0.3361
0.8211

0.1134
0.1142
0.1148
0.1170
0.1188
0.1188
0.1196
0.1204
0.1216
0.1227
0.1236
0.1237
0.1242
0.1242
0.1242
0.1257
0.1263
0.1269
0.1270
0.1299
0.1312
0.1332
0.1377
0.1393
0.1430
0.1566
0.1580
0.1866
0.3458
0.8205

0.1202
0.1203
0.1233
0.1271
0.1271
0.1276
0.1285
0.1296
0.1300
0.1305
0.1312
0.1316
0.1317
0.1324
0.1332
0.1337
0.1346
0.1358
0.1386
0.1394
0.1411
0.1426
0.1445
0.1454
0.1471
0.1573
0.1575
0.1668
0.3769
0.8563

0.1626
0.1658
0.1667
0.1678
0.1697
0.1722
0.1722
0.1735
0.1770
0.1798
0.1812
0.1814
0.1815
0.1853
0.1878
0.1881
0.1883
0.1883
0.1917
0.1932
0.1945
0.1957
0.1973
0.1974
0.1991
0.2006
0.2007
0.2340
0.4577
0.9119

0.1137
0.1168
0.1180
0.1233
0.1239
0.1262
0.1277
0.1277
0.1309
0.1311
0.1314
0.1325
0.1340
0.1348
0.1350
0.1378
0.1421
0.1432
0.1433
0.1463
0.1486
0.1494
0.1502
0.1515
0.1521
0.1522
0.1523
0.1789
0.4012
0.8552

0.0807
0.0882
0.0911
0.0912
0.0931
0.0934
0.0937
0.0940
0.0941
0.0949
0.0949
0.0951
0.0952
0.0954
0.0980
0.1009
0.1010
0.1011
0.1026
0.1038
0.1044
0.1051
0.1108
0.1158
0.1162
0.1171
0.1306
0.1365
0.3820
0.8487

0.1440
0.1535
0.1544
0.1557
0.1557
0.1607
0.1609
0.1611
0.1645
0.1701
0.1726
0.1734
0.1734
0.1753
0.1763
0.1767
0.1802
0.1832
0.1833
0.1858
0.1957
0.1995
0.2003
0.2013
0.2022
0.2061
0.2244
0.2588
0.4256
0.8445

0.1375
0.1426
0.1439
0.1441
0.1462
0.1468
0.1473
0.1489
0.1493
0.1495
0.1495
0.1507
0.1510
0.1511
0.1526
0.1527
0.1528
0.1530
0.1551
0.1560
0.1569
0.1580
0.1593
0.1595
0.1658
0.1682
0.1800
0.1891
0.4005
0.8888

0.0866
0.0869
0.0875
0.0892
0.0897
0.0902
0.0903
0.0906
0.0911
0.0912
0.0947
0.0960
0.0967
0.0970
0.0972
0.0984
0.0987
0.1008
0.1008
0.1017
0.1030
0.1031
0.1048
0.1088
0.1097
0.1151
0.1597
0.1689
0.3375
0.8295

0.1855
0.1925
0.2011
0.2059
0.2136
0.2136
0.2139
0.2145
0.2148
0.2151
0.2152
0.2180
0.2202
0.2231
0.2269
0.2343
0.2356
0.2408
0.2409
0.2467
0.2519
0.2563
0.2570
0.2586
0.2599
0.2639
0.2712
0.2938
0.4901
0.9184

1




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 168

S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and ¢

0.1366
0.1370
0.1404
0.1416
0.1416
0.1436
0.1447
0.1456
0.1461
0.1468
0.1474
0.1477
0.1500
0.1509
0.1511
0.1514
0.1523
0.1532
0.1550
0.1554
0.1581
0.1585
0.1588
0.1597
0.1604
0.1605
0.1813
0.1834
0.3861
0.8600

0.0784
0.0800
0.0800
0.0808
0.0809
0.0813
0.0826
0.0829
0.0856
0.0861
0.0883
0.0891
0.0925
0.0931
0.0934
0.0937
0.0948
0.0954
0.0965
0.0965
0.0990
0.1025
0.1030
0.1030
0.1065
0.1080
0.1535
0.1671
0.3398
0.8331

0.1075
0.1112
0.1130
0.1130
0.1131
0.1136
0.1137
0.1151
0.1161
0.1166
0.1171
0.1175
0.1181
0.1186
0.1196
0.1203
0.1215
0.1222
0.1231
0.1233
0.1234
0.1239
0.1251
0.1295
0.1328
0.1467
0.1503
0.1624
0.3758
0.8515

0.1082
0.1084
0.1130
0.1174
0.1175
0.1185
0.1192
0.1193
0.1194
0.1198
0.1199
0.1218
0.1222
0.1233
0.1241
0.1248
0.1251
0.1251
0.1256
0.1259
0.1260
0.1267
0.1293
0.1307
0.1360
0.1416
0.1635
0.1737
0.3858
0.8645

0.0767
0.0791
0.0792
0.0821
0.0822
0.0824
0.0828
0.0832
0.0845
0.0854
0.0856
0.0858
0.0858
0.0861
0.0866
0.0884
0.0884
0.0909
0.0909
0.0920
0.0921
0.0940
0.0947
0.0952
0.1008
0.1073
0.1340
0.1375
0.3241
0.8152

0.1217
0.1272
0.1287
0.1296
0.1311
0.1322
0.1322
0.1322
0.1324
0.1327
0.1335
0.1341
0.1343
0.1353
0.1354
0.1354
0.1358
0.1372
0.1376
0.1377
0.1379
0.1389
0.1399
0.1441
0.1561
0.1570
0.1683
0.1932
0.3880
0.8691

0.0807
0.0826
0.0830
0.0834
0.0836
0.0851
0.0880
0.0883
0.0904
0.0915
0.0917
0.0920
0.0923
0.0937
0.0974
0.0976
0.0982
0.0994
0.1015
0.1041
0.1044
0.1044
0.1044
0.1090
0.1117
0.1168
0.1709
0.1749
0.3215
0.8211

0.0717
0.0742
0.0743
0.0773
0.0795
0.0797
0.0800
0.0800
0.0810
0.0826
0.0835
0.0846
0.0847
0.0856
0.0868
0.0872
0.0909
0.0920
0.0957
0.0961
0.0961
0.0967
0.0987
0.1023
0.1024
0.1048
0.1652
0.1716
0.3273
0.8200

0.1618
0.1633
0.1638
0.1640
0.1688
0.1688
0.1689
0.1691
0.1703
0.1769
0.1775
0.1780
0.1784
0.1789
0.1807
0.1809
0.1822
0.1837
0.1840
0.1850
0.1891
0.1926
0.1932
0.1934
0.1937
0.1954
0.1955
0.2298
0.4340
0.8837




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 169

Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and ¢

0.0935
0.0977
0.0989
0.0993
0.0997
0.0998
0.1011
0.1015
0.1019
0.1026
0.1045
0.1053
0.1059
0.1066
0.1073
0.1081
0.1082
0.1082
0.1082
0.1084
0.1088
0.1104
0.1109
0.1111
0.1175
0.1261
0.1638
0.1857
0.3436
0.8358

0.1715
0.1743
0.1743
0.1760
0.1762
0.1776
0.1805
0.1811
0.1827
0.1827
0.1850
0.1854
0.1858
0.1859
0.1869
0.1892
0.1908
0.1911
0.1925
0.1929
0.1938
0.1945
0.1951
0.1981
0.1997
0.2001
0.2114
0.2211
0.4286
0.9053

0.1484
0.1596
0.1633
0.1662
0.1662
0.1675
0.1684
0.1698
0.1703
0.1703
0.1706
0.1711
0.1714
0.1724
0.1728
0.1730
0.1734
0.1734
0.1737
0.1739
0.1773
0.1782
0.1793
0.1808
0.1933
0.1943
0.2045
0.2187
0.4390
0.9150

0.3574
0.3997
0.4297
0.4352
0.4392
0.4392
0.4410
0.4425
0.4434
0.4453
0.4460
0.4490
0.4494
0.4537
0.4568
0.4608
0.4608
0.4677
0.4685
0.4731
0.4738
0.4770
0.4778
0.4804
0.4810
0.4825
0.4867
0.4927
0.5007
0.5986

0.1249
0.1254
0.1306
0.1307
0.1307
0.1318
0.1339
0.1349
0.1353
0.1388
0.1424
0.1430
0.1436
0.1471
0.1475
0.1487
0.1499
0.1522
0.1537
0.1545
0.1559
0.1586
0.1592
0.1617
0.1636
0.1684
0.1729
0.1790
0.3510
0.8288

0.1432
0.1433
0.1443
0.1473
0.1474
0.1474
0.1474
0.1479
0.1503
0.1506
0.1512
0.1522
0.1548
0.1551
0.1573
0.1579
0.1582
0.1588
0.1593
0.1614
0.1623
0.1631
0.1640
0.1654
0.1672
0.1722
0.1800
0.1839
0.3914
0.8715

0.1372
0.1395
0.1426
0.1432
0.1432
0.1443
0.1473
0.1489
0.1494
0.1495
0.1506
0.1510
0.1514
0.1523
0.1536
0.1556
0.1577
0.1585
0.1601
0.1610
0.1645
0.1664
0.1664
0.1678
0.1698
0.1728
0.1841
0.1931
0.3916
0.8688

0.1346
0.1361
0.1374
0.1374
0.1375
0.1391
0.1391
0.1417
0.1419
0.1421
0.1429
0.1431
0.1439
0.1458
0.1483
0.1487
0.1489
0.1495
0.1514
0.1530
0.1544
0.1545
0.1559
0.1609
0.1609
0.1655
0.1700
0.1757
0.3773
0.8534

0.1384
0.1399
0.1402
0.1412
0.1412
0.1413
0.1414
0.1419
0.1423
0.1432
0.1454
0.1455
0.1485
0.1500
0.1510
0.1510
0.1521
0.1531
0.1546
0.1568
0.1575
0.1586
0.1606
0.1613
0.1614
0.1703
0.1725
0.1739
0.3792
0.8607
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TABLE A.10: Ranked sim values for (¢ V {a,b}) in ACB dataset using M-KTS.

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group a and b

0.1159
0.1168
0.1182
0.1187
0.1202
0.1215
0.1218
0.1230
0.1250
0.1250
0.1250
0.1253
0.1264
0.1265
0.1269
0.1274
0.1288
0.1324
0.1328
0.1347
0.1359
0.1378
0.1378
0.1379
0.1388
0.1416
0.1459
0.1474
0.1536
0.8041

0.1110
0.1111
0.1150
0.1154
0.1183
0.1188
0.1191
0.1199
0.1202
0.1207
0.1213
0.1214
0.1219
0.1229
0.1237
0.1237
0.1249
0.1268
0.1269
0.1275
0.1310
0.1319
0.1340
0.1345
0.1355
0.1382
0.1414
0.1498
0.1616
0.8063

0.1193
0.1208
0.1226
0.1233
0.1268
0.1268
0.1277
0.1284
0.1294
0.1302
0.1315
0.1315
0.1315
0.1319
0.1341
0.1344
0.1345
0.1359
0.1361
0.1361
0.1367
0.1389
0.1411
0.1411
0.1432
0.1454
0.1471
0.1486
0.1510
0.8398

0.1597
0.1605
0.1620
0.1655
0.1704
0.1731
0.1735
0.1741
0.1749
0.1751
0.1777
0.1779
0.1791
0.1793
0.1801
0.1813
0.1821
0.1821
0.1832
0.1839
0.1849
0.1887
0.1899
0.1902
0.1921
0.1923
0.2028
0.2050
0.2159
0.8980

0.1137
0.1156
0.1194
0.1246
0.1247
0.1247
0.1250
0.1252
0.1261
0.1289
0.1300
0.1301
0.1314
0.1322
0.1349
0.1355
0.1355
0.1355
0.1373
0.1377
0.1390
0.1418
0.1455
0.1457
0.1513
0.1529
0.1558
0.1590
0.1605
0.8438

0.0799
0.0870
0.0927
0.0928
0.0930
0.0959
0.0967
0.0970
0.0972
0.0975
0.0982
0.0988
0.1001
0.1003
0.1004
0.1006
0.1030
0.1046
0.1055
0.1060
0.1060
0.1076
0.1087
0.1096
0.1109
0.1125
0.1177
0.1181
0.1216
0.8440

0.1390
0.1414
0.1536
0.1571
0.1617
0.1668
0.1669
0.1687
0.1691
0.1702
0.1737
0.1744
0.1745
0.1752
0.1766
0.1833
0.1847
0.1848
0.1851
0.1901
0.1909
0.1916
0.1939
0.1952
0.1952
0.1973
0.2013
0.2027
0.2077
0.8652

0.1388
0.1402
0.1404
0.1407
0.1408
0.1419
0.1419
0.1432
0.1473
0.1474
0.1476
0.1486
0.1486
0.1489
0.1514
0.1514
0.1514
0.1515
0.1520
0.1530
0.1535
0.1546
0.1552
0.1555
0.1602
0.1635
0.1644
0.1649
0.1705
0.8607

0.0843
0.0883
0.0887
0.0893
0.0893
0.0907
0.0910
0.0931
0.0936
0.0947
0.0948
0.0948
0.0956
0.0963
0.0987
0.0992
0.1002
0.1002
0.1010
0.1035
0.1035
0.1038
0.1053
0.1060
0.1101
0.1226
0.1238
0.1285
0.1494
0.8226

0.1840
0.1890
0.1904
0.1953
0.2034
0.2060
0.2100
0.2119
0.2143
0.2170
0.2218
0.2237
0.2248
0.2269
0.2278
0.2278
0.2278
0.2279
0.2291
0.2302
0.2335
0.2344
0.2392
0.2454
0.2491
0.2558
0.2585
0.2599
0.2795
0.8893
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and b

0.1338
0.1366
0.1390
0.1390
0.1401
0.1401
0.1401
0.1405
0.1407
0.1408
0.1426
0.1432
0.1477
0.1479
0.1481
0.1495
0.1526
0.1532
0.1537
0.1542
0.1544
0.1558
0.1578
0.1593
0.1613
0.1614
0.1633
0.1645
0.1698
0.8366

0.0777
0.0804
0.0809
0.0821
0.0822
0.0831
0.0834
0.0844
0.0857
0.0860
0.0875
0.0878
0.0884
0.0887
0.0889
0.0889
0.0939
0.0944
0.0944
0.0965
0.0966
0.0985
0.1007
0.1082
0.1090
0.1157
0.1177
0.1210
0.1387
0.8219

0.1052
0.1076
0.1092
0.1105
0.1110
0.1124
0.1132
0.1144
0.1155
0.1162
0.1173
0.1175
0.1185
0.1193
0.1197
0.1206
0.1208
0.1210
0.1218
0.1259
0.1259
0.1276
0.1289
0.1317
0.1320
0.1326
0.1349
0.1363
0.1431
0.8368

0.1044
0.1131
0.1140
0.1148
0.1155
0.1160
0.1165
0.1174
0.1178
0.1181
0.1194
0.1195
0.1198
0.1202
0.1206
0.1213
0.1218
0.1231
0.1231
0.1247
0.1272
0.1284
0.1303
0.1328
0.1354
0.1377
0.1380
0.1458
0.1578
0.8484

0.0766
0.0802
0.0809
0.0810
0.0813
0.0816
0.0824
0.0838
0.0843
0.0860
0.0869
0.0874
0.0884
0.0890
0.0890
0.0895
0.0905
0.0906
0.0924
0.0936
0.0936
0.0961
0.0975
0.0983
0.0989
0.1077
0.1089
0.1090
0.1284
0.8093

0.1196
0.1216
0.1255
0.1263
0.1266
0.1268
0.1290
0.1294
0.1304
0.1309
0.1309
0.1322
0.1326
0.1335
0.1344
0.1349
0.1351
0.1399
0.1399
0.1405
0.1412
0.1446
0.1451
0.1452
0.1453
0.1483
0.1517
0.1529
0.1615
0.8490

0.0786
0.0822
0.0824
0.0825
0.0866
0.0874
0.0887
0.0894
0.0900
0.0904
0.0912
0.0913
0.0913
0.0928
0.0941
0.0952
0.0957
0.0971
0.0973
0.1013
0.1051
0.1051
0.1062
0.1099
0.1167
0.1228
0.1272
0.1312
0.1582
0.8077

0.0724
0.0766
0.0782
0.0783
0.0784
0.0796
0.0811
0.0818
0.0818
0.0821
0.0823
0.0836
0.0836
0.0840
0.0876
0.0882
0.0905
0.0905
0.0911
0.0915
0.0945
0.0954
0.0977
0.0977
0.0997
0.1104
0.1105
0.1192
0.1276
0.8060

0.1547
0.1558
0.1558
0.1595
0.1606
0.1705
0.1707
0.1715
0.1717
0.1731
0.1749
0.1761
0.1762
0.1770
0.1771
0.1777
0.1800
0.1822
0.1833
0.1840
0.1842
0.1859
0.1859
0.1872
0.1878
0.1942
0.1944
0.1987
0.2061
0.8819
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and b

0.0937
0.0945
0.0947
0.0972
0.0978
0.0994
0.0995
0.1002
0.1013
0.1016
0.1025
0.1025
0.1031
0.1039
0.1052
0.1067
0.1067
0.1090
0.1090
0.1091
0.1116
0.1125
0.1149
0.1154
0.1167
0.1311
0.1318
0.1362
0.1590
0.8224

0.1719
0.1727
0.1767
0.1769
0.1781
0.1786
0.1802
0.1831
0.1831
0.1837
0.1844
0.1849
0.1855
0.1862
0.1862
0.1869
0.1870
0.1887
0.1888
0.1894
0.1900
0.1901
0.1914
0.1930
0.1954
0.1987
0.1997
0.2019
0.2072
0.8869

0.1487
0.1576
0.1598
0.1608
0.1624
0.1629
0.1631
0.1636
0.1647
0.1647
0.1664
0.1677
0.1684
0.1694
0.1701
0.1705
0.1714
0.1745
0.1760
0.1761
0.1773
0.1781
0.1814
0.1815
0.1821
0.1827
0.1920
0.1950
0.1950
0.8911

0.3383
0.3940
0.4250
0.4257
0.4278
0.4356
0.4374
0.4434
0.4472
0.4472
0.4511
0.4512
0.4520
0.4558
0.4577
0.4598
0.4606
0.4610
0.4652
0.4667
0.4667
0.4675
0.4676
0.4684
0.4699
0.4721
0.4739
0.4754
0.4903
0.5983

0.1237
0.1324
0.1327
0.1340
0.1352
0.1366
0.1374
0.1378
0.1378
0.1389
0.1398
0.1420
0.1425
0.1438
0.1440
0.1469
0.1479
0.1489
0.1490
0.1492
0.1501
0.1505
0.1517
0.1520
0.1577
0.1587
0.1593
0.1598
0.1605
0.8056

0.1405
0.1409
0.1409
0.1438
0.1447
0.1457
0.1472
0.1477
0.1480
0.1511
0.1516
0.1525
0.1534
0.1538
0.1553
0.1556
0.1557
0.1576
0.1579
0.1581
0.1591
0.1600
0.1612
0.1613
0.1667
0.1680
0.1688
0.1689
0.1696
0.8523

0.1350
0.1368
0.1424
0.1438
0.1450
0.1460
0.1465
0.1465
0.1477
0.1487
0.1492
0.1493
0.1503
0.1506
0.1525
0.1529
0.1532
0.1533
0.1540
0.1545
0.1545
0.1561
0.1570
0.1601
0.1602
0.1638
0.1700
0.1704
0.1726
0.8492

0.1381
0.1395
0.1402
0.1402
0.1404
0.1428
0.1430
0.1430
0.1442
0.1448
0.1448
0.1448
0.1449
0.1462
0.1466
0.1469
0.1483
0.1494
0.1498
0.1502
0.1525
0.1527
0.1540
0.1553
0.1566
0.1588
0.1591
0.1657
0.1701
0.8439

0.1322
0.1358
0.1364
0.1379
0.1422
0.1428
0.1430
0.1436
0.1443
0.1445
0.1448
0.1448
0.1457
0.1469
0.1471
0.1477
0.1480
0.1491
0.1498
0.1517
0.1518
0.1543
0.1550
0.1556
0.1579
0.1596
0.1616
0.1618
0.1631
0.8475
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TABLE A.11: Ranked sim values for (a V {b,c}) in ACB dataset using FVR.

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group b and ¢

0.6821
0.6690
0.6680
0.6567
0.6137
0.5881
0.5689
0.5530
0.5487
0.5038
0.5032
0.4953
0.4906
0.4830
0.4824
0.4770
0.4763
0.4580
0.4575
0.4530
0.4509
0.4384
0.4371
0.4236
0.4236
0.4180
0.3945
0.3897
0.3821
0.3449

0.6409
0.6403
0.6207
0.6171
0.6146
0.5967
0.5957
0.5934
0.5926
0.5895
0.5860
0.5741
0.5726
0.5655
0.5568
0.5316
0.5310
0.5291
0.5239
0.5171
0.5063
0.4980
0.4964
0.4804
0.4804
0.4691
0.4655
0.4443
0.4355
0.3492

0.7964
0.7307
0.7241
0.7063
0.6725
0.6443
0.6327
0.6134
0.5880
0.5826
0.5809
0.5805
0.5804
0.5597
0.5516
0.5505
0.5434
0.5388
0.5351
0.5212
0.5137
0.5094
0.5013
0.4897
0.4750
0.4333
0.4247
0.4064
0.4064
0.3898

0.7776
0.7667
0.7634
0.7093
0.6727
0.6683
0.6651
0.6595
0.6587
0.6480
0.6463
0.6463
0.6391
0.6379
0.6229
0.6043
0.5964
0.5944
0.5895
0.5882
0.5816
0.5782
0.5698
0.5695
0.5325
0.5269
0.5114
0.5103
0.5058
0.4493

0.7892
0.7566
0.7428
0.7425
0.7242
0.6949
0.6946
0.6937
0.6925
0.6877
0.6572
0.6541
0.6458
0.6441
0.6405
0.6224
0.6156
0.5867
0.5856
0.5756
0.5753
0.5682
0.5536
0.5430
0.5429
0.5401
0.5203
0.4595
0.4595
0.4299

0.7711
0.7440
0.7371
0.7148
0.7085
0.7045
0.7010
0.6903
0.6834
0.6740
0.6661
0.6659
0.6607
0.6577
0.6509
0.6499
0.6450
0.6171
0.6060
0.6060
0.5937
0.5893
0.5849
0.5791
0.5278
0.5234
0.5234
0.5143
0.4453
0.4270

0.6540
0.6503
0.6262
0.6117
0.6115
0.5817
0.5748
0.5688
0.5660
0.5632
0.5400
0.5307
0.5302
0.5283
0.5183
0.5088
0.4900
0.4870
0.4837
0.4761
0.4702
0.4686
0.4686
0.4390
0.4290
0.4264
0.4189
0.4183
0.4145
0.3938

0.8789
0.8600
0.8173
0.7834
0.7772
0.7741
0.7667
0.7489
0.7422
0.7389
0.7347
0.7159
0.7146
0.6985
0.6966
0.6741
0.6738
0.6717
0.6707
0.6680
0.6582
0.6582
0.6540
0.6502
0.6470
0.5934
0.5933
0.5854
0.5541
0.4885

0.7948
0.7484
0.7223
0.7202
0.7132
0.7120
0.7081
0.7010
0.7008
0.6814
0.6801
0.6563
0.6562
0.6550
0.6538
0.6348
0.6298
0.6283
0.6271
0.6120
0.6043
0.5999
0.5897
0.5849
0.5849
0.5849
0.5808
0.5772
0.5715
0.5685

0.7663
0.6755
0.6494
0.6039
0.6010
0.6003
0.5838
0.5786
0.5699
0.5600
0.5596
0.5456
0.5448
0.5353
0.5227
0.5184
0.5126
0.5126
0.5096
0.5042
0.4740
0.4719
0.4634
0.4591
0.4471
0.4061
0.3787
0.3774
0.3657
0.3449

7

10

12

14

11

24
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group b and ¢

0.8079
0.7262
0.6832
0.6817
0.6815
0.6814
0.6525
0.6511
0.6440
0.6327
0.6233
0.6232
0.6217
0.6167
0.6004
0.5964
0.5938
0.5862
0.5836
0.5745
0.5623
0.5540
0.5337
0.5226
0.5190
0.4961
0.4942
0.4556
0.4556
0.4254

0.6951
0.6545
0.6474
0.6436
0.6318
0.6226
0.6193
0.6066
0.6058
0.6020
0.5993
0.5910
0.5782
0.5771
0.5758
0.5650
0.5406
0.5349
0.5248
0.5112
0.5037
0.5010
0.4879
0.4729
0.4664
0.4342
0.4244
0.3847
0.3847
0.3720

0.5682
0.5216
0.5156
0.4868
0.4808
0.4757
0.4755
0.4751
0.4513
0.4438
0.4410
0.4338
0.4273
0.4218
0.4200
0.4179
0.4116
0.4058
0.3921
0.3836
0.3821
0.3698
0.3685
0.3590
0.3587
0.3549
0.3284
0.2991
0.2991
0.2764

0.7006
0.7006
0.6703
0.6659
0.6332
0.6152
0.5910
0.5830
0.5567
0.5350
0.5312
0.4884
0.4812
0.4721
0.4703
0.4605
0.4581
0.4520
0.4486
0.4453
0.4408
0.4358
0.4286
0.4227
0.4030
0.3964
0.3918
0.3761
0.3706
0.3474

0.6595
0.6532
0.6510
0.6316
0.6163
0.6144
0.6009
0.5973
0.5898
0.5868
0.5853
0.5727
0.5718
0.5664
0.5599
0.5593
0.5418
0.5218
0.5006
0.4974
0.4938
0.4936
0.4796
0.4772
0.4764
0.4648
0.4518
0.4518
0.4156
0.3827

0.7980
0.7432
0.7355
0.7281
0.7234
0.7004
0.7002
0.6937
0.6833
0.6793
0.6793
0.6639
0.6417
0.6390
0.6338
0.6298
0.6280
0.6275
0.6167
0.6016
0.5988
0.5978
0.5900
0.5891
0.5784
0.5562
0.4965
0.4920
0.4714
0.4335

0.6595
0.6532
0.6510
0.6316
0.6163
0.6144
0.6009
0.5973
0.5898
0.5868
0.5853
0.5727
0.5718
0.5664
0.5599
0.5593
0.5418
0.5218
0.5006
0.4974
0.4938
0.4936
0.4796
0.4772
0.4764
0.4648
0.4518
0.4518
0.4156
0.3827

0.7199
0.6737
0.6673
0.6544
0.6242
0.6186
0.6077
0.5677
0.5530
0.5471
0.5456
0.5255
0.5244
0.5244
0.5153
0.5057
0.4991
0.4887
0.4864
0.4803
0.4794
0.4733
0.4732
0.4681
0.4635
0.4634
0.4457
0.4413
0.3982
0.3981

0.6627
0.6484
0.6412
0.6383
0.6337
0.6269
0.6164
0.6020
0.6019
0.5884
0.5870
0.5452
0.5443
0.5443
0.5253
0.5180
0.5169
0.5088
0.5017
0.5006
0.4999
0.4759
0.4614
0.4395
0.4314
0.4079
0.3950
0.3903
0.3674
0.3260

16

24

25

13

24

20
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group b and ¢

0.6611
0.6119
0.5769
0.5609
0.5538
0.5440
0.5437
0.5428
0.5399
0.5344
0.5306
0.5263
0.5136
0.5109
0.4830
0.4795
0.4735
0.4666
0.4560
0.4481
0.4476
0.3959
0.3801
0.3756
0.3754
0.3669
0.3669
0.3646
0.3492
0.3478

0.7769
0.7560
0.7538
0.7178
0.7142
0.6805
0.6698
0.6613
0.6574
0.6556
0.6285
0.6204
0.6004
0.5956
0.5956
0.5948
0.5918
0.5904
0.5822
0.5710
0.5708
0.5631
0.5619
0.5453
0.5377
0.5253
0.5023
0.4986
0.4725
0.4725

0.6735
0.6081
0.5906
0.5709
0.5542
0.5475
0.5414
0.5279
0.5238
0.5221
0.5178
0.5053
0.4947
0.4827
0.4728
0.4707
0.4403
0.4338
0.4269
0.4269
0.4260
0.4239
0.4133
0.4104
0.4059
0.3920
0.3903
0.3857
0.3740
0.3660

0.7167
0.6477
0.6095
0.6008
0.5938
0.5789
0.5786
0.5634
0.5621
0.5373
0.5235
0.5220
0.5204
0.5179
0.5172
0.5073
0.5062
0.5050
0.4984
0.4916
0.4910
0.4906
0.4488
0.4463
0.4439
0.4340
0.4340
0.4230
0.4155
0.4036

0.7353
0.7128
0.7112
0.7036
0.6972
0.6961
0.6825
0.6824
0.6761
0.6456
0.6054
0.6007
0.6007
0.6000
0.5883
0.5862
0.5646
0.5611
0.5507
0.5495
0.5475
0.5374
0.5239
0.5233
0.5202
0.5023
0.4887
0.4887
0.4832
0.4247

0.6875
0.6229
0.6051
0.5985
0.5713
0.5696
0.5610
0.5553
0.5481
0.5374
0.5244
0.5199
0.5134
0.5110
0.5047
0.4931
0.4676
0.4635
0.4577
0.4530
0.4444
0.4374
0.4333
0.4273
0.4013
0.4013
0.3967
0.3780
0.3521
0.3463

0.8155
0.7202
0.6852
0.6731
0.6669
0.6556
0.6491
0.6471
0.6439
0.6243
0.6221
0.5876
0.5840
0.5807
0.5797
0.5760
0.5614
0.5582
0.5582
0.5560
0.5462
0.5451
0.5368
0.5282
0.5249
0.4999
0.4992
0.4888
0.4830
0.4554

0.7323
0.6495
0.5867
0.5537
0.5249
0.5234
0.5233
0.5146
0.5044
0.4677
0.4672
0.4666
0.4662
0.4598
0.4576
0.4498
0.4491
0.4416
0.4386
0.3948
0.3937
0.3908
0.3908
0.3898
0.3893
0.3845
0.3770
0.3700
0.3667
0.2727

0.7654
0.7525
0.7506
0.7018
0.6986
0.6936
0.6890
0.6778
0.6732
0.6690
0.6518
0.6432
0.6316
0.6264
0.6161
0.6143
0.5897
0.5842
0.5766
0.5751
0.5737
0.5546
0.5369
0.5306
0.5284
0.5127
0.4799
0.4675
0.4385
0.4385

16

17

10

17

10

14




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 176

B

TABLE A.12: Ranked sim values for (b V {a,c}) in ACB dataset using FVR.

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group a and ¢

0.7043
0.6302
0.6127
0.6123
0.5107
0.4983
0.4963
0.4872
0.4866
0.4864
0.4853
0.4724
0.4684
0.4640
0.4639
0.4611
0.4324
0.4287
0.4202
0.4176
0.4137
0.4076
0.3946
0.3938
0.3936
0.3900
0.3900
0.3900
0.3628
0.3564

0.7343
0.6930
0.6762
0.6577
0.6504
0.6439
0.6326
0.6313
0.6267
0.6199
0.6065
0.6030
0.5977
0.5861
0.5859
0.5770
0.5561
0.5535
0.5436
0.5409
0.5387
0.5387
0.5384
0.5254
0.5039
0.5014
0.5000
0.4983
0.4972
0.3419

0.7270
0.6960
0.6679
0.6675
0.6640
0.6403
0.6122
0.6094
0.5872
0.5862
0.5683
0.5650
0.5627
0.5533
0.5518
0.5459
0.5456
0.5347
0.5347
0.5312
0.5308
0.5195
0.5169
0.4981
0.4922
0.4666
0.4666
0.4400
0.4286
0.3818

0.8098
0.7422
0.7411
0.7283
0.7170
0.7040
0.7039
0.6943
0.6884
0.6766
0.6747
0.6524
0.6502
0.6499
0.6416
0.6354
0.6241
0.6180
0.6085
0.5988
0.5980
0.5948
0.5948
0.5923
0.5909
0.5530
0.5500
0.5450
0.5418
0.5023

0.7575
0.7122
0.6785
0.6696
0.6517
0.6394
0.6339
0.6295
0.6256
0.6060
0.5994
0.5983
0.5983
0.5972
0.5888
0.5847
0.5832
0.5832
0.5781
0.5756
0.5536
0.5500
0.5494
0.5449
0.5342
0.5243
0.5059
0.5052
0.5030
0.5010

0.7667
0.7538
0.7075
0.7015
0.6995
0.6829
0.6656
0.6512
0.6450
0.6130
0.6042
0.6007
0.5928
0.5824
0.5765
0.5760
0.5748
0.5692
0.5637
0.5637
0.5583
0.5497
0.5327
0.5305
0.5273
0.5207
0.4697
0.4535
0.4524
0.4141

0.7979
0.7600
0.6968
0.6936
0.6929
0.6769
0.6743
0.6730
0.6730
0.6609
0.6190
0.6163
0.6136
0.6136
0.6088
0.6036
0.5919
0.5814
0.5792
0.5776
0.5589
0.5381
0.5293
0.5244
0.5217
0.5197
0.5041
0.4993
0.4967
0.4921

0.8475
0.8239
0.8129
0.8087
0.7495
0.7219
0.7176
0.7173
0.7123
0.7028
0.7011
0.7006
0.6927
0.6898
0.6874
0.6869
0.6810
0.6678
0.6673
0.6575
0.6563
0.6419
0.6256
0.6077
0.6077
0.5978
0.5697
0.5692
0.5432
0.5399

0.8219
0.8085
0.7567
0.7546
0.7355
0.7272
0.7243
0.7186
0.7122
0.7116
0.6827
0.6661
0.6636
0.6503
0.6457
0.6451
0.6405
0.6389
0.6336
0.6270
0.6262
0.6217
0.6217
0.6202
0.5851
0.5841
0.5807
0.5786
0.5365
0.5208

0.7128
0.7107
0.6244
0.6185
0.6183
0.5817
0.5738
0.5399
0.5280
0.5178
0.5144
0.5079
0.5045
0.5042
0.4969
0.4955
0.4955
0.4898
0.4885
0.4847
0.4809
0.4803
0.4796
0.4675
0.4599
0.4459
0.4429
0.4283
0.4240
0.4185
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and ¢

0.8412
0.8192
0.7540
0.7515
0.7512
0.7206
0.7111
0.7106
0.6911
0.6789
0.6707
0.6689
0.6668
0.6522
0.6521
0.6479
0.6441
0.6298
0.6236
0.6226
0.6124
0.6106
0.6093
0.6059
0.6059
0.5915
0.5879
0.5874
0.4982
0.4867

0.8149
0.6918
0.6557
0.6471
0.6295
0.6070
0.5803
0.5799
0.5751
0.5681
0.5634
0.5626
0.5571
0.5424
0.5406
0.5376
0.5368
0.5346
0.5034
0.4773
0.4773
0.4767
0.4757
0.4669
0.4624
0.4591
0.4570
0.4536
0.4431
0.4356

0.7257
0.6956
0.6722
0.6393
0.6288
0.6269
0.6215
0.6074
0.6074
0.5982
0.5879
0.5866
0.5847
0.5838
0.5808
0.5725
0.5554
0.5503
0.5373
0.5207
0.5142
0.5057
0.4950
0.4819
0.4749
0.4747
0.4598
0.4585
0.4490
0.4116

0.7247
0.6788
0.6786
0.6085
0.6045
0.5789
0.5653
0.5628
0.5451
0.5430
0.5392
0.5275
0.5275
0.5089
0.5067
0.5058
0.5038
0.4914
0.4897
0.4881
0.4806
0.4715
0.4569
0.4524
0.4510
0.4340
0.4096
0.3951
0.3777
0.2968

0.8425
0.7403
0.6881
0.6696
0.6649
0.6562
0.6501
0.6428
0.6315
0.6290
0.6235
0.6156
0.5989
0.5950
0.5919
0.5873
0.5786
0.5765
0.5684
0.5684
0.5621
0.5617
0.5268
0.5216
0.5125
0.5101
0.4951
0.4918
0.4870
0.4836

0.7910
0.7398
0.6878
0.6830
0.6729
0.6644
0.6535
0.6523
0.6504
0.6504
0.6164
0.6107
0.6086
0.5997
0.5977
0.5944
0.5903
0.5824
0.5778
0.5753
0.5673
0.5658
0.5623
0.5554
0.5517
0.5476
0.5442
0.5238
0.5145
0.3964

0.8425
0.7403
0.6881
0.6696
0.6649
0.6562
0.6501
0.6428
0.6315
0.6290
0.6235
0.6156
0.5989
0.5950
0.5919
0.5873
0.5786
0.5765
0.5684
0.5684
0.5621
0.5617
0.5268
0.5216
0.5125
0.5101
0.4951
0.4918
0.4870
0.4836

0.7194
0.6826
0.6756
0.6166
0.6125
0.6115
0.6025
0.6006
0.5880
0.5854
0.5818
0.5735
0.5735
0.5670
0.5626
0.5569
0.5437
0.5369
0.5294
0.5214
0.5140
0.4923
0.4830
0.4762
0.4725
0.4610
0.4555
0.4424
0.4162
0.4057

0.7269
0.6968
0.6792
0.6316
0.6205
0.6117
0.6091
0.5872
0.5742
0.5475
0.5428
0.5376
0.5350
0.5314
0.5190
0.5033
0.5032
0.5007
0.4989
0.4983
0.4983
0.4968
0.4927
0.4879
0.4763
0.4685
0.4566
0.4445
0.4103
0.3987
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and ¢

0.6450
0.5914
0.5864
0.5864
0.5820
0.5819
0.5700
0.5663
0.5640
0.5600
0.5527
0.5305
0.5077
0.5051
0.5013
0.4968
0.4920
0.4786
0.4748
0.4748
0.4712
0.4704
0.4664
0.4629
0.4560
0.4555
0.4463
0.4427
0.4336
0.4056

0.6966
0.6544
0.6456
0.6404
0.6282
0.5973
0.5973
0.5968
0.5897
0.5878
0.5766
0.5755
0.5666
0.5566
0.5524
0.5183
0.5180
0.5048
0.4960
0.4960
0.4719
0.4687
0.4673
0.4531
0.4466
0.4263
0.4170
0.4127
0.3840
0.3553

0.7608
0.7586
0.7356
0.7185
0.6689
0.6655
0.6402
0.6307
0.5880
0.5433
0.5367
0.5321
0.5311
0.5296
0.5128
0.5034
0.5023
0.4837
0.4837
0.4808
0.4753
0.4680
0.4544
0.4451
0.4448
0.4418
0.3820
0.3635
0.3624
0.3192

0.7055
0.6701
0.6555
0.6485
0.6325
0.6276
0.6157
0.6032
0.6012
0.6012
0.5944
0.5903
0.5855
0.5771
0.5753
0.5619
0.5557
0.5552
0.5453
0.5170
0.5161
0.5083
0.4971
0.4916
0.4769
0.4750
0.4702
0.4528
0.4499
0.4333

0.7622
0.7236
0.7114
0.6918
0.6909
0.6780
0.6654
0.6524
0.6514
0.6430
0.6336
0.6309
0.6253
0.6088
0.5999
0.5994
0.5901
0.5875
0.5813
0.5786
0.5754
0.5747
0.5679
0.5641
0.5337
0.5228
0.5224
0.5224
0.5140
0.4914

0.7787
0.6717
0.6496
0.6243
0.5891
0.5889
0.5761
0.5701
0.5617
0.5589
0.5328
0.5153
0.5016
0.4938
0.4862
0.4856
0.4820
0.4781
0.4681
0.4562
0.4554
0.4554
0.4461
0.4394
0.4264
0.4249
0.4098
0.3994
0.3925
0.3281

0.7124
0.7124
0.7122
0.6887
0.6725
0.6491
0.6487
0.6458
0.6080
0.5962
0.5944
0.5844
0.5806
0.5799
0.5710
0.5639
0.5628
0.5481
0.5419
0.5405
0.5345
0.5341
0.5334
0.5238
0.5223
0.5181
0.4903
0.4646
0.4585
0.4063

0.7311
0.7227
0.7073
0.6865
0.6292
0.6290
0.6256
0.6070
0.6050
0.6038
0.5854
0.5819
0.5650
0.5548
0.5500
0.5400
0.5400
0.5249
0.5224
0.5098
0.5066
0.5054
0.5033
0.5007
0.4922
0.4874
0.4784
0.4447
0.4441
0.3867

0.8668
0.8212
0.7900
0.7680
0.7631
0.7619
0.7453
0.7359
0.7162
0.7052
0.7004
0.7003
0.6948
0.6926
0.6924
0.6891
0.6842
0.6807
0.6780
0.6776
0.6726
0.6702
0.6589
0.6260
0.6222
0.6136
0.6135
0.6135
0.6086
0.5455
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B

TABLE A.13: Ranked sim values for (¢ V {a,b}) in ACB dataset using FVR.

S

S3

Sy

S5

Se

St

Sy

Sy

S1o

All samples in the group a and b

0.7492
0.7082
0.6655
0.6450
0.6242
0.5844
0.5469
0.5413
0.5364
0.5345
0.5341
0.5210
0.5125
0.5114
0.5114
0.5065
0.4999
0.4961
0.4961
0.4935
0.4853
0.4734
0.4723
0.4700
0.4695
0.4665
0.4655
0.4521
0.3795
0.3109

0.7819
0.7360
0.7171
0.6945
0.6775
0.6696
0.6514
0.6465
0.6223
0.6201
0.5865
0.5808
0.5776
0.5592
0.5587
0.5433
0.5429
0.5386
0.5291
0.5279
0.5235
0.5132
0.5017
0.4940
0.4811
0.4754
0.4360
0.4271
0.4271
0.4089

0.6994
0.6718
0.6688
0.6559
0.6445
0.6242
0.6211
0.6179
0.6112
0.6064
0.5970
0.5880
0.5706
0.5338
0.5336
0.5324
0.5294
0.5226
0.5135
0.5014
0.5013
0.4998
0.4872
0.4872
0.4862
0.4597
0.4486
0.4461
0.4146
0.3289

0.8142
0.7398
0.7362
0.7170
0.6980
0.6978
0.6938
0.6860
0.6860
0.6778
0.6729
0.6474
0.6449
0.6440
0.6435
0.6191
0.6052
0.6051
0.6010
0.5982
0.5847
0.5782
0.5734
0.5638
0.5528
0.5349
0.5116
0.5049
0.4953
0.4777

0.8011
0.7499
0.7377
0.7245
0.7030
0.6908
0.6852
0.6770
0.6752
0.6621
0.6606
0.6273
0.6237
0.6233
0.5985
0.5917
0.5898
0.5809
0.5715
0.5604
0.5604
0.5576
0.5333
0.5325
0.5272
0.5262
0.5163
0.5105
0.4812
0.3795

0.7921
0.7803
0.7251
0.6951
0.6951
0.6812
0.6753
0.6675
0.6672
0.6322
0.6287
0.6273
0.6258
0.6105
0.6061
0.5975
0.5974
0.5930
0.5926
0.5829
0.5787
0.5688
0.5620
0.5615
0.5458
0.5255
0.5217
0.5054
0.4727
0.3938

0.7508
0.7278
0.6870
0.6726
0.6544
0.6273
0.6203
0.6140
0.6132
0.6066
0.6016
0.5996
0.5693
0.5593
0.5569
0.5511
0.5446
0.5414
0.5241
0.5239
0.5194
0.5122
0.5064
0.5062
0.4975
0.4970
0.4593
0.4405
0.4240
0.4240

0.8877
0.8605
0.8073
0.7914
0.7702
0.7366
0.7341
0.7190
0.7160
0.7047
0.7033
0.7008
0.6989
0.6946
0.6840
0.6820
0.6764
0.6710
0.6682
0.6678
0.6667
0.6536
0.6494
0.6494
0.6379
0.6309
0.6122
0.5878
0.5862
0.5853

0.8435
0.8234
0.7523
0.7456
0.7244
0.7211
0.7175
0.7144
0.7112
0.7100
0.7076
0.6814
0.6814
0.6728
0.6718
0.6668
0.6529
0.6395
0.6391
0.6365
0.6365
0.6264
0.6218
0.6216
0.6159
0.6060
0.5995
0.5886
0.5696
0.5278

0.6990
0.6773
0.6597
0.6510
0.6398
0.6286
0.6192
0.5879
0.5869
0.5783
0.5734
0.5592
0.5502
0.5396
0.5321
0.5314
0.5241
0.5204
0.5037
0.4986
0.4901
0.4826
0.4815
0.4775
0.4709
0.4709
0.4530
0.4372
0.4246
0.3211
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S12

S13

S14

Si7

Sig

S19

Sao

All samples in the group a and b

0.8508
0.7713
0.7560
0.7257
0.7069
0.6994
0.6899
0.6859
0.6831
0.6773
0.6744
0.6560
0.6523
0.6487
0.6365
0.6360
0.6339
0.6300
0.6237
0.6234
0.6036
0.5957
0.5927
0.5879
0.5834
0.5741
0.5687
0.5509
0.5268
0.5268

0.6893
0.6874
0.6872
0.6708
0.6294
0.6113
0.6003
0.5998
0.5955
0.5913
0.5910
0.5866
0.5754
0.5675
0.5574
0.5421
0.5351
0.5229
0.5213
0.5052
0.4810
0.4810
0.4735
0.4728
0.4697
0.4631
0.4574
0.4462
0.4439
0.4297

0.5369
0.5168
0.5140
0.4944
0.4941
0.4899
0.4895
0.4859
0.4751
0.4682
0.4617
0.4606
0.4592
0.4486
0.4147
0.4019
0.3890
0.3811
0.3811
0.3775
0.3703
0.3703
0.3666
0.3643
0.3558
0.3445
0.3344
0.3131
0.3119
0.2879

0.6962
0.6568
0.6468
0.6039
0.5941
0.5890
0.5851
0.5573
0.5402
0.5378
0.5241
0.5240
0.5152
0.5151
0.5111
0.4993
0.4991
0.4857
0.4857
0.4822
0.4613
0.4450
0.4364
0.4286
0.4151
0.4046
0.4046
0.3976
0.3964
0.3502

0.7134
0.6925
0.6430
0.6192
0.6142
0.6116
0.6014
0.6014
0.6008
0.5911
0.5899
0.5639
0.5545
0.5515
0.5462
0.5316
0.5266
0.5264
0.5240
0.5201
0.5135
0.5077
0.5065
0.4900
0.4830
0.4771
0.4765
0.4648
0.4427
0.4400

0.8160
0.7854
0.7535
0.7254
0.7094
0.6753
0.6744
0.6727
0.6727
0.6606
0.6564
0.6450
0.6449
0.6436
0.6385
0.6327
0.6071
0.6068
0.6048
0.6010
0.5961
0.5718
0.5717
0.5449
0.5408
0.5383
0.5254
0.5243
0.5072
0.4887

0.7134
0.6925
0.6430
0.6192
0.6142
0.6116
0.6014
0.6014
0.6008
0.5911
0.5899
0.5639
0.5545
0.5515
0.5462
0.5316
0.5266
0.5264
0.5240
0.5201
0.5135
0.5077
0.5065
0.4900
0.4830
0.4771
0.4765
0.4648
0.4427
0.4400

0.6324
0.6316
0.6061
0.6000
0.6000
0.5904
0.5716
0.5596
0.5578
0.5537
0.5340
0.5334
0.5318
0.5137
0.5001
0.4978
0.4903
0.4838
0.4775
0.4763
0.4678
0.4643
0.4432
0.4307
0.4277
0.4251
0.3946
0.3775
0.3660
0.3229

0.6335
0.5784
0.5767
0.5598
0.5385
0.5383
0.5244
0.5169
0.5162
0.5131
0.4931
0.4923
0.4917
0.4806
0.4700
0.4656
0.4460
0.4460
0.4349
0.4345
0.4298
0.4281
0.4166
0.4160
0.4041
0.3982
0.3879
0.3659
0.3607
0.3606

14

20

10

28

12

21

23
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Sao

Sa3

So4

S

Sar

Sog

Sag

All samples in the group a and b

0.7189
0.6556
0.6153
0.6024
0.5901
0.5443
0.5351
0.4971
0.4934
0.4921
0.4815
0.4805
0.4732
0.4614
0.4607
0.4605
0.4564
0.4551
0.4460
0.4460
0.4359
0.4347
0.4338
0.4290
0.4205
0.4143
0.3896
0.3873
0.3466
0.3394

0.7830
0.7308
0.7270
0.7239
0.7001
0.6637
0.6600
0.6562
0.6453
0.6397
0.6344
0.6296
0.6144
0.6122
0.6113
0.5897
0.5852
0.5831
0.5755
0.5708
0.5672
0.5672
0.5638
0.5584
0.5566
0.5509
0.5425
0.5320
0.5246
0.4839

0.6295
0.6014
0.5914
0.5665
0.5546
0.5517
0.5459
0.5345
0.5233
0.5083
0.5039
0.5027
0.5002
0.4869
0.4664
0.4610
0.4589
0.4509
0.4464
0.4298
0.4228
0.4141
0.4133
0.4093
0.3942
0.3842
0.3801
0.3591
0.3537
0.3537

0.7346
0.6726
0.6289
0.6152
0.6121
0.6050
0.6020
0.5782
0.5483
0.5481
0.5361
0.5343
0.5338
0.5279
0.5264
0.5243
0.5242
0.5220
0.5177
0.4937
0.4745
0.4646
0.4630
0.4618
0.4559
0.4460
0.4440
0.4241
0.4241
0.4195

0.7748
0.7402
0.7266
0.7020
0.6852
0.6650
0.6551
0.6505
0.6462
0.6452
0.6434
0.6344
0.6206
0.6116
0.5942
0.5844
0.5602
0.5524
0.5517
0.5479
0.5350
0.5350
0.5344
0.5264
0.5263
0.5252
0.5127
0.5061
0.4733
0.4700

0.7055
0.6565
0.6501
0.6476
0.6446
0.6379
0.6206
0.6199
0.6038
0.5932
0.5796
0.5628
0.5236
0.5208
0.5132
0.5081
0.5034
0.5034
0.4953
0.4902
0.4895
0.4886
0.4812
0.4752
0.4748
0.4626
0.4505
0.4282
0.4273
0.3548

0.7760
0.6889
0.6785
0.6783
0.6750
0.6210
0.6134
0.5988
0.5950
0.5827
0.5826
0.5781
0.5767
0.5737
0.5634
0.5589
0.5508
0.5483
0.5480
0.5374
0.5297
0.5290
0.5185
0.5113
0.4985
0.4917
0.4817
0.4817
0.4640
0.4560

0.6387
0.6188
0.6122
0.5958
0.5870
0.5865
0.5471
0.5015
0.4850
0.4708
0.4680
0.4645
0.4559
0.4514
0.4443
0.4436
0.4205
0.4169
0.4169
0.4141
0.3990
0.3930
0.3930
0.3914
0.3721
0.3626
0.3383
0.3122
0.3085
0.2935

0.7759
0.7607
0.7443
0.7419
0.7163
0.7150
0.7052
0.6956
0.6794
0.6748
0.6563
0.6513
0.6421
0.6278
0.6266
0.6099
0.6079
0.6004
0.5984
0.5912
0.5895
0.5786
0.5747
0.5673
0.5599
0.5599
0.5577
0.5252
0.4889
0.4197

18

21

10

17

12

13
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TABLE A.14: Ranked sim values for (a V {b,c}) in GP dataset using U-KTS F* .

S1

So

S3

Sy

S5

Se

S7

Sy

S9

S1o

All samples in the group b and ¢

0.0325
0.0358
0.0376
0.0386
0.0404
0.0409
0.0413
0.0423
0.0448
0.0459
0.0472
0.0492
0.0503
0.0504
0.0507
0.0514
0.0524
0.0529
0.0537
0.0567
0.0625
0.0634
0.0644
0.0674
0.0698
0.0709
0.0716
0.0780
0.0808
0.0947
0.0957

0.0311
0.0340
0.0341
0.0347
0.0355
0.0366
0.0367
0.0383
0.0388
0.0390
0.0399
0.0423
0.0434
0.0437
0.0437
0.0440
0.0467
0.0484
0.0487
0.0526
0.0528
0.0532
0.0565
0.0576
0.0600
0.0638
0.0641
0.0664
0.0750
0.0819
0.0896

0.0373
0.0398
0.0445
0.0455
0.0459
0.0475
0.0476
0.0476
0.0492
0.0493
0.0493
0.0509
0.0521
0.0523
0.0527
0.0537
0.0549
0.0562
0.0586
0.0591
0.0604
0.0618
0.0625
0.0636
0.0639
0.0687
0.0703
0.0705
0.0714
0.0863
0.0952

0.0440
0.0445
0.0462
0.0468
0.0471
0.0474
0.0489
0.0497
0.0504
0.0507
0.0520
0.0523
0.0538
0.0552
0.0552
0.0553
0.0579
0.0581
0.0583
0.0586
0.0588
0.0588
0.0589
0.0603
0.0609
0.0619
0.0645
0.0645
0.0682
0.0695
0.0743

0.0572
0.0604
0.0619
0.0628
0.0628
0.0628
0.0647
0.0667
0.0689
0.0707
0.0717
0.0726
0.0735
0.0737
0.0744
0.0752
0.0760
0.0766
0.0766
0.0771
0.0777
0.0783
0.0786
0.0791
0.0823
0.0852
0.0857
0.0940
0.0955
0.0973
0.0986

0.0466
0.0519
0.0534
0.0537
0.0545
0.0561
0.0579
0.0604
0.0618
0.0649
0.0649
0.0667
0.0692
0.0693
0.0699
0.0702
0.0708
0.0728
0.0750
0.0755
0.0767
0.0786
0.0823
0.0831
0.0831
0.0908
0.0919
0.0929
0.0956
0.0999
0.1087

0.0383
0.0430
0.0473
0.0496
0.0498
0.0502
0.0513
0.0530
0.0531
0.0531
0.0551
0.0557
0.0560
0.0574
0.0584
0.0612
0.0640
0.0645
0.0655
0.0655
0.0674
0.0678
0.0712
0.0717
0.0766
0.0769
0.0801
0.0829
0.0892
0.0962
0.0985

0.0426
0.0444
0.0455
0.0455
0.0468
0.0488
0.0492
0.0494
0.0499
0.0500
0.0503
0.0513
0.0517
0.0525
0.0529
0.0547
0.0559
0.0561
0.0564
0.0564
0.0581
0.0582
0.0596
0.0598
0.0602
0.0620
0.0629
0.0673
0.0679
0.0750
0.0753

0.0490
0.0502
0.0503
0.0504
0.0522
0.0522
0.0524
0.0533
0.0536
0.0544
0.0554
0.0557
0.0562
0.0563
0.0567
0.0574
0.0576
0.0582
0.0586
0.0604
0.0619
0.0633
0.0634
0.0661
0.0687
0.0688
0.0699
0.0702
0.0711
0.0793
0.0802

0.0389
0.0405
0.0407
0.0435
0.0436
0.0443
0.0448
0.0449
0.0466
0.0469
0.0480
0.0510
0.0512
0.0523
0.0543
0.0560
0.0561
0.0576
0.0577
0.0578
0.0597
0.0598
0.0619
0.0632
0.0634
0.0643
0.0679
0.0763
0.0838
0.0844
0.0858
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S12

Si3

S14

Si7

Sis

S19

Sa0

All samples in the group b and ¢

0.0763
0.0822
0.0855
0.0867
0.0877
0.0879
0.0896
0.0906
0.0920
0.0937
0.0952
0.0960
0.0973
0.0973
0.0977
0.0986
0.0994
0.1004
0.1012
0.1020
0.1021
0.1048
0.1063
0.1104
0.1118
0.1123
0.1143
0.1195
0.1235
0.1241
0.1242

0.0618
0.0630
0.0657
0.0672
0.0705
0.0715
0.0721
0.0731
0.0752
0.0762
0.0767
0.0781
0.0783
0.0784
0.0791
0.0797
0.0811
0.0812
0.0813
0.0822
0.0839
0.0843
0.0848
0.0850
0.0876
0.0876
0.0886
0.0929
0.0930
0.0982
0.1036

0.0432
0.0457
0.0486
0.0507
0.0522
0.0534
0.0538
0.0538
0.0546
0.0548
0.0549
0.0558
0.0561
0.0564
0.0566
0.0573
0.0574
0.0578
0.0581
0.0588
0.0595
0.0597
0.0604
0.0624
0.0630
0.0637
0.0647
0.0688
0.0700
0.0866
0.0891

0.0458
0.0488
0.0498
0.0508
0.0509
0.0517
0.0529
0.0536
0.0540
0.0545
0.0564
0.0566
0.0569
0.0573
0.0576
0.0577
0.0582
0.0588
0.0593
0.0609
0.0612
0.0643
0.0644
0.0654
0.0657
0.0658
0.0683
0.0695
0.0706
0.0725
0.0808

0.0330
0.0365
0.0390
0.0395
0.0412
0.0422
0.0425
0.0439
0.0455
0.0468
0.0480
0.0484
0.0488
0.0511
0.0512
0.0515
0.0517
0.0521
0.0527
0.0535
0.0537
0.0564
0.0628
0.0652
0.0657
0.0668
0.0682
0.0736
0.0808
0.0884
0.0946

0.0418
0.0421
0.0433
0.0442
0.0455
0.0459
0.0484
0.0486
0.0505
0.0508
0.0512
0.0537
0.0540
0.0541
0.0548
0.0549
0.0553
0.0575
0.0576
0.0588
0.0595
0.0600
0.0602
0.0624
0.0627
0.0629
0.0630
0.0642
0.0659
0.0826
0.0832

0.0491
0.0587
0.0600
0.0615
0.0619
0.0622
0.0625
0.0657
0.0673
0.0682
0.0682
0.0684
0.0685
0.0689
0.0693
0.0697
0.0698
0.0699
0.0711
0.0713
0.0750
0.0759
0.0773
0.0783
0.0806
0.0808
0.0816
0.0817
0.0820
0.0852
0.0860

0.0257
0.0288
0.0349
0.0398
0.0405
0.0446
0.0453
0.0473
0.0477
0.0485
0.0494
0.0497
0.0504
0.0505
0.0513
0.0516
0.0518
0.0521
0.0534
0.0537
0.0539
0.0549
0.0553
0.0585
0.0589
0.0596
0.0619
0.0642
0.0678
0.0725
0.0800

0.0378
0.0412
0.0450
0.0485
0.0487
0.0494
0.0496
0.0513
0.0514
0.0523
0.0537
0.0538
0.0544
0.0548
0.0550
0.0557
0.0562
0.0567
0.0573
0.0574
0.0576
0.0583
0.0599
0.0611
0.0615
0.0616
0.0621
0.0701
0.0713
0.0901
0.0934
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Sao

Sa3

So4

Sae

Sar

Sog

Sa9

S30

All samples in the group b and ¢

0.0437
0.0444
0.0474
0.0476
0.0478
0.0481
0.0483
0.0499
0.0509
0.0512
0.0516
0.0517
0.0522
0.0559
0.0569
0.0575
0.0588
0.0593
0.0598
0.0604
0.0635
0.0683
0.0698
0.0716
0.0721
0.0728
0.0746
0.0748
0.0849
0.0874
0.0982

0.0623
0.0643
0.0658
0.0659
0.0673
0.0683
0.0702
0.0710
0.0712
0.0712
0.0718
0.0727
0.0732
0.0734
0.0736
0.0739
0.0743
0.0750
0.0752
0.0779
0.0793
0.0793
0.0797
0.0802
0.0806
0.0816
0.0825
0.0864
0.0887
0.0907
0.0943

0.0643
0.0667
0.0680
0.0684
0.0704
0.0723
0.0726
0.0733
0.0740
0.0745
0.0754
0.0758
0.0759
0.0775
0.0777
0.0782
0.0788
0.0793
0.0799
0.0799
0.0803
0.0808
0.0822
0.0833
0.0848
0.0859
0.0875
0.0878
0.0898
0.0918
0.1001

0.0557
0.0566
0.0572
0.0588
0.0597
0.0613
0.0615
0.0620
0.0621
0.0626
0.0641
0.0651
0.0660
0.0670
0.0679
0.0681
0.0700
0.0702
0.0704
0.0718
0.0721
0.0724
0.0738
0.0748
0.0772
0.0790
0.0823
0.0836
0.0845
0.0853
0.0862

0.0550
0.0551
0.0557
0.0563
0.0598
0.0630
0.0652
0.0655
0.0663
0.0678
0.0684
0.0698
0.0715
0.0718
0.0726
0.0731
0.0741
0.0741
0.0747
0.0762
0.0792
0.0810
0.0814
0.0814
0.0819
0.0828
0.0830
0.0847
0.0892
0.0903
0.0932

0.0311
0.0330
0.0365
0.0371
0.0385
0.0400
0.0412
0.0427
0.0434
0.0441
0.0458
0.0470
0.0480
0.0492
0.0497
0.0511
0.0513
0.0515
0.0516
0.0525
0.0543
0.0552
0.0558
0.0561
0.0577
0.0579
0.0611
0.0624
0.0720
0.0843
0.0951

0.0362
0.0389
0.0390
0.0405
0.0407
0.0408
0.0408
0.0424
0.0424
0.0426
0.0429
0.0434
0.0439
0.0455
0.0460
0.0460
0.0484
0.0489
0.0500
0.0508
0.0515
0.0535
0.0555
0.0569
0.0586
0.0608
0.0624
0.0629
0.0708
0.0794
0.0801

0.0376
0.0380
0.0400
0.0402
0.0404
0.0406
0.0412
0.0425
0.0434
0.0487
0.0491
0.0494
0.0497
0.0499
0.0506
0.0513
0.0513
0.0524
0.0556
0.0574
0.0596
0.0608
0.0623
0.0625
0.0659
0.0676
0.0693
0.0751
0.0791
0.0879
0.0890

0.0377
0.0390
0.0395
0.0444
0.0452
0.0458
0.0473
0.0479
0.0495
0.0497
0.0500
0.0510
0.0511
0.0512
0.0522
0.0551
0.0551
0.0553
0.0555
0.0556
0.0558
0.0568
0.0571
0.0574
0.0576
0.0582
0.0604
0.0616
0.0672
0.0778
0.0813

0.0271
0.0373
0.0374
0.0377
0.0382
0.0391
0.0426
0.0450
0.0452
0.0454
0.0459
0.0462
0.0479
0.0483
0.0490
0.0496
0.0506
0.0510
0.0515
0.0528
0.0535
0.0583
0.0608
0.0609
0.0616
0.0647
0.0692
0.0743
0.0807
0.0890
0.0997
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TABLE A.15: Ranked sim values for (bV {a,b}) in GP dataset using U-KTS F* .

S1

So

S3

Sy

S5

Se

S7

Sy

S9

S1o

All samples in the group a and ¢

0.0428
0.0432
0.0443
0.0447
0.0449
0.0455
0.0460
0.0472
0.0475
0.0475
0.0476
0.0477
0.0478
0.0478
0.0479
0.0482
0.0482
0.0487
0.0497
0.0513
0.0522
0.0523
0.0537
0.0551
0.0561
0.0573
0.0578
0.0585
0.0622
0.0622
0.0636

0.0409
0.0423
0.0429
0.0430
0.0433
0.0434
0.0448
0.0449
0.0450
0.0453
0.0455
0.0455
0.0457
0.0461
0.0465
0.0468
0.0475
0.0490
0.0492
0.0493
0.0496
0.0498
0.0501
0.0513
0.0517
0.0517
0.0537
0.0540
0.0545
0.0554
0.0566

0.0524
0.0553
0.0554
0.0557
0.0562
0.0582
0.0587
0.0587
0.0598
0.0599
0.0600
0.0601
0.0602
0.0602
0.0604
0.0608
0.0614
0.0620
0.0623
0.0623
0.0624
0.0627
0.0632
0.0644
0.0679
0.0680
0.0683
0.0710
0.0726
0.0744
0.0750

0.0664
0.0666
0.0670
0.0687
0.0691
0.0699
0.0702
0.0717
0.0720
0.0726
0.0727
0.0727
0.0736
0.0736
0.0737
0.0739
0.0742
0.0747
0.0748
0.0749
0.0750
0.0750
0.0751
0.0753
0.0778
0.0780
0.0783
0.0790
0.0790
0.0798
0.0808

0.1065
0.1066
0.1071
0.1086
0.1116
0.1117
0.1124
0.1127
0.1141
0.1144
0.1149
0.1159
0.1163
0.1167
0.1171
0.1200
0.1200
0.1213
0.1220
0.1222
0.1227
0.1250
0.1251
0.1263
0.1281
0.1282
0.1307
0.1312
0.1317
0.1321
0.1326

0.0664
0.0682
0.0697
0.0722
0.0726
0.0728
0.0742
0.0743
0.0764
0.0765
0.0765
0.0769
0.0773
0.0784
0.0792
0.0793
0.0795
0.0799
0.0799
0.0801
0.0808
0.0810
0.0816
0.0827
0.0828
0.0844
0.0849
0.0883
0.0886
0.0887
0.0923

0.0587
0.0592
0.0602
0.0612
0.0613
0.0618
0.0622
0.0622
0.0622
0.0625
0.0633
0.0638
0.0644
0.0645
0.0647
0.0650
0.0651
0.0652
0.0654
0.0655
0.0656
0.0659
0.0659
0.0661
0.0664
0.0670
0.0686
0.0696
0.0718
0.0724
0.0738

0.0840
0.0888
0.0891
0.0894
0.0902
0.0911
0.0924
0.0926
0.0927
0.0928
0.0942
0.0944
0.0944
0.0947
0.0950
0.0951
0.0955
0.0960
0.0967
0.0967
0.0974
0.0976
0.0985
0.0989
0.0990
0.0996
0.1003
0.1007
0.1008
0.1011
0.1046

0.0810
0.0815
0.0816
0.0838
0.0840
0.0841
0.0843
0.0851
0.0855
0.0856
0.0857
0.0860
0.0865
0.0871
0.0877
0.0879
0.0879
0.0884
0.0895
0.0899
0.0904
0.0905
0.0911
0.0912
0.0921
0.0922
0.0953
0.0955
0.0956
0.0991
0.1010

0.0351
0.0362
0.0367
0.0369
0.0371
0.0378
0.0380
0.0389
0.0397
0.0400
0.0406
0.0410
0.0415
0.0420
0.0422
0.0425
0.0426
0.0427
0.0430
0.0447
0.0451
0.0463
0.0463
0.0508
0.0513
0.0534
0.0553
0.0567
0.0598
0.0626
0.0673
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S12

Si3

S14

Si7

Sis

S19

Sa0

All samples in the group a and ¢

0.1027
0.1042
0.1057
0.1070
0.1079
0.1079
0.1081
0.1096
0.1097
0.1104
0.1116
0.1118
0.1139
0.1144
0.1166
0.1177
0.1181
0.1192
0.1194
0.1196
0.1199
0.1207
0.1234
0.1235
0.1245
0.1252
0.1265
0.1265
0.1300
0.1348
0.1363

0.1080
0.1086
0.1091
0.1113
0.1118
0.1148
0.1182
0.1187
0.1187
0.1188
0.1195
0.1207
0.1212
0.1219
0.1223
0.1232
0.1233
0.1237
0.1239
0.1251
0.1261
0.1279
0.1292
0.1306
0.1319
0.1340
0.1342
0.1346
0.1362
0.1373
0.1379

0.0731
0.0747
0.0758
0.0758
0.0759
0.0767
0.0786
0.0793
0.0804
0.0805
0.0815
0.0816
0.0819
0.0825
0.0833
0.0834
0.0837
0.0840
0.0844
0.0845
0.0852
0.0854
0.0858
0.0865
0.0872
0.0875
0.0875
0.0880
0.0891
0.0903
0.0909

0.0697
0.0719
0.0724
0.0729
0.0733
0.0735
0.0737
0.0742
0.0746
0.0749
0.0758
0.0763
0.0765
0.0767
0.0769
0.0775
0.0781
0.0784
0.0785
0.0786
0.0787
0.0790
0.0792
0.0799
0.0801
0.0801
0.0806
0.0813
0.0818
0.0830
0.0836

0.0677
0.0712
0.0718
0.0724
0.0726
0.0728
0.0729
0.0730
0.0733
0.0740
0.0745
0.0746
0.0746
0.0748
0.0751
0.0752
0.0755
0.0757
0.0758
0.0771
0.0773
0.0774
0.0779
0.0787
0.0794
0.0804
0.0806
0.0806
0.0807
0.0811
0.0812

0.0508
0.0539
0.0557
0.0558
0.0563
0.0582
0.0584
0.0587
0.0604
0.0613
0.0613
0.0624
0.0626
0.0627
0.0636
0.0643
0.0646
0.0650
0.0651
0.0652
0.0652
0.0661
0.0663
0.0667
0.0669
0.0676
0.0679
0.0690
0.0696
0.0712
0.0713

0.1048
0.1063
0.1065
0.1068
0.1088
0.1097
0.1111
0.1115
0.1123
0.1124
0.1132
0.1149
0.1156
0.1161
0.1166
0.1166
0.1171
0.1172
0.1180
0.1186
0.1197
0.1212
0.1216
0.1217
0.1225
0.1225
0.1234
0.1245
0.1251
0.1273
0.1309

0.0634
0.0648
0.0680
0.0706
0.0709
0.0713
0.0715
0.0716
0.0718
0.0720
0.0725
0.0735
0.0735
0.0740
0.0746
0.0757
0.0761
0.0766
0.0767
0.0768
0.0774
0.0775
0.0777
0.0780
0.0800
0.0804
0.0805
0.0813
0.0815
0.0830
0.0864

0.0602
0.0609
0.0616
0.0631
0.0641
0.0645
0.0656
0.0660
0.0669
0.0679
0.0684
0.0686
0.0688
0.0688
0.0690
0.0691
0.0696
0.0698
0.0703
0.0710
0.0713
0.0714
0.0714
0.0718
0.0731
0.0747
0.0759
0.0759
0.0769
0.0771
0.0801
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Sao

Sa3

So4

Sae

Sar

Sog

Sa9

S30

All samples in the group a and ¢

0.0545
0.0599
0.0630
0.0632
0.0644
0.0654
0.0667
0.0668
0.0670
0.0677
0.0681
0.0683
0.0692
0.0693
0.0710
0.0710
0.0718
0.0724
0.0730
0.0731
0.0733
0.0735
0.0741
0.0741
0.0743
0.0755
0.0757
0.0769
0.0774
0.0776
0.0793

0.0876
0.0926
0.0928
0.0937
0.0938
0.0940
0.0942
0.0958
0.0964
0.0968
0.0968
0.0971
0.0986
0.0987
0.0994
0.0998
0.1017
0.1019
0.1020
0.1028
0.1035
0.1051
0.1057
0.1069
0.1069
0.1085
0.1106
0.1108
0.1111
0.1117
0.1151

0.0897
0.0906
0.0908
0.0928
0.0930
0.0936
0.0937
0.0943
0.0944
0.0954
0.0961
0.0971
0.0979
0.0980
0.0990
0.0993
0.0994
0.0998
0.1005
0.1006
0.1014
0.1021
0.1037
0.1040
0.1051
0.1062
0.1068
0.1080
0.1083
0.1086
0.1139

0.0614
0.0630
0.0637
0.0639
0.0643
0.0648
0.0651
0.0655
0.0656
0.0662
0.0664
0.0666
0.0669
0.0670
0.0671
0.0679
0.0679
0.0680
0.0680
0.0683
0.0684
0.0693
0.0694
0.0696
0.0702
0.0708
0.0715
0.0724
0.0729
0.0734
0.0737

0.0951
0.0982
0.1024
0.1028
0.1029
0.1030
0.1036
0.1052
0.1053
0.1057
0.1060
0.1065
0.1104
0.1126
0.1126
0.1137
0.1141
0.1141
0.1145
0.1160
0.1164
0.1174
0.1177
0.1183
0.1184
0.1188
0.1190
0.1206
0.1240
0.1254
0.1336

0.0521
0.0578
0.0579
0.0580
0.0587
0.0590
0.0595
0.0597
0.0600
0.0601
0.0606
0.0608
0.0610
0.0611
0.0611
0.0620
0.0622
0.0624
0.0626
0.0628
0.0631
0.0641
0.0647
0.0649
0.0651
0.0655
0.0673
0.0677
0.0677
0.0682
0.0685

0.0500
0.0501
0.0508
0.0515
0.0542
0.0543
0.0544
0.0545
0.0551
0.0552
0.0561
0.0562
0.0565
0.0566
0.0571
0.0573
0.0575
0.0579
0.0589
0.0592
0.0593
0.0595
0.0597
0.0602
0.0602
0.0629
0.0635
0.0647
0.0686
0.0714
0.0751

0.0707
0.0722
0.0727
0.0738
0.0740
0.0742
0.0743
0.0744
0.0756
0.0756
0.0759
0.0760
0.0763
0.0774
0.0774
0.0784
0.0792
0.0794
0.0798
0.0799
0.0807
0.0815
0.0818
0.0831
0.0835
0.0846
0.0846
0.0852
0.0859
0.0883
0.0886

0.0565
0.0594
0.0602
0.0614
0.0617
0.0629
0.0636
0.0639
0.0642
0.0655
0.0658
0.0660
0.0662
0.0663
0.0666
0.0671
0.0671
0.0676
0.0677
0.0691
0.0695
0.0700
0.0705
0.0706
0.0715
0.0725
0.0726
0.0729
0.0731
0.0733
0.0774

0.0660
0.0672
0.0674
0.0677
0.0681
0.0707
0.0710
0.0716
0.0719
0.0719
0.0722
0.0723
0.0725
0.0734
0.0734
0.0748
0.0749
0.0751
0.0752
0.0756
0.0759
0.0772
0.0774
0.0782
0.0782
0.0782
0.0788
0.0796
0.0803
0.0804
0.0811
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TABLE A.16: Ranked sim values for (¢ V {a,b}) in GP dataset using U-KTS F* .

S1

So

S3

Sy

S5

Se

S7

Sy

S9

S1o

All samples in the group a and b

0.0402
0.0426
0.0455
0.0456
0.0456
0.0463
0.0470
0.0472
0.0473
0.0475
0.0485
0.0485
0.0486
0.0491
0.0491
0.0492
0.0495
0.0503
0.0506
0.0511
0.0518
0.0518
0.0528
0.0532
0.0548
0.0552
0.0553
0.0560
0.0575
0.0608
0.0636

0.0423
0.0425
0.0436
0.0439
0.0439
0.0441
0.0442
0.0444
0.0463
0.0466
0.0467
0.0467
0.0472
0.0473
0.0475
0.0475
0.0476
0.0481
0.0487
0.0489
0.0497
0.0497
0.0507
0.0512
0.0525
0.0526
0.0532
0.0536
0.0544
0.0560
0.0572

0.0531
0.0540
0.0546
0.0559
0.0568
0.0591
0.0592
0.0597
0.0598
0.0601
0.0615
0.0619
0.0620
0.0620
0.0622
0.0624
0.0630
0.0634
0.0639
0.0641
0.0644
0.0645
0.0655
0.0660
0.0663
0.0667
0.0674
0.0678
0.0684
0.0735
0.0763

0.0619
0.0655
0.0664
0.0671
0.0673
0.0683
0.0688
0.0692
0.0694
0.0712
0.0712
0.0712
0.0713
0.0716
0.0721
0.0724
0.0735
0.0736
0.0737
0.0742
0.0744
0.0748
0.0749
0.0763
0.0776
0.0778
0.0792
0.0794
0.0795
0.0801
0.0834

0.0999
0.1044
0.1071
0.1085
0.1085
0.1092
0.1105
0.1107
0.1134
0.1146
0.1152
0.1155
0.1159
0.1171
0.1189
0.1193
0.1201
0.1209
0.1224
0.1226
0.1232
0.1235
0.1238
0.1240
0.1245
0.1253
0.1296
0.1323
0.1326
0.1342
0.1398

0.0668
0.0684
0.0724
0.0736
0.0740
0.0742
0.0748
0.0749
0.0752
0.0757
0.0759
0.0766
0.0766
0.0780
0.0783
0.0788
0.0791
0.0796
0.0803
0.0805
0.0818
0.0839
0.0840
0.0843
0.0843
0.0850
0.0866
0.0867
0.0878
0.0911
0.0926

0.0582
0.0597
0.0606
0.0613
0.0626
0.0630
0.0630
0.0632
0.0632
0.0633
0.0633
0.0634
0.0634
0.0638
0.0638
0.0642
0.0644
0.0645
0.0647
0.0649
0.0659
0.0662
0.0674
0.0684
0.0688
0.0695
0.0702
0.0709
0.0709
0.0719
0.0749

0.0828
0.0881
0.0884
0.0904
0.0906
0.0911
0.0911
0.0912
0.0912
0.0916
0.0917
0.0918
0.0920
0.0932
0.0933
0.0934
0.0937
0.0939
0.0949
0.0954
0.0964
0.0968
0.0974
0.0975
0.0976
0.0977
0.0999
0.1009
0.1010
0.1032
0.1063

0.0794
0.0795
0.0796
0.0825
0.0833
0.0842
0.0846
0.0847
0.0850
0.0851
0.0852
0.0861
0.0862
0.0866
0.0875
0.0878
0.0883
0.0883
0.0884
0.0893
0.0896
0.0898
0.0898
0.0913
0.0924
0.0926
0.0928
0.0937
0.0939
0.0965
0.0971

0.0342
0.0354
0.0368
0.0370
0.0380
0.0389
0.0389
0.0391
0.0396
0.0397
0.0401
0.0414
0.0416
0.0418
0.0423
0.0425
0.0425
0.0427
0.0429
0.0429
0.0449
0.0455
0.0469
0.0486
0.0505
0.0513
0.0518
0.0520
0.0550
0.0628
0.0659
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S12

Si3

S14

Si7

Sis

S19

Sa0

All samples in the group a and b

0.1001
0.1030
0.1030
0.1064
0.1075
0.1077
0.1088
0.1096
0.1108
0.1108
0.1113
0.1133
0.1149
0.1153
0.1171
0.1174
0.1176
0.1177
0.1179
0.1190
0.1198
0.1213
0.1223
0.1225
0.1236
0.1252
0.1262
0.1263
0.1311
0.1331
0.1370

0.1067
0.1079
0.1123
0.1132
0.1138
0.1143
0.1144
0.1154
0.1166
0.1172
0.1174
0.1184
0.1221
0.1228
0.1230
0.1237
0.1243
0.1257
0.1257
0.1262
0.1280
0.1282
0.1291
0.1314
0.1316
0.1322
0.1324
0.1328
0.1356
0.1386
0.1470

0.0762
0.0765
0.0766
0.0781
0.0782
0.0784
0.0795
0.0797
0.0802
0.0803
0.0804
0.0810
0.0814
0.0826
0.0827
0.0828
0.0832
0.0836
0.0839
0.0849
0.0851
0.0854
0.0854
0.0858
0.0866
0.0881
0.0889
0.0891
0.0898
0.0901
0.0934

0.0680
0.0704
0.0706
0.0708
0.0714
0.0717
0.0719
0.0723
0.0724
0.0741
0.0747
0.0763
0.0763
0.0771
0.0772
0.0783
0.0786
0.0787
0.0788
0.0790
0.0791
0.0793
0.0794
0.0796
0.0797
0.0800
0.0804
0.0805
0.0806
0.0842
0.0859

0.0603
0.0664
0.0711
0.0723
0.0728
0.0729
0.0732
0.0733
0.0735
0.0737
0.0740
0.0740
0.0740
0.0745
0.0750
0.0750
0.0751
0.0757
0.0759
0.0761
0.0766
0.0772
0.0775
0.0781
0.0787
0.0788
0.0788
0.0792
0.0820
0.0826
0.0846

0.0563
0.0570
0.0580
0.0584
0.0587
0.0596
0.0598
0.0614
0.0619
0.0622
0.0622
0.0626
0.0630
0.0648
0.0650
0.0651
0.0664
0.0665
0.0665
0.0666
0.0668
0.0674
0.0691
0.0696
0.0707
0.0710
0.0712
0.0715
0.0740
0.0746
0.0789

0.1028
0.1067
0.1084
0.1086
0.1093
0.1099
0.1106
0.1118
0.1123
0.1134
0.1150
0.1151
0.1152
0.1154
0.1169
0.1174
0.1175
0.1185
0.1193
0.1201
0.1208
0.1210
0.1218
0.1219
0.1226
0.1236
0.1239
0.1264
0.1274
0.1304
0.1321

0.0660
0.0670
0.0676
0.0679
0.0680
0.0684
0.0708
0.0710
0.0718
0.0719
0.0733
0.0745
0.0747
0.0756
0.0770
0.0770
0.0771
0.0772
0.0774
0.0776
0.0779
0.0785
0.0787
0.0790
0.0795
0.0795
0.0808
0.0817
0.0832
0.0851
0.0899

0.0566
0.0624
0.0624
0.0636
0.0638
0.0640
0.0644
0.0654
0.0654
0.0661
0.0664
0.0669
0.0678
0.0690
0.0690
0.0695
0.0696
0.0704
0.0713
0.0730
0.0734
0.0736
0.0737
0.0742
0.0747
0.0747
0.0760
0.0771
0.0806
0.0846
0.0859
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Sao

Sa3

So4

Sae

Sar

Sog

Sa9

S30

All samples in the group a and b

0.0628
0.0638
0.0642
0.0642
0.0652
0.0663
0.0664
0.0673
0.0677
0.0684
0.0684
0.0686
0.0696
0.0700
0.0710
0.0714
0.0715
0.0722
0.0724
0.0725
0.0728
0.0729
0.0744
0.0749
0.0756
0.0787
0.0788
0.0789
0.0795
0.0810
0.0877

0.0880
0.0914
0.0926
0.0941
0.0945
0.0946
0.0951
0.0951
0.0953
0.0964
0.0980
0.0980
0.0984
0.0995
0.0996
0.1003
0.1005
0.1012
0.1023
0.1034
0.1035
0.1038
0.1044
0.1048
0.1066
0.1073
0.1096
0.1098
0.1102
0.1123
0.1154

0.0877
0.0909
0.0913
0.0922
0.0932
0.0945
0.0946
0.0947
0.0952
0.0958
0.0975
0.0981
0.0983
0.0986
0.0990
0.0993
0.0993
0.0994
0.0997
0.0998
0.1018
0.1023
0.1024
0.1030
0.1038
0.1048
0.1051
0.1058
0.1103
0.1144
0.1179

0.0608
0.0610
0.0627
0.0632
0.0633
0.0636
0.0640
0.0645
0.0654
0.0656
0.0657
0.0663
0.0663
0.0665
0.0666
0.0667
0.0678
0.0682
0.0688
0.0688
0.0689
0.0692
0.0697
0.0704
0.0714
0.0719
0.0723
0.0723
0.0723
0.0760
0.0760

0.0976
0.0977
0.1023
0.1030
0.1057
0.1059
0.1063
0.1066
0.1076
0.1081
0.1082
0.1107
0.1111
0.1113
0.1114
0.1121
0.1124
0.1130
0.1131
0.1142
0.1161
0.1168
0.1175
0.1184
0.1187
0.1200
0.1211
0.1224
0.1246
0.1283
0.1345

0.0559
0.0560
0.0568
0.0569
0.0571
0.0571
0.0576
0.0576
0.0578
0.0579
0.0593
0.0600
0.0603
0.0609
0.0624
0.0626
0.0638
0.0639
0.0641
0.0643
0.0645
0.0646
0.0655
0.0655
0.0658
0.0665
0.0672
0.0685
0.0715
0.0716
0.0737

0.0513
0.0527
0.0530
0.0532
0.0540
0.0541
0.0545
0.0550
0.0552
0.0555
0.0564
0.0565
0.0566
0.0567
0.0576
0.0577
0.0578
0.0583
0.0591
0.0593
0.0595
0.0598
0.0600
0.0607
0.0612
0.0614
0.0623
0.0660
0.0668
0.0670
0.0747

0.0673
0.0721
0.0731
0.0735
0.0736
0.0743
0.0762
0.0770
0.0770
0.0774
0.0774
0.0775
0.0775
0.0776
0.0778
0.0778
0.0779
0.0781
0.0784
0.0791
0.0793
0.0807
0.0808
0.0809
0.0813
0.0821
0.0831
0.0841
0.0848
0.0872
0.0909

0.0611
0.0613
0.0613
0.0620
0.0623
0.0626
0.0638
0.0645
0.0649
0.0649
0.0650
0.0650
0.0652
0.0652
0.0665
0.0673
0.0678
0.0691
0.0698
0.0705
0.0710
0.0713
0.0718
0.0720
0.0721
0.0725
0.0727
0.0738
0.0747
0.0772
0.0814

0.0687
0.0690
0.0693
0.0699
0.0701
0.0707
0.0708
0.0710
0.0714
0.0716
0.0727
0.0728
0.0737
0.0739
0.0742
0.0748
0.0751
0.0759
0.0769
0.0769
0.0783
0.0783
0.0784
0.0784
0.0793
0.0793
0.0796
0.0803
0.0806
0.0813
0.0847
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TABLE A.17:

Ranked sim values for (a V {b,c}) in GP dataset using FVR.

So

S3

Sy

S5

Se

S7

Sy

S9

S1o

All samples in the group b and ¢

0.6507
0.6472
0.6230
0.6182
0.6083
0.5874
0.5627
0.5570
0.5558
0.5329
0.5222
0.5202
0.5187
0.5180
0.5134
0.5131
0.5126
0.5044
0.5035
0.4990
0.4959
0.4952
0.4837
0.4742
0.4709
0.4691
0.4674
0.4494
0.4322
0.4239
0.4149

0.7093
0.6099
0.6035
0.6034
0.5827
0.5800
0.5691
0.5582
0.5576
0.5570
0.5487
0.5384
0.5326
0.5308
0.5243
0.5215
0.5045
0.5023
0.4969
0.4837
0.4826
0.4782
0.4685
0.4618
0.4488
0.4480
0.4382
0.4333
0.4176
0.4013
0.3777

0.6458
0.6228
0.5996
0.5985
0.5816
0.5814
0.5803
0.5625
0.5470
0.5459
0.5434
0.5196
0.5039
0.4958
0.4866
0.4852
0.4697
0.4597
0.4489
0.4446
0.4438
0.4438
0.4436
0.4429
0.4412
0.4409
0.4203
0.4123
0.4114
0.3859
0.3596

0.7854
0.7662
0.7446
0.7175
0.7045
0.6752
0.6729
0.6710
0.6685
0.6675
0.6667
0.6655
0.6613
0.6486
0.6471
0.6308
0.6302
0.6267
0.6259
0.6251
0.6108
0.6073
0.6069
0.6025
0.5977
0.5880
0.5758
0.5696
0.5679
0.5674
0.5558

0.7037
0.6659
0.6551
0.6424
0.6403
0.6307
0.6023
0.5928
0.5925
0.5844
0.5706
0.5634
0.5629
0.5595
0.5551
0.5501
0.5460
0.5320
0.5279
0.5207
0.5185
0.5172
0.4957
0.4939
0.4872
0.4845
0.4618
0.4544
0.4531
0.4104
0.3731

0.6907
0.6784
0.6179
0.6164
0.6058
0.6024
0.6003
0.5794
0.5686
0.5659
0.5653
0.5566
0.5477
0.5466
0.5428
0.5403
0.5375
0.5222
0.5200
0.5193
0.5187
0.5068
0.5039
0.4929
0.4905
0.4834
0.4491
0.4435
0.4260
0.4180
0.4053

0.7341
0.6488
0.6440
0.6232
0.6197
0.6133
0.6055
0.5931
0.5907
0.5748
0.5685
0.5644
0.5391
0.5303
0.5221
0.5151
0.5028
0.4895
0.4785
0.4782
0.4764
0.4670
0.4371
0.4353
0.4350
0.4173
0.4149
0.4121
0.4076
0.4047
0.4012

0.6695
0.6142
0.5967
0.5959
0.5816
0.5802
0.5680
0.5674
0.5661
0.5643
0.5632
0.5591
0.5591
0.5385
0.5365
0.5296
0.5259
0.5237
0.5184
0.5180
0.5170
0.5170
0.5088
0.4986
0.4873
0.4847
0.4703
0.4680
0.4571
0.4294
0.3965

0.7345
0.7236
0.6576
0.6494
0.6416
0.6331
0.6104
0.6070
0.6064
0.6003
0.5907
0.5871
0.5858
0.5669
0.5603
0.5586
0.5465
0.5439
0.5429
0.5416
0.5354
0.5319
0.5311
0.5168
0.5160
0.5050
0.4846
0.4832
0.4793
0.4698
0.4333

0.8100
0.6611
0.6551
0.6540
0.6497
0.6320
0.6235
0.6124
0.6121
0.5836
0.5831
0.5802
0.5780
0.5709
0.5693
0.5610
0.5375
0.5372
0.5356
0.5069
0.5044
0.4977
0.4908
0.4876
0.4821
0.4775
0.4759
0.4695
0.4602
0.4320
0.3973

24

11

19

15

23
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S12

Si3

S14

Si7

Sis

S19

Sa0

All samples in the group b and ¢

0.6270
0.5955
0.5834
0.5784
0.5745
0.5509
0.5489
0.5480
0.5296
0.5247
0.5240
0.5147
0.5035
0.5016
0.4979
0.4974
0.4923
0.4857
0.4854
0.4734
0.4705
0.4698
0.4616
0.4607
0.4363
0.4228
0.4179
0.4174
0.3967
0.3871
0.3753

0.7064
0.6416
0.6031
0.5928
0.5703
0.5618
0.5589
0.5588
0.5505
0.5473
0.5327
0.5308
0.5261
0.5109
0.5102
0.5055
0.4894
0.4888
0.4838
0.4822
0.4756
0.4735
0.4719
0.4697
0.4568
0.4558
0.4546
0.4496
0.4483
0.4200
0.4050

0.7030
0.6767
0.6626
0.6157
0.5891
0.5880
0.5668
0.5405
0.5336
0.5283
0.5235
0.5219
0.5219
0.5152
0.5150
0.5088
0.4965
0.4904
0.4793
0.4772
0.4765
0.4719
0.4705
0.4704
0.4610
0.4587
0.4281
0.4167
0.4099
0.4028
0.3821

0.8217
0.7981
0.7736
0.7033
0.7014
0.6878
0.6783
0.6771
0.6675
0.6669
0.6491
0.6405
0.6349
0.6196
0.6129
0.6003
0.5995
0.5982
0.5832
0.5831
0.5810
0.5747
0.5726
0.5658
0.5509
0.5491
0.5401
0.5304
0.5259
0.5093
0.5059

0.6963
0.6878
0.6775
0.6774
0.6688
0.6429
0.6249
0.6201
0.6172
0.6130
0.6092
0.5885
0.5871
0.5737
0.5709
0.5604
0.5603
0.5570
0.5569
0.5539
0.5378
0.5341
0.5156
0.5143
0.5115
0.5089
0.4822
0.4757
0.4693
0.4588
0.4373

0.7275
0.6816
0.6772
0.6539
0.6468
0.6430
0.6171
0.6169
0.6142
0.6111
0.6092
0.6068
0.6016
0.5762
0.5730
0.5695
0.5555
0.5432
0.5432
0.5392
0.5374
0.5371
0.5237
0.5217
0.5185
0.5159
0.5134
0.4858
0.4839
0.4575
0.4496

0.7139
0.6802
0.6465
0.6461
0.6446
0.6329
0.6250
0.6223
0.6105
0.6086
0.6060
0.6032
0.5992
0.5847
0.5830
0.5792
0.5782
0.5674
0.5618
0.5519
0.5486
0.5328
0.5305
0.5109
0.5107
0.5048
0.5020
0.4825
0.4822
0.4609
0.4503

0.7492
0.6245
0.6039
0.5976
0.5905
0.5887
0.5645
0.5608
0.5585
0.5582
0.5525
0.5515
0.5396
0.5335
0.5254
0.4993
0.4955
0.4946
0.4931
0.4863
0.4770
0.4639
0.4546
0.4239
0.4180
0.4113
0.4066
0.3975
0.3846
0.3818
0.3671

0.7192
0.6989
0.6846
0.6422
0.6281
0.6256
0.6254
0.6000
0.5846
0.5683
0.5676
0.5618
0.5560
0.5556
0.5518
0.5498
0.5467
0.5451
0.5416
0.5320
0.5286
0.5265
0.5242
0.5090
0.5038
0.4989
0.4937
0.4885
0.4522
0.4296
0.4271

13

13

12

12

10

16
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Sao

Sa3

So4

Sae

Sar

Sog

Sa9

S30

All samples in the group b and ¢

0.6912
0.6656
0.6302
0.6234
0.5891
0.5688
0.5639
0.5551
0.5512
0.5366
0.5263
0.5246
0.5142
0.5140
0.5125
0.5040
0.5035
0.5022
0.4995
0.4974
0.4871
0.4847
0.4759
0.4351
0.4267
0.4220
0.4210
0.4101
0.4089
0.4070
0.3767

0.6917
0.6831
0.6564
0.6346
0.6170
0.6047
0.6008
0.5807
0.5802
0.5790
0.5769
0.5740
0.5652
0.5275
0.5184
0.5148
0.5122
0.5068
0.5058
0.5012
0.4895
0.4869
0.4599
0.4555
0.4487
0.4371
0.4258
0.4207
0.4184
0.4127
0.3600

0.7121
0.6463
0.6220
0.6111
0.6035
0.5862
0.5809
0.5779
0.5720
0.5670
0.5638
0.5530
0.5486
0.5383
0.5351
0.5325
0.5307
0.5259
0.5129
0.5122
0.5059
0.4801
0.4800
0.4727
0.4703
0.4594
0.4567
0.4450
0.4209
0.4052
0.3423

0.7494
0.6938
0.6802
0.6438
0.6104
0.5991
0.5974
0.5910
0.5667
0.5643
0.5442
0.5426
0.5409
0.5277
0.5258
0.5219
0.5139
0.5120
0.5027
0.4961
0.4953
0.4880
0.4636
0.4617
0.4442
0.4437
0.4366
0.4359
0.4321
0.4193
0.4078

0.7290
0.6677
0.6271
0.6112
0.6104
0.5679
0.5659
0.5638
0.5590
0.5556
0.5543
0.5496
0.5478
0.5447
0.5405
0.5338
0.5280
0.5118
0.5016
0.4997
0.4970
0.4954
0.4941
0.4900
0.4718
0.4689
0.4681
0.4561
0.4387
0.4351
0.4176

0.7506
0.7238
0.7155
0.7131
0.6787
0.6554
0.6429
0.6429
0.6419
0.6347
0.6326
0.6211
0.6192
0.6142
0.6106
0.5918
0.5772
0.5745
0.5505
0.5421
0.5357
0.5141
0.5040
0.5009
0.4987
0.4874
0.4641
0.4593
0.4591
0.4417
0.4400

0.7530
0.7098
0.7008
0.6916
0.6544
0.6528
0.6429
0.6405
0.6268
0.6262
0.6205
0.6176
0.6146
0.6067
0.6061
0.6029
0.6001
0.5850
0.5810
0.5757
0.5738
0.5703
0.5692
0.5691
0.5685
0.5617
0.5100
0.5047
0.4988
0.4818
0.4716

0.6617
0.6448
0.6063
0.6004
0.5799
0.5414
0.5368
0.5312
0.5260
0.5236
0.5184
0.5142
0.5105
0.5054
0.4994
0.4958
0.4898
0.4812
0.4764
0.4753
0.4702
0.4587
0.4582
0.4359
0.4356
0.4351
0.4321
0.4302
0.4189
0.4097
0.3949

0.6999
0.6784
0.6611
0.6557
0.6269
0.5771
0.5587
0.5584
0.5444
0.5152
0.5046
0.5025
0.4974
0.4927
0.4912
0.4724
0.4641
0.4385
0.4322
0.4282
0.4247
0.4236
0.4210
0.4188
0.4164
0.3847
0.3815
0.3802
0.3779
0.3597
0.3381

0.8437
0.8258
0.8160
0.7605
0.7566
0.7523
0.7517
0.7496
0.7484
0.7357
0.7227
0.7219
0.7196
0.7055
0.6985
0.6873
0.6843
0.6758
0.6732
0.6695
0.6525
0.6515
0.6494
0.6323
0.6171
0.6155
0.6145
0.6141
0.6085
0.6074
0.5680

14

18

11

22
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TABLE A.18: Ranked sim values for (b V {a,b}) in GP dataset using FVR.

So

S3

Sy

S5

Se

S7

Sy

S9

S1o

All samples in the group a and ¢

0.7103
0.6860
0.6470
0.6297
0.6248
0.6092
0.6085
0.5830
0.5827
0.5661
0.5605
0.5597
0.5530
0.5438
0.5436
0.5423
0.5362
0.5339
0.5316
0.5194
0.5056
0.5001
0.4996
0.4993
0.4864
0.4834
0.4822
0.4784
0.4571
0.4213
0.3992

0.7198
0.6781
0.6771
0.6752
0.6579
0.6137
0.6115
0.6017
0.5914
0.5887
0.5863
0.5832
0.5708
0.5699
0.5646
0.5549
0.5540
0.5447
0.5320
0.5278
0.5278
0.5203
0.5105
0.5077
0.4926
0.4898
0.4892
0.4837
0.4786
0.4663
0.4396

0.8280
0.8001
0.7796
0.7756
0.7714
0.7474
0.7316
0.7224
0.7108
0.7072
0.6943
0.6914
0.6811
0.6687
0.6635
0.6612
0.6511
0.6508
0.6373
0.6340
0.6317
0.6280
0.6221
0.6164
0.6111
0.6050
0.6045
0.6020
0.5680
0.5443
0.5367

0.6657
0.6485
0.6086
0.5948
0.5767
0.5651
0.5497
0.5469
0.5379
0.5344
0.5336
0.5268
0.5225
0.5217
0.5152
0.5089
0.5034
0.5025
0.5020
0.5012
0.4929
0.4854
0.4646
0.4628
0.4469
0.4357
0.4334
0.4299
0.4235
0.4185
0.4121

0.6801
0.6592
0.6228
0.5898
0.5813
0.5692
0.5638
0.5560
0.5445
0.5373
0.5152
0.5103
0.4999
0.4980
0.4926
0.4926
0.4913
0.4853
0.4852
0.4841
0.4708
0.4610
0.4595
0.4553
0.4527
0.4155
0.4140
0.3998
0.3965
0.3689
0.3605

0.7302
0.7018
0.6995
0.6701
0.6630
0.6576
0.6570
0.6482
0.6473
0.6339
0.6336
0.6168
0.6041
0.5971
0.5947
0.5916
0.5900
0.5795
0.5754
0.5648
0.5636
0.5629
0.5510
0.5276
0.5239
0.5077
0.5055
0.5038
0.4805
0.4746
0.4286

0.8288
0.8170
0.7476
0.7435
0.7118
0.6934
0.6890
0.6756
0.6746
0.6744
0.6685
0.6681
0.6630
0.6596
0.6594
0.6510
0.6465
0.6427
0.6340
0.6283
0.6240
0.6183
0.6081
0.6022
0.5961
0.5868
0.5705
0.5501
0.4997
0.4980
0.4852

0.6885
0.6872
0.6813
0.6620
0.6546
0.6463
0.6271
0.6223
0.6179
0.6102
0.6070
0.5704
0.5668
0.5522
0.5518
0.5503
0.5451
0.5423
0.5374
0.5132
0.5121
0.5050
0.5021
0.5013
0.4667
0.4647
0.4638
0.4570
0.4492
0.4461
0.3983

0.7204
0.7193
0.7069
0.6885
0.6665
0.6403
0.6251
0.6219
0.5961
0.5854
0.5777
0.5774
0.5739
0.5718
0.5661
0.5630
0.5517
0.5481
0.5393
0.5267
0.5242
0.5212
0.5210
0.5192
0.5001
0.4994
0.4929
0.4920
0.4669
0.4150
0.4088

0.7919
0.7576
0.7487
0.7324
0.7241
0.6932
0.6866
0.6814
0.6807
0.6787
0.6694
0.6665
0.6633
0.6594
0.6581
0.6556
0.6539
0.6529
0.6441
0.6415
0.6309
0.6271
0.6250
0.6180
0.6031
0.5959
0.5577
0.5559
0.5349
0.5182
0.4902

20

22

14

24
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S12

Si3

S14

Si7

Sis

S19

Sa0

All samples in the group a and ¢

0.7280
0.7172
0.7106
0.6927
0.6920
0.6906
0.6209
0.6133
0.5942
0.5785
0.5734
0.5733
0.5340
0.5287
0.5278
0.5271
0.5227
0.5116
0.5036
0.5019
0.4991
0.4959
0.4921
0.4755
0.4632
0.4437
0.4408
0.4384
0.4381
0.4059
0.3624

0.6692
0.5651
0.5589
0.5489
0.5397
0.5371
0.5238
0.5176
0.5152
0.5087
0.5064
0.4977
0.4952
0.4913
0.4793
0.4706
0.4703
0.4666
0.4640
0.4570
0.4408
0.4401
0.4399
0.4392
0.4303
0.4240
0.4133
0.4080
0.3913
0.3620
0.3605

0.7149
0.6791
0.6400
0.6310
0.6230
0.6183
0.5739
0.5585
0.5532
0.5470
0.5350
0.5340
0.5245
0.5236
0.5168
0.5124
0.5105
0.5062
0.5049
0.4981
0.4869
0.4758
0.4727
0.4624
0.4497
0.4382
0.4330
0.3905
0.3898
0.3889
0.3680

0.6889
0.6504
0.6181
0.5782
0.5593
0.5347
0.5345
0.5256
0.5217
0.5069
0.5061
0.5046
0.5021
0.4884
0.4880
0.4870
0.4827
0.4818
0.4753
0.4707
0.4624
0.4500
0.4450
0.4443
0.4364
0.4271
0.4129
0.4017
0.3990
0.3776
0.3561

0.7579
0.7311
0.7070
0.6933
0.6893
0.6890
0.6577
0.6354
0.6334
0.6283
0.6266
0.6040
0.6020
0.6008
0.5990
0.5845
0.5839
0.5778
0.5747
0.5733
0.5662
0.5522
0.5283
0.5276
0.5271
0.5251
0.4945
0.4860
0.4577
0.4548
0.4077

0.7389
0.7107
0.6999
0.6997
0.6633
0.6602
0.6487
0.6436
0.6320
0.6291
0.6194
0.6122
0.6093
0.6075
0.5989
0.5964
0.5933
0.5808
0.5632
0.5613
0.5581
0.5460
0.5424
0.5365
0.5182
0.5108
0.4982
0.4798
0.4730
0.4600
0.4315

0.6747
0.6388
0.6112
0.5979
0.5828
0.5810
0.5777
0.5738
0.5706
0.5658
0.5597
0.5545
0.5506
0.5320
0.5315
0.5194
0.5026
0.5025
0.4950
0.4855
0.4804
0.4759
0.4755
0.4612
0.4573
0.4549
0.4350
0.4346
0.4153
0.4090
0.3800

0.7658
0.7221
0.6961
0.6942
0.6767
0.6687
0.6460
0.6337
0.6330
0.6302
0.6161
0.6128
0.6094
0.6092
0.6089
0.6056
0.6045
0.5985
0.5968
0.5967
0.5956
0.5886
0.5666
0.5619
0.5539
0.5524
0.5292
0.5099
0.4852
0.4823
0.4457

0.7462
0.6599
0.6585
0.6578
0.6406
0.6304
0.6148
0.6122
0.6036
0.5877
0.5860
0.5860
0.5844
0.5644
0.5612
0.5579
0.5567
0.5542
0.5430
0.5332
0.5241
0.5230
0.4873
0.4770
0.4692
0.4588
0.4282
0.4279
0.4222
0.4172
0.3448
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Sao

Sa3

So4

Sae

Sar

Sog

Sa9

S30

All samples in the group a and ¢

0.7520
0.7303
0.7176
0.6310
0.6296
0.6200
0.5877
0.5856
0.5817
0.5737
0.5547
0.5480
0.5398
0.5330
0.5122
0.4930
0.4913
0.4886
0.4822
0.4693
0.4548
0.4514
0.4506
0.4496
0.4387
0.4347
0.4326
0.4323
0.4161
0.4155
0.4054

0.7710
0.6816
0.6680
0.6641
0.6246
0.6177
0.6166
0.6130
0.6043
0.6021
0.5929
0.5856
0.5839
0.5720
0.5683
0.5668
0.5634
0.5629
0.5523
0.5513
0.5393
0.5385
0.5374
0.5263
0.5228
0.5171
0.5034
0.4589
0.4586
0.4575
0.4542

0.7549
0.7352
0.7249
0.7219
0.6984
0.6870
0.6677
0.6502
0.6342
0.6330
0.6304
0.6240
0.6174
0.6161
0.6079
0.6069
0.6027
0.5964
0.5903
0.5781
0.5767
0.5764
0.5625
0.5599
0.5597
0.5517
0.5311
0.5252
0.5198
0.5171
0.4697

0.8057
0.7762
0.7270
0.7245
0.7177
0.7137
0.7131
0.7027
0.7006
0.6908
0.6882
0.6846
0.6805
0.6797
0.6757
0.6709
0.6688
0.6665
0.6525
0.6372
0.6367
0.6358
0.6263
0.6196
0.6125
0.6125
0.5892
0.5463
0.5385
0.5341
0.5331

0.7439
0.7116
0.6947
0.6844
0.6574
0.6544
0.6542
0.6537
0.6424
0.6419
0.6411
0.6317
0.6128
0.6123
0.5936
0.5788
0.5776
0.5774
0.5717
0.5657
0.5545
0.5377
0.5357
0.5307
0.5209
0.5164
0.5046
0.4928
0.4857
0.4606
0.4506

0.7437
0.7084
0.6934
0.6788
0.6749
0.6653
0.6241
0.6219
0.5991
0.5788
0.5604
0.5597
0.5566
0.5528
0.5480
0.5389
0.5361
0.5355
0.5269
0.5263
0.5192
0.5155
0.5000
0.4995
0.4895
0.4803
0.4796
0.4390
0.4299
0.4142
0.3839

0.8271
0.7790
0.7656
0.7601
0.7382
0.6986
0.6966
0.6455
0.6333
0.6314
0.6309
0.6303
0.6299
0.6269
0.6140
0.6082
0.6014
0.5994
0.5978
0.5909
0.5843
0.5821
0.5821
0.5790
0.5654
0.5468
0.5452
0.5356
0.5287
0.5271
0.4964

0.6910
0.6347
0.6128
0.5949
0.5861
0.5773
0.5705
0.5659
0.5575
0.5495
0.5442
0.5436
0.5420
0.5397
0.5214
0.5131
0.4946
0.4935
0.4881
0.4786
0.4716
0.4685
0.4483
0.4407
0.4289
0.4147
0.4077
0.4006
0.3767
0.3633
0.3445

0.7271
0.6651
0.6511
0.6495
0.6395
0.6386
0.6226
0.6070
0.6018
0.6007
0.5963
0.5956
0.5924
0.5915
0.5863
0.5773
0.5723
0.5712
0.5679
0.5608
0.5535
0.5507
0.5493
0.5294
0.5215
0.4988
0.4967
0.4583
0.4564
0.4402
0.4181

0.7906
0.7251
0.7167
0.6492
0.6462
0.6427
0.6397
0.6273
0.6268
0.6219
0.6107
0.6077
0.6015
0.5947
0.5885
0.5858
0.5661
0.5602
0.5560
0.5495
0.5447
0.5408
0.5407
0.5394
0.5097
0.5082
0.5046
0.4875
0.4828
0.4667
0.4262
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TABLE A.19

: Ranked sim values for (¢ V {a,b}) in GP dataset using FVR.

So

S3

Sy

S5

Se

S7

Sy

S9

S1o

All samples in the group a and b

0.7252
0.6681
0.6416
0.6275
0.6200
0.6200
0.6183
0.6177
0.6075
0.6044
0.6022
0.5886
0.5848
0.5754
0.5488
0.5486
0.5435
0.5415
0.5400
0.5351
0.5340
0.5308
0.5010
0.4773
0.4720
0.4715
0.4664
0.4630
0.4449
0.4412
0.4406

0.7342
0.7033
0.7013
0.6535
0.6480
0.6418
0.6227
0.6198
0.6046
0.5989
0.5966
0.5887
0.5846
0.5843
0.5813
0.5752
0.5707
0.5679
0.5615
0.5546
0.5525
0.5437
0.5398
0.5128
0.5008
0.4983
0.4886
0.4856
0.4616
0.4587
0.4483

0.6434
0.6209
0.6109
0.6062
0.5954
0.5769
0.5734
0.5532
0.5326
0.5289
0.5241
0.5089
0.5007
0.4944
0.4939
0.4937
0.4903
0.4807
0.4602
0.4550
0.4463
0.4393
0.4334
0.4321
0.4316
0.4296
0.4205
0.3790
0.3690
0.3583
0.3532

0.8641
0.8211
0.8050
0.7711
0.7640
0.7450
0.7435
0.7333
0.7178
0.7030
0.6998
0.6918
0.6894
0.6758
0.6704
0.6641
0.6599
0.6554
0.6489
0.6440
0.6376
0.6346
0.6258
0.6183
0.6112
0.6069
0.5787
0.5636
0.5482
0.5468
0.4975

0.6639
0.6512
0.6510
0.6133
0.6101
0.6055
0.6009
0.6000
0.5926
0.5917
0.5804
0.5663
0.5655
0.5596
0.5544
0.5534
0.5522
0.5519
0.5513
0.5489
0.5431
0.5380
0.5348
0.5327
0.5270
0.5038
0.4688
0.4637
0.4601
0.4063
0.3927

0.7881
0.6918
0.6852
0.6735
0.6369
0.6330
0.6329
0.6270
0.6181
0.6061
0.5983
0.5930
0.5873
0.5869
0.5808
0.5742
0.5655
0.5567
0.5434
0.5394
0.5387
0.5369
0.5259
0.5249
0.5206
0.4988
0.4932
0.4902
0.4841
0.4777
0.4309

0.6433
0.6210
0.5884
0.5562
0.5526
0.5405
0.5382
0.5243
0.5080
0.4963
0.4941
0.4914
0.4872
0.4866
0.4860
0.4859
0.4852
0.4759
0.4711
0.4680
0.4662
0.4657
0.4633
0.4493
0.4465
0.4464
0.4047
0.3923
0.3658
0.3617
0.3494

0.6023
0.5948
0.5790
0.5660
0.5556
0.5367
0.5264
0.5237
0.5208
0.5102
0.4991
0.4981
0.4974
0.4917
0.4862
0.4849
0.4769
0.4603
0.4578
0.4554
0.4536
0.4474
0.4373
0.4300
0.4257
0.4241
0.4225
0.4073
0.4022
0.3924
0.3815

0.7346
0.6983
0.6676
0.6515
0.6460
0.6437
0.6410
0.6350
0.6339
0.5992
0.5919
0.5899
0.5529
0.5451
0.5444
0.5428
0.5397
0.5385
0.5348
0.5341
0.5287
0.5280
0.5264
0.5187
0.4933
0.4917
0.4883
0.4743
0.4376
0.4238
0.4011

0.6612
0.6606
0.6151
0.6052
0.5912
0.5834
0.5808
0.5802
0.5643
0.5596
0.5471
0.5291
0.5283
0.5250
0.5188
0.5158
0.5107
0.5005
0.4973
0.4946
0.4932
0.4913
0.4854
0.4791
0.4726
0.4626
0.4590
0.4545
0.4268
0.4000
0.3990
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S12

Si3

S14

Si7

Sis

S19

Sa0

All samples in the group a and b

0.6675
0.6594
0.6444
0.6421
0.6367
0.6187
0.6022
0.5708
0.5682
0.5650
0.5525
0.5470
0.5462
0.5322
0.5224
0.5175
0.5121
0.5080
0.5076
0.5014
0.4987
0.4959
0.4923
0.4803
0.4795
0.4791
0.4608
0.4534
0.4406
0.4177
0.4115

0.8374
0.6891
0.6764
0.6751
0.6618
0.6584
0.6475
0.6396
0.6383
0.5964
0.5739
0.5728
0.5635
0.5508
0.5506
0.5494
0.5373
0.5348
0.5294
0.5232
0.5230
0.5153
0.5152
0.5112
0.4851
0.4808
0.4540
0.4490
0.4447
0.4438
0.4121

0.7150
0.6806
0.6606
0.6553
0.6506
0.6241
0.6240
0.5920
0.5833
0.5790
0.5746
0.5723
0.5629
0.5595
0.5504
0.5472
0.5432
0.5403
0.5308
0.5306
0.5289
0.5088
0.4933
0.4908
0.4848
0.4753
0.4749
0.4330
0.4269
0.4114
0.4016

0.7800
0.7736
0.7611
0.7414
0.7215
0.7207
0.6975
0.6817
0.6772
0.6719
0.6621
0.6619
0.6565
0.6534
0.6512
0.6384
0.6343
0.6267
0.6027
0.5993
0.5982
0.5881
0.5866
0.5857
0.5808
0.5647
0.5557
0.5535
0.5460
0.5070
0.4944

0.7318
0.7280
0.6583
0.6571
0.6471
0.6265
0.6255
0.6185
0.6163
0.6062
0.5938
0.5838
0.5786
0.5694
0.5657
0.5621
0.5620
0.5585
0.5570
0.5542
0.5471
0.5354
0.5189
0.5152
0.5091
0.5056
0.5050
0.5030
0.4718
0.4682
0.4462

0.7284
0.7160
0.6927
0.6669
0.6486
0.6419
0.6359
0.6320
0.6261
0.6257
0.6056
0.6056
0.6028
0.6017
0.5943
0.5940
0.5877
0.5861
0.5793
0.5791
0.5722
0.5705
0.5698
0.5471
0.5366
0.4922
0.4863
0.4853
0.4824
0.4503
0.4240

0.6880
0.6593
0.6507
0.6507
0.6369
0.6334
0.6246
0.6142
0.6129
0.6047
0.6024
0.5913
0.5696
0.5629
0.5577
0.5512
0.5502
0.5445
0.5434
0.5408
0.5297
0.5217
0.5202
0.5040
0.4986
0.4867
0.4780
0.4694
0.4459
0.4395
0.4189

0.7081
0.6714
0.6684
0.6392
0.6037
0.5798
0.5768
0.5732
0.5553
0.5547
0.5521
0.5488
0.5463
0.5455
0.5454
0.5265
0.5171
0.5112
0.4973
0.4924
0.4853
0.4830
0.4657
0.4586
0.4584
0.4430
0.4252
0.4197
0.3915
0.3839
0.3730

0.7430
0.7181
0.7143
0.7131
0.6635
0.6580
0.6555
0.6472
0.6405
0.6133
0.6069
0.5943
0.5940
0.5904
0.5860
0.5802
0.5759
0.5730
0.5723
0.5704
0.5520
0.5097
0.5023
0.4977
0.4944
0.4864
0.4849
0.4692
0.4685
0.4516
0.4406
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Sao

Sa3

So4

Sae

Sar

Sog

Sa9

S30

All samples in the group a and b

0.7528
0.6947
0.6862
0.6709
0.6455
0.6277
0.6173
0.6144
0.6135
0.5519
0.5435
0.5421
0.5411
0.5387
0.5381
0.5288
0.5184
0.5167
0.5133
0.5030
0.4933
0.4922
0.4870
0.4841
0.4825
0.4788
0.4679
0.4555
0.4445
0.4257
0.3711

0.6659
0.6450
0.6406
0.6196
0.6043
0.6037
0.5932
0.5876
0.5860
0.5734
0.5719
0.5674
0.5518
0.5518
0.5320
0.5271
0.5229
0.5130
0.5101
0.5098
0.5078
0.5047
0.4974
0.4930
0.4929
0.4820
0.4701
0.4483
0.4198
0.3844
0.3815

0.6861
0.6843
0.6667
0.6216
0.6107
0.6025
0.6003
0.5916
0.5872
0.5805
0.5729
0.5712
0.5618
0.5552
0.5513
0.5496
0.5487
0.5479
0.5439
0.5384
0.5381
0.5227
0.5159
0.5082
0.5007
0.4999
0.4960
0.4938
0.4644
0.4596
0.4509

0.7032
0.6660
0.6616
0.6598
0.6447
0.6229
0.5796
0.5742
0.5726
0.5695
0.5673
0.5668
0.5630
0.5522
0.5379
0.5366
0.5326
0.5278
0.5209
0.5206
0.5168
0.4932
0.4915
0.4912
0.4880
0.4812
0.4625
0.4596
0.4410
0.4249
0.4214

0.7253
0.7231
0.7106
0.7065
0.6618
0.6574
0.6209
0.6086
0.6060
0.5899
0.5804
0.5766
0.5747
0.5614
0.5571
0.5562
0.5395
0.5304
0.5262
0.5242
0.5185
0.5042
0.5032
0.4768
0.4713
0.4640
0.4590
0.4567
0.4211
0.4182
0.4080

0.7195
0.6904
0.6669
0.6534
0.6459
0.6400
0.6258
0.5908
0.5884
0.5820
0.5768
0.5725
0.5684
0.5646
0.5616
0.5591
0.5562
0.5540
0.5535
0.5438
0.5276
0.5252
0.5125
0.5000
0.4968
0.4935
0.4908
0.4817
0.4764
0.4608
0.4035

0.7921
0.7837
0.7110
0.7039
0.6990
0.6867
0.6792
0.6782
0.6624
0.6586
0.6551
0.6545
0.6443
0.6431
0.6324
0.6139
0.6017
0.5929
0.5923
0.5885
0.5870
0.5855
0.5795
0.5692
0.5668
0.5637
0.5514
0.5434
0.5273
0.5059
0.5030

0.6377
0.6248
0.5992
0.5886
0.5885
0.5858
0.5842
0.5832
0.5790
0.5700
0.5604
0.5585
0.5481
0.5380
0.5375
0.5353
0.5234
0.5229
0.5187
0.5166
0.5156
0.5112
0.5087
0.4971
0.4940
0.4770
0.4702
0.4464
0.4431
0.4229
0.4183

0.7457
0.6978
0.6977
0.5948
0.5909
0.5834
0.5762
0.5748
0.5732
0.5597
0.5585
0.5435
0.5349
0.5337
0.5301
0.4987
0.4903
0.4871
0.4639
0.4638
0.4471
0.4351
0.4306
0.4273
0.4186
0.4173
0.4006
0.3911
0.3894
0.3720
0.3456

0.9135
0.8408
0.8252
0.8057
0.7983
0.7542
0.7519
0.7509
0.7284
0.7231
0.7186
0.7178
0.7146
0.7037
0.6896
0.6893
0.6859
0.6821
0.6815
0.6815
0.6596
0.6474
0.6430
0.6424
0.6354
0.6284
0.6275
0.6112
0.6056
0.5956
0.5427
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TABLE A.20: Ranked sim values for (a V {b,c}) in VHHS dataset using U-KTS F* .

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group b and ¢

0.0104
0.0131
0.0147
0.0149
0.0163
0.0165
0.0165
0.0166
0.0180
0.0184
0.0201
0.0204
0.0205
0.0209
0.0210
0.0223
0.0235
0.0237
0.0242
0.0243
0.0252
0.0254
0.0275
0.0282
0.0315
0.0335
0.0341
0.0347
0.0356
0.0375
0.0382
0.0457
0.0507
0.0539
0.0588
0.0638
0.0655
0.0749
0.0816

0.0162
0.0167
0.0174
0.0198
0.0202
0.0203
0.0204
0.0208
0.0214
0.0216
0.0227
0.0227
0.0229
0.0238
0.0241
0.0242
0.0243
0.0244
0.0249
0.0250
0.0277
0.0278
0.0284
0.0285
0.0286
0.0290
0.0293
0.0312
0.0316
0.0320
0.0377
0.0381
0.0443
0.0444
0.0501
0.0579
0.0595
0.0657
0.0713

0.0131
0.0154
0.0155
0.0168
0.0171
0.0172
0.0172
0.0183
0.0184
0.0191
0.0206
0.0214
0.0217
0.0218
0.0228
0.0231
0.0235
0.0248
0.0251
0.0262
0.0263
0.0268
0.0270
0.0282
0.0307
0.0313
0.0329
0.0330
0.0356
0.0366
0.0390
0.0436
0.0487
0.0543
0.0573
0.0588
0.0610
0.0716
0.0813

0.0168
0.0173
0.0177
0.0185
0.0189
0.0201
0.0203
0.0206
0.0206
0.0206
0.0213
0.0218
0.0218
0.0219
0.0224
0.0227
0.0227
0.0228
0.0252
0.0255
0.0257
0.0260
0.0262
0.0263
0.0270
0.0307
0.0318
0.0339
0.0360
0.0360
0.0379
0.0424
0.0497
0.0524
0.0541
0.0588
0.0613
0.0705
0.0785

0.0355
0.0383
0.0388
0.0411
0.0419
0.0437
0.0437
0.0441
0.0442
0.0447
0.0466
0.0467
0.0472
0.0490
0.0496
0.0513
0.0515
0.0515
0.0527
0.0532
0.0534
0.0545
0.0547
0.0550
0.0556
0.0562
0.0563
0.0567
0.0582
0.0588
0.0589
0.0592
0.0593
0.0602
0.0616
0.0620
0.0642
0.0650
0.0654

0.0261
0.0277
0.0277
0.0277
0.0284
0.0293
0.0301
0.0304
0.0308
0.0313
0.0314
0.0317
0.0320
0.0324
0.0325
0.0325
0.0328
0.0333
0.0340
0.0346
0.0349
0.0362
0.0370
0.0378
0.0380
0.0411
0.0417
0.0433
0.0451
0.0468
0.0470
0.0495
0.0538
0.0618
0.0648
0.0692
0.0703
0.0811
0.0855

0.0312
0.0328
0.0332
0.0333
0.0340
0.0340
0.0343
0.0345
0.0356
0.0362
0.0363
0.0379
0.0395
0.0397
0.0398
0.0399
0.0399
0.0402
0.0409
0.0411
0.0413
0.0414
0.0416
0.0422
0.0430
0.0434
0.0435
0.0437
0.0439
0.0440
0.0445
0.0451
0.0460
0.0478
0.0511
0.0531
0.0589
0.0642
0.0748

0.0160
0.0164
0.0165
0.0175
0.0180
0.0187
0.0190
0.0194
0.0200
0.0202
0.0204
0.0209
0.0216
0.0227
0.0228
0.0234
0.0246
0.0252
0.0259
0.0263
0.0264
0.0301
0.0317
0.0333
0.0345
0.0354
0.0354
0.0368
0.0379
0.0379
0.0391
0.0509
0.0535
0.0545
0.0568
0.0570
0.0665
0.0749
0.0856

0.0107
0.0135
0.0144
0.0152
0.0153
0.0171
0.0191
0.0192
0.0196
0.0225
0.0229
0.0229
0.0231
0.0241
0.0241
0.0246
0.0258
0.0262
0.0282
0.0286
0.0289
0.0296
0.0312
0.0340
0.0342
0.0354
0.0385
0.0386
0.0407
0.0409
0.0444
0.0532
0.0562
0.0593
0.0654
0.0696
0.0710
0.0814
0.0884

0.0188
0.0203
0.0209
0.0210
0.0221
0.0224
0.0229
0.0230
0.0231
0.0238
0.0243
0.0245
0.0248
0.0258
0.0261
0.0263
0.0269
0.0269
0.0274
0.0277
0.0283
0.0284
0.0284
0.0298
0.0299
0.0305
0.0306
0.0319
0.0332
0.0340
0.0343
0.0369
0.0373
0.0388
0.0442
0.0497
0.0573
0.0587
0.0675
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group b and ¢

0.0216
0.0232
0.0250
0.0254
0.0255
0.0263
0.0272
0.0275
0.0279
0.0280
0.0283
0.0284
0.0294
0.0296
0.0304
0.0308
0.0314
0.0315
0.0318
0.0323
0.0324
0.0324
0.0331
0.0332
0.0334
0.0339
0.0348
0.0358
0.0361
0.0364
0.0380
0.0393
0.0436
0.0477
0.0483
0.0525
0.0550
0.0644
0.0703

0.0337
0.0343
0.0350
0.0365
0.0366
0.0374
0.0381
0.0384
0.0392
0.0393
0.0398
0.0399
0.0405
0.0407
0.0407
0.0416
0.0419
0.0421
0.0422
0.0424
0.0424
0.0424
0.0429
0.0438
0.0448
0.0450
0.0458
0.0459
0.0463
0.0468
0.0478
0.0480
0.0486
0.0491
0.0500
0.0512
0.0514
0.0536
0.0593

0.0220
0.0250
0.0250
0.0256
0.0262
0.0268
0.0268
0.0272
0.0275
0.0281
0.0281
0.0283
0.0286
0.0289
0.0291
0.0293
0.0296
0.0296
0.0302
0.0304
0.0305
0.0313
0.0314
0.0315
0.0322
0.0323
0.0324
0.0341
0.0344
0.0348
0.0364
0.0367
0.0374
0.0430
0.0451
0.0537
0.0547
0.0591
0.0648

0.0166
0.0207
0.0226
0.0228
0.0233
0.0234
0.0238
0.0239
0.0245
0.0252
0.0253
0.0253
0.0263
0.0265
0.0272
0.0276
0.0280
0.0283
0.0285
0.0298
0.0310
0.0315
0.0319
0.0323
0.0325
0.0328
0.0331
0.0335
0.0336
0.0357
0.0360
0.0376
0.0386
0.0421
0.0481
0.0494
0.0587
0.0624
0.0680

0.0219
0.0220
0.0229
0.0253
0.0260
0.0269
0.0284
0.0288
0.0291
0.0295
0.0298
0.0298
0.0299
0.0301
0.0305
0.0305
0.0306
0.0309
0.0311
0.0312
0.0315
0.0319
0.0319
0.0327
0.0331
0.0333
0.0336
0.0347
0.0351
0.0355
0.0356
0.0361
0.0408
0.0419
0.0421
0.0465
0.0508
0.0553
0.0661

0.0298
0.0320
0.0327
0.0329
0.0339
0.0339
0.0350
0.0363
0.0369
0.0369
0.0371
0.0371
0.0380
0.0382
0.0388
0.0399
0.0402
0.0402
0.0404
0.0407
0.0416
0.0423
0.0427
0.0432
0.0432
0.0435
0.0438
0.0445
0.0449
0.0449
0.0454
0.0457
0.0459
0.0464
0.0466
0.0469
0.0474
0.0544
0.0656

0.0170
0.0192
0.0193
0.0198
0.0199
0.0202
0.0203
0.0208
0.0218
0.0224
0.0227
0.0229
0.0231
0.0231
0.0233
0.0240
0.0242
0.0258
0.0259
0.0282
0.0284
0.0298
0.0298
0.0311
0.0314
0.0329
0.0340
0.0354
0.0359
0.0371
0.0399
0.0455
0.0469
0.0477
0.0529
0.0582
0.0632
0.0720
0.0819

0.0309
0.0340
0.0343
0.0377
0.0389
0.0406
0.0407
0.0420
0.0421
0.0423
0.0424
0.0424
0.0425
0.0433
0.0439
0.0439
0.0443
0.0446
0.0447
0.0449
0.0452
0.0454
0.0455
0.0461
0.0462
0.0463
0.0463
0.0463
0.0466
0.0467
0.0473
0.0487
0.0495
0.0508
0.0521
0.0523
0.0531
0.0548
0.0596

0.0266
0.0327
0.0328
0.0336
0.0347
0.0348
0.0351
0.0354
0.0356
0.0358
0.0363
0.0363
0.0364
0.0367
0.0369
0.0378
0.0386
0.0392
0.0394
0.0401
0.0403
0.0409
0.0409
0.0422
0.0431
0.0437
0.0443
0.0456
0.0475
0.0492
0.0499
0.0507
0.0588
0.0623
0.0628
0.0652
0.0674
0.0681
0.0745

3
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group b and ¢

0.0202
0.0203
0.0204
0.0210
0.0216
0.0216
0.0222
0.0227
0.0233
0.0234
0.0235
0.0244
0.0245
0.0248
0.0255
0.0256
0.0257
0.0267
0.0270
0.0273
0.0273
0.0275
0.0291
0.0294
0.0294
0.0307
0.0317
0.0341
0.0361
0.0370
0.0385
0.0405
0.0425
0.0453
0.0491
0.0538
0.0563
0.0668
0.0716

0.0363
0.0401
0.0406
0.0425
0.0431
0.0439
0.0444
0.0470
0.0472
0.0480
0.0489
0.0496
0.0496
0.0501
0.0501
0.0502
0.0503
0.0505
0.0511
0.0513
0.0515
0.0523
0.0532
0.0537
0.0538
0.0541
0.0541
0.0547
0.0548
0.0550
0.0552
0.0557
0.0573
0.0577
0.0581
0.0587
0.0588
0.0593
0.0596

0.0138
0.0143
0.0166
0.0171
0.0173
0.0189
0.0189
0.0191
0.0193
0.0196
0.0202
0.0207
0.0212
0.0228
0.0230
0.0260
0.0264
0.0265
0.0265
0.0267
0.0275
0.0279
0.0283
0.0292
0.0299
0.0312
0.0344
0.0365
0.0368
0.0377
0.0382
0.0444
0.0493
0.0537
0.0578
0.0610
0.0633
0.0731
0.0792

0.0143
0.0145
0.0155
0.0155
0.0164
0.0164
0.0165
0.0166
0.0171
0.0172
0.0178
0.0196
0.0197
0.0202
0.0205
0.0207
0.0207
0.0216
0.0224
0.0233
0.0260
0.0261
0.0262
0.0267
0.0281
0.0320
0.0329
0.0337
0.0346
0.0347
0.0355
0.0444
0.0485
0.0489
0.0545
0.0585
0.0622
0.0719
0.0797

0.0269
0.0302
0.0304
0.0306
0.0312
0.0320
0.0334
0.0336
0.0346
0.0347
0.0347
0.0349
0.0351
0.0354
0.0355
0.0358
0.0359
0.0363
0.0365
0.0366
0.0370
0.0376
0.0381
0.0382
0.0384
0.0387
0.0388
0.0391
0.0395
0.0402
0.0409
0.0413
0.0415
0.0417
0.0428
0.0483
0.0523
0.0574
0.0676

0.0176
0.0184
0.0191
0.0197
0.0206
0.0212
0.0213
0.0214
0.0215
0.0220
0.0228
0.0232
0.0237
0.0252
0.0258
0.0263
0.0264
0.0264
0.0274
0.0281
0.0286
0.0311
0.0311
0.0313
0.0344
0.0350
0.0367
0.0367
0.0370
0.0370
0.0371
0.0470
0.0476
0.0504
0.0549
0.0558
0.0651
0.0713
0.0804

0.0199
0.0207
0.0216
0.0223
0.0228
0.0236
0.0236
0.0238
0.0244
0.0251
0.0255
0.0257
0.0264
0.0268
0.0269
0.0272
0.0276
0.0278
0.0280
0.0281
0.0289
0.0290
0.0291
0.0295
0.0298
0.0302
0.0309
0.0332
0.0332
0.0339
0.0352
0.0370
0.0413
0.0416
0.0466
0.0475
0.0550
0.0597
0.0718

0.0146
0.0151
0.0160
0.0164
0.0175
0.0178
0.0192
0.0214
0.0216
0.0219
0.0221
0.0233
0.0239
0.0245
0.0247
0.0252
0.0255
0.0260
0.0261
0.0301
0.0306
0.0307
0.0319
0.0342
0.0347
0.0352
0.0361
0.0364
0.0374
0.0382
0.0408
0.0493
0.0523
0.0581
0.0614
0.0629
0.0654
0.0772
0.0830

0.0265
0.0273
0.0283
0.0287
0.0295
0.0300
0.0303
0.0305
0.0311
0.0313
0.0314
0.0317
0.0317
0.0317
0.0318
0.0328
0.0333
0.0335
0.0336
0.0339
0.0340
0.0340
0.0343
0.0347
0.0351
0.0363
0.0380
0.0383
0.0387
0.0416
0.0416
0.0422
0.0447
0.0458
0.0477
0.0488
0.0621
0.0628
0.0759
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0306 | 0.0395 | 0.0115 | 0.0222 | 0.0173 | 0.0314 | 0.0276 | 0.0412 | 0.0196
0.0328 | 0.0438 | 0.0135 | 0.0224 | 0.0184 | 0.0346 | 0.0278 | 0.0460 | 0.0202
0.0330 | 0.0440 | 0.0145 | 0.0234 | 0.0186 | 0.0355 | 0.0280 | 0.0478 | 0.0206
0.0343 | 0.0468 | 0.0145 | 0.0254 | 0.0188 | 0.0360 | 0.0284 | 0.0512 | 0.0208
0.0343 | 0.0477 | 0.0152 | 0.0254 | 0.0196 | 0.0364 | 0.0293 | 0.0524 | 0.0226
0.0344 | 0.0481 | 0.0177 | 0.0259 | 0.0200 | 0.0375 | 0.0294 | 0.0531 | 0.0230
0.0348 | 0.0483 | 0.0181 | 0.0263 | 0.0200 | 0.0383 | 0.0297 | 0.0547 | 0.0238
0.0348 | 0.0490 | 0.0184 | 0.0272 | 0.0202 | 0.0396 | 0.0297 | 0.0552 | 0.0243
0.0355 | 0.0497 | 0.0199 | 0.0282 | 0.0203 | 0.0397 | 0.0300 | 0.0552 | 0.0246
0.0374 | 0.0498 | 0.0224 | 0.0284 | 0.0207 | 0.0406 | 0.0301 | 0.0581 | 0.0250
0.0385 | 0.0505 | 0.0226 | 0.0285 | 0.0226 | 0.0413 | 0.0306 | 0.0582 | 0.0251
0.0389 | 0.0526 | 0.0234 | 0.0287 | 0.0229 | 0.0418 | 0.0307 | 0.0582 | 0.0252
0.0391 | 0.0528 | 0.0235 | 0.0287 | 0.0233 | 0.0430 | 0.0310 | 0.0591 | 0.0255
0.0399 | 0.0537 | 0.0236 | 0.0288 | 0.0236 | 0.0431 | 0.0312 | 0.0601 | 0.0263
0.0401 | 0.0539 | 0.0241 | 0.0292 | 0.0236 | 0.0432 | 0.0312 | 0.0602 | 0.0263
0.0408 | 0.0542 | 0.0249 | 0.0299 | 0.0236 | 0.0433 | 0.0316 | 0.0612 | 0.0263
0.0410 | 0.0546 | 0.0251 | 0.0299 | 0.0244 | 0.0434 | 0.0319 | 0.0620 | 0.0265
0.0413 | 0.0548 | 0.0258 | 0.0302 | 0.0249 | 0.0435 | 0.0319 | 0.0624 | 0.0266
0.0422 | 0.0550 | 0.0260 | 0.0302 | 0.0251 | 0.0439 | 0.0320 | 0.0649 | 0.0269
0.0551 | 0.0263 | 0.0305 | 0.0255 | 0.0439 | 0.0324 | 0.0652 | 0.0272
0.0428 | 0.0556 | 0.0303 | 0.0305 | 0.0258 | 0.0441 | 0.0324 | 0.0654 | 0.0272
0.0434 | 0.0560 | 0.0305 | 0.0307 | 0.0268 | 0.0449 | 0.0325 | 0.0658 | 0.0275
0.0443 | 0.0571 | 0.0325 | 0.0308 | 0.0273 | 0.0452 | 0.0327 | 0.0658 | 0.0284
0.0446 | 0.0580 | 0.0331 | 0.0311 | 0.0282 | 0.0453 | 0.0327 | 0.0661 | 0.0284
0.0450 | 0.0585 | 0.0349 | 0.0313 | 0.0296 | 0.0455 | 0.0333 | 0.0673 | 0.0286
0.0453 | 0.0586 | 0.0364 | 0.0316 | 0.0323 | 0.0459 | 0.0337 | 0.0678 | 0.0288
0.0461 | 0.0587 | 0.0375 | 0.0320 | 0.0333 | 0.0459 | 0.0338 | 0.0684 | 0.0324
0.0468 | 0.0592 | 0.0380 | 0.0325 | 0.0333 | 0.0460 | 0.0339 | 0.0687 | 0.0338
0.0470 | 0.0597 | 0.0395 | 0.0335 | 0.0338 | 0.0462 | 0.0340 | 0.0688 | 0.0350
0.0475 | 0.0599 | 0.0406 | 0.0366 | 0.0357 | 0.0464 | 0.0356 | 0.0689 | 0.0353
0.0478 | 0.0600 | 0.0439 | 0.0368 | 0.0401 | 0.0474 | 0.0364 | 0.0692 | 0.0372
0.0485 | 0.0608 | 0.0541 | 0.0420 | 0.0402 | 0.0479 | 0.0365 | 0.0692 | 0.0385
0.0517 | 0.0608 | 0.0568 | 0.0440 | 0.0446 | 0.0480 | 0.0368 | 0.0705 | 0.0406
0.0528 | 0.0611 | 0.0578 | 0.0493 | 0.0490 | 0.0481 | 0.0400 | 0.0716 | 0.0479
0.0552 | 0.0641 | 0.0648 | 0.0498 | 0.0527 | 0.0523 | 0.0402 | 0.0716 | 0.0522
0.0552 | 0.0643 | 0.0650 | 0.0508 | 0.0584 | 0.0528 | 0.0465 | 0.0721 | 0.0522
0.0555 | 0.0656 | 0.0709 | 0.0555 | 0.0606 | 0.0532 | 0.0536 | 0.0731 | 0.0596
0.0563 | 0.0660 | 0.0802 | 0.0622 | 0.0683 | 0.0558 | 0.0542 | 0.0755 | 0.0673
0.0637 | 0.0680 | 0.0889 | 0.0673 | 0.0747 | 0.0664 | 0.0639 | 0.0758 | 0.0755

All samples in the group b and ¢
o
o
IS
[\
w

r’ 6 1 2 1 4 1 3 1 1
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TABLE A.21: Ranked sim values for (bV {a,c}) in VHHS dataset using U-KTS F* .

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and ¢

0.0295
0.0295
0.0298
0.0299
0.0303
0.0306
0.0308
0.0309
0.0309
0.0310
0.0311
0.0312
0.0314
0.0315
0.0317
0.0318
0.0319
0.0320
0.0321
0.0325
0.0326
0.0329
0.0329
0.0333
0.0334
0.0336
0.0337
0.0337
0.0340
0.0341
0.0346
0.0348
0.0349
0.0355
0.0362
0.0404
0.0417
0.0431
0.0464

0.0347
0.0348
0.0357
0.0364
0.0371
0.0372
0.0378
0.0380
0.0381
0.0382
0.0383
0.0386
0.0388
0.0390
0.0392
0.0395
0.0396
0.0398
0.0399
0.0400
0.0409
0.0414
0.0416
0.0420
0.0420
0.0423
0.0425
0.0426
0.0429
0.0432
0.0434
0.0435
0.0435
0.0446
0.0446
0.0450
0.0456
0.0461
0.0468

0.0338
0.0356
0.0365
0.0367
0.0369
0.0385
0.0387
0.0389
0.0391
0.0399
0.0401
0.0402
0.0407
0.0407
0.0409
0.0409
0.0411
0.0414
0.0415
0.0423
0.0424
0.0428
0.0429
0.0429
0.0433
0.0435
0.0436
0.0437
0.0441
0.0444
0.0448
0.0451
0.0452
0.0453
0.0453
0.0458
0.0462
0.0473
0.0481

0.0246
0.0247
0.0251
0.0251
0.0257
0.0258
0.0258
0.0261
0.0262
0.0262
0.0264
0.0264
0.0265
0.0266
0.0266
0.0269
0.0271
0.0272
0.0276
0.0279
0.0281
0.0282
0.0282
0.0284
0.0289
0.0291
0.0296
0.0301
0.0301
0.0310
0.0319
0.0323
0.0329
0.0330
0.0365
0.0367
0.0370
0.0438
0.0493

0.0575
0.0611
0.0626
0.0630
0.0636
0.0653
0.0661
0.0665
0.0676
0.0680
0.0682
0.0693
0.0695
0.0701
0.0707
0.0715
0.0718
0.0728
0.0729
0.0734
0.0735
0.0740
0.0741
0.0744
0.0748
0.0749
0.0749
0.0754
0.0759
0.0764
0.0769
0.0772
0.0774
0.0779
0.0783
0.0790
0.0793
0.0806
0.0820

0.0451
0.0465
0.0484
0.0493
0.0495
0.0504
0.0511
0.0512
0.0519
0.0533
0.0534
0.0536
0.0539
0.0546
0.0547
0.0558
0.0563
0.0564
0.0565
0.0569
0.0575
0.0576
0.0577
0.0578
0.0580
0.0581
0.0582
0.0583
0.0583
0.0588
0.0604
0.0610
0.0614
0.0626
0.0627
0.0632
0.0634
0.0634
0.0647

0.0431
0.0468
0.0473
0.0485
0.0485
0.0487
0.0488
0.0492
0.0496
0.0502
0.0508
0.0513
0.0524
0.0537
0.0544
0.0545
0.0553
0.0554
0.0554
0.0555
0.0557
0.0559
0.0565
0.0567
0.0571
0.0576
0.0577
0.0580
0.0582
0.0589
0.0593
0.0593
0.0593
0.0597
0.0607
0.0613
0.0629
0.0629
0.0632

0.0371
0.0406
0.0407
0.0407
0.0409
0.0411
0.0416
0.0417
0.0419
0.0420
0.0421
0.0424
0.0427
0.0428
0.0428
0.0429
0.0429
0.0432
0.0437
0.0441
0.0441
0.0443
0.0443
0.0443
0.0445
0.0448
0.0449
0.0454
0.0454
0.0456
0.0459
0.0461
0.0463
0.0470
0.0470
0.0476
0.0477
0.0479
0.0531

0.0306
0.0322
0.0328
0.0329
0.0329
0.0331
0.0335
0.0339
0.0343
0.0345
0.0348
0.0355
0.0355
0.0358
0.0361
0.0367
0.0368
0.0368
0.0369
0.0373
0.0374
0.0380
0.0385
0.0385
0.0386
0.0390
0.0391
0.0391
0.0393
0.0393
0.0394
0.0394
0.0401
0.0402
0.0405
0.0406
0.0414
0.0433
0.0446

0.0315
0.0315
0.0345
0.0353
0.0355
0.0357
0.0361
0.0361
0.0367
0.0367
0.0368
0.0371
0.0371
0.0372
0.0372
0.0374
0.0374
0.0378
0.0380
0.0381
0.0384
0.0387
0.0389
0.0390
0.0390
0.0390
0.0391
0.0393
0.0395
0.0399
0.0400
0.0404
0.0411
0.0411
0.0419
0.0421
0.0442
0.0457
0.0477

2
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1
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and ¢

0.0420
0.0431
0.0442
0.0444
0.0446
0.0462
0.0470
0.0471
0.0475
0.0476
0.0483
0.0484
0.0487
0.0487
0.0488
0.0491
0.0492
0.0501
0.0503
0.0509
0.0512
0.0512
0.0516
0.0517
0.0517
0.0520
0.0520
0.0529
0.0530
0.0530
0.0530
0.0535
0.0536
0.0540
0.0545
0.0547
0.0556
0.0562
0.0594

0.0494
0.0616
0.0620
0.0624
0.0641
0.0644
0.0648
0.0655
0.0675
0.0676
0.0684
0.0688
0.0701
0.0708
0.0710
0.0711
0.0716
0.0720
0.0730
0.0734
0.0734
0.0736
0.0739
0.0740
0.0744
0.0744
0.0748
0.0751
0.0751
0.0753
0.0754
0.0758
0.0761
0.0764
0.0770
0.0774
0.0775
0.0783
0.0783

0.0422
0.0437
0.0452
0.0471
0.0473
0.0476
0.0476
0.0479
0.0480
0.0482
0.0495
0.0495
0.0498
0.0498
0.0499
0.0499
0.0511
0.0511
0.0513
0.0514
0.0524
0.0525
0.0527
0.0531
0.0532
0.0533
0.0534
0.0535
0.0536
0.0543
0.0546
0.0547
0.0551
0.0556
0.0557
0.0562
0.0564
0.0577
0.0588

0.0389
0.0408
0.0417
0.0432
0.0436
0.0445
0.0451
0.0458
0.0458
0.0463
0.0464
0.0471
0.0475
0.0488
0.0491
0.0491
0.0499
0.0501
0.0501
0.0504
0.0507
0.0520
0.0521
0.0522
0.0524
0.0524
0.0525
0.0529
0.0533
0.0535
0.0535
0.0540
0.0540
0.0544
0.0547
0.0552
0.0561
0.0572
0.0582

0.0330
0.0348
0.0357
0.0358
0.0358
0.0367
0.0369
0.0374
0.0374
0.0376
0.0376
0.0382
0.0383
0.0385
0.0386
0.0388
0.0389
0.0389
0.0392
0.0394
0.0396
0.0396
0.0397
0.0399
0.0403
0.0403
0.0406
0.0408
0.0410
0.0414
0.0420
0.0420
0.0422
0.0432
0.0436
0.0438
0.0460
0.0496
0.0511

0.0478
0.0511
0.0531
0.0539
0.0546
0.0567
0.0578
0.0584
0.0588
0.0594
0.0595
0.0602
0.0603
0.0610
0.0629
0.0630
0.0630
0.0630
0.0632
0.0637
0.0644
0.0644
0.0644
0.0648
0.0648
0.0651
0.0660
0.0662
0.0664
0.0665
0.0668
0.0669
0.0672
0.0674
0.0684
0.0686
0.0704
0.0706
0.0716

0.0324
0.0325
0.0336
0.0338
0.0338
0.0341
0.0344
0.0359
0.0360
0.0363
0.0364
0.0367
0.0368
0.0370
0.0373
0.0373
0.0374
0.0377
0.0378
0.0379
0.0380
0.0382
0.0392
0.0393
0.0394
0.0394
0.0395
0.0397
0.0400
0.0403
0.0405
0.0409
0.0410
0.0412
0.0416
0.0419
0.0432
0.0449
0.0449

0.0486
0.0526
0.0564
0.0588
0.0589
0.0600
0.0601
0.0603
0.0604
0.0607
0.0623
0.0647
0.0651
0.0655
0.0659
0.0671
0.0673
0.0675
0.0676
0.0678
0.0679
0.0682
0.0687
0.0688
0.0692
0.0698
0.0703
0.0705
0.0711
0.0711
0.0714
0.0715
0.0720
0.0724
0.0748
0.0750
0.0751
0.0751
0.0755

0.0296
0.0297
0.0315
0.0321
0.0328
0.0329
0.0332
0.0334
0.0334
0.0335
0.0340
0.0344
0.0344
0.0345
0.0348
0.0356
0.0359
0.0364
0.0368
0.0370
0.0370
0.0372
0.0376
0.0380
0.0383
0.0383
0.0388
0.0393
0.0393
0.0395
0.0397
0.0399
0.0401
0.0404
0.0405
0.0410
0.0422
0.0426
0.0454
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and ¢

0.0311
0.0315
0.0317
0.0318
0.0319
0.0324
0.0325
0.0325
0.0327
0.0330
0.0332
0.0334
0.0334
0.0337
0.0337
0.0338
0.0340
0.0341
0.0349
0.0350
0.0351
0.0351
0.0352
0.0354
0.0354
0.0358
0.0360
0.0361
0.0362
0.0369
0.0370
0.0370
0.0371
0.0377
0.0378
0.0388
0.0400
0.0433
0.0452

0.0428
0.0475
0.0501
0.0511
0.0512
0.0522
0.0526
0.0527
0.0529
0.0535
0.0541
0.0544
0.0550
0.0553
0.0559
0.0560
0.0565
0.0566
0.0570
0.0570
0.0577
0.0578
0.0579
0.0587
0.0593
0.0597
0.0600
0.0601
0.0602
0.0608
0.0609
0.0616
0.0617
0.0617
0.0618
0.0635
0.0636
0.0644
0.0650

0.0279
0.0293
0.0296
0.0296
0.0298
0.0300
0.0302
0.0304
0.0305
0.0306
0.0309
0.0310
0.0311
0.0312
0.0313
0.0313
0.0313
0.0315
0.0315
0.0317
0.0322
0.0322
0.0325
0.0325
0.0326
0.0331
0.0332
0.0334
0.0338
0.0347
0.0358
0.0361
0.0374
0.0380
0.0381
0.0385
0.0388
0.0432
0.0469

0.0301
0.0305
0.0306
0.0309
0.0312
0.0312
0.0316
0.0319
0.0322
0.0323
0.0328
0.0328
0.0329
0.0332
0.0332
0.0336
0.0340
0.0347
0.0347
0.0348
0.0349
0.0353
0.0353
0.0353
0.0355
0.0359
0.0361
0.0362
0.0364
0.0364
0.0368
0.0369
0.0371
0.0379
0.0382
0.0396
0.0397
0.0399
0.0464

0.0832
0.0890
0.0906
0.0908
0.0932
0.0934
0.0950
0.0956
0.0969
0.0971
0.0978
0.0978
0.0986
0.1000
0.1001
0.1010
0.1011
0.1014
0.1018
0.1018
0.1019
0.1020
0.1023
0.1041
0.1043
0.1046
0.1054
0.1055
0.1059
0.1066
0.1069
0.1073
0.1073
0.1075
0.1089
0.1093
0.1100
0.1102
0.1121

0.0298
0.0311
0.0311
0.0313
0.0320
0.0320
0.0327
0.0330
0.0333
0.0334
0.0335
0.0336
0.0336
0.0336
0.0337
0.0338
0.0338
0.0338
0.0340
0.0342
0.0342
0.0343
0.0347
0.0347
0.0348
0.0350
0.0354
0.0354
0.0357
0.0357
0.0365
0.0370
0.0371
0.0374
0.0376
0.0377
0.0402
0.0402
0.0407

0.0401
0.0404
0.0407
0.0415
0.0418
0.0422
0.0426
0.0429
0.0429
0.0437
0.0438
0.0439
0.0440
0.0440
0.0445
0.0445
0.0446
0.0447
0.0448
0.0449
0.0451
0.0451
0.0453
0.0453
0.0455
0.0456
0.0459
0.0462
0.0464
0.0465
0.0467
0.0467
0.0468
0.0475
0.0484
0.0491
0.0491
0.0506
0.0516

0.0234
0.0254
0.0257
0.0265
0.0265
0.0268
0.0269
0.0270
0.0272
0.0276
0.0277
0.0278
0.0278
0.0278
0.0281
0.0281
0.0282
0.0282
0.0284
0.0285
0.0285
0.0286
0.0287
0.0291
0.0292
0.0299
0.0300
0.0301
0.0303
0.0307
0.0307
0.0320
0.0329
0.0330
0.0335
0.0349
0.0358
0.0427
0.0443

0.0442
0.0444
0.0457
0.0463
0.0484
0.0487
0.0493
0.0495
0.0498
0.0502
0.0509
0.0510
0.0511
0.0515
0.0517
0.0518
0.0523
0.0529
0.0530
0.0532
0.0536
0.0536
0.0543
0.0548
0.0550
0.0550
0.0550
0.0552
0.0553
0.0559
0.0563
0.0564
0.0567
0.0573
0.0579
0.0583
0.0591
0.0591
0.0637
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0352 | 0.0598 | 0.0217 | 0.0279 | 0.0310 | 0.0408 | 0.0452 | 0.0528 | 0.0376
0.0368 | 0.0669 | 0.0219 | 0.0298 | 0.0316 | 0.0412 | 0.0501 | 0.0549 | 0.0382
0.0372 | 0.0695 | 0.0220 | 0.0306 | 0.0321 | 0.0442 | 0.0541 | 0.0550 | 0.0400
0.0373 | 0.0707 | 0.0221 | 0.0307 | 0.0340 | 0.0452 | 0.0547 | 0.0558 | 0.0408
0.0381 | 0.0720 | 0.0222 | 0.0307 | 0.0340 | 0.0452 | 0.0561 | 0.0564 | 0.0410
0.0386 | 0.0725 | 0.0223 | 0.0309 | 0.0341 | 0.0456 | 0.0567 | 0.0569 | 0.0420
0.0386 | 0.0725 | 0.0223 | 0.0309 | 0.0347 | 0.0456 | 0.0582 | 0.0573 | 0.0427
0.0386 | 0.0729 | 0.0234 | 0.0310 | 0.0347 | 0.0460 | 0.0591 | 0.0575 | 0.0430
0.0389 | 0.0733 | 0.0238 | 0.0313 | 0.0350 | 0.0464 | 0.0592 | 0.0588 | 0.0432
0.0389 | 0.0744 | 0.0239 | 0.0313 | 0.0356 | 0.0465 | 0.0610 | 0.0594 | 0.0436
0.0394 | 0.0744 | 0.0241 | 0.0314 | 0.0357 | 0.0466 | 0.0613 | 0.0596 | 0.0436
0.0394 | 0.0745 | 0.0243 | 0.0317 | 0.0360 | 0.0468 | 0.0617 | 0.0596 | 0.0438
0.0396 | 0.0761 | 0.0245 | 0.0317 | 0.0362 | 0.0470 | 0.0620 | 0.0599 | 0.0441
0.0398 | 0.0762 | 0.0249 | 0.0318 | 0.0363 | 0.0470 | 0.0620 | 0.0600 | 0.0445
0.0403 | 0.0774 | 0.0250 | 0.0322 | 0.0363 | 0.0472 | 0.0621 | 0.0600 | 0.0449
0.0403 | 0.0781 | 0.0251 | 0.0322 | 0.0363 | 0.0478 | 0.0627 | 0.0602 | 0.0449
0.0405 | 0.0781 | 0.0251 | 0.0323 | 0.0363 | 0.0480 | 0.0629 | 0.0613 | 0.0450
0.0407 | 0.0786 | 0.0256 | 0.0326 | 0.0364 | 0.0480 | 0.0629 | 0.0614 | 0.0452
0.0407 | 0.0787 | 0.0261 | 0.0329 | 0.0365 | 0.0480 | 0.0630 | 0.0618 | 0.0456
0.0791 | 0.0261 | 0.0330 | 0.0373 | 0.0483 | 0.0630 | 0.0619 | 0.0463
0.0408 | 0.0791 | 0.0262 | 0.0331 | 0.0373 | 0.0488 | 0.0634 | 0.0626 | 0.0468
0.0410 | 0.0799 | 0.0269 | 0.0332 | 0.0378 | 0.0489 | 0.0636 | 0.0629 | 0.0472
0.0410 | 0.0803 | 0.0274 | 0.0336 | 0.0378 | 0.0490 | 0.0636 | 0.0630 | 0.0473
0.0411 | 0.0806 | 0.0277 | 0.0337 | 0.0379 | 0.0491 | 0.0637 | 0.0631 | 0.0474
0.0412 | 0.0806 | 0.0280 | 0.0338 | 0.0383 | 0.0494 | 0.0654 | 0.0637 | 0.0478
0.0415 | 0.0813 | 0.0282 | 0.0345 | 0.0384 | 0.0503 | 0.0654 | 0.0637 | 0.0481
0.0418 | 0.0815 | 0.0284 | 0.0347 | 0.0387 | 0.0505 | 0.0657 | 0.0640 | 0.0484
0.0423 | 0.0818 | 0.0287 | 0.0347 | 0.0388 | 0.0507 | 0.0662 | 0.0644 | 0.0486
0.0424 | 0.0819 | 0.0305 | 0.0350 | 0.0389 | 0.0507 | 0.0662 | 0.0648 | 0.0488
0.0426 | 0.0826 | 0.0306 | 0.0353 | 0.0390 | 0.0508 | 0.0666 | 0.0653 | 0.0488
0.0429 | 0.0827 | 0.0308 | 0.0363 | 0.0391 | 0.0514 | 0.0669 | 0.0654 | 0.0490
0.0430 | 0.0837 | 0.0341 | 0.0363 | 0.0400 | 0.0515 | 0.0669 | 0.0659 | 0.0490
0.0435 | 0.0838 | 0.0349 | 0.0364 | 0.0405 | 0.0521 | 0.0673 | 0.0660 | 0.0491
0.0442 | 0.0839 | 0.0351 | 0.0365 | 0.0411 | 0.0527 | 0.0678 | 0.0666 | 0.0497
0.0448 | 0.0842 | 0.0379 | 0.0372 | 0.0414 | 0.0527 | 0.0688 | 0.0673 | 0.0500
0.0449 | 0.0856 | 0.0386 | 0.0388 | 0.0420 | 0.0528 | 0.0690 | 0.0676 | 0.0503
0.0449 | 0.0858 | 0.0398 | 0.0389 | 0.0430 | 0.0538 | 0.0698 | 0.0676 | 0.0504
0.0457 | 0.0873 | 0.0453 | 0.0400 | 0.0431 | 0.0547 | 0.0701 | 0.0679 | 0.0510
0.0479 | 0.0889 | 0.0521 | 0.0402 | 0.0433 | 0.0563 | 0.0709 | 0.0701 | 0.0535

All samples in the group a and ¢
o
o
IS
S
\]

r’ 4 2 2 1 3 1 2 1 1
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TABLE A.22: Ranked sim values for (¢ V {a,b}) in VHHS dataset using U-KTS F* .

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and b

0.0285
0.0292
0.0293
0.0296
0.0299
0.0300
0.0302
0.0304
0.0305
0.0308
0.0308
0.0308
0.0310
0.0311
0.0314
0.0315
0.0315
0.0316
0.0316
0.0318
0.0320
0.0320
0.0322
0.0323
0.0323
0.0326
0.0329
0.0330
0.0331
0.0335
0.0342
0.0342
0.0348
0.0358
0.0362
0.0367
0.0385
0.0385
0.0478

0.0335
0.0352
0.0361
0.0362
0.0367
0.0371
0.0380
0.0381
0.0384
0.0390
0.0390
0.0390
0.0393
0.0400
0.0401
0.0403
0.0404
0.0404
0.0405
0.0405
0.0406
0.0407
0.0410
0.0413
0.0416
0.0418
0.0418
0.0424
0.0424
0.0427
0.0432
0.0435
0.0440
0.0443
0.0445
0.0445
0.0446
0.0449
0.0459

0.0347
0.0355
0.0363
0.0368
0.0373
0.0382
0.0382
0.0385
0.0385
0.0390
0.0390
0.0399
0.0407
0.0410
0.0412
0.0413
0.0420
0.0422
0.0422
0.0423
0.0430
0.0430
0.0430
0.0431
0.0431
0.0431
0.0432
0.0437
0.0438
0.0439
0.0439
0.0441
0.0442
0.0444
0.0452
0.0454
0.0455
0.0459
0.0468

0.0242
0.0243
0.0247
0.0250
0.0251
0.0252
0.0253
0.0254
0.0254
0.0256
0.0257
0.0261
0.0261
0.0262
0.0264
0.0264
0.0267
0.0270
0.0271
0.0274
0.0275
0.0276
0.0277
0.0280
0.0283
0.0291
0.0292
0.0298
0.0304
0.0309
0.0321
0.0322
0.0337
0.0347
0.0357
0.0361
0.0391
0.0402
0.0463

0.0579
0.0640
0.0644
0.0644
0.0646
0.0648
0.0651
0.0684
0.0691
0.0694
0.0694
0.0700
0.0702
0.0702
0.0718
0.0720
0.0726
0.0734
0.0736
0.0739
0.0740
0.0743
0.0743
0.0746
0.0747
0.0747
0.0747
0.0756
0.0757
0.0760
0.0763
0.0765
0.0767
0.0769
0.0775
0.0777
0.0788
0.0790
0.0800

0.0474
0.0481
0.0486
0.0486
0.0513
0.0515
0.0517
0.0520
0.0527
0.0536
0.0541
0.0549
0.0551
0.0555
0.0556
0.0567
0.0570
0.0572
0.0573
0.0574
0.0576
0.0577
0.0578
0.0579
0.0579
0.0581
0.0584
0.0587
0.0588
0.0591
0.0594
0.0597
0.0604
0.0611
0.0611
0.0623
0.0625
0.0629
0.0637

0.0425
0.0474
0.0481
0.0484
0.0499
0.0501
0.0505
0.0512
0.0513
0.0516
0.0519
0.0521
0.0523
0.0535
0.0546
0.0549
0.0550
0.0551
0.0562
0.0563
0.0563
0.0564
0.0566
0.0568
0.0570
0.0574
0.0575
0.0576
0.0579
0.0581
0.0585
0.0588
0.0591
0.0598
0.0600
0.0603
0.0605
0.0609
0.0614

0.0358
0.0384
0.0390
0.0398
0.0400
0.0402
0.0405
0.0407
0.0411
0.0421
0.0424
0.0425
0.0425
0.0429
0.0429
0.0431
0.0432
0.0432
0.0433
0.0433
0.0436
0.0437
0.0440
0.0443
0.0445
0.0445
0.0446
0.0447
0.0447
0.0450
0.0451
0.0454
0.0455
0.0459
0.0461
0.0462
0.0463
0.0471
0.0480

0.0317
0.0325
0.0326
0.0328
0.0332
0.0335
0.0341
0.0342
0.0342
0.0348
0.0352
0.0356
0.0357
0.0360
0.0365
0.0366
0.0366
0.0367
0.0368
0.0371
0.0374
0.0375
0.0376
0.0376
0.0377
0.0381
0.0385
0.0386
0.0386
0.0388
0.0389
0.0390
0.0390
0.0391
0.0394
0.0396
0.0399
0.0432
0.0445

0.0343
0.0344
0.0345
0.0349
0.0350
0.0353
0.0356
0.0356
0.0360
0.0363
0.0367
0.0368
0.0368
0.0369
0.0370
0.0371
0.0372
0.0373
0.0375
0.0377
0.0380
0.0381
0.0383
0.0383
0.0383
0.0384
0.0384
0.0385
0.0387
0.0390
0.0392
0.0394
0.0403
0.0403
0.0410
0.0417
0.0427
0.0443
0.0504

1
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and b

0.0417
0.0443
0.0451
0.0452
0.0454
0.0454
0.0459
0.0460
0.0461
0.0474
0.0476
0.0487
0.0490
0.0491
0.0495
0.0504
0.0508
0.0509
0.0510
0.0511
0.0513
0.0514
0.0516
0.0518
0.0518
0.0523
0.0524
0.0526
0.0527
0.0528
0.0530
0.0534
0.0534
0.0534
0.0540
0.0542
0.0542
0.0543
0.0550

0.0595
0.0635
0.0637
0.0643
0.0654
0.0660
0.0661
0.0666
0.0667
0.0672
0.0690
0.0692
0.0693
0.0704
0.0705
0.0708
0.0710
0.0711
0.0712
0.0714
0.0716
0.0717
0.0719
0.0728
0.0731
0.0731
0.0734
0.0742
0.0742
0.0744
0.0744
0.0745
0.0746
0.0757
0.0757
0.0775
0.0780
0.0781
0.0803

0.0439
0.0442
0.0457
0.0464
0.0468
0.0471
0.0476
0.0482
0.0482
0.0485
0.0488
0.0492
0.0497
0.0503
0.0512
0.0513
0.0514
0.0518
0.0519
0.0520
0.0522
0.0523
0.0523
0.0525
0.0525
0.0525
0.0528
0.0531
0.0536
0.0536
0.0538
0.0541
0.0546
0.0546
0.0554
0.0555
0.0561
0.0567
0.0570

0.0372
0.0385
0.0408
0.0435
0.0442
0.0442
0.0444
0.0462
0.0467
0.0468
0.0472
0.0479
0.0482
0.0487
0.0503
0.0504
0.0508
0.0508
0.0509
0.0510
0.0514
0.0516
0.0517
0.0519
0.0521
0.0522
0.0524
0.0525
0.0526
0.0530
0.0531
0.0533
0.0536
0.0541
0.0547
0.0551
0.0552
0.0554
0.0556

0.0338
0.0346
0.0352
0.0360
0.0363
0.0365
0.0367
0.0368
0.0368
0.0369
0.0374
0.0374
0.0376
0.0378
0.0380
0.0381
0.0381
0.0383
0.0383
0.0383
0.0385
0.0386
0.0388
0.0391
0.0394
0.0397
0.0398
0.0398
0.0399
0.0402
0.0403
0.0408
0.0415
0.0416
0.0417
0.0420
0.0422
0.0428
0.0506

0.0477
0.0491
0.0496
0.0533
0.0537
0.0560
0.0581
0.0587
0.0595
0.0598
0.0598
0.0599
0.0600
0.0626
0.0630
0.0630
0.0638
0.0641
0.0642
0.0642
0.0646
0.0648
0.0651
0.0653
0.0656
0.0657
0.0658
0.0658
0.0661
0.0666
0.0668
0.0670
0.0672
0.0673
0.0673
0.0684
0.0685
0.0692
0.0697

0.0307
0.0317
0.0318
0.0320
0.0328
0.0333
0.0345
0.0353
0.0355
0.0363
0.0365
0.0366
0.0368
0.0372
0.0376
0.0378
0.0379
0.0381
0.0381
0.0383
0.0384
0.0386
0.0386
0.0387
0.0388
0.0390
0.0393
0.0398
0.0398
0.0399
0.0400
0.0401
0.0406
0.0409
0.0409
0.0413
0.0414
0.0415
0.0419

0.0500
0.0527
0.0549
0.0562
0.0576
0.0588
0.0596
0.0615
0.0616
0.0638
0.0642
0.0645
0.0657
0.0661
0.0668
0.0670
0.0674
0.0675
0.0678
0.0685
0.0686
0.0688
0.0690
0.0690
0.0690
0.0691
0.0696
0.0698
0.0701
0.0702
0.0710
0.0714
0.0714
0.0717
0.0721
0.0721
0.0733
0.0736
0.0749

0.0300
0.0304
0.0305
0.0309
0.0313
0.0331
0.0334
0.0336
0.0339
0.0341
0.0347
0.0352
0.0358
0.0358
0.0360
0.0362
0.0362
0.0365
0.0366
0.0367
0.0367
0.0369
0.0370
0.0372
0.0375
0.0376
0.0376
0.0378
0.0381
0.0382
0.0382
0.0386
0.0386
0.0388
0.0388
0.0392
0.0401
0.0404
0.0423
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and b

0.0302
0.0308
0.0311
0.0312
0.0314
0.0317
0.0317
0.0322
0.0323
0.0325
0.0328
0.0330
0.0331
0.0331
0.0332
0.0333
0.0336
0.0337
0.0339
0.0345
0.0346
0.0346
0.0346
0.0351
0.0354
0.0354
0.0358
0.0358
0.0359
0.0362
0.0365
0.0366
0.0370
0.0373
0.0375
0.0386
0.0398
0.0400
0.0474

0.0477
0.0483
0.0496
0.0504
0.0517
0.0523
0.0528
0.0534
0.0544
0.0544
0.0548
0.0551
0.0551
0.0557
0.0571
0.0574
0.0574
0.0577
0.0587
0.0588
0.0588
0.0589
0.0589
0.0589
0.0591
0.0592
0.0593
0.0595
0.0595
0.0595
0.0603
0.0606
0.0606
0.0607
0.0615
0.0618
0.0624
0.0627
0.0640

0.0283
0.0290
0.0292
0.0292
0.0293
0.0295
0.0299
0.0301
0.0302
0.0302
0.0303
0.0304
0.0306
0.0309
0.0310
0.0311
0.0311
0.0314
0.0315
0.0316
0.0316
0.0320
0.0324
0.0325
0.0326
0.0331
0.0340
0.0341
0.0341
0.0342
0.0345
0.0353
0.0354
0.0356
0.0369
0.0378
0.0381
0.0419
0.0507

0.0287
0.0301
0.0302
0.0304
0.0305
0.0315
0.0319
0.0321
0.0327
0.0332
0.0332
0.0332
0.0333
0.0333
0.0336
0.0341
0.0342
0.0342
0.0344
0.0345
0.0346
0.0347
0.0349
0.0349
0.0350
0.0351
0.0352
0.0358
0.0359
0.0360
0.0364
0.0364
0.0368
0.0369
0.0371
0.0372
0.0374
0.0384
0.0410

0.0852
0.0873
0.0886
0.0904
0.0934
0.0939
0.0952
0.0963
0.0973
0.0976
0.0988
0.0989
0.1002
0.1002
0.1013
0.1013
0.1020
0.1024
0.1025
0.1027
0.1032
0.1037
0.1038
0.1039
0.1042
0.1046
0.1047
0.1050
0.1051
0.1051
0.1052
0.1058
0.1066
0.1068
0.1071
0.1075
0.1078
0.1091
0.1100

0.0293
0.0305
0.0308
0.0312
0.0312
0.0314
0.0321
0.0321
0.0322
0.0327
0.0330
0.0330
0.0332
0.0335
0.0336
0.0337
0.0337
0.0338
0.0339
0.0339
0.0342
0.0343
0.0345
0.0346
0.0348
0.0351
0.0351
0.0351
0.0352
0.0352
0.0362
0.0363
0.0365
0.0370
0.0378
0.0382
0.0386
0.0411
0.0449

0.0397
0.0397
0.0398
0.0401
0.0406
0.0414
0.0420
0.0423
0.0423
0.0433
0.0434
0.0434
0.0436
0.0436
0.0438
0.0440
0.0441
0.0443
0.0444
0.0445
0.0445
0.0446
0.0447
0.0448
0.0450
0.0453
0.0453
0.0459
0.0462
0.0462
0.0462
0.0463
0.0471
0.0473
0.0473
0.0477
0.0479
0.0483
0.0509

0.0240
0.0256
0.0257
0.0258
0.0259
0.0261
0.0261
0.0265
0.0266
0.0266
0.0268
0.0268
0.0269
0.0272
0.0275
0.0278
0.0280
0.0283
0.0283
0.0284
0.0285
0.0290
0.0290
0.0290
0.0291
0.0292
0.0292
0.0292
0.0300
0.0302
0.0312
0.0314
0.0327
0.0338
0.0340
0.0342
0.0369
0.0388
0.0428

0.0419
0.0462
0.0471
0.0486
0.0495
0.0502
0.0511
0.0514
0.0519
0.0521
0.0524
0.0525
0.0528
0.0528
0.0532
0.0532
0.0533
0.0533
0.0536
0.0539
0.0542
0.0546
0.0548
0.0548
0.0551
0.0556
0.0556
0.0556
0.0563
0.0570
0.0571
0.0571
0.0573
0.0575
0.0575
0.0577
0.0582
0.0582
0.0587
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0343 | 0.0604 | 0.0211 | 0.0279 | 0.0335 | 0.0422 | 0.0482 | 0.0541 | 0.0375
0.0366 | 0.0658 | 0.0217 | 0.0284 | 0.0340 | 0.0423 | 0.0483 | 0.0542 | 0.0383
0.0368 | 0.0674 | 0.0219 | 0.0296 | 0.0351 | 0.0431 | 0.0493 | 0.0562 | 0.0389
0.0368 | 0.0684 | 0.0220 | 0.0303 | 0.0351 | 0.0441 | 0.0542 | 0.0562 | 0.0390
0.0376 | 0.0686 | 0.0221 | 0.0304 | 0.0353 | 0.0446 | 0.0547 | 0.0564 | 0.0418
0.0379 | 0.0706 | 0.0228 | 0.0312 | 0.0355 | 0.0446 | 0.0555 | 0.0574 | 0.0419
0.0379 | 0.0720 | 0.0229 | 0.0313 | 0.0355 | 0.0454 | 0.0572 | 0.0578 | 0.0429
0.0379 | 0.0727 | 0.0230 | 0.0315 | 0.0356 | 0.0454 | 0.0590 | 0.0582 | 0.0431
0.0383 | 0.0741 | 0.0232 | 0.0317 | 0.0356 | 0.0455 | 0.0591 | 0.0588 | 0.0434
0.0385 | 0.0745 | 0.0233 | 0.0317 | 0.0356 | 0.0458 | 0.0600 | 0.0593 | 0.0434
0.0387 | 0.0757 | 0.0235 | 0.0321 | 0.0356 | 0.0460 | 0.0602 | 0.0598 | 0.0445
0.0390 | 0.0766 | 0.0236 | 0.0324 | 0.0357 | 0.0462 | 0.0611 | 0.0599 | 0.0449
0.0391 | 0.0773 | 0.0241 | 0.0326 | 0.0361 | 0.0463 | 0.0619 | 0.0607 | 0.0451
0.0391 | 0.0773 | 0.0243 | 0.0327 | 0.0362 | 0.0466 | 0.0622 | 0.0609 | 0.0454
0.0393 | 0.0773 | 0.0243 | 0.0328 | 0.0364 | 0.0467 | 0.0625 | 0.0613 | 0.0462
0.0393 | 0.0781 | 0.0245 | 0.0330 | 0.0364 | 0.0474 | 0.0626 | 0.0613 | 0.0462
0.0395 | 0.0788 | 0.0246 | 0.0330 | 0.0365 | 0.0477 | 0.0632 | 0.0614 | 0.0464
0.0395 | 0.0791 | 0.0249 | 0.0330 | 0.0366 | 0.0479 | 0.0635 | 0.0617 | 0.0464
0.0397 | 0.0797 | 0.0251 | 0.0331 | 0.0366 | 0.0482 | 0.0639 | 0.0618 | 0.0465
0.0797 | 0.0253 | 0.0331 | 0.0366 | 0.0483 | 0.0642 | 0.0621 | 0.0466
0.0400 | 0.0802 | 0.0255 | 0.0333 | 0.0371 | 0.0487 | 0.0643 | 0.0621 | 0.0470
0.0400 | 0.0802 | 0.0265 | 0.0335 | 0.0374 | 0.0487 | 0.0644 | 0.0624 | 0.0472
0.0404 | 0.0803 | 0.0267 | 0.0337 | 0.0375 | 0.0492 | 0.0644 | 0.0625 | 0.0473
0.0407 | 0.0805 | 0.0271 | 0.0341 | 0.0375 | 0.0494 | 0.0648 | 0.0626 | 0.0473
0.0408 | 0.0806 | 0.0276 | 0.0342 | 0.0376 | 0.0494 | 0.0648 | 0.0626 | 0.0477
0.0408 | 0.0809 | 0.0277 | 0.0342 | 0.0376 | 0.0495 | 0.0650 | 0.0628 | 0.0478
0.0409 | 0.0809 | 0.0279 | 0.0343 | 0.0376 | 0.0495 | 0.0651 | 0.0629 | 0.0478
0.0410 | 0.0810 | 0.0284 | 0.0343 | 0.0377 | 0.0501 | 0.0652 | 0.0634 | 0.0478
0.0413 | 0.0813 | 0.0288 | 0.0344 | 0.0378 | 0.0502 | 0.0653 | 0.0636 | 0.0479
0.0413 | 0.0815 | 0.0301 | 0.0344 | 0.0379 | 0.0503 | 0.0656 | 0.0637 | 0.0483
0.0416 | 0.0823 | 0.0305 | 0.0350 | 0.0384 | 0.0504 | 0.0658 | 0.0642 | 0.0486
0.0418 | 0.0830 | 0.0339 | 0.0351 | 0.0385 | 0.0507 | 0.0662 | 0.0648 | 0.0489
0.0424 | 0.0832 | 0.0346 | 0.0352 | 0.0400 | 0.0507 | 0.0662 | 0.0655 | 0.0489
0.0432 | 0.0832 | 0.0364 | 0.0354 | 0.0400 | 0.0508 | 0.0664 | 0.0658 | 0.0489
0.0435 | 0.0836 | 0.0369 | 0.0359 | 0.0402 | 0.0514 | 0.0666 | 0.0667 | 0.0497
0.0439 | 0.0836 | 0.0393 | 0.0367 | 0.0403 | 0.0518 | 0.0668 | 0.0670 | 0.0499
0.0454 | 0.0858 | 0.0393 | 0.0370 | 0.0408 | 0.0524 | 0.0671 | 0.0676 | 0.0501
0.0459 | 0.0859 | 0.0419 | 0.0376 | 0.0421 | 0.0526 | 0.0686 | 0.0682 | 0.0506
0.0508 | 0.0860 | 0.0483 | 0.0405 | 0.0461 | 0.0541 | 0.0692 | 0.0689 | 0.0517

All samples in the group a and b
o
o
w
©
oo

r’ 6 2 2 1 4 2 1 4 2
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B

TABLE A.23: Ranked sim values for (aV {b,c}) in VHHS dataset using U-KTS KH' .

So

S3

Sy

S5

Se

S7

Sy

Sy

S1o

All samples in the group b and ¢

0.0146
0.0152
0.0213
0.0235
0.0254
0.0275
0.0280
0.0286
0.0292
0.0305
0.0315
0.0317
0.0322
0.0339
0.0345
0.0349
0.0355
0.0368
0.0382
0.0387
0.0389
0.0410
0.0427
0.0436
0.0470
0.0496
0.0498
0.0520
0.0528
0.0584
0.0661
0.0795
0.0808
0.0907
0.0958
0.0971
0.1129
0.1129
0.1293

0.0216
0.0235
0.0238
0.0249
0.0265
0.0275
0.0300
0.0311
0.0312
0.0316
0.0322
0.0324
0.0336
0.0341
0.0343
0.0350
0.0360
0.0368
0.0380
0.0382
0.0390
0.0392
0.0392
0.0394
0.0425
0.0430
0.0432
0.0446
0.0466
0.0480
0.0481
0.0501
0.0616
0.0620
0.0688
0.0714
0.0857
0.0888
0.0892

0.0157
0.0261
0.0267
0.0276
0.0277
0.0277
0.0284
0.0289
0.0297
0.0302
0.0303
0.0308
0.0326
0.0331
0.0331
0.0360
0.0375
0.0379
0.0387
0.0394
0.0399
0.0420
0.0421
0.0422
0.0422
0.0444
0.0476
0.0486
0.0551
0.0568
0.0618
0.0710
0.0756
0.0838
0.0904
0.0926
0.0975
0.0999
0.1233

0.0179
0.0232
0.0236
0.0241
0.0269
0.0273
0.0274
0.0287
0.0291
0.0297
0.0303
0.0313
0.0315
0.0330
0.0332
0.0353
0.0354
0.0358
0.0361
0.0364
0.0384
0.0384
0.0385
0.0395
0.0451
0.0461
0.0475
0.0496
0.0507
0.0513
0.0653
0.0698
0.0765
0.0785
0.0814
0.0946
0.0999
0.1124
0.1150

0.0482
0.0501
0.0569
0.0580
0.0589
0.0592
0.0595
0.0598
0.0606
0.0615
0.0628
0.0628
0.0636
0.0661
0.0674
0.0680
0.0692
0.0695
0.0698
0.0705
0.0712
0.0733
0.0738
0.0748
0.0756
0.0757
0.0769
0.0785
0.0798
0.0799
0.0801
0.0840
0.0854
0.0872
0.0880
0.0893
0.0898
0.0923
0.1104

0.0293
0.0313
0.0332
0.0333
0.0343
0.0349
0.0355
0.0368
0.0372
0.0376
0.0394
0.0394
0.0396
0.0398
0.0398
0.0401
0.0410
0.0430
0.0443
0.0449
0.0452
0.0453
0.0453
0.0460
0.0460
0.0480
0.0492
0.0514
0.0539
0.0540
0.0644
0.0740
0.0752
0.0764
0.0839
0.0868
0.0883
0.1048
0.1184

0.0404
0.0430
0.0432
0.0459
0.0465
0.0485
0.0489
0.0495
0.0503
0.0522
0.0524
0.0537
0.0541
0.0546
0.0566
0.0581
0.0581
0.0597
0.0629
0.0636
0.0656
0.0662
0.0686
0.0693
0.0703
0.0707
0.0723
0.0738
0.0771
0.0771
0.0774
0.0782
0.0789
0.0799
0.0821
0.0831
0.0836
0.0907
0.0968

0.0232
0.0237
0.0240
0.0247
0.0281
0.0287
0.0291
0.0300
0.0314
0.0318
0.0319
0.0324
0.0332
0.0339
0.0342
0.0346
0.0357
0.0373
0.0385
0.0412
0.0427
0.0428
0.0438
0.0464
0.0464
0.0474
0.0490
0.0507
0.0550
0.0569
0.0598
0.0808
0.0819
0.0840
0.0847
0.0946
0.1018
0.1043
0.1258

0.0124
0.0204
0.0209
0.0234
0.0241
0.0275
0.0316
0.0318
0.0321
0.0384
0.0386
0.0390
0.0405
0.0407
0.0407
0.0414
0.0423
0.0441
0.0447
0.0448
0.0502
0.0507
0.0531
0.0536
0.0542
0.0548
0.0556
0.0582
0.0661
0.0711
0.0721
0.0956
0.0974
0.1028
0.1078
0.1102
0.1274
0.1294
0.1411

0.0206
0.0228
0.0264
0.0300
0.0323
0.0325
0.0325
0.0326
0.0327
0.0335
0.0350
0.0358
0.0359
0.0366
0.0374
0.0383
0.0384
0.0385
0.0386
0.0394
0.0396
0.0401
0.0408
0.0435
0.0442
0.0448
0.0467
0.0468
0.0469
0.0500
0.0506
0.0528
0.0532
0.0533
0.0635
0.0661
0.0823
0.0862
0.0873

2

11

8
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group b and ¢

0.0351
0.0361
0.0366
0.0391
0.0394
0.0399
0.0412
0.0416
0.0426
0.0428
0.0454
0.0460
0.0467
0.0470
0.0478
0.0480
0.0499
0.0515
0.0515
0.0523
0.0533
0.0537
0.0544
0.0548
0.0564
0.0568
0.0587
0.0591
0.0615
0.0624
0.0648
0.0725
0.0736
0.0762
0.0784
0.0834
0.0853
0.0888
0.0912

0.0507
0.0571
0.0578
0.0591
0.0600
0.0607
0.0623
0.0626
0.0644
0.0655
0.0658
0.0658
0.0663
0.0694
0.0700
0.0701
0.0706
0.0717
0.0718
0.0718
0.0726
0.0727
0.0728
0.0730
0.0742
0.0751
0.0757
0.0762
0.0770
0.0771
0.0775
0.0807
0.0808
0.0829
0.0835
0.0866
0.0876
0.0891
0.0946

0.0269
0.0293
0.0324
0.0339
0.0368
0.0373
0.0413
0.0419
0.0420
0.0425
0.0426
0.0426
0.0431
0.0437
0.0437
0.0439
0.0441
0.0449
0.0466
0.0476
0.0483
0.0489
0.0492
0.0494
0.0497
0.0498
0.0501
0.0507
0.0509
0.0533
0.0544
0.0566
0.0584
0.0611
0.0614
0.0633
0.0650
0.0798
0.0829

0.0272
0.0273
0.0290
0.0290
0.0305
0.0318
0.0320
0.0321
0.0328
0.0335
0.0342
0.0361
0.0368
0.0387
0.0391
0.0399
0.0404
0.0404
0.0408
0.0425
0.0440
0.0447
0.0460
0.0476
0.0479
0.0481
0.0498
0.0525
0.0550
0.0560
0.0614
0.0616
0.0658
0.0692
0.0703
0.0753
0.1015
0.1033
0.1034

0.0244
0.0269
0.0330
0.0330
0.0345
0.0384
0.0388
0.0391
0.0394
0.0397
0.0399
0.0406
0.0419
0.0421
0.0421
0.0421
0.0432
0.0434
0.0445
0.0450
0.0458
0.0464
0.0468
0.0474
0.0480
0.0482
0.0484
0.0486
0.0505
0.0532
0.0558
0.0566
0.0567
0.0616
0.0634
0.0643
0.0834
0.0842
0.0855

0.0375
0.0395
0.0403
0.0414
0.0415
0.0443
0.0473
0.0473
0.0474
0.0476
0.0488
0.0520
0.0526
0.0530
0.0531
0.0535
0.0537
0.0546
0.0555
0.0560
0.0565
0.0578
0.0580
0.0581
0.0588
0.0591
0.0591
0.0610
0.0622
0.0623
0.0636
0.0649
0.0654
0.0657
0.0675
0.0676
0.0712
0.0746
0.0795

0.0262
0.0271
0.0281
0.0294
0.0294
0.0299
0.0326
0.0341
0.0345
0.0351
0.0351
0.0361
0.0366
0.0388
0.0391
0.0392
0.0397
0.0399
0.0402
0.0414
0.0433
0.0437
0.0444
0.0459
0.0460
0.0489
0.0503
0.0514
0.0552
0.0557
0.0589
0.0711
0.0736
0.0771
0.0859
0.0864
0.0900
0.1029
0.1149

0.0417
0.0445
0.0457
0.0500
0.0526
0.0539
0.0549
0.0575
0.0577
0.0578
0.0584
0.0586
0.0593
0.0598
0.0599
0.0603
0.0606
0.0606
0.0606
0.0612
0.0618
0.0620
0.0635
0.0643
0.0650
0.0657
0.0659
0.0660
0.0664
0.0673
0.0675
0.0703
0.0708
0.0726
0.0734
0.0774
0.0777
0.0809
0.0810

0.0354
0.0444
0.0461
0.0464
0.0465
0.0490
0.0498
0.0514
0.0523
0.0531
0.0534
0.0540
0.0545
0.0545
0.0547
0.0556
0.0556
0.0556
0.0572
0.0574
0.0575
0.0584
0.0600
0.0601
0.0603
0.0615
0.0618
0.0618
0.0658
0.0663
0.0685
0.0753
0.0756
0.0785
0.0797
0.0837
0.0918
0.0961
0.0977
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group b and ¢

0.0288
0.0295
0.0330
0.0334
0.0339
0.0339
0.0342
0.0353
0.0363
0.0365
0.0366
0.0371
0.0372
0.0373
0.0376
0.0376
0.0386
0.0388
0.0402
0.0410
0.0420
0.0426
0.0443
0.0443
0.0447
0.0451
0.0479
0.0485
0.0518
0.0518
0.0548
0.0574
0.0684
0.0707
0.0745
0.0772
0.0817
0.0862
0.0965

0.0531
0.0572
0.0591
0.0606
0.0608
0.0650
0.0683
0.0691
0.0701
0.0705
0.0714
0.0715
0.0717
0.0717
0.0723
0.0734
0.0743
0.0745
0.0757
0.0778
0.0781
0.0781
0.0784
0.0784
0.0793
0.0794
0.0807
0.0809
0.0814
0.0820
0.0837
0.0846
0.0848
0.0865
0.0866
0.0896
0.0901
0.0977
0.1003

0.0221
0.0249
0.0252
0.0263
0.0264
0.0275
0.0287
0.0287
0.0288
0.0292
0.0312
0.0314
0.0346
0.0357
0.0362
0.0374
0.0384
0.0391
0.0397
0.0412
0.0425
0.0426
0.0447
0.0451
0.0463
0.0468
0.0485
0.0486
0.0551
0.0563
0.0567
0.0693
0.0767
0.0793
0.0840
0.0850
0.0967
0.1080
0.1094

0.0174
0.0194
0.0217
0.0227
0.0227
0.0236
0.0239
0.0243
0.0251
0.0265
0.0284
0.0286
0.0293
0.0317
0.0329
0.0335
0.0347
0.0348
0.0355
0.0367
0.0393
0.0400
0.0401
0.0401
0.0432
0.0468
0.0471
0.0477
0.0501
0.0560
0.0567
0.0758
0.0787
0.0806
0.0844
0.0880
0.0994
0.1039
0.1155

0.0401
0.0423
0.0429
0.0434
0.0456
0.0468
0.0472
0.0473
0.0474
0.0484
0.0485
0.0498
0.0510
0.0511
0.0522
0.0523
0.0530
0.0544
0.0551
0.0556
0.0557
0.0558
0.0561
0.0595
0.0597
0.0608
0.0611
0.0615
0.0616
0.0617
0.0623
0.0630
0.0641
0.0666
0.0686
0.0763
0.0765
0.0869
0.0895

0.0225
0.0234
0.0268
0.0269
0.0307
0.0313
0.0327
0.0332
0.0344
0.0349
0.0355
0.0357
0.0364
0.0367
0.0378
0.0396
0.0404
0.0411
0.0437
0.0443
0.0452
0.0483
0.0485
0.0491
0.0510
0.0510
0.0532
0.0534
0.0536
0.0536
0.0590
0.0673
0.0766
0.0772
0.0794
0.0814
0.0948
0.0961
0.1181

0.0296
0.0306
0.0326
0.0327
0.0328
0.0339
0.0357
0.0361
0.0386
0.0386
0.0388
0.0389
0.0397
0.0401
0.0404
0.0409
0.0409
0.0415
0.0422
0.0435
0.0439
0.0452
0.0456
0.0461
0.0461
0.0484
0.0488
0.0490
0.0491
0.0532
0.0533
0.0537
0.0584
0.0597
0.0602
0.0753
0.0805
0.0808
0.0868

0.0189
0.0211
0.0216
0.0216
0.0274
0.0304
0.0306
0.0308
0.0316
0.0343
0.0356
0.0365
0.0374
0.0380
0.0384
0.0385
0.0396
0.0406
0.0424
0.0430
0.0469
0.0473
0.0475
0.0499
0.0505
0.0509
0.0515
0.0555
0.0564
0.0595
0.0662
0.0749
0.0866
0.0892
0.0912
0.1011
0.1023
0.1111
0.1135

0.0412
0.0438
0.0446
0.0452
0.0453
0.0458
0.0463
0.0470
0.0471
0.0476
0.0487
0.0494
0.0506
0.0508
0.0514
0.0516
0.0523
0.0539
0.0544
0.0555
0.0576
0.0578
0.0588
0.0591
0.0598
0.0599
0.0603
0.0604
0.0605
0.0606
0.0671
0.0683
0.0698
0.0774
0.0777
0.0787
0.0818
0.0819
0.1018

1

3

1

3

2

4
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0433 | 0.0565 | 0.0157 | 0.0336 | 0.0228 | 0.0438 | 0.0330 | 0.0414 | 0.0274
0.0445 | 0.0573 | 0.0182 | 0.0338 | 0.0265 | 0.0496 | 0.0336 | 0.0469 | 0.0303
0.0481 | 0.0591 | 0.0197 | 0.0376 | 0.0268 | 0.0505 | 0.0344 | 0.0475 | 0.0306
0.0490 | 0.0605 | 0.0201 | 0.0383 | 0.0286 | 0.0506 | 0.0359 | 0.0483 | 0.0313
0.0508 | 0.0616 | 0.0234 | 0.0385 | 0.0301 | 0.0507 | 0.0378 | 0.0506 | 0.0319
0.0561 | 0.0624 | 0.0239 | 0.0394 | 0.0314 | 0.0512 | 0.0398 | 0.0509 | 0.0331
0.0564 | 0.0643 | 0.0314 | 0.0405 | 0.0318 | 0.0514 | 0.0398 | 0.0515 | 0.0332
0.0564 | 0.0656 | 0.0317 | 0.0410 | 0.0320 | 0.0530 | 0.0400 | 0.0532 | 0.0350
0.0576 | 0.0656 | 0.0359 | 0.0415 | 0.0329 | 0.0537 | 0.0406 | 0.0571 | 0.0360
0.0579 | 0.0659 | 0.0377 | 0.0423 | 0.0338 | 0.0551 | 0.0408 | 0.0579 | 0.0368
0.0598 | 0.0659 | 0.0381 | 0.0437 | 0.0350 | 0.0552 | 0.0415 | 0.0587 | 0.0368
0.0600 | 0.0670 | 0.0382 | 0.0440 | 0.0351 | 0.0571 | 0.0416 | 0.0602 | 0.0369
0.0604 | 0.0678 | 0.0390 | 0.0443 | 0.0358 | 0.0575 | 0.0423 | 0.0609 | 0.0370
0.0618 | 0.0679 | 0.0409 | 0.0451 | 0.0359 | 0.0576 | 0.0427 | 0.0616 | 0.0393
0.0624 | 0.0685 | 0.0410 | 0.0470 | 0.0364 | 0.0582 | 0.0432 | 0.0618 | 0.0397
0.0629 | 0.0685 | 0.0411 | 0.0471 | 0.0368 | 0.0620 | 0.0434 | 0.0643 | 0.0413
0.0636 | 0.0694 | 0.0423 | 0.0473 | 0.0369 | 0.0620 | 0.0447 | 0.0645 | 0.0421
0.0638 | 0.0710 | 0.0434 | 0.0483 | 0.0381 | 0.0626 | 0.0449 | 0.0653 | 0.0432
0.0653 | 0.0711 | 0.0440 | 0.0488 | 0.0387 | 0.0636 | 0.0452 | 0.0685 | 0.0432
0.0721 | 0.0455 | 0.0491 | 0.0393 | 0.0636 | 0.0466 | 0.0686 | 0.0435
0.0661 | 0.0725 | 0.0466 | 0.0495 | 0.0395 | 0.0646 | 0.0469 | 0.0754 | 0.0436
0.0682 | 0.0737 | 0.0486 | 0.0511 | 0.0395 | 0.0648 | 0.0473 | 0.0766 | 0.0440
0.0686 | 0.0739 | 0.0490 | 0.0526 | 0.0398 | 0.0649 | 0.0482 | 0.0777 | 0.0449
0.0689 | 0.0752 | 0.0536 | 0.0527 | 0.0405 | 0.0651 | 0.0487 | 0.0780 | 0.0463
0.0695 | 0.0765 | 0.0546 | 0.0547 | 0.0410 | 0.0664 | 0.0491 | 0.0785 | 0.0470
0.0699 | 0.0788 | 0.0552 | 0.0550 | 0.0429 | 0.0668 | 0.0541 | 0.0788 | 0.0473
0.0702 | 0.0795 | 0.0558 | 0.0554 | 0.0433 | 0.0678 | 0.0543 | 0.0793 | 0.0480
0.0730 | 0.0819 | 0.0566 | 0.0555 | 0.0474 | 0.0682 | 0.0544 | 0.0793 | 0.0487
0.0769 | 0.0826 | 0.0608 | 0.0561 | 0.0533 | 0.0690 | 0.0546 | 0.0811 | 0.0494
0.0772 | 0.0852 | 0.0687 | 0.0564 | 0.0557 | 0.0698 | 0.0564 | 0.0830 | 0.0514
0.0787 | 0.0855 | 0.0825 | 0.0576 | 0.0571 | 0.0705 | 0.0566 | 0.0847 | 0.0526
0.0789 | 0.0866 | 0.0892 | 0.0580 | 0.0677 | 0.0711 | 0.0599 | 0.0859 | 0.0580
0.0792 | 0.0868 | 0.0915 | 0.0583 | 0.0686 | 0.0731 | 0.0617 | 0.0869 | 0.0700
0.0794 | 0.0887 | 0.0985 | 0.0668 | 0.0688 | 0.0740 | 0.0639 | 0.0943 | 0.0704
0.0817 | 0.0894 | 0.1058 | 0.0675 | 0.0753 | 0.0776 | 0.0639 | 0.0978 | 0.0745
0.0895 | 0.0936 | 0.1066 | 0.0718 | 0.0895 | 0.0824 | 0.0649 | 0.1010 | 0.0753
0.0936 | 0.0975 | 0.1101 | 0.0721 | 0.0897 | 0.0837 | 0.0789 | 0.1013 | 0.0853
0.1071 | 0.0985 | 0.1240 | 0.0780 | 0.0925 | 0.0880 | 0.0876 | 0.1039 | 0.0876
0.1173 | 0.1082 | 0.1266 | 0.0889 | 0.1063 | 0.0897 | 0.0944 | 0.1183 | 0.1035

All samples in the group b and ¢
o
(e
(@)}
ot
oo

r’ 2 6 8 10 5 1 2 1 4
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B

TABLE A.24: Ranked sim values for (bV {a,c}) in VHHS dataset using U-KTS KH' .

So

S3

Sy

S5

Se

S7

Sy

Sy

S1o

All samples in the group a and ¢

0.0515
0.0521
0.0523
0.0525
0.0527
0.0528
0.0531
0.0531
0.0542
0.0545
0.0546
0.0546
0.0550
0.0562
0.0563
0.0569
0.0570
0.0575
0.0577
0.0580
0.0586
0.0590
0.0598
0.0609
0.0609
0.0618
0.0620
0.0621
0.0622
0.0624
0.0628
0.0628
0.0644
0.0660
0.0665
0.0676
0.0712
0.0720
0.0837

0.0624
0.0627
0.0633
0.0641
0.0660
0.0664
0.0674
0.0685
0.0696
0.0700
0.0702
0.0707
0.0711
0.0712
0.0714
0.0718
0.0732
0.0735
0.0738
0.0742
0.0744
0.0745
0.0747
0.0752
0.0755
0.0760
0.0769
0.0770
0.0773
0.0776
0.0777
0.0777
0.0814
0.0814
0.0826
0.0834
0.0858
0.0892
0.0894

0.0550
0.0636
0.0644
0.0650
0.0660
0.0665
0.0671
0.0672
0.0675
0.0680
0.0682
0.0683
0.0687
0.0693
0.0703
0.0706
0.0708
0.0721
0.0722
0.0728
0.0738
0.0742
0.0748
0.0751
0.0753
0.0753
0.0755
0.0755
0.0764
0.0770
0.0773
0.0781
0.0791
0.0792
0.0797
0.0800
0.0801
0.0840
0.0871

0.0386
0.0416
0.0419
0.0426
0.0427
0.0429
0.0436
0.0440
0.0443
0.0443
0.0450
0.0450
0.0450
0.0454
0.0455
0.0461
0.0462
0.0463
0.0469
0.0470
0.0471
0.0478
0.0486
0.0493
0.0500
0.0507
0.0520
0.0521
0.0528
0.0533
0.0536
0.0549
0.0556
0.0574
0.0577
0.0626
0.0663
0.0720
0.0738

0.0910
0.0912
0.0947
0.0967
0.0973
0.0984
0.1026
0.1060
0.1062
0.1096
0.1099
0.1113
0.1113
0.1116
0.1132
0.1143
0.1144
0.1145
0.1145
0.1147
0.1158
0.1160
0.1190
0.1204
0.1221
0.1226
0.1233
0.1239
0.1253
0.1260
0.1272
0.1273
0.1275
0.1280
0.1310
0.1333
0.1336
0.1429
0.1438

0.0882
0.0892
0.0930
0.0954
0.0964
0.0972
0.0978
0.0979
0.1009
0.1023
0.1024
0.1025
0.1044
0.1048
0.1058
0.1059
0.1071
0.1072
0.1079
0.1081
0.1083
0.1086
0.1105
0.1109
0.1116
0.1127
0.1129
0.1131
0.1147
0.1159
0.1160
0.1164
0.1178
0.1182
0.1183
0.1184
0.1209
0.1238
0.1315

0.0714
0.0723
0.0734
0.0746
0.0747
0.0760
0.0762
0.0800
0.0807
0.0818
0.0822
0.0837
0.0852
0.0857
0.0863
0.0868
0.0868
0.0880
0.0881
0.0884
0.0885
0.0886
0.0888
0.0891
0.0908
0.0911
0.0916
0.0922
0.0935
0.0947
0.0964
0.0971
0.0973
0.0974
0.0977
0.0985
0.1022
0.1061
0.1108

0.0722
0.0730
0.0730
0.0754
0.0759
0.0762
0.0769
0.0776
0.0782
0.0782
0.0783
0.0788
0.0796
0.0798
0.0799
0.0802
0.0808
0.0810
0.0819
0.0820
0.0820
0.0825
0.0826
0.0832
0.0832
0.0832
0.0834
0.0837
0.0840
0.0844
0.0848
0.0860
0.0870
0.0884
0.0897
0.0898
0.0900
0.0922
0.0939

0.0511
0.0554
0.0591
0.0593
0.0594
0.0618
0.0619
0.0620
0.0624
0.0628
0.0631
0.0654
0.0664
0.0669
0.0674
0.0676
0.0679
0.0681
0.0684
0.0686
0.0688
0.0690
0.0691
0.0693
0.0693
0.0713
0.0722
0.0728
0.0739
0.0740
0.0741
0.0743
0.0746
0.0747
0.0749
0.0756
0.0777
0.0811
0.0870

0.0622
0.0624
0.0626
0.0627
0.0647
0.0647
0.0650
0.0651
0.0654
0.0660
0.0662
0.0664
0.0666
0.0670
0.0672
0.0672
0.0674
0.0679
0.0680
0.0681
0.0702
0.0703
0.0704
0.0704
0.0706
0.0707
0.0710
0.0716
0.0717
0.0723
0.0733
0.0734
0.0751
0.0754
0.0756
0.0778
0.0784
0.0798
0.0901
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and ¢

0.0756
0.0776
0.0786
0.0804
0.0816
0.0817
0.0817
0.0822
0.0826
0.0831
0.0833
0.0834
0.0842
0.0860
0.0863
0.0863
0.0874
0.0880
0.0881
0.0890
0.0891
0.0896
0.0899
0.0912
0.0913
0.0915
0.0925
0.0933
0.0937
0.0937
0.0963
0.0965
0.0970
0.0970
0.0974
0.0991
0.1008
0.1018
0.1038

0.1118
0.1137
0.1163
0.1164
0.1202
0.1203
0.1210
0.1215
0.1248
0.1262
0.1264
0.1278
0.1278
0.1282
0.1284
0.1288
0.1302
0.1312
0.1318
0.1318
0.1320
0.1320
0.1322
0.1326
0.1340
0.1358
0.1362
0.1372
0.1393
0.1394
0.1395
0.1403
0.1452
0.1467
0.1485
0.1510
0.1511
0.1534
0.1563

0.0796
0.0796
0.0804
0.0818
0.0824
0.0828
0.0833
0.0846
0.0848
0.0852
0.0857
0.0858
0.0864
0.0875
0.0876
0.0880
0.0887
0.0894
0.0894
0.0915
0.0926
0.0931
0.0932
0.0938
0.0940
0.0942
0.0954
0.0958
0.0966
0.0968
0.0979
0.0986
0.0988
0.0992
0.1000
0.1002
0.1004
0.1051
0.1095

0.0664
0.0750
0.0766
0.0773
0.0778
0.0784
0.0794
0.0808
0.0811
0.0817
0.0820
0.0839
0.0858
0.0866
0.0867
0.0868
0.0879
0.0882
0.0884
0.0892
0.0900
0.0912
0.0922
0.0928
0.0937
0.0958
0.0959
0.0966
0.0967
0.0970
0.0972
0.0974
0.0983
0.0990
0.0994
0.1000
0.1031
0.1079
0.1097

0.0578
0.0588
0.0588
0.0602
0.0602
0.0606
0.0607
0.0612
0.0613
0.0616
0.0617
0.0638
0.0639
0.0639
0.0641
0.0642
0.0642
0.0642
0.0644
0.0645
0.0655
0.0655
0.0656
0.0658
0.0659
0.0666
0.0667
0.0676
0.0689
0.0696
0.0702
0.0731
0.0735
0.0739
0.0744
0.0752
0.0760
0.0774
0.0861

0.0709
0.0716
0.0719
0.0736
0.0744
0.0748
0.0751
0.0796
0.0814
0.0840
0.0865
0.0871
0.0898
0.0903
0.0911
0.0939
0.0955
0.0972
0.0986
0.1000
0.1008
0.1032
0.1036
0.1043
0.1044
0.1058
0.1082
0.1085
0.1087
0.1104
0.1105
0.1123
0.1125
0.1134
0.1148
0.1179
0.1196
0.1282
0.1300

0.0544
0.0558
0.0584
0.0596
0.0621
0.0625
0.0633
0.0634
0.0635
0.0640
0.0648
0.0650
0.0651
0.0652
0.0657
0.0666
0.0672
0.0674
0.0676
0.0678
0.0684
0.0684
0.0698
0.0712
0.0714
0.0725
0.0726
0.0728
0.0731
0.0734
0.0744
0.0749
0.0756
0.0760
0.0760
0.0774
0.0784
0.0806
0.0846

0.0902
0.0927
0.0964
0.0982
0.1017
0.1053
0.1078
0.1082
0.1107
0.1131
0.1132
0.1137
0.1139
0.1139
0.1156
0.1158
0.1160
0.1161
0.1161
0.1163
0.1195
0.1202
0.1215
0.1240
0.1271
0.1278
0.1279
0.1281
0.1282
0.1294
0.1300
0.1305
0.1306
0.1311
0.1355
0.1382
0.1390
0.1475
0.1484

0.0557
0.0578
0.0588
0.0596
0.0600
0.0601
0.0602
0.0604
0.0613
0.0614
0.0614
0.0624
0.0626
0.0628
0.0629
0.0630
0.0635
0.0643
0.0650
0.0669
0.0678
0.0684
0.0684
0.0685
0.0686
0.0694
0.0699
0.0702
0.0702
0.0718
0.0720
0.0720
0.0730
0.0749
0.0755
0.0764
0.0771
0.0804
0.0844
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and ¢

0.0460
0.0470
0.0509
0.0512
0.0522
0.0529
0.0539
0.0541
0.0541
0.0544
0.0555
0.0556
0.0556
0.0557
0.0559
0.0564
0.0565
0.0570
0.0582
0.0588
0.0590
0.0590
0.0590
0.0592
0.0595
0.0600
0.0600
0.0601
0.0606
0.0609
0.0611
0.0613
0.0620
0.0628
0.0636
0.0638
0.0664
0.0702
0.0706

0.0985
0.0990
0.0996
0.1014
0.1032
0.1038
0.1039
0.1050
0.1057
0.1072
0.1074
0.1076
0.1084
0.1086
0.1088
0.1099
0.1109
0.1111
0.1111
0.1112
0.1130
0.1130
0.1130
0.1132
0.1142
0.1157
0.1158
0.1171
0.1175
0.1185
0.1189
0.1194
0.1194
0.1212
0.1219
0.1224
0.1228
0.1268
0.1295

0.0467
0.0468
0.0484
0.0491
0.0491
0.0494
0.0495
0.0497
0.0498
0.0500
0.0505
0.0513
0.0517
0.0518
0.0520
0.0523
0.0524
0.0524
0.0526
0.0530
0.0534
0.0536
0.0537
0.0537
0.0539
0.0540
0.0547
0.0551
0.0569
0.0573
0.0579
0.0589
0.0602
0.0618
0.0640
0.0645
0.0664
0.0690
0.0726

0.0466
0.0501
0.0501
0.0502
0.0510
0.0513
0.0535
0.0536
0.0537
0.0539
0.0549
0.0550
0.0551
0.0557
0.0557
0.0559
0.0560
0.0565
0.0566
0.0573
0.0583
0.0585
0.0592
0.0602
0.0606
0.0611
0.0612
0.0619
0.0630
0.0636
0.0640
0.0640
0.0649
0.0650
0.0652
0.0675
0.0701
0.0722
0.0826

0.1668
0.1668
0.1686
0.1717
0.1724
0.1750
0.1775
0.1796
0.1820
0.1821
0.1844
0.1849
0.1852
0.1869
0.1876
0.1890
0.1904
0.1913
0.1915
0.1918
0.1930
0.1931
0.1945
0.1951
0.1991
0.1994
0.1996
0.2012
0.2013
0.2020
0.2021
0.2028
0.2038
0.2043
0.2044
0.2063
0.2100
0.2164
0.2193

0.0517
0.0539
0.0540
0.0542
0.0551
0.0552
0.0553
0.0554
0.0555
0.0559
0.0565
0.0568
0.0570
0.0574
0.0581
0.0582
0.0582
0.0582
0.0587
0.0594
0.0598
0.0612
0.0616
0.0623
0.0623
0.0624
0.0625
0.0626
0.0627
0.0630
0.0632
0.0632
0.0639
0.0665
0.0671
0.0704
0.0707
0.0712
0.0722

0.0652
0.0678
0.0690
0.0711
0.0723
0.0728
0.0742
0.0750
0.0757
0.0761
0.0764
0.0766
0.0776
0.0779
0.0783
0.0790
0.0791
0.0793
0.0794
0.0800
0.0802
0.0804
0.0808
0.0811
0.0816
0.0817
0.0817
0.0819
0.0819
0.0820
0.0826
0.0831
0.0833
0.0848
0.0853
0.0896
0.0916
0.0931
0.0954

0.0366
0.0389
0.0422
0.0424
0.0461
0.0475
0.0476
0.0481
0.0487
0.0489
0.0490
0.0496
0.0500
0.0503
0.0509
0.0510
0.0512
0.0516
0.0521
0.0525
0.0532
0.0544
0.0550
0.0556
0.0558
0.0563
0.0570
0.0571
0.0587
0.0588
0.0600
0.0611
0.0625
0.0635
0.0663
0.0668
0.0720
0.0744
0.0768

0.0819
0.0843
0.0880
0.0880
0.0881
0.0886
0.0890
0.0900
0.0902
0.0905
0.0913
0.0921
0.0943
0.0959
0.0962
0.0972
0.0972
0.0976
0.0977
0.0979
0.0986
0.1022
0.1022
0.1025
0.1026
0.1035
0.1052
0.1058
0.1075
0.1083
0.1090
0.1106
0.1132
0.1139
0.1147
0.1164
0.1168
0.1188
0.1220

2

2

1

1

2

4

4
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0611 | 0.1091 | 0.0324 | 0.0527 | 0.0568 | 0.0761 | 0.0656 | 0.0867 | 0.0616
0.0625 | 0.1154 | 0.0343 | 0.0545 | 0.0577 | 0.0766 | 0.0672 | 0.0873 | 0.0658
0.0634 | 0.1156 | 0.0357 | 0.0552 | 0.0586 | 0.0769 | 0.0768 | 0.0904 | 0.0674
0.0642 | 0.1174 | 0.0363 | 0.0560 | 0.0594 | 0.0774 | 0.0778 | 0.0907 | 0.0689
0.0643 | 0.1184 | 0.0366 | 0.0560 | 0.0597 | 0.0775 | 0.0790 | 0.0909 | 0.0696
0.0644 | 0.1186 | 0.0372 | 0.0561 | 0.0602 | 0.0790 | 0.0829 | 0.0917 | 0.0704
0.0658 | 0.1188 | 0.0372 | 0.0567 | 0.0603 | 0.0794 | 0.0868 | 0.0925 | 0.0706
0.0664 | 0.1216 | 0.0373 | 0.0571 | 0.0603 | 0.0794 | 0.0875 | 0.0926 | 0.0713
0.0666 | 0.1240 | 0.0381 | 0.0599 | 0.0607 | 0.0813 | 0.0881 | 0.0978 | 0.0728
0.0668 | 0.1268 | 0.0386 | 0.0602 | 0.0621 | 0.0824 | 0.0892 | 0.0997 | 0.0729
0.0676 | 0.1274 | 0.0390 | 0.0602 | 0.0624 | 0.0836 | 0.0908 | 0.1000 | 0.0739
0.0677 | 0.1274 | 0.0395 | 0.0604 | 0.0627 | 0.0836 | 0.0916 | 0.1002 | 0.0744
0.0683 | 0.1282 | 0.0397 | 0.0605 | 0.0627 | 0.0838 | 0.0938 | 0.1003 | 0.0757
0.0697 | 0.1286 | 0.0398 | 0.0610 | 0.0631 | 0.0839 | 0.0946 | 0.1005 | 0.0769
0.0698 | 0.1296 | 0.0411 | 0.0610 | 0.0635 | 0.0842 | 0.0948 | 0.1006 | 0.0771
0.0701 | 0.1304 | 0.0413 | 0.0614 | 0.0645 | 0.0844 | 0.0965 | 0.1006 | 0.0772
0.0706 | 0.1314 | 0.0414 | 0.0614 | 0.0649 | 0.0846 | 0.0970 | 0.1008 | 0.0773
0.0711 | 0.1316 | 0.0414 | 0.0616 | 0.0651 | 0.0850 | 0.0982 | 0.1009 | 0.0778
0.0714 | 0.1326 | 0.0422 | 0.0618 | 0.0660 | 0.0860 | 0.0988 | 0.1015 | 0.0781
0.1331 | 0.0424 | 0.0622 | 0.0663 | 0.0862 | 0.1008 | 0.1032 | 0.0791
0.0719 | 0.1340 | 0.0426 | 0.0622 | 0.0665 | 0.0866 | 0.1026 | 0.1038 | 0.0795
0.0720 | 0.1350 | 0.0429 | 0.0644 | 0.0668 | 0.0876 | 0.1028 | 0.1054 | 0.0798
0.0725 | 0.1357 | 0.0432 | 0.0646 | 0.0669 | 0.0888 | 0.1052 | 0.1061 | 0.0804
0.0727 | 0.1380 | 0.0439 | 0.0656 | 0.0676 | 0.0891 | 0.1059 | 0.1063 | 0.0819
0.0730 | 0.1395 | 0.0463 | 0.0662 | 0.0676 | 0.0903 | 0.1090 | 0.1068 | 0.0819
0.0734 | 0.1396 | 0.0466 | 0.0664 | 0.0682 | 0.0912 | 0.1096 | 0.1076 | 0.0820
0.0736 | 0.1397 | 0.0486 | 0.0664 | 0.0697 | 0.0921 | 0.1097 | 0.1085 | 0.0828
0.0737 | 0.1400 | 0.0497 | 0.0669 | 0.0699 | 0.0921 | 0.1099 | 0.1086 | 0.0832
0.0740 | 0.1412 | 0.0513 | 0.0670 | 0.0699 | 0.0930 | 0.1124 | 0.1088 | 0.0835
0.0743 | 0.1413 | 0.0528 | 0.0677 | 0.0706 | 0.0932 | 0.1127 | 0.1100 | 0.0856
0.0744 | 0.1427 | 0.0546 | 0.0678 | 0.0717 | 0.0933 | 0.1139 | 0.1113 | 0.0868
0.0768 | 0.1439 | 0.0550 | 0.0686 | 0.0738 | 0.0955 | 0.1142 | 0.1120 | 0.0870
0.0768 | 0.1478 | 0.0588 | 0.0692 | 0.0744 | 0.0957 | 0.1166 | 0.1132 | 0.0874
0.0772 | 0.1486 | 0.0592 | 0.0694 | 0.0745 | 0.0964 | 0.1182 | 0.1148 | 0.0892
0.0778 | 0.1488 | 0.0685 | 0.0702 | 0.0745 | 0.0968 | 0.1195 | 0.1154 | 0.0894
0.0794 | 0.1489 | 0.0685 | 0.0714 | 0.0758 | 0.0970 | 0.1215 | 0.1159 | 0.0896
0.0840 | 0.1524 | 0.0698 | 0.0726 | 0.0758 | 0.1016 | 0.1257 | 0.1208 | 0.0902
0.0844 | 0.1618 | 0.0718 | 0.0739 | 0.0795 | 0.1018 | 0.1312 | 0.1245 | 0.0933
0.0873 | 0.1683 | 0.0872 | 0.0754 | 0.0829 | 0.1032 | 0.1354 | 0.1291 | 0.0947

r’ 1 7 9 12 6 1 4 1 2

All samples in the group a and ¢
o
S
\]
—_
o
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B

TABLE A.25: Ranked sim values for (cV {a,b}) in VHHS dataset using U-KTS KH' .

So

S3

Sy

S5

Se

S7

Sy

Sy

S1o

All samples in the group a and b

0.0493
0.0504
0.0506
0.0510
0.0510
0.0512
0.0514
0.0516
0.0521
0.0528
0.0535
0.0540
0.0542
0.0545
0.0545
0.0546
0.0547
0.0553
0.0554
0.0555
0.0558
0.0560
0.0565
0.0568
0.0575
0.0575
0.0575
0.0594
0.0594
0.0598
0.0598
0.0601
0.0612
0.0642
0.0662
0.0681
0.0686
0.0733
0.0736

0.0602
0.0623
0.0636
0.0658
0.0672
0.0680
0.0681
0.0688
0.0698
0.0704
0.0705
0.0705
0.0721
0.0723
0.0726
0.0732
0.0741
0.0744
0.0744
0.0744
0.0751
0.0752
0.0753
0.0753
0.0754
0.0757
0.0758
0.0761
0.0762
0.0763
0.0764
0.0770
0.0786
0.0788
0.0798
0.0799
0.0806
0.0810
0.0827

0.0509
0.0615
0.0624
0.0641
0.0665
0.0669
0.0675
0.0678
0.0678
0.0690
0.0692
0.0696
0.0698
0.0702
0.0705
0.0706
0.0708
0.0709
0.0712
0.0714
0.0717
0.0719
0.0720
0.0720
0.0722
0.0722
0.0726
0.0735
0.0746
0.0754
0.0762
0.0763
0.0764
0.0775
0.0777
0.0794
0.0796
0.0814
0.0819

0.0370
0.0404
0.0419
0.0420
0.0424
0.0424
0.0426
0.0426
0.0428
0.0430
0.0432
0.0432
0.0434
0.0438
0.0441
0.0447
0.0448
0.0452
0.0454
0.0457
0.0464
0.0465
0.0468
0.0478
0.0480
0.0481
0.0483
0.0494
0.0495
0.0496
0.0511
0.0512
0.0546
0.0556
0.0601
0.0627
0.0634
0.0670
0.0708

0.0869
0.0876
0.0923
0.0998
0.0999
0.1007
0.1018
0.1042
0.1065
0.1076
0.1084
0.1090
0.1102
0.1124
0.1127
0.1133
0.1152
0.1154
0.1160
0.1170
0.1172
0.1175
0.1178
0.1184
0.1189
0.1189
0.1192
0.1202
0.1209
0.1215
0.1232
0.1233
0.1257
0.1261
0.1280
0.1296
0.1302
0.1354
0.1412

0.0872
0.0895
0.0919
0.0930
0.0948
0.0986
0.0996
0.1011
0.1012
0.1026
0.1029
0.1040
0.1055
0.1057
0.1062
0.1070
0.1075
0.1077
0.1081
0.1081
0.1082
0.1082
0.1085
0.1086
0.1090
0.1096
0.1099
0.1101
0.1103
0.1117
0.1138
0.1150
0.1152
0.1154
0.1160
0.1165
0.1185
0.1238
0.1255

0.0682
0.0697
0.0702
0.0742
0.0756
0.0771
0.0790
0.0811
0.0816
0.0818
0.0836
0.0841
0.0847
0.0856
0.0863
0.0866
0.0871
0.0878
0.0880
0.0881
0.0882
0.0886
0.0886
0.0889
0.0890
0.0890
0.0902
0.0909
0.0912
0.0916
0.0932
0.0939
0.0944
0.0961
0.0963
0.0965
0.0977
0.1040
0.1071

0.0677
0.0719
0.0724
0.0725
0.0740
0.0746
0.0755
0.0763
0.0765
0.0766
0.0776
0.0779
0.0781
0.0783
0.0786
0.0789
0.0792
0.0795
0.0795
0.0798
0.0800
0.0802
0.0803
0.0809
0.0811
0.0814
0.0816
0.0817
0.0817
0.0820
0.0822
0.0824
0.0825
0.0826
0.0842
0.0846
0.0852
0.0856
0.0890

0.0541
0.0581
0.0593
0.0598
0.0601
0.0620
0.0626
0.0635
0.0636
0.0640
0.0644
0.0648
0.0656
0.0661
0.0664
0.0671
0.0672
0.0677
0.0679
0.0680
0.0682
0.0682
0.0687
0.0688
0.0688
0.0690
0.0694
0.0698
0.0699
0.0715
0.0716
0.0719
0.0724
0.0726
0.0732
0.0735
0.0762
0.0772
0.0789

0.0588
0.0606
0.0609
0.0614
0.0617
0.0627
0.0627
0.0629
0.0636
0.0637
0.0642
0.0644
0.0645
0.0645
0.0647
0.0652
0.0660
0.0669
0.0672
0.0677
0.0682
0.0682
0.0685
0.0687
0.0695
0.0699
0.0700
0.0701
0.0703
0.0722
0.0732
0.0736
0.0738
0.0746
0.0746
0.0748
0.0755
0.0772
0.0796

1
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and b

0.0739
0.0748
0.0778
0.0780
0.0810
0.0826
0.0849
0.0855
0.0856
0.0857
0.0860
0.0861
0.0862
0.0863
0.0866
0.0872
0.0876
0.0877
0.0878
0.0882
0.0882
0.0887
0.0887
0.0898
0.0899
0.0901
0.0902
0.0906
0.0908
0.0911
0.0913
0.0917
0.0922
0.0926
0.0930
0.0955
0.0971
0.0996
0.0996

0.1085
0.1112
0.1143
0.1156
0.1177
0.1204
0.1211
0.1227
0.1228
0.1238
0.1249
0.1259
0.1264
0.1270
0.1277
0.1280
0.1287
0.1306
0.1308
0.1311
0.1317
0.1323
0.1325
0.1327
0.1331
0.1336
0.1336
0.1340
0.1346
0.1347
0.1356
0.1364
0.1373
0.1432
0.1448
0.1450
0.1457
0.1507
0.1572

0.0724
0.0739
0.0788
0.0796
0.0799
0.0821
0.0823
0.0824
0.0833
0.0834
0.0859
0.0860
0.0866
0.0867
0.0892
0.0898
0.0901
0.0907
0.0909
0.0915
0.0919
0.0919
0.0920
0.0921
0.0925
0.0932
0.0934
0.0934
0.0936
0.0946
0.0952
0.0952
0.0957
0.0958
0.0976
0.0978
0.0990
0.1012
0.1056

0.0690
0.0726
0.0728
0.0776
0.0786
0.0841
0.0843
0.0849
0.0852
0.0860
0.0861
0.0864
0.0866
0.0875
0.0878
0.0880
0.0882
0.0888
0.0889
0.0891
0.0900
0.0901
0.0902
0.0904
0.0910
0.0911
0.0915
0.0920
0.0921
0.0924
0.0927
0.0938
0.0946
0.0962
0.0980
0.0980
0.1010
0.1014
0.1040

0.0563
0.0576
0.0584
0.0587
0.0593
0.0594
0.0599
0.0601
0.0606
0.0606
0.0608
0.0610
0.0613
0.0614
0.0614
0.0616
0.0616
0.0616
0.0618
0.0630
0.0636
0.0643
0.0645
0.0648
0.0654
0.0661
0.0663
0.0663
0.0664
0.0673
0.0682
0.0687
0.0690
0.0696
0.0703
0.0713
0.0713
0.0738
0.0780

0.0621
0.0724
0.0744
0.0777
0.0784
0.0788
0.0837
0.0844
0.0864
0.0876
0.0879
0.0886
0.0896
0.0899
0.0908
0.0928
0.0932
0.0935
0.0936
0.0956
0.0992
0.0995
0.0997
0.0999
0.1010
0.1034
0.1039
0.1040
0.1041
0.1092
0.1102
0.1107
0.1109
0.1156
0.1158
0.1169
0.1197
0.1209
0.1235

0.0549
0.0588
0.0601
0.0602
0.0608
0.0611
0.0624
0.0634
0.0637
0.0644
0.0650
0.0652
0.0654
0.0656
0.0656
0.0659
0.0662
0.0664
0.0666
0.0667
0.0668
0.0671
0.0678
0.0681
0.0684
0.0686
0.0688
0.0701
0.0704
0.0708
0.0712
0.0715
0.0717
0.0726
0.0733
0.0733
0.0736
0.0781
0.0805

0.0943
0.0950
0.0959
0.0983
0.0994
0.1011
0.1045
0.1075
0.1085
0.1086
0.1088
0.1090
0.1132
0.1138
0.1145
0.1152
0.1168
0.1169
0.1182
0.1182
0.1191
0.1196
0.1205
0.1212
0.1215
0.1220
0.1225
0.1234
0.1239
0.1240
0.1246
0.1282
0.1302
0.1325
0.1339
0.1363
0.1374
0.1401
0.1434

0.0482
0.0484
0.0530
0.0573
0.0586
0.0601
0.0602
0.0604
0.0607
0.0612
0.0612
0.0617
0.0618
0.0619
0.0626
0.0637
0.0637
0.0658
0.0660
0.0667
0.0670
0.0678
0.0679
0.0681
0.0682
0.0682
0.0685
0.0690
0.0694
0.0697
0.0697
0.0698
0.0698
0.0703
0.0704
0.0723
0.0732
0.0736
0.0748
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and b

0.0459
0.0476
0.0476
0.0484
0.0496
0.0499
0.0502
0.0505
0.0508
0.0513
0.0516
0.0524
0.0527
0.0528
0.0534
0.0537
0.0539
0.0542
0.0547
0.0556
0.0563
0.0563
0.0564
0.0565
0.0576
0.0579
0.0580
0.0581
0.0590
0.0592
0.0595
0.0599
0.0609
0.0618
0.0627
0.0631
0.0635
0.0655
0.0682

0.0936
0.0954
0.0996
0.1024
0.1058
0.1065
0.1069
0.1070
0.1072
0.1076
0.1076
0.1098
0.1098
0.1100
0.1101
0.1102
0.1105
0.1108
0.1109
0.1117
0.1121
0.1123
0.1125
0.1129
0.1130
0.1132
0.1132
0.1142
0.1148
0.1150
0.1151
0.1152
0.1155
0.1163
0.1182
0.1206
0.1206
0.1223
0.1250

0.0438
0.0466
0.0480
0.0480
0.0483
0.0486
0.0486
0.0492
0.0492
0.0495
0.0495
0.0496
0.0496
0.0498
0.0502
0.0503
0.0507
0.0512
0.0518
0.0519
0.0524
0.0530
0.0533
0.0533
0.0535
0.0537
0.0537
0.0538
0.0545
0.0546
0.0548
0.0566
0.0574
0.0602
0.0620
0.0627
0.0632
0.0636
0.0651

0.0506
0.0510
0.0510
0.0515
0.0518
0.0522
0.0532
0.0534
0.0534
0.0538
0.0544
0.0545
0.0545
0.0547
0.0548
0.0549
0.0560
0.0564
0.0566
0.0566
0.0568
0.0572
0.0580
0.0580
0.0587
0.0587
0.0595
0.0596
0.0602
0.0602
0.0603
0.0610
0.0613
0.0616
0.0625
0.0634
0.0640
0.0642
0.0676

0.1585
0.1643
0.1681
0.1693
0.1697
0.1772
0.1792
0.1813
0.1846
0.1849
0.1852
0.1853
0.1856
0.1859
0.1860
0.1860
0.1872
0.1879
0.1884
0.1890
0.1900
0.1927
0.1935
0.1936
0.1936
0.1939
0.1940
0.1942
0.1956
0.1977
0.1985
0.1992
0.2012
0.2020
0.2024
0.2032
0.2039
0.2043
0.2160

0.0496
0.0498
0.0521
0.0534
0.0543
0.0553
0.0554
0.0554
0.0564
0.0567
0.0571
0.0572
0.0573
0.0574
0.0578
0.0580
0.0586
0.0588
0.0588
0.0590
0.0598
0.0601
0.0604
0.0608
0.0608
0.0610
0.0613
0.0616
0.0616
0.0621
0.0623
0.0625
0.0628
0.0638
0.0639
0.0646
0.0676
0.0680
0.0738

0.0640
0.0675
0.0699
0.0719
0.0720
0.0734
0.0743
0.0744
0.0745
0.0746
0.0747
0.0748
0.0750
0.0754
0.0764
0.0766
0.0770
0.0772
0.0776
0.0777
0.0787
0.0789
0.0789
0.0789
0.0790
0.0791
0.0792
0.0796
0.0801
0.0803
0.0808
0.0819
0.0831
0.0832
0.0842
0.0845
0.0850
0.0862
0.0865

0.0414
0.0438
0.0442
0.0453
0.0460
0.0464
0.0469
0.0474
0.0474
0.0475
0.0487
0.0487
0.0488
0.0491
0.0494
0.0495
0.0497
0.0498
0.0500
0.0506
0.0508
0.0510
0.0512
0.0516
0.0517
0.0524
0.0545
0.0546
0.0553
0.0557
0.0559
0.0568
0.0581
0.0591
0.0671
0.0672
0.0706
0.0708
0.0727

0.0745
0.0817
0.0853
0.0879
0.0882
0.0886
0.0911
0.0920
0.0924
0.0924
0.0955
0.0965
0.0976
0.0977
0.0991
0.0992
0.0992
0.0995
0.0998
0.0999
0.1018
0.1021
0.1028
0.1034
0.1038
0.1043
0.1045
0.1048
0.1048
0.1049
0.1054
0.1058
0.1062
0.1066
0.1087
0.1088
0.1092
0.1124
0.1173
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3

3
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0613 | 0.0998 | 0.0304 | 0.0520 | 0.0567 | 0.0674 | 0.0684 | 0.0794 | 0.0613
0.0618 | 0.1067 | 0.0332 | 0.0530 | 0.0576 | 0.0740 | 0.0685 | 0.0841 | 0.0621
0.0619 | 0.1092 | 0.0335 | 0.0534 | 0.0606 | 0.0764 | 0.0803 | 0.0892 | 0.0651
0.0625 | 0.1179 | 0.0342 | 0.0569 | 0.0614 | 0.0779 | 0.0852 | 0.0916 | 0.0707
0.0626 | 0.1183 | 0.0345 | 0.0572 | 0.0614 | 0.0780 | 0.0853 | 0.0929 | 0.0717
0.0626 | 0.1185 | 0.0350 | 0.0588 | 0.0616 | 0.0786 | 0.0884 | 0.0931 | 0.0717
0.0640 | 0.1190 | 0.0353 | 0.0590 | 0.0617 | 0.0790 | 0.0884 | 0.0938 | 0.0720
0.0649 | 0.1198 | 0.0353 | 0.0590 | 0.0619 | 0.0791 | 0.0892 | 0.0954 | 0.0729
0.0657 | 0.1212 | 0.0354 | 0.0592 | 0.0620 | 0.0792 | 0.0901 | 0.0954 | 0.0732
0.0663 | 0.1246 | 0.0356 | 0.0599 | 0.0624 | 0.0806 | 0.0930 | 0.0968 | 0.0732
0.0666 | 0.1251 | 0.0366 | 0.0602 | 0.0624 | 0.0818 | 0.0941 | 0.0976 | 0.0735
0.0675 | 0.1276 | 0.0367 | 0.0605 | 0.0627 | 0.0823 | 0.0941 | 0.0979 | 0.0737
0.0676 | 0.1284 | 0.0369 | 0.0607 | 0.0631 | 0.0826 | 0.0950 | 0.0989 | 0.0750
0.0676 | 0.1295 | 0.0382 | 0.0608 | 0.0633 | 0.0830 | 0.0950 | 0.0989 | 0.0769
0.0676 | 0.1298 | 0.0383 | 0.0611 | 0.0636 | 0.0837 | 0.0954 | 0.1002 | 0.0770
0.0680 | 0.1310 | 0.0393 | 0.0612 | 0.0637 | 0.0838 | 0.0957 | 0.1004 | 0.0782
0.0682 | 0.1314 | 0.0405 | 0.0614 | 0.0638 | 0.0843 | 0.0970 | 0.1008 | 0.0784
0.0686 | 0.1316 | 0.0406 | 0.0614 | 0.0639 | 0.0852 | 0.1008 | 0.1010 | 0.0788
0.0687 | 0.1328 | 0.0415 | 0.0614 | 0.0640 | 0.0852 | 0.1020 | 0.1031 | 0.0794
0.1329 | 0.0425 | 0.0614 | 0.0646 | 0.0856 | 0.1034 | 0.1031 | 0.0797
0.0693 | 0.1343 | 0.0426 | 0.0617 | 0.0647 | 0.0860 | 0.1038 | 0.1034 | 0.0800
0.0697 | 0.1349 | 0.0428 | 0.0620 | 0.0653 | 0.0860 | 0.1041 | 0.1038 | 0.0803
0.0698 | 0.1351 | 0.0430 | 0.0624 | 0.0660 | 0.0862 | 0.1042 | 0.1039 | 0.0805
0.0701 | 0.1351 | 0.0437 | 0.0629 | 0.0662 | 0.0869 | 0.1047 | 0.1040 | 0.0808
0.0708 | 0.1352 | 0.0439 | 0.0629 | 0.0668 | 0.0869 | 0.1050 | 0.1042 | 0.0808
0.0710 | 0.1364 | 0.0446 | 0.0640 | 0.0668 | 0.0870 | 0.1056 | 0.1053 | 0.0808
0.0714 | 0.1372 | 0.0452 | 0.0642 | 0.0672 | 0.0871 | 0.1057 | 0.1054 | 0.0812
0.0715 | 0.1384 | 0.0453 | 0.0642 | 0.0672 | 0.0878 | 0.1064 | 0.1054 | 0.0820
0.0720 | 0.1386 | 0.0466 | 0.0644 | 0.0678 | 0.0884 | 0.1082 | 0.1060 | 0.0821
0.0738 | 0.1396 | 0.0476 | 0.0648 | 0.0684 | 0.0900 | 0.1091 | 0.1060 | 0.0832
0.0744 | 0.1411 | 0.0484 | 0.0649 | 0.0708 | 0.0901 | 0.1100 | 0.1072 | 0.0850
0.0745 | 0.1415 | 0.0492 | 0.0652 | 0.0711 | 0.0903 | 0.1108 | 0.1074 | 0.0856
0.0748 | 0.1432 | 0.0501 | 0.0662 | 0.0712 | 0.0906 | 0.1112 | 0.1078 | 0.0858
0.0761 | 0.1438 | 0.0638 | 0.0666 | 0.0713 | 0.0908 | 0.1157 | 0.1112 | 0.0862
0.0768 | 0.1440 | 0.0645 | 0.0670 | 0.0715 | 0.0926 | 0.1164 | 0.1126 | 0.0864
0.0773 | 0.1474 | 0.0662 | 0.0674 | 0.0721 | 0.0926 | 0.1194 | 0.1142 | 0.0868
0.0788 | 0.1475 | 0.0681 | 0.0692 | 0.0734 | 0.0932 | 0.1206 | 0.1171 | 0.0888
0.0794 | 0.1560 | 0.0694 | 0.0698 | 0.0740 | 0.0992 | 0.1214 | 0.1225 | 0.0910
0.0804 | 0.1587 | 0.0719 | 0.0714 | 0.0779 | 0.1002 | 0.1308 | 0.1233 | 0.0924

All samples in the group a and b
o
(e
(@)}
(08}
o

r’ 3 4 9 11 3 2 1 4 1
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B

TABLE A.26: Ranked sim values for (a Vv {b,c}) in VHHS dataset using M-KTS.

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group b and ¢

0.0288
0.0297
0.0342
0.0423
0.0425
0.0448
0.0487
0.0493
0.0512
0.0556
0.0590
0.0632
0.0647
0.0690
0.0706
0.0738
0.0750
0.0757
0.0777
0.0780
0.0829
0.0856
0.0934
0.0985
0.1001
0.1044
0.1047
0.1049
0.1235
0.1319
0.1321
0.1387
0.1440
0.1527
0.1663
0.1797
0.1837
0.1998
0.2759

0.0487
0.0517
0.0571
0.0599
0.0603
0.0627
0.0651
0.0724
0.0726
0.0729
0.0734
0.0742
0.0750
0.0781
0.0789
0.0792
0.0808
0.0821
0.0830
0.0852
0.0873
0.0879
0.0880
0.0882
0.0924
0.0941
0.0947
0.0961
0.0987
0.0991
0.1119
0.1159
0.1177
0.1209
0.1266
0.1549
0.1549
0.1667
0.2260

0.0775
0.0802
0.0837
0.0849
0.0856
0.0868
0.0873
0.0887
0.0888
0.0908
0.0926
0.0939
0.0949
0.0951
0.0966
0.0972
0.0974
0.0982
0.0982
0.0984
0.0996
0.0997
0.1013
0.1052
0.1055
0.1060
0.1114
0.1123
0.1123
0.1130
0.1144
0.1199
0.1205
0.1254
0.1258
0.1341
0.1353
0.1481
0.2056

0.0399
0.0438
0.0529
0.0550
0.0555
0.0557
0.0559
0.0565
0.0578
0.0610
0.0620
0.0649
0.0660
0.0673
0.0696
0.0711
0.0734
0.0735
0.0746
0.0753
0.0756
0.0825
0.0830
0.0832
0.0839
0.0841
0.0895
0.0986
0.1015
0.1027
0.1186
0.1195
0.1218
0.1235
0.1291
0.1358
0.1367
0.1369
0.2204

0.0948
0.0980
0.1020
0.1037
0.1038
0.1084
0.1084
0.1086
0.1103
0.1130
0.1142
0.1143
0.1150
0.1165
0.1171
0.1180
0.1184
0.1189
0.1210
0.1244
0.1249
0.1258
0.1264
0.1274
0.1276
0.1290
0.1307
0.1314
0.1328
0.1329
0.1344
0.1346
0.1346
0.1359
0.1430
0.1461
0.1500
0.1538
0.1616

0.0893
0.0993
0.1022
0.1027
0.1073
0.1097
0.1104
0.1116
0.1126
0.1127
0.1154
0.1156
0.1157
0.1173
0.1214
0.1221
0.1234
0.1251
0.1260
0.1309
0.1314
0.1321
0.1336
0.1342
0.1346
0.1410
0.1418
0.1421
0.1440
0.1447
0.1467
0.1473
0.1473
0.1580
0.1593
0.1605
0.1737
0.1771
0.1811

0.1029
0.1163
0.1221
0.1237
0.1262
0.1324
0.1325
0.1352
0.1377
0.1387
0.1406
0.1462
0.1464
0.1483
0.1488
0.1503
0.1533
0.1534
0.1549
0.1575
0.1580
0.1621
0.1657
0.1677
0.1749
0.1760
0.1773
0.1782
0.1785
0.1796
0.1818
0.1830
0.1857
0.1922
0.1936
0.1938
0.1986
0.2121
0.2176

0.0460
0.0475
0.0508
0.0533
0.0572
0.0576
0.0600
0.0639
0.0646
0.0652
0.0663
0.0677
0.0686
0.0692
0.0692
0.0722
0.0737
0.0743
0.0756
0.0772
0.0779
0.0789
0.0826
0.0838
0.0850
0.0924
0.0930
0.0965
0.0998
0.1008
0.1027
0.1069
0.1199
0.1235
0.1391
0.1413
0.1512
0.1591
0.2253

0.0379
0.0383
0.0405
0.0420
0.0466
0.0480
0.0516
0.0519
0.0610
0.0648
0.0666
0.0677
0.0685
0.0687
0.0695
0.0756
0.0781
0.0798
0.0813
0.0828
0.0831
0.0871
0.0888
0.0942
0.0961
0.1020
0.1036
0.1043
0.1204
0.1219
0.1288
0.1387
0.1397
0.1462
0.1645
0.1734
0.1735
0.1920
0.2688

0.0617
0.0657
0.0675
0.0683
0.0691
0.0723
0.0745
0.0755
0.0758
0.0763
0.0799
0.0799
0.0819
0.0842
0.0843
0.0843
0.0880
0.0904
0.0920
0.0924
0.0935
0.0942
0.0947
0.0955
0.0957
0.0963
0.0995
0.0997
0.0999
0.1016
0.1089
0.1138
0.1198
0.1236
0.1247
0.1285
0.1337
0.1380
0.2077
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group b and ¢

0.0498
0.0528
0.0595
0.0609
0.0627
0.0643
0.0661
0.0661
0.0673
0.0697
0.0698
0.0708
0.0712
0.0712
0.0756
0.0764
0.0790
0.0791
0.0800
0.0820
0.0861
0.0866
0.0896
0.0900
0.0901
0.0951
0.0965
0.1001
0.1047
0.1060
0.1075
0.1087
0.1092
0.1126
0.1266
0.1382
0.1445
0.1521
0.2076

0.0906
0.0928
0.0932
0.0937
0.0986
0.1039
0.1046
0.1060
0.1069
0.1106
0.1114
0.1124
0.1146
0.1169
0.1185
0.1195
0.1196
0.1212
0.1242
0.1247
0.1265
0.1268
0.1286
0.1316
0.1328
0.1347
0.1350
0.1351
0.1366
0.1391
0.1409
0.1451
0.1474
0.1475
0.1536
0.1690
0.1693
0.1707
0.1794

0.0582
0.0615
0.0665
0.0672
0.0688
0.0735
0.0754
0.0785
0.0828
0.0841
0.0857
0.0859
0.0881
0.0889
0.0895
0.0897
0.0898
0.0899
0.0902
0.0902
0.0979
0.0985
0.0992
0.1013
0.1017
0.1033
0.1109
0.1120
0.1145
0.1151
0.1250
0.1255
0.1261
0.1274
0.1291
0.1370
0.1421
0.1525
0.2213

0.0499
0.0505
0.0639
0.0706
0.0730
0.0746
0.0755
0.0757
0.0793
0.0803
0.0819
0.0838
0.0844
0.0864
0.0866
0.0874
0.0894
0.0907
0.0908
0.0953
0.0954
0.0989
0.1033
0.1037
0.1038
0.1059
0.1067
0.1070
0.1086
0.1160
0.1172
0.1244
0.1270
0.1291
0.1298
0.1307
0.1377
0.1586
0.2189

0.0474
0.0510
0.0529
0.0529
0.0569
0.0599
0.0624
0.0637
0.0653
0.0674
0.0674
0.0684
0.0726
0.0737
0.0741
0.0747
0.0751
0.0752
0.0759
0.0766
0.0774
0.0778
0.0802
0.0821
0.0834
0.0841
0.0865
0.0934
0.0944
0.0953
0.1129
0.1196
0.1227
0.1236
0.1356
0.1371
0.1393
0.1512
0.2328

0.1092
0.1139
0.1155
0.1166
0.1176
0.1186
0.1197
0.1197
0.1223
0.1229
0.1277
0.1339
0.1356
0.1371
0.1378
0.1389
0.1463
0.1465
0.1515
0.1520
0.1536
0.1543
0.1546
0.1549
0.1555
0.1570
0.1577
0.1580
0.1583
0.1591
0.1601
0.1658
0.1676
0.1681
0.1697
0.1717
0.1754
0.1793
0.1875

0.0483
0.0507
0.0511
0.0525
0.0540
0.0545
0.0551
0.0586
0.0590
0.0605
0.0627
0.0640
0.0660
0.0687
0.0689
0.0699
0.0742
0.0765
0.0783
0.0784
0.0803
0.0814
0.0819
0.0855
0.0873
0.0914
0.0928
0.0981
0.1003
0.1024
0.1027
0.1097
0.1167
0.1197
0.1344
0.1401
0.1463
0.1668
0.2449

0.0548
0.0575
0.0578
0.0599
0.0609
0.0633
0.0634
0.0678
0.0695
0.0705
0.0717
0.0765
0.0768
0.0769
0.0785
0.0810
0.0811
0.0818
0.0826
0.0840
0.0842
0.0850
0.0851
0.0858
0.0869
0.0878
0.0921
0.0926
0.0934
0.0946
0.0953
0.1037
0.1056
0.1060
0.1256
0.1286
0.1310
0.1333
0.2026

0.0431
0.0505
0.0507
0.0510
0.0530
0.0541
0.0549
0.0567
0.0567
0.0569
0.0577
0.0598
0.0642
0.0650
0.0663
0.0688
0.0697
0.0738
0.0740
0.0745
0.0752
0.0758
0.0796
0.0806
0.0818
0.0834
0.0852
0.0892
0.1042
0.1055
0.1063
0.1130
0.1138
0.1413
0.1423
0.1506
0.1548
0.1559
0.2333

2

2

3

6

1

3

2
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group b and ¢

0.0332
0.0429
0.0432
0.0469
0.0488
0.0489
0.0490
0.0500
0.0554
0.0559
0.0560
0.0573
0.0597
0.0629
0.0654
0.0660
0.0671
0.0704
0.0710
0.0743
0.0815
0.0876
0.0912
0.0938
0.0939
0.0993
0.0998
0.1063
0.1071
0.1085
0.1132
0.1225
0.1290
0.1311
0.1539
0.1543
0.1547
0.1819
0.2563

0.0674
0.0679
0.0701
0.0713
0.0725
0.0744
0.0773
0.0816
0.0817
0.0835
0.0842
0.0847
0.0855
0.0857
0.0873
0.0929
0.0930
0.0931
0.0936
0.0937
0.0952
0.0979
0.0992
0.1005
0.1006
0.1016
0.1026
0.1031
0.1057
0.1079
0.1141
0.1151
0.1154
0.1308
0.1311
0.1316
0.1376
0.1414
0.2137

0.0373
0.0381
0.0410
0.0424
0.0451
0.0461
0.0492
0.0505
0.0544
0.0593
0.0605
0.0611
0.0656
0.0658
0.0661
0.0685
0.0693
0.0719
0.0724
0.0741
0.0750
0.0819
0.0853
0.0877
0.0940
0.0971
0.1011
0.1032
0.1165
0.1229
0.1249
0.1271
0.1347
0.1351
0.1583
0.1658
0.1684
0.1824
0.2592

0.0451
0.0458
0.0499
0.0540
0.0545
0.0562
0.0596
0.0602
0.0604
0.0612
0.0615
0.0615
0.0616
0.0650
0.0675
0.0677
0.0689
0.0757
0.0781
0.0792
0.0793
0.0802
0.0812
0.0834
0.0836
0.0920
0.0958
0.1022
0.1120
0.1136
0.1159
0.1198
0.1259
0.1290
0.1480
0.1493
0.1595
0.1756
0.2482

0.1224
0.1332
0.1366
0.1388
0.1389
0.1407
0.1412
0.1441
0.1445
0.1458
0.1476
0.1482
0.1487
0.1495
0.1498
0.1500
0.1518
0.1523
0.1579
0.1592
0.1592
0.1597
0.1616
0.1617
0.1633
0.1635
0.1637
0.1663
0.1682
0.1702
0.1732
0.1737
0.1746
0.1747
0.1748
0.1795
0.1810
0.1824
0.2053

0.0528
0.0551
0.0570
0.0587
0.0597
0.0611
0.0626
0.0640
0.0647
0.0647
0.0665
0.0665
0.0668
0.0682
0.0689
0.0707
0.0727
0.0732
0.0732
0.0732
0.0749
0.0750
0.0802
0.0858
0.0933
0.0953
0.1018
0.1044
0.1055
0.1083
0.1154
0.1157
0.1209
0.1327
0.1368
0.1383
0.1491
0.1622
0.2220

0.0606
0.0647
0.0717
0.0793
0.0795
0.0844
0.0848
0.0859
0.0862
0.0880
0.0898
0.0901
0.0907
0.0910
0.0916
0.0916
0.0929
0.0938
0.0976
0.0981
0.0983
0.0986
0.1004
0.1016
0.1021
0.1023
0.1053
0.1059
0.1069
0.1108
0.1120
0.1129
0.1130
0.1141
0.1165
0.1180
0.1245
0.1314
0.1543

0.0387
0.0392
0.0426
0.0456
0.0457
0.0485
0.0491
0.0494
0.0551
0.0559
0.0592
0.0592
0.0597
0.0629
0.0635
0.0640
0.0643
0.0679
0.0683
0.0703
0.0760
0.0766
0.0770
0.0799
0.0838
0.0841
0.0867
0.0970
0.1017
0.1089
0.1168
0.1210
0.1269
0.1310
0.1455
0.1556
0.1587
0.1598
0.2439

0.0486
0.0550
0.0615
0.0650
0.0669
0.0672
0.0677
0.0682
0.0683
0.0699
0.0700
0.0710
0.0721
0.0724
0.0748
0.0750
0.0750
0.0755
0.0757
0.0806
0.0815
0.0842
0.0849
0.0861
0.0901
0.0908
0.0917
0.0954
0.0974
0.0975
0.1002
0.1020
0.1041
0.1071
0.1081
0.1114
0.1272
0.1280
0.2096

5

1

3

6

3

2

2
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0940 | 0.0518 | 0.0366 | 0.0518 | 0.0337 | 0.0683 | 0.0555 | 0.0597 | 0.0466
0.1021 | 0.0591 | 0.0376 | 0.0546 | 0.0451 | 0.0804 | 0.0610 | 0.0599 | 0.0490
0.1022 | 0.0603 | 0.0378 | 0.0546 | 0.0471 | 0.0806 | 0.0636 | 0.0653 | 0.0528
0.1032 | 0.0603 | 0.0432 | 0.0571 | 0.0474 | 0.0808 | 0.0639 | 0.0658 | 0.0548
0.1042 | 0.0620 | 0.0440 | 0.0578 | 0.0487 | 0.0813 | 0.0643 | 0.0665 | 0.0561
0.1073 | 0.0642 | 0.0451 | 0.0636 | 0.0488 | 0.0819 | 0.0680 | 0.0680 | 0.0568
0.1115 | 0.0644 | 0.0465 | 0.0638 | 0.0561 | 0.0825 | 0.0722 | 0.0685 | 0.0575
0.1126 | 0.0648 | 0.0491 | 0.0638 | 0.0576 | 0.0828 | 0.0731 | 0.0706 | 0.0626
0.1148 | 0.0667 | 0.0551 | 0.0643 | 0.0588 | 0.0858 | 0.0732 | 0.0711 | 0.0636
0.1153 | 0.0671 | 0.0566 | 0.0661 | 0.0591 | 0.0874 | 0.0760 | 0.0719 | 0.0645
0.1168 | 0.0688 | 0.0613 | 0.0662 | 0.0628 | 0.0905 | 0.0762 | 0.0721 | 0.0656
0.1220 | 0.0691 | 0.0647 | 0.0670 | 0.0664 | 0.0918 | 0.0782 | 0.0722 | 0.0674
0.1236 | 0.0709 | 0.0655 | 0.0672 | 0.0666 | 0.0921 | 0.0784 | 0.0752 | 0.0687
0.1247 | 0.0714 | 0.0674 | 0.0673 | 0.0686 | 0.0964 | 0.0784 | 0.0816 | 0.0695
0.1263 | 0.0741 | 0.0682 | 0.0701 | 0.0708 | 0.0971 | 0.0787 | 0.0832 | 0.0695
0.1267 | 0.0749 | 0.0711 | 0.0714 | 0.0712 | 0.0978 | 0.0820 | 0.0842 | 0.0701
0.1280 | 0.0749 | 0.0720 | 0.0718 | 0.0734 | 0.0995 | 0.0828 | 0.0850 | 0.0710
0.1284 | 0.0762 | 0.0727 | 0.0721 | 0.0748 | 0.1001 | 0.0835 | 0.0852 | 0.0738
0.1311 | 0.0793 | 0.0755 | 0.0735 | 0.0772 | 0.1012 | 0.0840 | 0.0861 | 0.0739
0.0824 | 0.0778 | 0.0746 | 0.0776 | 0.1037 | 0.0867 | 0.0868 | 0.0751
0.1330 | 0.0836 | 0.0823 | 0.0748 | 0.0785 | 0.1039 | 0.0873 | 0.0872 | 0.0753
0.1335 | 0.0846 | 0.0825 | 0.0750 | 0.0821 | 0.1049 | 0.0897 | 0.0876 | 0.0759
0.1337 | 0.0860 | 0.0835 | 0.0757 | 0.0849 | 0.1060 | 0.0903 | 0.0880 | 0.0800
0.1370 | 0.0874 | 0.0862 | 0.0774 | 0.0861 | 0.1060 | 0.0913 | 0.0919 | 0.0824
0.1371 | 0.0895 | 0.0880 | 0.0860 | 0.0861 | 0.1067 | 0.0930 | 0.0927 | 0.0825
0.1391 | 0.0897 | 0.0959 | 0.0915 | 0.0877 | 0.1081 | 0.0950 | 0.0955 | 0.0842
0.1392 | 0.0916 | 0.0961 | 0.0936 | 0.0898 | 0.1097 | 0.0971 | 0.0959 | 0.0906
0.1395 | 0.0950 | 0.1089 | 0.0971 | 0.0920 | 0.1117 | 0.0980 | 0.0969 | 0.0932
0.1424 | 0.0978 | 0.1184 | 0.0986 | 0.0945 | 0.1177 | 0.0986 | 0.0991 | 0.1034
0.1433 | 0.1041 | 0.1233 | 0.1093 | 0.0977 | 0.1183 | 0.1062 | 0.0998 | 0.1058
0.1482 | 0.1092 | 0.1261 | 0.1115 | 0.1059 | 0.1188 | 0.1065 | 0.0998 | 0.1068
0.1484 | 0.1111 | 0.1265 | 0.1122 | 0.1063 | 0.1206 | 0.1122 | 0.1012 | 0.1159
0.1489 | 0.1143 | 0.1362 | 0.1198 | 0.1173 | 0.1213 | 0.1186 | 0.1021 | 0.1163
0.1532 | 0.1176 | 0.1441 | 0.1256 | 0.1244 | 0.1253 | 0.1189 | 0.1037 | 0.1215
0.1549 | 0.1326 | 0.1582 | 0.1383 | 0.1403 | 0.1269 | 0.1233 | 0.1178 | 0.1222
0.1592 | 0.1329 | 0.1600 | 0.1431 | 0.1479 | 0.1284 | 0.1276 | 0.1203 | 0.1235
0.1596 | 0.1385 | 0.1697 | 0.1431 | 0.1514 | 0.1343 | 0.1347 | 0.1294 | 0.1284
0.1789 | 0.1546 | 0.1851 | 0.1456 | 0.1532 | 0.1452 | 0.1434 | 0.1316 | 0.1434
0.1835 | 0.2225 | 0.2675 | 0.2248 | 0.2258 | 0.1824 | 0.2079 | 0.2082 | 0.2143

All samples in the group b and ¢
o
—_
w
—_
w

r’ 4 2 2 2 3 1 1 1 2
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TABLE A.27: Ranked sim values for (bV {a,c}) in VHHS dataset using M-KTS.

Si

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and ¢

0.0832
0.0847
0.0850
0.0851
0.0871
0.0872
0.0877
0.0887
0.0887
0.0888
0.0891
0.0900
0.0902
0.0904
0.0917
0.0925
0.0929
0.0930
0.0933
0.0937
0.0940
0.0944
0.0955
0.0961
0.0970
0.0975
0.0985
0.0988
0.0988
0.0990
0.1006
0.1022
0.1055
0.1058
0.1061
0.1071
0.1151
0.1165
0.1327

0.1004
0.1042
0.1056
0.1056
0.1080
0.1087
0.1105
0.1107
0.1108
0.1114
0.1117
0.1120
0.1126
0.1130
0.1149
0.1149
0.1153
0.1154
0.1156
0.1157
0.1165
0.1179
0.1179
0.1187
0.1191
0.1199
0.1209
0.1211
0.1213
0.1215
0.1233
0.1242
0.1252
0.1260
0.1260
0.1284
0.1313
0.1343
0.1363

0.1027
0.1031
0.1035
0.1050
0.1053
0.1059
0.1065
0.1073
0.1076
0.1084
0.1085
0.1088
0.1090
0.1112
0.1115
0.1118
0.1121
0.1122
0.1128
0.1130
0.1150
0.1155
0.1169
0.1172
0.1176
0.1178
0.1179
0.1179
0.1179
0.1180
0.1189
0.1197
0.1212
0.1218
0.1234
0.1245
0.1249
0.1299
0.1313

0.0681
0.0690
0.0700
0.0700
0.0711
0.0724
0.0724
0.0725
0.0727
0.0731
0.0735
0.0746
0.0747
0.0751
0.0759
0.0765
0.0774
0.0775
0.0782
0.0789
0.0791
0.0791
0.0793
0.0817
0.0820
0.0826
0.0837
0.0857
0.0873
0.0875
0.0880
0.0932
0.0934
0.0950
0.0952
0.1021
0.1071
0.1124
0.1233

0.1523
0.1559
0.1582
0.1588
0.1605
0.1621
0.1640
0.1680
0.1751
0.1772
0.1779
0.1781
0.1783
0.1786
0.1807
0.1809
0.1813
0.1818
0.1831
0.1845
0.1849
0.1850
0.1870
0.1935
0.1947
0.1958
0.1959
0.1963
0.1966
0.1975
0.1975
0.1979
0.2009
0.2024
0.2044
0.2065
0.2097
0.2181
0.2203

0.1395
0.1455
0.1472
0.1502
0.1518
0.1530
0.1542
0.1542
0.1554
0.1562
0.1564
0.1566
0.1587
0.1598
0.1614
0.1635
0.1635
0.1639
0.1639
0.1643
0.1659
0.1663
0.1675
0.1707
0.1709
0.1724
0.1724
0.1725
0.1726
0.1746
0.1753
0.1757
0.1766
0.1774
0.1788
0.1806
0.1828
0.1842
0.1934

0.1202
0.1214
0.1221
0.1221
0.1246
0.1297
0.1299
0.1311
0.1315
0.1318
0.1326
0.1335
0.1339
0.1347
0.1348
0.1349
0.1375
0.1388
0.1391
0.1411
0.1413
0.1415
0.1420
0.1425
0.1427
0.1435
0.1461
0.1468
0.1468
0.1482
0.1491
0.1503
0.1512
0.1535
0.1536
0.1545
0.1600
0.1638
0.1708

0.1157
0.1165
0.1188
0.1188
0.1191
0.1214
0.1215
0.1215
0.1230
0.1234
0.1237
0.1247
0.1252
0.1253
0.1254
0.1264
0.1265
0.1274
0.1283
0.1288
0.1291
0.1297
0.1299
0.1306
0.1325
0.1330
0.1334
0.1338
0.1345
0.1358
0.1362
0.1371
0.1372
0.1381
0.1391
0.1403
0.1425
0.1455
0.1456

0.0906
0.0938
0.0940
0.0944
0.0954
0.0956
0.0962
0.0983
0.0997
0.1013
0.1027
0.1028
0.1031
0.1031
0.1034
0.1035
0.1040
0.1040
0.1044
0.1056
0.1058
0.1064
0.1079
0.1083
0.1093
0.1104
0.1110
0.1122
0.1130
0.1132
0.1147
0.1157
0.1161
0.1169
0.1172
0.1179
0.1182
0.1273
0.1274

0.0982
0.0993
0.1015
0.1022
0.1034
0.1037
0.1038
0.1041
0.1046
0.1059
0.1060
0.1069
0.1070
0.1070
0.1073
0.1077
0.1080
0.1081
0.1082
0.1099
0.1104
0.1104
0.1107
0.1107
0.1110
0.1115
0.1121
0.1129
0.1130
0.1133
0.1154
0.1172
0.1176
0.1187
0.1190
0.1219
0.1226
0.1260
0.1391
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and ¢

0.1247
0.1250
0.1260
0.1291
0.1292
0.1311
0.1338
0.1344
0.1359
0.1360
0.1362
0.1368
0.1370
0.1375
0.1382
0.1392
0.1398
0.1408
0.1412
0.1412
0.1413
0.1417
0.1427
0.1441
0.1444
0.1454
0.1459
0.1466
0.1467
0.1487
0.1493
0.1493
0.1500
0.1506
0.1506
0.1515
0.1552
0.1565
0.1603

0.1696
0.1772
0.1840
0.1846
0.1850
0.1853
0.1861
0.1863
0.1914
0.1915
0.1931
0.1936
0.1938
0.1953
0.1954
0.1957
0.1957
0.1969
0.1999
0.2005
0.2008
0.2010
0.2040
0.2055
0.2058
0.2072
0.2074
0.2081
0.2097
0.2102
0.2122
0.2131
0.2168
0.2188
0.2224
0.2237
0.2251
0.2285
0.2296

0.1284
0.1293
0.1325
0.1325
0.1330
0.1343
0.1346
0.1353
0.1361
0.1371
0.1379
0.1390
0.1390
0.1391
0.1394
0.1396
0.1397
0.1420
0.1421
0.1431
0.1452
0.1466
0.1475
0.1480
0.1483
0.1486
0.1492
0.1497
0.1509
0.1512
0.1514
0.1523
0.1548
0.1561
0.1570
0.1574
0.1576
0.1602
0.1649

0.1191
0.1197
0.1198
0.1233
0.1238
0.1253
0.1271
0.1275
0.1277
0.1277
0.1285
0.1290
0.1293
0.1303
0.1320
0.1327
0.1329
0.1329
0.1354
0.1363
0.1372
0.1381
0.1396
0.1410
0.1415
0.1417
0.1439
0.1440
0.1455
0.1460
0.1463
0.1465
0.1466
0.1469
0.1486
0.1490
0.1549
0.1596
0.1611

0.0953
0.0961
0.0963
0.0984
0.1002
0.1028
0.1031
0.1032
0.1032
0.1034
0.1035
0.1045
0.1050
0.1052
0.1059
0.1062
0.1063
0.1065
0.1066
0.1070
0.1076
0.1077
0.1087
0.1093
0.1095
0.1098
0.1107
0.1110
0.1133
0.1144
0.1170
0.1171
0.1193
0.1214
0.1225
0.1234
0.1246
0.1324
0.1385

0.1188
0.1239
0.1247
0.1248
0.1267
0.1272
0.1299
0.1335
0.1374
0.1389
0.1404
0.1408
0.1427
0.1429
0.1446
0.1453
0.1485
0.1510
0.1525
0.1536
0.1538
0.1548
0.1556
0.1563
0.1596
0.1600
0.1602
0.1618
0.1625
0.1639
0.1652
0.1653
0.1674
0.1682
0.1704
0.1716
0.1773
0.1855
0.1856

0.0882
0.0929
0.0956
0.0974
0.0974
0.0978
0.1002
0.1012
0.1023
0.1023
0.1031
0.1034
0.1038
0.1042
0.1051
0.1052
0.1061
0.1077
0.1083
0.1085
0.1094
0.1096
0.1099
0.1113
0.1113
0.1115
0.1121
0.1121
0.1133
0.1135
0.1153
0.1154
0.1154
0.1173
0.1174
0.1189
0.1204
0.1230
0.1264

0.1486
0.1506
0.1513
0.1551
0.1600
0.1622
0.1657
0.1712
0.1713
0.1726
0.1732
0.1734
0.1751
0.1754
0.1757
0.1757
0.1795
0.1799
0.1813
0.1818
0.1823
0.1830
0.1852
0.1859
0.1870
0.1875
0.1894
0.1915
0.1919
0.1943
0.1956
0.1960
0.1971
0.1975
0.1979
0.2025
0.2083
0.2137
0.2166

0.0910
0.0921
0.0936
0.0942
0.0942
0.0955
0.0969
0.0976
0.0977
0.0978
0.0982
0.0988
0.0996
0.1013
0.1026
0.1032
0.1032
0.1034
0.1055
0.1059
0.1064
0.1065
0.1077
0.1081
0.1085
0.1094
0.1097
0.1101
0.1101
0.1106
0.1108
0.1108
0.1111
0.1137
0.1142
0.1146
0.1159
0.1253
0.1362

4

3

1

5

1

2

2
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and ¢

0.0816
0.0847
0.0847
0.0861
0.0891
0.0893
0.0896
0.0904
0.0907
0.0910
0.0915
0.0918
0.0919
0.0923
0.0923
0.0936
0.0948
0.0954
0.0955
0.0956
0.0959
0.0972
0.0976
0.0989
0.0993
0.0993
0.0998
0.1006
0.1010
0.1011
0.1011
0.1033
0.1052
0.1058
0.1059
0.1063
0.1103
0.1108
0.1181

0.1519
0.1555
0.1560
0.1566
0.1572
0.1581
0.1593
0.1595
0.1614
0.1614
0.1618
0.1627
0.1634
0.1638
0.1663
0.1664
0.1671
0.1681
0.1686
0.1691
0.1693
0.1710
0.1711
0.1713
0.1719
0.1729
0.1737
0.1739
0.1765
0.1768
0.1770
0.1775
0.1784
0.1804
0.1810
0.1812
0.1833
0.1871
0.1915

0.0765
0.0795
0.0797
0.0819
0.0824
0.0827
0.0839
0.0845
0.0847
0.0848
0.0851
0.0851
0.0855
0.0864
0.0871
0.0872
0.0873
0.0875
0.0876
0.0890
0.0890
0.0912
0.0912
0.0916
0.0925
0.0926
0.0928
0.0929
0.0936
0.0942
0.0951
0.0959
0.1000
0.1012
0.1036
0.1058
0.1076
0.1153
0.1235

0.0832
0.0843
0.0849
0.0867
0.0876
0.0877
0.0909
0.0920
0.0920
0.0921
0.0923
0.0925
0.0927
0.0930
0.0935
0.0942
0.0947
0.0961
0.0963
0.0981
0.0987
0.0990
0.0999
0.1011
0.1011
0.1025
0.1031
0.1038
0.1039
0.1054
0.1058
0.1059
0.1071
0.1072
0.1073
0.1096
0.1098
0.1156
0.1340

0.2377
0.2486
0.2499
0.2524
0.2527
0.2592
0.2594
0.2595
0.2596
0.2598
0.2622
0.2622
0.2681
0.2691
0.2692
0.2714
0.2724
0.2735
0.2739
0.2749
0.2753
0.2769
0.2770
0.2785
0.2803
0.2807
0.2824
0.2826
0.2833
0.2847
0.2859
0.2873
0.2888
0.2890
0.2909
0.2911
0.2920
0.3044
0.3047

0.0851
0.0877
0.0888
0.0892
0.0906
0.0906
0.0908
0.0910
0.0911
0.0913
0.0917
0.0925
0.0934
0.0939
0.0941
0.0949
0.0953
0.0962
0.0962
0.0964
0.0978
0.0978
0.0979
0.0980
0.0991
0.0991
0.1004
0.1009
0.1022
0.1027
0.1034
0.1055
0.1060
0.1072
0.1088
0.1106
0.1106
0.1110
0.1221

0.1108
0.1112
0.1151
0.1160
0.1161
0.1163
0.1186
0.1200
0.1209
0.1210
0.1216
0.1220
0.1225
0.1232
0.1237
0.1250
0.1251
0.1251
0.1259
0.1276
0.1278
0.1278
0.1281
0.1288
0.1288
0.1290
0.1302
0.1304
0.1304
0.1308
0.1308
0.1316
0.1324
0.1327
0.1374
0.1377
0.1399
0.1440
0.1499

0.0662
0.0663
0.0687
0.0744
0.0748
0.0755
0.0757
0.0767
0.0770
0.0771
0.0772
0.0776
0.0785
0.0786
0.0806
0.0808
0.0814
0.0818
0.0831
0.0832
0.0848
0.0852
0.0864
0.0872
0.0877
0.0879
0.0896
0.0896
0.0897
0.0907
0.0951
0.0994
0.1003
0.1046
0.1073
0.1082
0.1105
0.1197
0.1214

0.1302
0.1342
0.1374
0.1381
0.1386
0.1397
0.1401
0.1404
0.1413
0.1424
0.1424
0.1464
0.1467
0.1473
0.1477
0.1495
0.1496
0.1499
0.1501
0.1505
0.1505
0.1517
0.1541
0.1556
0.1563
0.1574
0.1596
0.1602
0.1608
0.1617
0.1622
0.1652
0.1660
0.1679
0.1712
0.1718
0.1745
0.1759
0.1763

2

1

1

7

1

3

2
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.1009 | 0.1798 | 0.0560 | 0.0871 | 0.0922 | 0.1235 | 0.1206 | 0.1438 | 0.1088
0.1032 | 0.1824 | 0.0591 | 0.0875 | 0.0925 | 0.1238 | 0.1225 | 0.1453 | 0.1106
0.1048 | 0.1849 | 0.0594 | 0.0896 | 0.0950 | 0.1241 | 0.1239 | 0.1513 | 0.1112
0.1056 | 0.1894 | 0.0609 | 0.0897 | 0.0951 | 0.1243 | 0.1324 | 0.1514 | 0.1140
0.1066 | 0.1901 | 0.0619 | 0.0902 | 0.0953 | 0.1248 | 0.1391 | 0.1516 | 0.1144
0.1072 | 0.1902 | 0.0620 | 0.0905 | 0.0969 | 0.1272 | 0.1407 | 0.1524 | 0.1151
0.1073 | 0.1924 | 0.0625 | 0.0911 | 0.0987 | 0.1295 | 0.1431 | 0.1536 | 0.1159
0.1081 | 0.1939 | 0.0638 | 0.0924 | 0.0992 | 0.1299 | 0.1471 | 0.1559 | 0.1160
0.1086 | 0.1986 | 0.0662 | 0.0927 | 0.0992 | 0.1302 | 0.1471 | 0.1577 | 0.1169
0.1089 | 0.1990 | 0.0668 | 0.0937 | 0.0994 | 0.1309 | 0.1477 | 0.1577 | 0.1172
0.1096 | 0.1995 | 0.0674 | 0.0937 | 0.0996 | 0.1309 | 0.1503 | 0.1580 | 0.1174
0.1107 | 0.2012 | 0.0677 | 0.0944 | 0.1011 | 0.1313 | 0.1517 | 0.1594 | 0.1190
0.1108 | 0.2023 | 0.0684 | 0.0947 | 0.1014 | 0.1322 | 0.1523 | 0.1595 | 0.1190
0.1131 | 0.2030 | 0.0688 | 0.0947 | 0.1015 | 0.1326 | 0.1536 | 0.1607 | 0.1200
0.1134 | 0.2044 | 0.0692 | 0.0967 | 0.1036 | 0.1340 | 0.1541 | 0.1609 | 0.1204
0.1143 | 0.2058 | 0.0696 | 0.0978 | 0.1036 | 0.1341 | 0.1554 | 0.1616 | 0.1219
0.1150 | 0.2068 | 0.0697 | 0.0982 | 0.1045 | 0.1346 | 0.1560 | 0.1622 | 0.1222
0.1156 | 0.2077 | 0.0698 | 0.0986 | 0.1048 | 0.1359 | 0.1568 | 0.1631 | 0.1224
0.1158 | 0.2084 | 0.0698 | 0.0991 | 0.1050 | 0.1363 | 0.1584 | 0.1643 | 0.1231
0.2109 | 0.0703 | 0.1000 | 0.1060 | 0.1363 | 0.1591 | 0.1649 | 0.1233
0.1167 | 0.2119 | 0.0708 | 0.1002 | 0.1076 | 0.1385 | 0.1608 | 0.1656 | 0.1234
0.1170 | 0.2128 | 0.0739 | 0.1017 | 0.1082 | 0.1405 | 0.1613 | 0.1685 | 0.1243
0.1173 | 0.2135 | 0.0765 | 0.1020 | 0.1095 | 0.1406 | 0.1631 | 0.1690 | 0.1246
0.1174 | 0.2159 | 0.0772 | 0.1021 | 0.1098 | 0.1418 | 0.1657 | 0.1698 | 0.1258
0.1177 | 0.2174 | 0.0788 | 0.1021 | 0.1102 | 0.1419 | 0.1705 | 0.1706 | 0.1260
0.1179 | 0.2197 | 0.0802 | 0.1023 | 0.1103 | 0.1421 | 0.1708 | 0.1712 | 0.1260
0.1188 | 0.2199 | 0.0805 | 0.1028 | 0.1104 | 0.1423 | 0.1710 | 0.1718 | 0.1273
0.1190 | 0.2211 | 0.0823 | 0.1036 | 0.1115 | 0.1438 | 0.1710 | 0.1723 | 0.1285
0.1191 | 0.2216 | 0.0869 | 0.1037 | 0.1117 | 0.1454 | 0.1721 | 0.1726 | 0.1298
0.1193 | 0.2220 | 0.0886 | 0.1046 | 0.1125 | 0.1465 | 0.1721 | 0.1735| 0.1301
0.1194 | 0.2226 | 0.0893 | 0.1069 | 0.1125 | 0.1470 | 0.1746 | 0.1754 | 0.1319
0.1213 | 0.2242 | 0.0898 | 0.1075 | 0.1130 | 0.1474 | 0.1778 | 0.1780 | 0.1334
0.1215 | 0.2269 | 0.0931 | 0.1092 | 0.1166 | 0.1503 | 0.1779 | 0.1790 | 0.1340
0.1234 | 0.2276 | 0.1024 | 0.1096 | 0.1182 | 0.1515 | 0.1800 | 0.1793 | 0.1343
0.1256 | 0.2277 | 0.1081 | 0.1109 | 0.1188 | 0.1534 | 0.1805 | 0.1803 | 0.1355
0.1292 | 0.2318 | 0.1102 | 0.1122 | 0.1220 | 0.1578 | 0.1850 | 0.1839 | 0.1373
0.1307 | 0.2385 | 0.1129 | 0.1124 | 0.1230 | 0.1582 | 0.1878 | 0.1884 | 0.1387
0.1320 | 0.2460 | 0.1153 | 0.1125 | 0.1236 | 0.1591 | 0.1932 | 0.1932 | 0.1393
0.1341 | 0.2532 | 0.1398 | 0.1156 | 0.1271 | 0.1594 | 0.1992 | 0.1998 | 0.1415

All samples in the group a and ¢
o
—_
—_
[@p)
o

r’ 2 3 5 2 1 1 2 2 3
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TABLE A.28: Ranked sim values for (¢ V {a,b}) in VHHS dataset using M-KTS.

Si

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and b

0.0820
0.0832
0.0840
0.0843
0.0845
0.0846
0.0860
0.0873
0.0875
0.0880
0.0881
0.0882
0.0888
0.0896
0.0901
0.0903
0.0906
0.0908
0.0910
0.0911
0.0918
0.0921
0.0922
0.0928
0.0932
0.0933
0.0941
0.0943
0.0946
0.0959
0.0962
0.0979
0.1000
0.1017
0.1031
0.1137
0.1138
0.1149
0.1175

0.1004
0.1038
0.1047
0.1090
0.1091
0.1092
0.1097
0.1100
0.1107
0.1110
0.1134
0.1140
0.1141
0.1142
0.1142
0.1147
0.1162
0.1169
0.1173
0.1176
0.1177
0.1178
0.1179
0.1179
0.1184
0.1186
0.1198
0.1199
0.1204
0.1212
0.1212
0.1212
0.1214
0.1224
0.1227
0.1243
0.1249
0.1282
0.1283

0.0968
0.0976
0.1064
0.1067
0.1077
0.1078
0.1078
0.1099
0.1100
0.1104
0.1109
0.1112
0.1112
0.1114
0.1114
0.1114
0.1116
0.1120
0.1121
0.1127
0.1129
0.1138
0.1146
0.1146
0.1151
0.1154
0.1156
0.1157
0.1160
0.1170
0.1183
0.1187
0.1191
0.1208
0.1214
0.1223
0.1231
0.1239
0.1260

0.0666
0.0674
0.0694
0.0706
0.0709
0.0710
0.0714
0.0715
0.0718
0.0720
0.0721
0.0723
0.0724
0.0724
0.0727
0.0738
0.0742
0.0748
0.0752
0.0761
0.0766
0.0766
0.0767
0.0776
0.0796
0.0797
0.0797
0.0808
0.0825
0.0854
0.0857
0.0871
0.0927
0.0982
0.0984
0.1036
0.1053
0.1129
0.1152

0.1506
0.1522
0.1604
0.1632
0.1637
0.1646
0.1685
0.1701
0.1704
0.1755
0.1758
0.1758
0.1826
0.1830
0.1834
0.1835
0.1845
0.1851
0.1865
0.1870
0.1872
0.1876
0.1884
0.1885
0.1895
0.1899
0.1907
0.1913
0.1918
0.1929
0.1931
0.1933
0.1970
0.1983
0.2002
0.2057
0.2064
0.2126
0.2142

0.1420
0.1453
0.1459
0.1487
0.1508
0.1532
0.1534
0.1551
0.1553
0.1579
0.1615
0.1616
0.1618
0.1631
0.1637
0.1641
0.1641
0.1645
0.1652
0.1652
0.1652
0.1653
0.1657
0.1661
0.1661
0.1672
0.1672
0.1674
0.1674
0.1677
0.1711
0.1729
0.1741
0.1769
0.1772
0.1787
0.1788
0.1825
0.1889

0.1209
0.1218
0.1224
0.1233
0.1263
0.1272
0.1286
0.1325
0.1326
0.1338
0.1343
0.1351
0.1358
0.1375
0.1382
0.1385
0.1392
0.1395
0.1399
0.1414
0.1422
0.1423
0.1424
0.1425
0.1430
0.1437
0.1438
0.1448
0.1448
0.1457
0.1482
0.1487
0.1498
0.1501
0.1512
0.1516
0.1545
0.1596
0.1642

0.1131
0.1140
0.1142
0.1148
0.1190
0.1193
0.1214
0.1218
0.1219
0.1223
0.1243
0.1250
0.1251
0.1252
0.1253
0.1255
0.1258
0.1259
0.1260
0.1261
0.1266
0.1267
0.1287
0.1287
0.1287
0.1291
0.1296
0.1300
0.1307
0.1320
0.1320
0.1324
0.1333
0.1333
0.1339
0.1358
0.1370
0.1375
0.1376

0.0937
0.0943
0.0950
0.0960
0.0966
0.0975
0.0986
0.0987
0.1002
0.1014
0.1024
0.1026
0.1032
0.1037
0.1038
0.1041
0.1041
0.1042
0.1045
0.1049
0.1064
0.1075
0.1076
0.1081
0.1087
0.1087
0.1088
0.1089
0.1092
0.1093
0.1096
0.1111
0.1117
0.1136
0.1151
0.1151
0.1169
0.1205
0.1263

0.0978
0.0979
0.1000
0.1005
0.1006
0.1017
0.1024
0.1024
0.1030
0.1037
0.1041
0.1048
0.1049
0.1055
0.1059
0.1062
0.1070
0.1085
0.1095
0.1095
0.1098
0.1099
0.1104
0.1104
0.1107
0.1107
0.1110
0.1112
0.1115
0.1121
0.1127
0.1144
0.1157
0.1161
0.1194
0.1205
0.1219
0.1251
0.1258
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and b

0.1196
0.1221
0.1312
0.1317
0.1326
0.1336
0.1336
0.1359
0.1366
0.1366
0.1367
0.1369
0.1371
0.1372
0.1377
0.1381
0.1388
0.1395
0.1398
0.1398
0.1403
0.1403
0.1407
0.1416
0.1417
0.1420
0.1421
0.1421
0.1423
0.1430
0.1448
0.1453
0.1459
0.1466
0.1472
0.1472
0.1506
0.1510
0.1526

0.1762
0.1787
0.1796
0.1798
0.1817
0.1852
0.1855
0.1860
0.1924
0.1932
0.1939
0.1952
0.1959
0.1965
0.1969
0.1971
0.1982
0.1986
0.1992
0.2007
0.2009
0.2022
0.2025
0.2027
0.2029
0.2031
0.2032
0.2048
0.2049
0.2063
0.2072
0.2083
0.2084
0.2137
0.2151
0.2210
0.2229
0.2243
0.2310

0.1268
0.1272
0.1287
0.1301
0.1315
0.1323
0.1362
0.1363
0.1363
0.1364
0.1369
0.1382
0.1406
0.1408
0.1412
0.1412
0.1417
0.1420
0.1422
0.1443
0.1448
0.1457
0.1458
0.1464
0.1465
0.1477
0.1478
0.1479
0.1493
0.1496
0.1497
0.1507
0.1514
0.1527
0.1537
0.1541
0.1544
0.1549
0.1624

0.1162
0.1167
0.1188
0.1241
0.1242
0.1256
0.1267
0.1279
0.1288
0.1297
0.1324
0.1335
0.1339
0.1340
0.1347
0.1351
0.1352
0.1356
0.1359
0.1360
0.1364
0.1374
0.1376
0.1392
0.1395
0.1398
0.1398
0.1400
0.1405
0.1407
0.1418
0.1423
0.1425
0.1432
0.1489
0.1492
0.1493
0.1508
0.1535

0.0950
0.0969
0.0970
0.0975
0.0986
0.0995
0.1006
0.1008
0.1009
0.1017
0.1018
0.1023
0.1024
0.1033
0.1035
0.1044
0.1046
0.1048
0.1057
0.1057
0.1060
0.1063
0.1070
0.1070
0.1072
0.1091
0.1098
0.1108
0.1108
0.1109
0.1120
0.1121
0.1127
0.1169
0.1170
0.1185
0.1198
0.1202
0.1227

0.1155
0.1267
0.1281
0.1285
0.1298
0.1301
0.1382
0.1393
0.1404
0.1416
0.1422
0.1433
0.1434
0.1439
0.1444
0.1452
0.1457
0.1481
0.1495
0.1502
0.1508
0.1510
0.1530
0.1533
0.1535
0.1556
0.1561
0.1570
0.1587
0.1618
0.1639
0.1640
0.1670
0.1695
0.1706
0.1709
0.1739
0.1753
0.1772

0.0958
0.0961
0.0986
0.0988
0.0989
0.1001
0.1004
0.1009
0.1021
0.1032
0.1038
0.1040
0.1045
0.1047
0.1048
0.1050
0.1056
0.1061
0.1064
0.1065
0.1069
0.1070
0.1076
0.1077
0.1081
0.1098
0.1100
0.1103
0.1106
0.1109
0.1119
0.1121
0.1126
0.1136
0.1143
0.1145
0.1155
0.1184
0.1213

0.1509
0.1530
0.1556
0.1561
0.1567
0.1583
0.1611
0.1655
0.1696
0.1697
0.1726
0.1745
0.1755
0.1763
0.1767
0.1786
0.1789
0.1789
0.1794
0.1794
0.1795
0.1800
0.1823
0.1832
0.1839
0.1841
0.1851
0.1854
0.1874
0.1888
0.1914
0.1931
0.1940
0.1966
0.1992
0.1993
0.2043
0.2059
0.2084

0.0902
0.0913
0.0918
0.0920
0.0947
0.0959
0.0959
0.0960
0.0966
0.0976
0.0982
0.0990
0.0998
0.1001
0.1003
0.1012
0.1013
0.1019
0.1028
0.1033
0.1036
0.1047
0.1051
0.1053
0.1053
0.1054
0.1070
0.1073
0.1073
0.1075
0.1082
0.1098
0.1099
0.1101
0.1106
0.1130
0.1148
0.1155
0.1188

2

3

4

5

2

4

1
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and b

0.0816
0.0830
0.0831
0.0838
0.0838
0.0839
0.0839
0.0848
0.0861
0.0865
0.0883
0.0885
0.0892
0.0894
0.0904
0.0904
0.0907
0.0908
0.0924
0.0943
0.0948
0.0952
0.0954
0.0960
0.0964
0.0966
0.0967
0.0976
0.0978
0.0983
0.0985
0.0994
0.0999
0.1008
0.1008
0.1044
0.1092
0.1114
0.1157

0.1495
0.1508
0.1534
0.1604
0.1613
0.1625
0.1628
0.1643
0.1644
0.1647
0.1649
0.1653
0.1653
0.1659
0.1659
0.1661
0.1673
0.1673
0.1674
0.1674
0.1681
0.1683
0.1683
0.1694
0.1704
0.1706
0.1716
0.1718
0.1730
0.1730
0.1731
0.1737
0.1739
0.1739
0.1769
0.1786
0.1811
0.1818
0.1827

0.0783
0.0801
0.0810
0.0818
0.0819
0.0828
0.0834
0.0836
0.0839
0.0840
0.0844
0.0844
0.0851
0.0855
0.0858
0.0858
0.0874
0.0877
0.0879
0.0886
0.0888
0.0888
0.0889
0.0895
0.0896
0.0907
0.0907
0.0914
0.0916
0.0916
0.0931
0.0934
0.0988
0.1005
0.1010
0.1037
0.1057
0.1092
0.1192

0.0857
0.0877
0.0880
0.0887
0.0889
0.0894
0.0896
0.0908
0.0911
0.0914
0.0923
0.0928
0.0929
0.0931
0.0936
0.0941
0.0941
0.0944
0.0950
0.0954
0.0955
0.0957
0.0960
0.0963
0.0966
0.0972
0.0976
0.0979
0.0987
0.0992
0.1006
0.1008
0.1011
0.1017
0.1026
0.1052
0.1059
0.1064
0.1076

0.2419
0.2429
0.2485
0.2507
0.2513
0.2568
0.2593
0.2603
0.2606
0.2617
0.2644
0.2658
0.2667
0.2678
0.2681
0.2685
0.2701
0.2704
0.2718
0.2735
0.2737
0.2738
0.2748
0.2749
0.2751
0.2773
0.2778
0.2784
0.2796
0.2810
0.2812
0.2812
0.2865
0.2887
0.2888
0.2896
0.2897
0.2900
0.3001

0.0820
0.0841
0.0884
0.0885
0.0892
0.0896
0.0905
0.0911
0.0913
0.0919
0.0929
0.0931
0.0934
0.0936
0.0942
0.0942
0.0943
0.0944
0.0944
0.0962
0.0963
0.0966
0.0968
0.0970
0.0971
0.0974
0.0980
0.0988
0.0996
0.1004
0.1013
0.1017
0.1035
0.1039
0.1052
0.1083
0.1087
0.1093
0.1180

0.1079
0.1123
0.1162
0.1163
0.1169
0.1190
0.1192
0.1199
0.1211
0.1211
0.1212
0.1216
0.1219
0.1222
0.1226
0.1226
0.1229
0.1236
0.1237
0.1237
0.1238
0.1250
0.1253
0.1254
0.1256
0.1259
0.1271
0.1276
0.1280
0.1280
0.1286
0.1299
0.1306
0.1307
0.1324
0.1332
0.1337
0.1339
0.1353

0.0706
0.0709
0.0712
0.0721
0.0739
0.0744
0.0749
0.0750
0.0753
0.0766
0.0771
0.0773
0.0774
0.0782
0.0782
0.0788
0.0804
0.0814
0.0815
0.0815
0.0821
0.0829
0.0832
0.0839
0.0845
0.0859
0.0872
0.0875
0.0876
0.0880
0.0905
0.0913
0.0983
0.1001
0.1002
0.1027
0.1054
0.1104
0.1117

0.1225
0.1338
0.1348
0.1384
0.1410
0.1439
0.1442
0.1451
0.1463
0.1464
0.1474
0.1483
0.1496
0.1509
0.1513
0.1515
0.1518
0.1525
0.1531
0.1531
0.1534
0.1540
0.1548
0.1550
0.1555
0.1565
0.1566
0.1569
0.1573
0.1603
0.1605
0.1619
0.1619
0.1621
0.1622
0.1623
0.1634
0.1636
0.1711

3

2

2

4

1

3

2
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.0997 | 0.1673 | 0.0554 | 0.0821 | 0.0950 | 0.1170 | 0.1215 | 0.1449 | 0.1075
0.1015 | 0.1757 | 0.0561 | 0.0848 | 0.0957 | 0.1211 | 0.1239 | 0.1453 | 0.1117
0.1031 | 0.1827 | 0.0568 | 0.0909 | 0.0980 | 0.1262 | 0.1323 | 0.1497 | 0.1129
0.1034 | 0.1855 | 0.0581 | 0.0918 | 0.0986 | 0.1263 | 0.1370 | 0.1505 | 0.1164
0.1037 | 0.1873 | 0.0584 | 0.0937 | 0.0996 | 0.1284 | 0.1385 | 0.1507 | 0.1187
0.1037 | 0.1909 | 0.0589 | 0.0938 | 0.0997 | 0.1287 | 0.1389 | 0.1517 | 0.1192
0.1048 | 0.1912 | 0.0590 | 0.0944 | 0.1000 | 0.1288 | 0.1407 | 0.1542 | 0.1192
0.1056 | 0.1931 | 0.0603 | 0.0945 | 0.1001 | 0.1301 | 0.1480 | 0.1553 | 0.1204
0.1063 | 0.1932 | 0.0609 | 0.0948 | 0.1009 | 0.1306 | 0.1495 | 0.1559 | 0.1205
0.1067 | 0.2000 | 0.0618 | 0.0950 | 0.1011 | 0.1311 | 0.1500 | 0.1591 | 0.1214
0.1075 | 0.2016 | 0.0624 | 0.0950 | 0.1017 | 0.1331 | 0.1500 | 0.1592 | 0.1215
0.1079 | 0.2028 | 0.0635 | 0.0952 | 0.1023 | 0.1331 | 0.1506 | 0.1594 | 0.1215
0.1093 | 0.2037 | 0.0663 | 0.0954 | 0.1024 | 0.1334 | 0.1509 | 0.1616 | 0.1216
0.1096 | 0.2057 | 0.0667 | 0.0956 | 0.1024 | 0.1341 | 0.1524 | 0.1619 | 0.1221
0.1100 | 0.2070 | 0.0681 | 0.0962 | 0.1028 | 0.1341 | 0.1536 | 0.1628 | 0.1228
0.1108 | 0.2090 | 0.0690 | 0.0965 | 0.1031 | 0.1342 | 0.1536 | 0.1635 | 0.1229
0.1108 | 0.2095 | 0.0691 | 0.0965 | 0.1039 | 0.1353 | 0.1549 | 0.1643 | 0.1231
0.1116 | 0.2106 | 0.0692 | 0.0971 | 0.1039 | 0.1360 | 0.1596 | 0.1645 | 0.1231
0.1116 | 0.2109 | 0.0703 | 0.0978 | 0.1039 | 0.1361 | 0.1613 | 0.1645 | 0.1231
0.2109 | 0.0722 | 0.0980 | 0.1039 | 0.1365 | 0.1629 | 0.1650 | 0.1233
0.1129 | 0.2120 | 0.0728 | 0.0981 | 0.1050 | 0.1366 | 0.1630 | 0.1651 | 0.1237
0.1138 | 0.2121 | 0.0732 | 0.0983 | 0.1053 | 0.1371 | 0.1632 | 0.1651 | 0.1242
0.1143 | 0.2122 | 0.0734 | 0.0986 | 0.1060 | 0.1373 | 0.1634 | 0.1657 | 0.1246
0.1145| 0.2125 | 0.0740 | 0.0989 | 0.1061 | 0.1383 | 0.1642 | 0.1666 | 0.1247
0.1148 | 0.2131 | 0.0746 | 0.0994 | 0.1066 | 0.1386 | 0.1645 | 0.1686 | 0.1248
0.1157 | 0.2141 | 0.0749 | 0.0997 | 0.1072 | 0.1388 | 0.1647 | 0.1689 | 0.1251
0.1164 | 0.2150 | 0.0763 | 0.1009 | 0.1075 | 0.1389 | 0.1655 | 0.1692 | 0.1260
0.1167 | 0.2157 | 0.0785 | 0.1028 | 0.1088 | 0.1396 | 0.1671 | 0.1710 | 0.1262
0.1176 | 0.2173 | 0.0789 | 0.1029 | 0.1093 | 0.1405 | 0.1682 | 0.1710 | 0.1285
0.1185 | 0.2186 | 0.0806 | 0.1031 | 0.1101 | 0.1406 | 0.1687 | 0.1713 | 0.1289
0.1189 | 0.2189 | 0.0815 | 0.1032 | 0.1108 | 0.1413 | 0.1690 | 0.1718 | 0.1295
0.1210 | 0.2206 | 0.0883 | 0.1038 | 0.1132 | 0.1421 | 0.1705 | 0.1721 | 0.1297
0.1213 | 0.2206 | 0.0913 | 0.1044 | 0.1141 | 0.1422 | 0.1731 | 0.1746 | 0.1298
0.1217 | 0.2261 | 0.1042 | 0.1052 | 0.1146 | 0.1437 | 0.1732 | 0.1748 | 0.1310
0.1218 | 0.2264 | 0.1045 | 0.1060 | 0.1148 | 0.1440 | 0.1776 | 0.1800 | 0.1327
0.1222 | 0.2296 | 0.1086 | 0.1072 | 0.1152 | 0.1477 | 0.1781 | 0.1813 | 0.1330
0.1265 | 0.2303 | 0.1098 | 0.1079 | 0.1156 | 0.1491 | 0.1823 | 0.1834 | 0.1343
0.1304 | 0.2396 | 0.1157 | 0.1087 | 0.1176 | 0.1517 | 0.1836 | 0.1902 | 0.1358
0.1315| 0.2434 | 0.1181 | 0.1097 | 0.1199 | 0.1541 | 0.1905 | 0.1910 | 0.1371

All samples in the group a and b
o
—_
—_
[N}
—_

r’ 2 2 2 1 3 2 2 1 2
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—

TABLE A.29: Ranked sim values for (a V {b,c}) in VHHS dataset using U-KTS FVR.

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group b and ¢

0.7097
0.6344
0.6246
0.6113
0.6041
0.5900
0.5819
0.5804
0.5627
0.5586
0.5315
0.5291
0.5263
0.5156
0.4997
0.4886
0.4825
0.4730
0.4554
0.4549
0.4439
0.4433
0.4395
0.4383
0.4369
0.4310
0.4230
0.4186
0.4143
0.4113
0.4032
0.3994
0.3974
0.3916
0.3848
0.3524
0.3475
0.3391
0.2850

0.6481
0.6389
0.6308
0.5927
0.5146
0.4714
0.4609
0.4363
0.4075
0.3820
0.3763
0.3408
0.3333
0.3317
0.3222
0.3177
0.3061
0.2995
0.2816
0.2737
0.2737
0.2707
0.2605
0.2565
0.2532
0.2473
0.2426
0.2335
0.2331
0.2314
0.2303
0.2289
0.2219
0.2218
0.2156
0.1976
0.1900
0.1807
0.1607

0.8791
0.7985
0.7739
0.6253
0.5819
0.5230
0.5075
0.4560
0.4517
0.4491
0.4334
0.4299
0.4290
0.4282
0.4226
0.4198
0.4168
0.4049
0.3943
0.3886
0.3856
0.3762
0.3628
0.3601
0.3555
0.3543
0.3523
0.3506
0.3443
0.3363
0.3315
0.3266
0.3180
0.3152
0.3092
0.3035
0.3021
0.3020
0.2852

0.4589
0.4038
0.3785
0.3628
0.3401
0.3385
0.3326
0.3317
0.3211
0.3206
0.3204
0.3093
0.3091
0.3081
0.2998
0.2988
0.2979
0.2873
0.2796
0.2616
0.2481
0.2466
0.2377
0.2370
0.2332
0.2309
0.2280
0.2267
0.2234
0.2210
0.2198
0.2192
0.2177
0.2167
0.2140
0.2137
0.2123
0.2062
0.1710

0.7008
0.6948
0.6447
0.6214
0.5954
0.5748
0.5641
0.5421
0.5412
0.5350
0.5186
0.5128
0.5001
0.4983
0.4962
0.4950
0.4908
0.4715
0.4690
0.4597
0.4587
0.4440
0.4172
0.4170
0.4053
0.3938
0.3928
0.3897
0.3763
0.3756
0.3691
0.3604
0.3582
0.3565
0.3470
0.3401
0.3295
0.3197
0.2799

0.6752
0.6547
0.6198
0.6020
0.5772
0.4911
0.4752
0.4498
0.4444
0.4224
0.4059
0.3991
0.3951
0.3208
0.3178
0.3135
0.3110
0.3102
0.3065
0.3037
0.2963
0.2958
0.2839
0.2772
0.2689
0.2647
0.2640
0.2593
0.2590
0.2485
0.2477
0.2438
0.2275
0.2243
0.2208
0.2154
0.2140
0.2082
0.1982

0.4874
0.4452
0.3967
0.3945
0.3837
0.3770
0.3604
0.3568
0.3557
0.3516
0.3505
0.3505
0.3259
0.3245
0.3157
0.3106
0.3070
0.3023
0.3015
0.2921
0.2829
0.2818
0.2808
0.2739
0.2662
0.2588
0.2410
0.2398
0.2378
0.2350
0.2281
0.2241
0.2183
0.2181
0.2116
0.2110
0.2046
0.2004
0.1572

0.5155
0.5152
0.4393
0.4292
0.4276
0.4046
0.3998
0.3838
0.3798
0.3778
0.3724
0.3698
0.3583
0.3575
0.3565
0.3551
0.3541
0.3503
0.3474
0.3464
0.3397
0.3377
0.3292
0.3249
0.3237
0.3154
0.3126
0.3004
0.2941
0.2938
0.2880
0.2751
0.2690
0.2657
0.2645
0.2398
0.2380
0.2297
0.2258

0.7263
0.6782
0.6726
0.6618
0.6497
0.6477
0.6188
0.6078
0.5975
0.5952
0.5916
0.5825
0.5759
0.5551
0.5543
0.5518
0.5063
0.4951
0.4924
0.4907
0.4841
0.4825
0.4799
0.4785
0.4768
0.4731
0.4635
0.4590
0.4583
0.4562
0.4452
0.4418
0.4393
0.4294
0.4076
0.3989
0.3799
0.3756
0.3675

0.5649
0.5428
0.5221
0.4240
0.4198
0.4184
0.4120
0.4105
0.3912
0.3790
0.3693
0.3561
0.3410
0.3288
0.3253
0.3239
0.3198
0.3190
0.3156
0.3137
0.3070
0.2990
0.2972
0.2925
0.2835
0.2773
0.2755
0.2728
0.2644
0.2616
0.2611
0.2411
0.2351
0.2305
0.2217
0.2087
0.2082
0.2062
0.2044

3

10

20

12

21

1




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 237

S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group b and ¢

0.7232
0.5401
0.5371
0.5334
0.5079
0.5017
0.4997
0.4644
0.4130
0.4006
0.3993
0.3934
0.3933
0.3876
0.3770
0.3626
0.3599
0.3491
0.3230
0.3217
0.3171
0.3134
0.3127
0.3122
0.3097
0.3013
0.2922
0.2896
0.2655
0.2598
0.2594
0.2503
0.2500
0.2431
0.2299
0.2287
0.2274
0.2224
0.2153

0.7591
0.7395
0.7108
0.6931
0.6919
0.6917
0.6301
0.6221
0.6111
0.6080
0.5993
0.5945
0.5723
0.5704
0.5666
0.5495
0.5391
0.5364
0.5328
0.5205
0.5190
0.5072
0.5062
0.5058
0.4977
0.4802
0.4796
0.4695
0.4674
0.4634
0.4573
0.4479
0.4369
0.4081
0.4065
0.4045
0.3489
0.3242
0.3180

0.6213
0.6112
0.5811
0.5800
0.5648
0.5526
0.5406
0.5361
0.5348
0.5236
0.5061
0.4959
0.4850
0.4678
0.4586
0.4483
0.4393
0.4340
0.4170
0.4102
0.4082
0.3846
0.3805
0.3755
0.3683
0.3655
0.3446
0.3310
0.3303
0.3167
0.2944
0.2938
0.2915
0.2833
0.2444
0.2320
0.2289
0.2242
0.2192

0.4463
0.4035
0.3958
0.3386
0.3362
0.3348
0.3344
0.3307
0.3250
0.3146
0.3057
0.2986
0.2926
0.2904
0.2867
0.2753
0.2690
0.2668
0.2660
0.2571
0.2553
0.2542
0.2529
0.2528
0.2511
0.2466
0.2403
0.2381
0.2246
0.2137
0.2119
0.2113
0.1978
0.1939
0.1898
0.1847
0.1738
0.1543
0.1483

0.7730
0.7263
0.6579
0.6230
0.5874
0.5869
0.5388
0.5363
0.5172
0.5168
0.5032
0.4780
0.4418
0.4415
0.4329
0.4310
0.4273
0.4078
0.4072
0.4069
0.3984
0.3977
0.3932
0.3905
0.3879
0.3631
0.3557
0.3543
0.3421
0.3394
0.3225
0.3163
0.3144
0.3059
0.2908
0.2775
0.2544
0.2401
0.2300

0.7485
0.6474
0.6102
0.5936
0.5924
0.5555
0.5239
0.5087
0.4946
0.4834
0.4739
0.4540
0.4356
0.4349
0.4279
0.4270
0.4224
0.4056
0.4046
0.4033
0.3872
0.3868
0.3694
0.3687
0.3683
0.3582
0.3571
0.3539
0.3398
0.3392
0.3299
0.3287
0.3279
0.3142
0.3130
0.3122
0.2946
0.2925
0.2062

0.7569
0.6975
0.6599
0.6530
0.6444
0.6390
0.6117
0.6039
0.5842
0.5751
0.5550
0.5476
0.5415
0.5412
0.5347
0.5244
0.5119
0.5061
0.5021
0.4970
0.4902
0.4740
0.4657
0.4544
0.4450
0.4151
0.4109
0.4072
0.3934
0.3744
0.3738
0.3715
0.3521
0.3456
0.3430
0.3330
0.3221
0.2743
0.2316

0.8367
0.6822
0.6470
0.5872
0.5846
0.5788
0.5753
0.5530
0.5481
0.5233
0.5202
0.5036
0.4992
0.4990
0.4833
0.4729
0.4628
0.4445
0.4404
0.4394
0.4300
0.4282
0.4282
0.4102
0.4059
0.3915
0.3864
0.3860
0.3846
0.3768
0.3757
0.3741
0.3676
0.3548
0.3458
0.3175
0.3012
0.2969
0.2796

0.7970
0.7046
0.6386
0.5939
0.5275
0.5071
0.4910
0.4800
0.4795
0.4719
0.4654
0.4613
0.4587
0.4445
0.4416
0.4409
0.4394
0.4388
0.4333
0.4111
0.3938
0.3913
0.3908
0.3824
0.3748
0.3706
0.3660
0.3614
0.3513
0.3482
0.3362
0.3341
0.3326
0.3319
0.3285
0.3248
0.3165
0.3034
0.2889
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group b and ¢

0.7855
0.6943
0.6911
0.6207
0.5954
0.5778
0.5257
0.5045
0.5021
0.4997
0.4948
0.4923
0.4763
0.4748
0.4704
0.4515
0.4459
0.4379
0.4126
0.4123
0.4002
0.3907
0.3829
0.3632
0.3622
0.3592
0.3478
0.3463
0.3395
0.3344
0.3288
0.3204
0.3063
0.3051
0.3048
0.3023
0.2840
0.2791
0.2217

0.7917
0.7342
0.7197
0.6831
0.6830
0.6439
0.6264
0.6172
0.6165
0.6094
0.6021
0.5751
0.5677
0.5663
0.5653
0.5586
0.5380
0.5365
0.5196
0.5053
0.5008
0.4982
0.4966
0.4940
0.4906
0.4888
0.4846
0.4836
0.4809
0.4764
0.4712
0.4690
0.4583
0.4525
0.4494
0.4233
0.4104
0.3818
0.3222

0.7368
0.6778
0.6759
0.6639
0.6310
0.5994
0.5642
0.5542
0.5421
0.5069
0.4480
0.4447
0.4430
0.4379
0.4115
0.4053
0.4051
0.4011
0.3986
0.3734
0.3549
0.3497
0.3476
0.3333
0.3225
0.3213
0.3095
0.3093
0.3003
0.2919
0.2872
0.2845
0.2805
0.2758
0.2629
0.2622
0.2579
0.2469
0.2427

0.7365
0.6198
0.5537
0.5318
0.5129
0.5121
0.5015
0.4959
0.4954
0.4949
0.4936
0.4893
0.4869
0.4807
0.4798
0.4731
0.4490
0.4414
0.4349
0.4233
0.4131
0.4099
0.4087
0.4064
0.4052
0.3989
0.3961
0.3914
0.3907
0.3587
0.3562
0.3490
0.3426
0.3339
0.3275
0.3170
0.2985
0.2941
0.2685

0.5567
0.4898
0.4737
0.4642
0.4572
0.4434
0.4209
0.4174
0.4157
0.4100
0.4027
0.3976
0.3912
0.3855
0.3820
0.3740
0.3729
0.3725
0.3700
0.3685
0.3676
0.3611
0.3560
0.3444
0.3330
0.3299
0.3245
0.3084
0.3077
0.3074
0.3041
0.2907
0.2852
0.2693
0.2658
0.2433
0.2374
0.2318
0.2294

0.6091
0.4752
0.4598
0.4251
0.4228
0.4222
0.4008
0.3997
0.3995
0.3957
0.3918
0.3917
0.3901
0.3895
0.3811
0.3685
0.3614
0.3588
0.3456
0.3374
0.3344
0.3276
0.3259
0.3255
0.3056
0.2981
0.2962
0.2888
0.2817
0.2810
0.2737
0.2605
0.2546
0.2447
0.2427
0.2366
0.2366
0.2221
0.2164

0.7205
0.7172
0.6542
0.6479
0.6451
0.5867
0.5772
0.5678
0.5533
0.5483
0.5429
0.5254
0.5249
0.5127
0.5066
0.4775
0.4585
0.4518
0.4517
0.4340
0.4257
0.4197
0.4126
0.4118
0.4102
0.4075
0.3984
0.3923
0.3849
0.3835
0.3730
0.3636
0.3248
0.3225
0.3218
0.3183
0.3098
0.2769
0.2518

0.6854
0.6568
0.5768
0.5507
0.5238
0.5235
0.4500
0.4094
0.4025
0.4020
0.3941
0.3911
0.3887
0.3769
0.3714
0.3637
0.3611
0.3459
0.3434
0.3354
0.3325
0.3295
0.3294
0.3273
0.3251
0.3131
0.3003
0.2989
0.2977
0.2892
0.2832
0.2547
0.2503
0.2428
0.2405
0.2368
0.2342
0.2242
0.2114

0.7677
0.7251
0.7181
0.6710
0.6267
0.6262
0.6091
0.6054
0.6041
0.5992
0.5755
0.5753
0.5743
0.5554
0.5520
0.5479
0.5421
0.5412
0.5373
0.5345
0.5183
0.4991
0.4866
0.4860
0.4769
0.4622
0.4508
0.4493
0.4470
0.4449
0.4393
0.4361
0.4283
0.4210
0.4180
0.4078
0.3778
0.3717
0.3615
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.4953 | 0.6140 | 0.7390 | 0.6485 | 0.5922 | 0.8291 | 0.5368 | 0.8331 | 0.8514
0.4925 | 0.6044 | 0.6342 | 0.5972 | 0.4843 | 0.7965 | 0.5211 | 0.7765 | 0.5885
0.4860 | 0.5457 | 0.5592 | 0.5139 | 0.4773 | 0.5979 | 0.4986 | 0.7626 | 0.5867
0.4741 | 0.5341 | 0.5461 | 0.5125 | 0.4720 | 0.5796 | 0.4160 | 0.7526 | 0.4910
0.4003 | 0.5157 | 0.5136 | 0.4563 | 0.4554 | 0.5643 | 0.4158 | 0.7325 | 0.4513
0.4001 | 0.4864 | 0.4979 | 0.4504 | 0.4493 | 0.5549 | 0.4028 | 0.6863 | 0.4354
0.3816 | 0.4857 | 0.4932 | 0.4442 | 0.4451 | 0.5293 | 0.3882 | 0.6769 | 0.4201
0.3695 | 0.4841 | 0.4875 | 0.4427 | 0.4444 | 0.5106 | 0.3754 | 0.6596 | 0.4162
0.3656 | 0.4780 | 0.4786 | 0.4290 | 0.4437 | 0.4905 | 0.3743 | 0.6500 | 0.4064
0.3538 | 0.4760 | 0.4777 | 0.4283 | 0.4159 | 0.4803 | 0.3726 | 0.6368 | 0.4027
0.3508 | 0.4707 | 0.4569 | 0.4262 | 0.4117 | 0.4778 | 0.3605 | 0.6267 | 0.4020
0.3438 | 0.4701 | 0.4423 | 0.4103 | 0.4094 | 0.4510 | 0.3515 | 0.6246 | 0.4011
0.3339 | 0.4623 | 0.4394 | 0.3978 | 0.4079 | 0.4427 | 0.3448 | 0.6031 | 0.3942
0.3142 | 0.4531 | 0.4358 | 0.3854 | 0.4053 | 0.4350 | 0.3440 | 0.5994 | 0.3928
0.3126 | 0.4501 | 0.4172 | 0.3713 | 0.3935 | 0.4276 | 0.3329 | 0.5978 | 0.3904
0.3125 | 0.4436 | 0.4164 | 0.3671 | 0.3902 | 0.4246 | 0.3231 | 0.5930 | 0.3829
0.3085 | 0.4292 | 0.4026 | 0.3625 | 0.3859 | 0.4241 | 0.3114 | 0.5900 | 0.3815
0.3066 | 0.4115| 0.4002 | 0.3590 | 0.3610 | 0.4108 | 0.3041 | 0.5837 | 0.3679
0.3032 | 0.4027 | 0.3980 | 0.3552 | 0.3570 | 0.4084 | 0.2999 | 0.5762 | 0.3618
0.4010 | 0.3941 | 0.3500 | 0.3529 | 0.4075 | 0.2864 | 0.5531 | 0.3529
0.2944 | 0.3933 | 0.3896 | 0.3453 | 0.3497 | 0.3996 | 0.2824 | 0.5486 | 0.3471
0.2863 | 0.3607 | 0.3781 | 0.3442 | 0.3283 | 0.3987 | 0.2745 | 0.5476 | 0.3361
0.2838 | 0.3581 | 0.3726 | 0.3425 | 0.3174 | 0.3987 | 0.2735 | 0.5472 | 0.3320
0.2788 | 0.3535 | 0.3670 | 0.3347 | 0.3170 | 0.3985 | 0.2689 | 0.5462 | 0.3318
0.2780 | 0.3382 | 0.3596 | 0.3218 | 0.3137 | 0.3936 | 0.2678 | 0.5447 | 0.3280
0.2705 | 0.3356 | 0.3593 | 0.3144 | 0.3109 | 0.3913 | 0.2668 | 0.5443 | 0.3114
0.2689 | 0.3334 | 0.3593 | 0.3140 | 0.3078 | 0.3893 | 0.2651 | 0.5337 | 0.3106
0.2688 | 0.3325 | 0.3586 | 0.3074 | 0.3062 | 0.3826 | 0.2648 | 0.5288 | 0.2983
0.2659 | 0.3292 | 0.3585 | 0.3004 | 0.3037 | 0.3671 | 0.2600 | 0.5138 | 0.2862
0.2634 | 0.3285 | 0.3458 | 0.2815 | 0.2869 | 0.3666 | 0.2536 | 0.5095 | 0.2836
0.2616 | 0.3240 | 0.3391 | 0.2774 | 0.2743 | 0.3631 | 0.2533 | 0.5068 | 0.2786
0.2581 | 0.3240 | 0.3384 | 0.2721 | 0.2714 | 0.3631 | 0.2498 | 0.5002 | 0.2761
0.2556 | 0.3173 | 0.3288 | 0.2568 | 0.2467 | 0.3563 | 0.2485 | 0.4984 | 0.2756
0.2455 | 0.3145 | 0.3275 | 0.2527 | 0.2452 | 0.3545 | 0.2470 | 0.4825 | 0.2671
0.2454 | 0.3064 | 0.3097 | 0.2424 | 0.2378 | 0.3463 | 0.2386 | 0.4792 | 0.2666
0.2444 | 0.3063 | 0.3089 | 0.2345 | 0.2299 | 0.3392 | 0.2365 | 0.4654 | 0.2619
0.2227 | 0.3008 | 0.2897 | 0.2263 | 0.2279 | 0.3363 | 0.2199 | 0.4544 | 0.2600
0.2129 | 0.2734 | 0.2622 | 0.2243 | 0.2221 | 0.3334 | 0.1980 | 0.4468 | 0.2417
0.1938 | 0.2678 | 0.2178 | 0.2169 | 0.2161 | 0.3318 | 0.1909 | 0.4411 | 0.1897

All samples in the group b and ¢
o
[G%)]
S
o
[N}

r’ 3 8 2 6 3 8 11 1 12
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TABLE A.30: Ranked sim values for (b V {a,c}) in VHHS dataset using FVR.

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and ¢

0.5859
0.5551
0.5131
0.5124
0.5055
0.4888
0.4510
0.4425
0.4402
0.4368
0.4289
0.4255
0.4219
0.4187
0.4176
0.4144
0.4134
0.4043
0.3959
0.3819
0.3780
0.3765
0.3737
0.3684
0.3557
0.3495
0.3321
0.3293
0.3261
0.3246
0.3040
0.2964
0.2955
0.2884
0.2681
0.2584
0.2300
0.2216
0.2128

0.5913
0.5347
0.5181
0.4983
0.4690
0.4634
0.4568
0.4550
0.4016
0.3824
0.3718
0.3698
0.3657
0.3635
0.3339
0.3262
0.3196
0.3178
0.3154
0.3034
0.3024
0.3009
0.2964
0.2958
0.2955
0.2853
0.2752
0.2709
0.2587
0.2566
0.2440
0.2243
0.2235
0.2194
0.2086
0.2063
0.1827
0.1581
0.1083

0.6681
0.6590
0.6361
0.6130
0.6072
0.5902
0.5743
0.5197
0.5174
0.5077
0.4881
0.4754
0.4698
0.4686
0.4682
0.4660
0.4655
0.4608
0.4550
0.4502
0.4493
0.4439
0.4314
0.4303
0.4263
0.4157
0.4133
0.3980
0.3921
0.3916
0.3799
0.3620
0.3493
0.3481
0.3382
0.3313
0.3148
0.3086
0.2975

0.5148
0.4726
0.4405
0.4338
0.4243
0.4139
0.4111
0.3951
0.3800
0.3704
0.3685
0.3613
0.3501
0.3387
0.3357
0.3325
0.3314
0.3201
0.3158
0.3048
0.3034
0.2981
0.2796
0.2745
0.2667
0.2649
0.2613
0.2604
0.2548
0.2506
0.2474
0.2377
0.2230
0.2203
0.2027
0.1966
0.1829
0.1483
0.1426

0.6605
0.6269
0.6060
0.6038
0.5864
0.5727
0.5715
0.5692
0.5664
0.5653
0.5583
0.5505
0.5356
0.5232
0.5228
0.5221
0.5034
0.4919
0.4775
0.4747
0.4656
0.4579
0.4550
0.4515
0.4326
0.4234
0.4163
0.4009
0.3996
0.3945
0.3907
0.3779
0.3760
0.3724
0.3683
0.3547
0.3037
0.2934
0.2737

0.8208
0.7440
0.5555
0.5162
0.5069
0.4512
0.4284
0.3913
0.3872
0.3825
0.3798
0.3638
0.3631
0.3587
0.3505
0.3482
0.3324
0.3249
0.3216
0.3190
0.3162
0.3144
0.3113
0.3101
0.3064
0.3049
0.2965
0.2950
0.2937
0.2906
0.2879
0.2828
0.2762
0.2583
0.2361
0.2295
0.2260
0.2040
0.2005

0.8182
0.6276
0.6200
0.6141
0.6117
0.6108
0.5765
0.5689
0.5333
0.5313
0.5167
0.5160
0.5111
0.5054
0.5001
0.4786
0.4676
0.4635
0.4615
0.4547
0.4518
0.4517
0.4433
0.4377
0.4174
0.4134
0.4109
0.4051
0.3987
0.3986
0.3900
0.3864
0.3840
0.3776
0.3643
0.3515
0.3352
0.3295
0.3291

0.5143
0.4886
0.4748
0.4565
0.4497
0.4361
0.4300
0.4089
0.3992
0.3895
0.3855
0.3781
0.3726
0.3616
0.3589
0.3413
0.3389
0.3377
0.3373
0.3363
0.3278
0.3198
0.3114
0.3081
0.2883
0.2831
0.2717
0.2707
0.2538
0.2484
0.2423
0.2403
0.2357
0.2314
0.1960
0.1802
0.1782
0.1638
0.1632

0.7187
0.6213
0.5370
0.5370
0.5100
0.5080
0.5042
0.4648
0.4640
0.4614
0.4469
0.4429
0.4333
0.4311
0.4263
0.4177
0.4154
0.4138
0.4106
0.4012
0.3941
0.3930
0.3827
0.3825
0.3740
0.3723
0.3699
0.3664
0.3636
0.3582
0.3576
0.3533
0.3527
0.3401
0.3266
0.3106
0.2931
0.2649
0.2309

0.7927
0.7036
0.6921
0.6816
0.6669
0.6540
0.6467
0.6421
0.5999
0.5999
0.5910
0.5874
0.5737
0.5725
0.5629
0.5624
0.5520
0.5432
0.5419
0.5419
0.5310
0.5306
0.5182
0.4915
0.4763
0.4700
0.4519
0.4502
0.4317
0.4314
0.4274
0.3970
0.3889
0.3865
0.3797
0.3715
0.3556
0.3418
0.3111

3

15

22
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and ¢

0.5258
0.5135
0.4900
0.4798
0.4755
0.4614
0.4340
0.4272
0.4261
0.4254
0.4063
0.3957
0.3709
0.3703
0.3690
0.3621
0.3613
0.3543
0.3479
0.3431
0.3398
0.3277
0.3214
0.3188
0.3070
0.3017
0.2893
0.2867
0.2579
0.2442
0.2409
0.2344
0.2284
0.2225
0.2116
0.1960
0.1883
0.1744
0.1698

0.8118
0.7506
0.7408
0.7380
0.7179
0.7163
0.7051
0.6856
0.6803
0.6646
0.6291
0.6188
0.6095
0.6051
0.6047
0.5939
0.5613
0.5556
0.5527
0.5519
0.5490
0.5444
0.5401
0.5366
0.5359
0.5357
0.5328
0.5277
0.5110
0.5020
0.4917
0.4861
0.4651
0.4642
0.4585
0.4396
0.4126
0.3805
0.3649

0.5601
0.5407
0.5365
0.4560
0.4178
0.4072
0.4025
0.3987
0.3870
0.3825
0.3689
0.3676
0.3613
0.3592
0.3581
0.3522
0.3496
0.3439
0.3364
0.3243
0.3173
0.3159
0.3126
0.3005
0.2787
0.2778
0.2770
0.2768
0.2726
0.2663
0.2635
0.2604
0.2486
0.2471
0.2264
0.1835
0.1801
0.1709
0.1413

0.5341
0.4952
0.4607
0.4380
0.4158
0.3715
0.3475
0.3430
0.3169
0.3156
0.3045
0.3039
0.3012
0.2908
0.2907
0.2876
0.2828
0.2747
0.2736
0.2598
0.2559
0.2523
0.2520
0.2493
0.2462
0.2459
0.2449
0.2437
0.2393
0.2332
0.2331
0.2320
0.2313
0.2165
0.2111
0.2057
0.1721
0.1651
0.1238

0.5674
0.5535
0.5384
0.5307
0.5298
0.5189
0.4972
0.4970
0.4829
0.4781
0.4735
0.4680
0.4522
0.4462
0.4425
0.4319
0.4155
0.4078
0.4075
0.4058
0.3635
0.3631
0.3602
0.3591
0.3523
0.3507
0.3492
0.3408
0.3363
0.3346
0.3323
0.3220
0.3198
0.3111
0.3003
0.2933
0.2843
0.2802
0.2472

0.6414
0.5885
0.5851
0.5383
0.5245
0.5008
0.4835
0.4833
0.4789
0.4733
0.4723
0.4547
0.4512
0.4501
0.4422
0.4419
0.4406
0.4308
0.4296
0.4209
0.4189
0.4127
0.4119
0.4102
0.3984
0.3966
0.3896
0.3727
0.3678
0.3622
0.3542
0.3372
0.3299
0.3283
0.3037
0.2983
0.2764
0.2528
0.1728

0.8041
0.6430
0.6369
0.5779
0.5562
0.5191
0.5084
0.5066
0.4949
0.4844
0.4731
0.4728
0.4392
0.4192
0.4141
0.4119
0.4045
0.4039
0.3991
0.3925
0.3782
0.3541
0.3472
0.3256
0.3203
0.2995
0.2976
0.2963
0.2881
0.2622
0.2607
0.2515
0.2500
0.2427
0.2345
0.2282
0.2234
0.1986
0.1798

0.7666
0.5702
0.5298
0.5142
0.4942
0.4876
0.4759
0.4414
0.4201
0.3984
0.3961
0.3961
0.3935
0.3890
0.3884
0.3876
0.3800
0.3655
0.3628
0.3597
0.3588
0.3565
0.3559
0.3448
0.3332
0.3279
0.3251
0.3207
0.3195
0.3081
0.3031
0.2948
0.2818
0.2785
0.2683
0.2395
0.2130
0.1938
0.1486

0.6888
0.6209
0.6116
0.5985
0.5975
0.5621
0.5526
0.5503
0.5463
0.5337
0.5257
0.5049
0.5021
0.4969
0.4939
0.4722
0.4636
0.4610
0.4580
0.4435
0.4282
0.4272
0.4129
0.4100
0.4081
0.4013
0.4003
0.3936
0.3830
0.3708
0.3551
0.3509
0.3491
0.3447
0.3319
0.3148
0.3062
0.2829
0.2533

3

2

12

2

4

1

4




Appendix A. Further Results Concerning OKCA Approach Presented in Chapterla 242

Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and ¢

0.7594
0.7205
0.6644
0.6085
0.5835
0.5687
0.5155
0.4964
0.4917
0.4897
0.4822
0.4639
0.4476
0.4341
0.4224
0.4189
0.4162
0.4121
0.4030
0.3855
0.3801
0.3757
0.3735
0.3419
0.3341
0.3340
0.3242
0.3224
0.3183
0.3094
0.3091
0.3040
0.2953
0.2901
0.2871
0.2654
0.2620
0.2591
0.2340

0.7315
0.6903
0.6770
0.6712
0.6495
0.6123
0.6030
0.5897
0.5895
0.5856
0.5568
0.5491
0.5419
0.5305
0.5300
0.5241
0.5220
0.5193
0.5004
0.5003
0.4884
0.4860
0.4853
0.4438
0.4411
0.4409
0.4303
0.4244
0.4081
0.4040
0.3985
0.3924
0.3775
0.3713
0.3629
0.3542
0.3145
0.3009
0.2559

0.6269
0.5763
0.5199
0.5062
0.4538
0.3911
0.3851
0.3785
0.3731
0.3668
0.3553
0.3509
0.3434
0.3404
0.3177
0.3110
0.3011
0.2908
0.2827
0.2824
0.2799
0.2774
0.2732
0.2582
0.2502
0.2347
0.2260
0.2253
0.2008
0.1900
0.1755
0.1743
0.1707
0.1671
0.1632
0.1628
0.1522
0.1349
0.1247

0.8763
0.7275
0.5598
0.4957
0.4852
0.4551
0.4541
0.4514
0.4481
0.4463
0.4405
0.4147
0.4133
0.4045
0.3814
0.3689
0.3672
0.3667
0.3606
0.3478
0.3458
0.3319
0.3235
0.3201
0.3186
0.3145
0.3069
0.3054
0.3041
0.2960
0.2956
0.2951
0.2779
0.2635
0.2533
0.2346
0.2134
0.2049
0.1911

0.7793
0.6235
0.6043
0.5869
0.5674
0.5649
0.5309
0.5095
0.5001
0.4941
0.4930
0.4928
0.4588
0.4434
0.4428
0.4384
0.4246
0.4237
0.4136
0.4026
0.4010
0.3999
0.3964
0.3862
0.3819
0.3819
0.3727
0.3597
0.3577
0.3562
0.3508
0.3392
0.3350
0.3134
0.3103
0.2977
0.2705
0.2471
0.2432

0.8571
0.6982
0.6950
0.6393
0.6295
0.6121
0.6004
0.5867
0.5719
0.5590
0.5352
0.5146
0.5134
0.4882
0.4872
0.4856
0.4846
0.4824
0.4742
0.4705
0.4653
0.4601
0.4595
0.4568
0.4369
0.4361
0.4331
0.4161
0.3854
0.3848
0.3752
0.3727
0.3559
0.3477
0.3438
0.3327
0.3129
0.3043
0.2976

0.7615
0.7475
0.6911
0.6104
0.5664
0.5438
0.5322
0.5299
0.5140
0.5078
0.4965
0.4842
0.4721
0.4650
0.4603
0.4596
0.4474
0.4462
0.4441
0.4282
0.4254
0.4218
0.4051
0.4012
0.3830
0.3795
0.3775
0.3452
0.3389
0.3319
0.3306
0.3261
0.3231
0.3228
0.3218
0.2667
0.2636
0.2226
0.2198

0.8074
0.7726
0.7692
0.7640
0.7012
0.6503
0.6343
0.6291
0.6185
0.5919
0.5913
0.5876
0.5821
0.5724
0.5651
0.5600
0.5401
0.5334
0.5305
0.5220
0.5209
0.5185
0.5160
0.5149
0.4948
0.4947
0.4919
0.4764
0.4577
0.4407
0.4300
0.4250
0.4045
0.3962
0.3957
0.3791
0.3751
0.3745
0.2259

0.8176
0.5016
0.4762
0.3959
0.3805
0.3709
0.3465
0.3340
0.3334
0.3311
0.3282
0.3277
0.3200
0.3128
0.3033
0.3020
0.2892
0.2888
0.2884
0.2883
0.2778
0.2738
0.2649
0.2617
0.2592
0.2532
0.2482
0.2383
0.2229
0.2160
0.2150
0.2135
0.2119
0.2081
0.1959
0.1779
0.1673
0.1530
0.1124
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.7181 | 0.7146 | 0.5475 | 0.8359 | 0.6940 | 0.7996 | 0.8084 | 0.8096 | 0.6321
0.7074 | 0.6980 | 0.5397 | 0.7932 | 0.6606 | 0.7409 | 0.7801 | 0.6642 | 0.5646
0.6999 | 0.6621 | 0.5386 | 0.6732 | 0.6606 | 0.7170 | 0.7225 | 0.6181 | 0.5470
0.6564 | 0.6485 | 0.5076 | 0.6327 | 0.5541 | 0.7051 | 0.7067 | 0.6112 | 0.5337
0.6465 | 0.6286 | 0.4524 | 0.5743 | 0.5163 | 0.6871 | 0.6784 | 0.5897 | 0.5061
0.6449 | 0.5930 | 0.4427 | 0.5384 | 0.5000 | 0.6784 | 0.6687 | 0.5698 | 0.4408
0.6384 | 0.5928 | 0.4384 | 0.5100 | 0.4921 | 0.6714 | 0.6648 | 0.5653 | 0.4162
0.5757 | 0.5777 | 0.4232 | 0.4964 | 0.4750 | 0.6668 | 0.6634 | 0.5439 | 0.4153
0.5555 | 0.5713 | 0.4147 | 0.4940 | 0.4733 | 0.6603 | 0.6532 | 0.5343 | 0.4129
0.5183 | 0.5608 | 0.4087 | 0.4894 | 0.4470 | 0.6464 | 0.6388 | 0.5278 | 0.4057
0.5105 | 0.5566 | 0.3993 | 0.4847 | 0.4390 | 0.6086 | 0.6357 | 0.5239 | 0.3977
0.4984 | 0.5379 | 0.3869 | 0.4752 | 0.4286 | 0.6070 | 0.6218 | 0.5227 | 0.3842
0.4934 | 0.5280 | 0.3761 | 0.4569 | 0.4196 | 0.6039 | 0.6200 | 0.5012 | 0.3825
0.4762 | 0.5237 | 0.3750 | 0.4412 | 0.4114 | 0.5942 | 0.5776 | 0.4919 | 0.3716
0.4699 | 0.5090 | 0.3681 | 0.4318 | 0.4077 | 0.5938 | 0.5772 | 0.4783 | 0.3677
0.4689 | 0.5083 | 0.3604 | 0.4307 | 0.4052 | 0.5913 | 0.5728 | 0.4734 | 0.3571
0.4660 | 0.4931 | 0.3574 | 0.4306 | 0.3987 | 0.5889 | 0.5702 | 0.4691 | 0.3556
0.4621 | 0.4718 | 0.3554 | 0.4198 | 0.3986 | 0.5813 | 0.5682 | 0.4657 | 0.3495
0.4548 | 0.4645 | 0.3081 | 0.4157 | 0.3966 | 0.5703 | 0.5667 | 0.4637 | 0.3446
0.4386 | 0.3039 | 0.4134 | 0.3956 | 0.5648 | 0.5646 | 0.4631 | 0.3258
0.4528 | 0.4345 | 0.3009 | 0.4024 | 0.3932 | 0.5549 | 0.5644 | 0.4419 | 0.3173
0.4513 | 0.4118 | 0.2942 | 0.4019 | 0.3906 | 0.5360 | 0.5528 | 0.4339 | 0.2921
0.4500 | 0.4100 | 0.2768 | 0.3782 | 0.3825 | 0.5332 | 0.4959 | 0.4331 | 0.2866
0.4449 | 0.4071 | 0.2694 | 0.3642 | 0.3726 | 0.5245 | 0.4955 | 0.4180 | 0.2644
0.4343 | 0.4009 | 0.2660 | 0.3627 | 0.3570 | 0.5163 | 0.4937 | 0.4166 | 0.2622
0.4262 | 0.3962 | 0.2607 | 0.3577 | 0.3562 | 0.5107 | 0.4783 | 0.3934 | 0.2551
0.4188 | 0.3907 | 0.2585 | 0.3528 | 0.3369 | 0.5068 | 0.4771 | 0.3915 | 0.2529
0.3902 | 0.3825 | 0.2573 | 0.3370 | 0.3341 | 0.4959 | 0.4676 | 0.3856 | 0.2438
0.3893 | 0.3732 | 0.2411 | 0.3305 | 0.3147 | 0.4938 | 0.4627 | 0.3854 | 0.2388
0.3878 | 0.3610 | 0.2367 | 0.3285 | 0.3082 | 0.4740 | 0.4584 | 0.3723 | 0.2342
0.3574 | 0.3580 | 0.2345 | 0.3226 | 0.2920 | 0.4665 | 0.4564 | 0.3628 | 0.2219
0.3530 | 0.3530 | 0.2249 | 0.3191 | 0.2829 | 0.4636 | 0.4551 | 0.3590 | 0.2217
0.3509 | 0.3488 | 0.2240 | 0.3191 | 0.2728 | 0.4451 | 0.4490 | 0.3548 | 0.2121
0.3491 | 0.3082 | 0.2226 | 0.3169 | 0.2684 | 0.4093 | 0.4324 | 0.3468 | 0.2093
0.3467 | 0.2986 | 0.2197 | 0.3057 | 0.2353 | 0.4078 | 0.4258 | 0.3393 | 0.2002
0.3202 | 0.2858 | 0.2099 | 0.2816 | 0.2338 | 0.4020 | 0.4192 | 0.3253 | 0.1973
0.3070 | 0.2553 | 0.2020 | 0.2634 | 0.2200 | 0.3991 | 0.4076 | 0.3039 | 0.1876
0.3042 | 0.2517 | 0.1956 | 0.2459 | 0.2098 | 0.3834 | 0.3629 | 0.3015 | 0.1761
0.3029 | 0.2316 | 0.1844 | 0.2207 | 0.1761 | 0.3676 | 0.3615 | 0.2833 | 0.1209

All samples in the group a and ¢
o
IS
ot
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ot
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TABLE A.31: Ranked sim values for (¢ V {a,b}) in VHHS dataset using U-KTS FVR.

So

S3

Sy

S5

Se

S7

Sy

So

S1o

All samples in the group a and b

0.8400
0.7505
0.6145
0.6039
0.5938
0.5902
0.5865
0.5667
0.5385
0.5381
0.5267
0.5048
0.4992
0.4845
0.4831
0.4726
0.4663
0.4593
0.4401
0.4392
0.4342
0.4301
0.4277
0.4253
0.4195
0.4026
0.3947
0.3826
0.3798
0.3717
0.3686
0.3512
0.3464
0.3399
0.3183
0.3159
0.2911
0.2852
0.2315

0.5744
0.5297
0.5009
0.4886
0.4732
0.4386
0.4142
0.4101
0.3459
0.3454
0.3439
0.3407
0.3334
0.3302
0.3233
0.3161
0.3113
0.3045
0.3040
0.2997
0.2884
0.2882
0.2835
0.2711
0.2640
0.2492
0.2449
0.2356
0.2294
0.2226
0.2050
0.2005
0.1977
0.1970
0.1964
0.1946
0.1735
0.1643
0.1552

0.6605
0.6287
0.6016
0.5243
0.4990
0.4951
0.4918
0.4779
0.4755
0.4729
0.4584
0.4357
0.4340
0.4282
0.4206
0.4104
0.4079
0.3999
0.3917
0.3620
0.3609
0.3453
0.3429
0.3411
0.3398
0.3333
0.3170
0.3105
0.3092
0.2969
0.2922
0.2857
0.2654
0.2644
0.2593
0.2416
0.2133
0.1818
0.1589

0.5121
0.4861
0.4825
0.4799
0.4187
0.4058
0.3927
0.3825
0.3812
0.3725
0.3621
0.3510
0.3460
0.3402
0.3329
0.3285
0.3267
0.3247
0.3196
0.3184
0.3012
0.2869
0.2822
0.2689
0.2667
0.2542
0.2505
0.2443
0.2411
0.2355
0.2225
0.2221
0.2215
0.2195
0.1944
0.1938
0.1925
0.1862
0.1627

0.6849
0.6478
0.6324
0.6203
0.5931
0.5737
0.5677
0.5585
0.5420
0.5256
0.5033
0.5006
0.4940
0.4802
0.4801
0.4789
0.4787
0.4725
0.4647
0.4554
0.4417
0.4414
0.4284
0.4256
0.4209
0.4110
0.4032
0.4027
0.3985
0.3914
0.3895
0.3746
0.3705
0.3639
0.3489
0.3370
0.3271
0.3019
0.2721

0.5500
0.5067
0.5053
0.4682
0.4479
0.4216
0.4054
0.3966
0.3859
0.3829
0.3814
0.3629
0.3618
0.3569
0.3513
0.3349
0.3285
0.3241
0.3192
0.3188
0.3116
0.3086
0.3025
0.3007
0.2819
0.2747
0.2713
0.2695
0.2640
0.2595
0.2549
0.2530
0.2528
0.2405
0.2401
0.2390
0.2382
0.1779
0.1602

0.5611
0.5444
0.5172
0.4900
0.4837
0.4809
0.4654
0.4378
0.4054
0.3876
0.3655
0.3586
0.3464
0.3312
0.3172
0.3078
0.3030
0.2985
0.2917
0.2894
0.2875
0.2831
0.2788
0.2720
0.2700
0.2695
0.2679
0.2660
0.2626
0.2470
0.2435
0.2424
0.2284
0.2184
0.2036
0.2033
0.1904
0.1902
0.1481

0.6441
0.5148
0.4382
0.4323
0.4206
0.4185
0.4148
0.4067
0.4055
0.3939
0.3890
0.3853
0.3795
0.3783
0.3706
0.3706
0.3595
0.3418
0.3410
0.3341
0.3289
0.3269
0.3268
0.3111
0.3107
0.3054
0.3005
0.2885
0.2804
0.2752
0.2749
0.2739
0.2696
0.2535
0.2461
0.2302
0.2302
0.2064
0.2053

0.7436
0.6789
0.6775
0.6506
0.6374
0.6271
0.6178
0.5873
0.5814
0.5812
0.5790
0.5785
0.5742
0.5741
0.5648
0.5589
0.5540
0.5540
0.5473
0.5360
0.5131
0.5028
0.4969
0.4870
0.4716
0.4652
0.4534
0.4488
0.4397
0.4258
0.4145
0.4073
0.4071
0.3825
0.3715
0.3576
0.3454
0.3100
0.2256

0.7375
0.5863
0.5708
0.5052
0.4774
0.4498
0.4432
0.4276
0.4219
0.4053
0.4009
0.3767
0.3715
0.3632
0.3527
0.3406
0.3281
0.3261
0.3236
0.3176
0.3101
0.3054
0.2847
0.2737
0.2668
0.2626
0.2606
0.2584
0.2504
0.2342
0.2299
0.2267
0.2208
0.2154
0.2060
0.1976
0.1885
0.1880
0.1516

4

10

2
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S12

S13

S14

S5

S1e

Si7

S18

S19

Sao

All samples in the group a and b

0.7287
0.5254
0.4841
0.4448
0.4385
0.4362
0.4248
0.3978
0.3975
0.3842
0.3790
0.3632
0.3629
0.3624
0.3605
0.3563
0.3538
0.3456
0.3399
0.3372
0.3304
0.3271
0.3139
0.3069
0.3061
0.2939
0.2859
0.2768
0.2658
0.2641
0.2591
0.2495
0.2466
0.2269
0.2227
0.2187
0.1943
0.1931
0.1668

0.7444
0.7444
0.7287
0.7055
0.6705
0.6642
0.6632
0.6598
0.6335
0.6233
0.6171
0.6170
0.6019
0.6018
0.5980
0.5910
0.5547
0.5460
0.5399
0.5206
0.5105
0.5044
0.4891
0.4865
0.4772
0.4725
0.4678
0.4614
0.4506
0.4495
0.4485
0.4467
0.4381
0.4372
0.4273
0.4020
0.4019
0.3495
0.2850

0.6661
0.6394
0.5948
0.5435
0.5387
0.5198
0.4954
0.4915
0.4885
0.4785
0.4619
0.4380
0.4356
0.4214
0.4186
0.4035
0.4029
0.3964
0.3806
0.3798
0.3741
0.3640
0.3446
0.3410
0.3370
0.3238
0.3113
0.3025
0.2963
0.2916
0.2786
0.2780
0.2747
0.2666
0.2600
0.2517
0.2106
0.2086
0.2024

0.4888
0.4611
0.4577
0.4149
0.3778
0.3766
0.3689
0.3393
0.3379
0.3356
0.3167
0.3116
0.3090
0.2966
0.2851
0.2798
0.2767
0.2756
0.2660
0.2656
0.2600
0.2479
0.2457
0.2311
0.2310
0.2292
0.2197
0.2147
0.2113
0.2007
0.1963
0.1871
0.1739
0.1736
0.1533
0.1497
0.1269
0.1222
0.1216

0.6398
0.5749
0.5716
0.5599
0.5189
0.5093
0.5010
0.4996
0.4970
0.4816
0.4812
0.4788
0.4773
0.4757
0.4748
0.4571
0.4557
0.4528
0.4521
0.4298
0.4203
0.4116
0.3751
0.3659
0.3650
0.3614
0.3599
0.3599
0.3300
0.3299
0.3273
0.3253
0.3231
0.3114
0.3105
0.2791
0.2688
0.2610
0.2325

0.8002
0.7385
0.6473
0.4999
0.4938
0.4937
0.4808
0.4759
0.4652
0.4595
0.4228
0.4138
0.4110
0.3975
0.3969
0.3940
0.3879
0.3851
0.3825
0.3810
0.3647
0.3537
0.3532
0.3487
0.3470
0.3424
0.3349
0.3307
0.3194
0.3088
0.3001
0.3000
0.2942
0.2789
0.2699
0.2615
0.2222
0.2108
0.2105

0.7366
0.7123
0.6699
0.6526
0.6476
0.6314
0.6261
0.6036
0.6029
0.5961
0.5956
0.5732
0.5718
0.5195
0.5184
0.4744
0.4718
0.4670
0.4636
0.4542
0.4518
0.4461
0.4362
0.4303
0.4223
0.4159
0.4038
0.4019
0.3613
0.3408
0.3114
0.3022
0.3007
0.2949
0.2843
0.2840
0.2641
0.2480
0.2255

0.8038
0.6804
0.6783
0.6155
0.6026
0.5923
0.5854
0.5836
0.5747
0.5703
0.5664
0.5446
0.5217
0.5123
0.5053
0.5043
0.5037
0.4979
0.4943
0.4837
0.4755
0.4706
0.4492
0.4488
0.4336
0.4322
0.4171
0.4135
0.4117
0.4079
0.4030
0.3845
0.3674
0.3649
0.3343
0.3100
0.3009
0.2799
0.2487

0.8066
0.6806
0.6426
0.6094
0.5867
0.5753
0.5367
0.5228
0.5139
0.5130
0.5121
0.5016
0.4645
0.4636
0.4414
0.4389
0.4236
0.4150
0.4084
0.4008
0.3971
0.3902
0.3897
0.3636
0.3578
0.3555
0.3477
0.3426
0.3419
0.3274
0.3274
0.3205
0.3102
0.3039
0.2990
0.2978
0.2861
0.2677
0.2630
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Soo

Sa3

Sa4

Sas

S

Sar

Sog

Sag

S30

All samples in the group a and b

0.6377
0.5615
0.5509
0.5508
0.5494
0.5494
0.5442
0.5281
0.5279
0.5085
0.4989
0.4854
0.4788
0.4670
0.4546
0.4263
0.4241
0.4171
0.4143
0.3977
0.3925
0.3869
0.3796
0.3514
0.3443
0.3426
0.3057
0.3000
0.2990
0.2887
0.2794
0.2701
0.2658
0.2618
0.2530
0.2506
0.2402
0.2297
0.2143

0.8029
0.7825
0.7571
0.7223
0.6903
0.6774
0.6551
0.6222
0.6145
0.5817
0.5767
0.5645
0.5540
0.5532
0.5530
0.5515
0.5499
0.5490
0.5489
0.5449
0.5396
0.5250
0.5167
0.4962
0.4952
0.4928
0.4865
0.4860
0.4724
0.4680
0.4613
0.4530
0.4362
0.4345
0.4302
0.4205
0.3967
0.3805
0.2161

0.6102
0.5691
0.5266
0.4841
0.4747
0.4667
0.4549
0.4435
0.4417
0.4274
0.4243
0.4088
0.4051
0.3849
0.3636
0.3528
0.3501
0.3434
0.3395
0.3361
0.3277
0.3264
0.3108
0.3066
0.3002
0.2977
0.2954
0.2786
0.2621
0.2619
0.2566
0.2485
0.2479
0.2444
0.2398
0.2160
0.2060
0.2050
0.1809

0.7158
0.6973
0.6156
0.5909
0.5855
0.5616
0.5290
0.5110
0.5091
0.5081
0.5032
0.4919
0.4863
0.4749
0.4361
0.4358
0.4329
0.4305
0.4223
0.4178
0.4175
0.4144
0.4137
0.4108
0.3954
0.3946
0.3914
0.3913
0.3524
0.3364
0.3276
0.3274
0.3190
0.3129
0.3049
0.2951
0.2945
0.2850
0.2259

0.6426
0.6374
0.6132
0.5744
0.5525
0.5150
0.4857
0.4407
0.4318
0.4253
0.4150
0.4119
0.4051
0.3875
0.3840
0.3801
0.3796
0.3782
0.3763
0.3519
0.3486
0.3475
0.3428
0.3416
0.3339
0.3286
0.3159
0.3144
0.3056
0.2971
0.2895
0.2662
0.2658
0.2639
0.2483
0.2272
0.2249
0.2030
0.1927

0.7150
0.6441
0.5969
0.5729
0.5188
0.5070
0.4828
0.4768
0.4692
0.4662
0.4649
0.4347
0.4329
0.4097
0.3952
0.3881
0.3819
0.3567
0.3484
0.3452
0.3370
0.3292
0.3261
0.3202
0.3026
0.2938
0.2920
0.2799
0.2789
0.2659
0.2596
0.2580
0.2542
0.2517
0.2445
0.2438
0.2250
0.2200
0.1934

0.7822
0.7030
0.6341
0.6317
0.6185
0.6180
0.5777
0.5734
0.5720
0.5647
0.5422
0.5215
0.5115
0.5078
0.5006
0.4906
0.4743
0.4673
0.4618
0.4378
0.4362
0.4293
0.4260
0.4205
0.4134
0.4066
0.3780
0.3735
0.3709
0.3661
0.3553
0.3543
0.3529
0.3289
0.3173
0.3152
0.2999
0.2757
0.2444

0.6505
0.4744
0.4612
0.4446
0.4319
0.4272
0.4169
0.4127
0.4119
0.4056
0.4030
0.3880
0.3860
0.3857
0.3835
0.3712
0.3641
0.3639
0.3625
0.3527
0.3507
0.3495
0.3385
0.3290
0.3214
0.3035
0.2962
0.2947
0.2870
0.2861
0.2771
0.2770
0.2691
0.2671
0.2658
0.2644
0.2137
0.1974
0.1500

0.7073
0.7064
0.6846
0.6617
0.6603
0.6482
0.6457
0.6311
0.6299
0.6290
0.6284
0.6038
0.5964
0.5776
0.5728
0.5701
0.5643
0.5464
0.5328
0.5277
0.5200
0.5076
0.5044
0.5017
0.5005
0.4887
0.4701
0.4686
0.4569
0.4541
0.4442
0.3973
0.3962
0.3868
0.3841
0.3687
0.3581
0.3464
0.2865

6

8

2

13

1

12

4

3
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_ S31 S32 S33 S34 S35 S36 Ss7 Sss8 S39

0.5529 | 0.6356 | 0.5289 | 0.6189 | 0.4630 | 0.5957 | 0.6861 | 0.7842 | 0.8525
0.5520 | 0.6035 | 0.5211 | 0.6126 | 0.4311 | 0.5877 | 0.6215 | 0.7555 | 0.5501
0.5389 | 0.5882 | 0.5150 | 0.5324 | 0.4166 | 0.5780 | 0.5677 | 0.7362 | 0.5390
0.4843 | 0.5753 | 0.5097 | 0.5024 | 0.4134 | 0.5548 | 0.4646 | 0.7083 | 0.4991
0.4568 | 0.5580 | 0.4930 | 0.4846 | 0.4119 | 0.5458 | 0.4491 | 0.7069 | 0.4972
0.4369 | 0.5561 | 0.4659 | 0.4472 | 0.4064 | 0.5453 | 0.4409 | 0.6886 | 0.4929
0.4194 | 0.5319 | 0.4608 | 0.4354 | 0.4036 | 0.5414 | 0.4311 | 0.6704 | 0.4699
0.4186 | 0.5282 | 0.4430 | 0.4298 | 0.4033 | 0.5338 | 0.4005 | 0.6315 | 0.4411
0.4078 | 0.5129 | 0.4291 | 0.4296 | 0.3996 | 0.5307 | 0.3729 | 0.6254 | 0.4330
0.4036 | 0.5045 | 0.4176 | 0.4221 | 0.3870 | 0.5200 | 0.3696 | 0.6148 | 0.4325
0.3950 | 0.4980 | 0.4161 | 0.3913 | 0.3756 | 0.5130 | 0.3559 | 0.6078 | 0.4294
0.3827 | 0.4869 | 0.4074 | 0.3884 | 0.3727 | 0.4944 | 0.3555 | 0.6061 | 0.4279
0.3764 | 0.4722 | 0.3939 | 0.3790 | 0.3717 | 0.4936 | 0.3531 | 0.5953 | 0.4272
0.3734 | 0.4568 | 0.3928 | 0.3721 | 0.3647 | 0.4808 | 0.3528 | 0.5914 | 0.4023
0.3716 | 0.4361 | 0.3905 | 0.3695 | 0.3621 | 0.4791 | 0.3470 | 0.5866 | 0.3913
0.3664 | 0.4306 | 0.3876 | 0.3678 | 0.3586 | 0.4762 | 0.3429 | 0.5852 | 0.3834
0.3631 | 0.4246 | 0.3795 | 0.3654 | 0.3558 | 0.4750 | 0.3368 | 0.5771 | 0.3745
0.3584 | 0.3856 | 0.3789 | 0.3623 | 0.3461 | 0.4669 | 0.3217 | 0.5769 | 0.3548
0.3465 | 0.3849 | 0.3759 | 0.3517 | 0.3341 | 0.4498 | 0.3209 | 0.5692 | 0.3519
0.3786 | 0.3692 | 0.3332 | 0.3260 | 0.4453 | 0.3185 | 0.5687 | 0.3330
0.3407 | 0.3576 | 0.3658 | 0.3312 | 0.3238 | 0.4260 | 0.3000 | 0.5591 | 0.3109
0.3307 | 0.3534 | 0.3613 | 0.3223 | 0.3205 | 0.4251 | 0.2944 | 0.5557 | 0.3026
0.3212 | 0.3422 | 0.3570 | 0.3192 | 0.3193 | 0.4189 | 0.2928 | 0.5556 | 0.3001
0.3074 | 0.3320 | 0.3534 | 0.3127 | 0.3185 | 0.4162 | 0.2914 | 0.5494 | 0.2907
0.3012 | 0.3266 | 0.3468 | 0.2956 | 0.3038 | 0.4082 | 0.2897 | 0.5305 | 0.2871
0.2995 | 0.3250 | 0.3393 | 0.2940 | 0.3025 | 0.4081 | 0.2859 | 0.5237 | 0.2794
0.2968 | 0.3244 | 0.3319 | 0.2783 | 0.2988 | 0.4062 | 0.2842 | 0.5169 | 0.2709
0.2888 | 0.3235 | 0.3199 | 0.2770 | 0.2957 | 0.4023 | 0.2828 | 0.5019 | 0.2654
0.2800 | 0.3198 | 0.3187 | 0.2765 | 0.2794 | 0.3719 | 0.2816 | 0.4869 | 0.2636
0.2648 | 0.3130 | 0.3091 | 0.2692 | 0.2772 | 0.3637 | 0.2767 | 0.4806 | 0.2556
0.2616 | 0.2907 | 0.2972 | 0.2493 | 0.2692 | 0.3553 | 0.2684 | 0.4724 | 0.2523
0.2557 | 0.2870 | 0.2970 | 0.2490 | 0.2647 | 0.3507 | 0.2566 | 0.4636 | 0.2508
0.2479 | 0.2803 | 0.2828 | 0.2369 | 0.2608 | 0.3503 | 0.2463 | 0.4573 | 0.2422
0.2418 | 0.2757 | 0.2683 | 0.2367 | 0.2602 | 0.3394 | 0.2357 | 0.4557 | 0.2409
0.2403 | 0.2749 | 0.2679 | 0.2214 | 0.2516 | 0.3056 | 0.2315 | 0.4524 | 0.2326
0.2229 | 0.2746 | 0.2612 | 0.2178 | 0.2496 | 0.3040 | 0.2293 | 0.4368 | 0.2312
0.2206 | 0.2633 | 0.2589 | 0.2125 | 0.2384 | 0.2794 | 0.2048 | 0.4225 | 0.2260
0.2186 | 0.2402 | 0.2115 | 0.2086 | 0.2306 | 0.2672 | 0.2042 | 0.3913 | 0.2245
0.1957 | 0.2101 | 0.1384 | 0.1848 | 0.2141 | 0.2656 | 0.1836 | 0.3507 | 0.2073

r’ 6 9 2 1 4 7 1 1 11

All samples in the group a and b
o
w2
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ot
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Appendix B

Further Experimental Results
Concerning IKCA Approach
Presented in Chapter 6

B.1 Overview

In this appendix additional results concerning the experiments presented in Chapter [6]
are presented. In particular the results of IKCA evaluation with respect to accuracy,
FMR and FNMR for the ICH! feature. The evaluation of IKCA with XH! was conducted
using a range of w values, similar to the that used concerning the experiments reported
on in Chapter @ using ! . Authentication performance was evaluated as described in
Sub-section Tables [B.1 and [B.2 present the accuracy, FMR and FNMR results
obtained using the ACB and VHHS data sets respectively. Form the tables, it can be
observed that best values were recorded when w = 125; this was also noted with respect
to earlier experiments reported on in Chapter [6]

For a comparison purpose with IKCA using F* , Tables @ and @ present the best
values obtained, in both cases, using the ACB and VHHS data sets.

TABLE B.1: Obtained results for IKCA coupled with from KH' .

|w || Acc. | FMR | FNMR |

25 72.02 | 1.780 | 3.020
50 86.16 | 1.651 | 2.890
75 92.54 | 1.630 | 2.885
100 || 93.67 | 1.632 | 2.871
125 || 94.18 | 1.600 | 2.610
150 || 94.09 | 1.610 | 2.672
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TABLE B.2: Obtained results using the IKCA approach with KX#H' .

|w || Acc. | FMR [ FNMR

25 71.25 | 1.981 | 3.060
50 82.45 | 1.903 | 3.050
75 83.88 | 1.890 | 3.051
100 || 91.97 | 1.849 | 2.972
125 || 90.78 | 1.850 | 2.980
150 || 90.88 | 1.850 | 2.980

TABLE B.3: Comparison between KH' and F* results using the IKCA approach.

IKCA with KH' IKCA with F'
Acc. | FMR | FNMR || Acc. | FMR | FNMR

25 72.02 | 1.780 | 3.020 || 80.11 | 0.598 | 2.025
50 86.16 | 1.651 | 2.890 || 88.02 | 0.595 | 1.990
75 92.54 | 1.630 | 2.885 || 95.41 | 0.591 | 1.990
100 || 93.67 | 1.632 | 2.871 96.12 | 0.580 | 1.970
125 || 94.18 | 1.600 | 2.610 || 96.22 | 0.599 | 1.979
150 || 94.09 | 1.610 | 2.672 || 95.04 | 0.586 | 1.978

TABLE B.4: Comparison between KH' and F* results using the IKCA approach.

IKCA with CH" IKCA with F
Acc. | FMR | FNMR || Acc. | FMR | FNMR

25 71.25 | 1.981 | 3.060 | 70.41 | 1.048 | 2.052
50 82.45 | 1.903 | 3.050 || 85.24 | 1.045 | 2.051
75 83.88 | 1.890 | 3.051 83.33 | 1.047 | 2.052
100 || 91.97 | 1.849 | 2.972 || 96.01 | 1.045 | 2.050
125 || 90.78 | 1.850 | 2.980 || 94.06 | 1.040 | 2.049
150 || 90.88 | 1.850 | 2.980 || 93.11 | 1.047 | 2.050




Appendix C

Further Experimental Results
Concerning KCASA approach
presented in Chapter [7|

C.1 Overview

This appendix presents further results concerning the evaluation given in Chapter [7] with
respect to KCASA approach. More specifically, the results presented here are concerned
with the evaluation of KCASA with ICH! in the context of U-KTS. The evaluation of
the KCASA approach with H! | in the context of U-KTS, was conducted in terms of
accuracy, FMR and FNMR. Tables [C.T and show the obtained results for KCASA
with KH' using the ACB and VHHS data sets respectively. Recall that for the GP data
set KH! information was not available, so it was not possible to use the GP data set
in this set of experiments. The table presents the performance of KCASA with KH! in
the context of DFT and DWT respectively. From the tables, it can be observed that,
as in the case of F' , DWT outperform DFT. The best recorded results, with respect
to ACB data set, were recorded when w = 128; Acc = 95.85%, FMR = 0.047 and
FNMR = 1.091 for DWT. Whereas the best result with respect to VHHS data set was
recorded when w = 64; Acc = 97.09%, FMR = 0.561 and FNMR = 1.194 in favour of,
again, DWT KCASA representation.
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TABLE C.1: The obtained results for KCASA coupled with KH' applied to the ACB
data set.

DFT DWT
Acc. \ FMR \ FNMR || Acc. \ FMR \ FNMR

16 81.78 | 0.37 | 1.721 86.45 | 0.197 | 1.741
32 90.77 | 0.235 | 1.608 91.84 | 0.098 | 1.104
64 94.64 | 0.141 | 1.589 95.29 | 0.047 | 1.092
128 || 94.92 | 0.139 | 1.588 95.85 | 0.046 | 1.091
256 || 95.73 | 0.138 | 1.561 95.64 | 0.046 | 1.092
512 || 95.10 | 0.138 | 1.565 95.14 | 0.047 | 1.092

TABLE C.2: The obtained results for KCASA coupled with KH' applied to the VHHS
data set.

DFT DWT
Acc. \ FMR \ FNMR || Acc. \ FMR \ FNMR

16 73.83 | 0.981 | 1.971 70.19 | 1.072 | 1.947
32 87.15 | 0.102 | 1.747 88.63 | 0.997 | 1.254
64 94.28 | 0.087 | 1.120 97.09 | 0.561 | 1.194
128 || 95.43 | 0.067 | 1.112 96.06 | 0.581 | 1.199
256 || 95.26 | 0.067 | 1.114 94.89 | 0.583 | 1.201
512 || 94.47 | 0.080 | 1.119 96.79 | 0.579 | 1.197

w

For completeness, Tables[C.3land [C.4]present a comparison of the performance results
for KCASA coupled KH! against KCASA coupled F* , and DFT and DWT respectively,
when applied to the ACB data set. In a similar manner, Tables and [C.6 compares
the operation of the KCASA approach applied to the VHHS data set.

TaBLE C.3: Comparison of KCASA+DFT, coupled with KH" and F* , applied to the
ACB data set.

KH! F
Acc. [ FMR | FNMR || Acc. | FMR | FNMR
16 || 81.78[0.37 [ 1.721 || 83.46 | 0.278 | 1.601
32 | 90.77 | 0.235 | 1.608 || 92.61 | 0.138 | 1.588
64 | 94.64 | 0.141 | 1.589 || 97.10 | 0.130 | 1.500
128 || 94.92 | 0.139 | 1.588 || 96.00 | 0.131 | 1.510
256 || 95.73 | 0.138 | 1.561 || 96.73 | 0.132 | 1.511
512 || 95.10 | 0.138 | 1.565 || 96.55 | 0.131 | 1.511
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TABLE C.4: Comparison of KCASA+DWT, coupled with KH' and F* , applied to the
ACB data set.
KCH? Ft
v Acc. ‘ FMR ‘ FNMR || Acc. ‘ FMR ‘ FNMR
16 81.78 | 0.37 1.721 83.46 | 0.278 | 1.601
32 90.77 | 0.235 | 1.608 92.61 | 0.138 | 1.588
64 94.64 | 0.141 | 1.589 97.10 | 0.130 | 1.500
128 || 94.92 | 0.139 | 1.588 96.00 | 0.131 | 1.510
256 || 95.73 | 0.138 | 1.561 96.73 | 0.132 | 1.511
512 || 95.10 | 0.138 | 1.565 96.55 | 0.131 | 1.511
TaBLE C.5: Comparison of KCASA+DFT, coupled with KH! and F* , applied to the
VHHS data set.
w KCH? Ft
Acc. ‘ FMR ‘ FNMR || Acc. ‘ FMR ‘ FNMR
16 73.83 | 0.981 | 1.971 76.95 | 0.791 | 1.81
32 87.15 | 0.102 | 1.747 93.10 | 0.087 | 1.097
64 94.28 | 0.087 | 1.120 97.42 | 0.045 | 1.085
128 || 95.43 | 0.067 | 1.112 96.49 | 0.048 | 1.088
256 || 95.26 | 0.067 | 1.114 97.22 | 0.046 | 1.087
512 || 94.47 | 0.080 | 1.119 96.04 | 0.047 | 1.089
TABLE C.6: Comparison of KCASA+DWT, coupled with KH' and F* , applied to the
VHHS data set.
o ICH? Ft
Acc. ‘ FMR ‘ FNMR || Acc. ‘ FMR ‘ FNMR
16 70.19 | 1.072 | 1.947 80.19 | 0.978 1.871
32 88.63 | 0.997 | 1.254 88.63 | 0.0947 | 1.102
64 97.09 | 0.561 | 1.194 97.09 | 0.059 1.098
128 || 96.06 | 0.581 | 1.199 96.06 | 0.064 1.101
256 || 94.89 | 0.583 | 1.201 94.89 | 0.072 1.101
512 || 96.79 | 0.579 | 1.197 96.79 | 0.061 1.099
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