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Abstract

This thesis describes research work undertaken in the field of image mining. More

specifically, the research work is directed at image classification according to the

nature of a particular Region Of Interest (ROI) that appears across a given image

set. Four approaches are described in the context of the classification of medical

images. The first is founded on the extraction of a ROI signature using the

Hough transform, but using a polygonal approximation of the ROI boundary. The

second approach is founded on a weighted subgraph mining technique whereby

the ROI is represented using a quad-tree structure which allows the application

of a weighted subgraph mining technique to identify feature vectors representing

these ROIs; these can then be used as the foundation with which to build a

classifier. The third uses an efficient mechanism for determining Zernike moments

as a feature extractor, which are then translated into feature vectors to which a

classification process can be applied. The fourth is founded on a time series

analysis technique whereby the ROI is represented as a pseudo time series which

can then be used as the foundation for a Case Based Reasoner. The presented

evaluation is directed at MRI brain scan data where the classification is focused on

the corpus callosum, a distinctive ROI in such data. For evaluation purposes three

scenarios are considered: distinguishing between musicians and non-musicians,

left handedness and right handedness, and epilepsy patient screening.
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Chapter 1

Introduction

“Knowledge Discovery in Data (KDD) is the non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in data”

[49]. Data mining is an essential element within this process that is concerned

with the discovery of the desired hidden information within the data. The data

that data miners wish to mine comes in many different forms including: images,

graphs, text and so on. Consequently, data mining includes sub-fields such as

image mining, graph mining, and text mining. The work described in this thesis

is concerned with image mining.

Image mining is directed at the extraction of useful knowledge and relation-

ships from within image sets. Large amounts of visual information, in the form

of digital images, are generated on a daily basis with respect to many domains

such as the remote sensing and medical domains. Extracting useful knowledge

from within these images presents a significant challenge. Image mining also en-

compasses elements from fields such as image analysis and content based image

retrieval.

The work described in this thesis is directed at image classification, as opposed

to (say) image clustering. Image classification is a non-trivial problem, because

of the typically complex structure of image data, and is still a very active field of

research. In image classification, a collection of pre-classified (training) images are

taken as input and used to construct (train) a classifier which can then be applied

to unlabelled images. Image classification typically involves the pre-processing of

collections of images into a format whereby established classification techniques

may be applied. As with many data mining applications the main challenge in the

pre-processing of image data is to produce a representation whereby no relevant

1



information is lost while at the same time ensuring that the end result is succinct

enough to allow for the application of effective data mining. In image mining this

challenge is more acute because it is usually not clear what can be thrown away.

In most cases it is not possible to pre-process the images in such a way that all

pixel data, and the spatial relationships between pixels, can be retained; some

decision regarding resolution needs to be made. One approach is to apply some

form of segmentation to identify “blobs” (objects) within the images and then

use these objects to form an attribute set.

Image classification can be conducted with respect to as much of the informa-

tion contained in the images as possible, or can be focused on a particular object

or objects (blob or blobs) that occur across the image set. In this thesis the latter

is referred to as a Region Of Interest (ROI) and consequently the term ROI Based

Image Classification (ROIBIC) is used to identify this type of image classification.

The advantage offered is that the remainder of the image can be ignored and thus

computational advantages gained. Consequently, the representation can be more

detailed. The work described in this thesis is directed at ROIBIC.

The rest of this introductory chapter is organised as follows. The motivation

for the work is presented in Section 1.1. The research objectives and associated

research issues are presented in Section 1.2. The research methodology used to

address the research issues, including the “criteria for success”, is presented in

Section 1.3. An overview of the rest of this thesis is then given in Section 1.5,

and a summary of this chapter in Section 1.6.

1.1 Motivation

From the above, the research described in this thesis is directed at image clas-

sification, more specifically ROIBIC. Image classification, in whatever form, has

many applications. However, an important focus for image mining research is with

respect to medical applications. Global investment in the use of medical imaging

technology, such as Computed Tomography (CT), Magnetic Resonance Imagery

(MRI), Nuclear Medicine (NM) and MR Spectroscopy (MRS), has grown rapidly

over the last decade. The quantity of medical image data that is being generated

is fast becoming overwhelming, while at the same time there is a requirement

for ever more sophisticated tools to assist in the analysis of this imagery. Con-

2



sequently, medical image mining is attracting significant attention from both the

commercial and the research communities.

Medical diagnosis is often founded on a categorization (classification) of med-

ical images according to the nature of a specific object contained within such im-

ages rather than the entire image. Often the distinguishing features that would

indicate a particular classification are difficult to observe even by trained clin-

icians. Therefore there is a necessity for content based image classification to

classify these types of images according to the nature of a ROI contained within

them. This is then the motivation for the work described in this thesis.

The principal challenge of ROIBIC is the capture of the features of interest

in such a way that relative spatial information is retained. Some popular feature

representations are directed at colour, texture and/or shape. Little work has been

done on techniques that maintain the relative structure of the features of inter-

est. The work described in this thesis is directed at medical image classification

according to a particular feature of interest that appears across the image set.

There are many medical studies [4, 27, 31, 34, 38, 61, 74, 98, 124, 128, 149, 151]

that demonstrate that the shape and the size of specific regions of interest play a

crucial role in the image classification process. One example (and the application

focus of the work described) is that the shape of the corpus callosum, a promi-

nent feature located in brain MRI scans, is influenced by neurological diseases

such as epilepsy and autism, and by special abilities (such as mathematical or

musical ability) [111, 132, 149]. Many studies have shown a correlation between

the progression of Alzheimers disease (AD) and the decrease of volume in brain

periventricular structures, such as the hippocampus and the amygdala [50, 147].

In [146], a voxel discriminant map classification method is described applied to

brain ventricles in order to distinguish between healthy controls and Alzheimers

disease (AD) patients based on the shape of brain ventricles. In [55] the clinical

research problem of classifying the identical monozygotic and non-identical dizy-

gotic twin pairs according to the shape and size of brain ventricles structures has

been addressed.

In summary the work described is motivated by a need for techniques that

can classify images according to the shape and relative size of features of interest

that occur across some medical image sets. As noted above, one example is the

3



classification of MRI brain scan data according to the nature of corpus callosum

which features across those MRI brain scan collections.

1.2 Thesis Objectives

Given the motivation presented in the previous section, this thesis is targeted at

an investigation of techniques to facilitate the analysis of medical images accord-

ing to a ROI that may feature across such data sets. More specifically, the work

described investigates techniques for classifying 2D MR images, extracted from

3D MRI brain volumes, according to the nature of a ROI within these scans. The

research question to be addressed is thus how best to process image collections so

that efficient and effective classification, according to some ROI contained across

the image set, can be achieved. The techniques investigated assume that some

appropriate ROI exists across the image set, thus the proposed techniques will

not be applicable to all image classification problems, but the techniques will

be applicable to the subset of problems where classification according to a ROI

makes sense.

The above research question encompasses a number of research issues.

1. The techniques derived should serve to maximize classification accuracy

while at the same time allowing for efficient processing (although efficient

processing can be viewed as a secondary requirement to accuracy).

2. To achieve the desired classification accuracy any proposed feature extrac-

tion (representation) method should capture the salient elements of the ROI

without knowing in advance what those salient elements might be. In other

words any proposed feature extraction method, whatever form this might

take, should retain as much relevant information as possible.

3. Not withstanding point 2 it is also desirable to conduct the classification in

reasonable time, there is thus a trade off between accuracy and efficiency

that must be addressed.

4. Not all potential representations are compatible with all available classifica-

tion paradigms, thus different representations may require the application

of different classification techniques.
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1.3 Research Methodology

To address the above research objective and associated issues the adopted research

methodology was to investigate and evaluate a series of techniques that could

be applied to extract and process ROIs. Although there are a great variety

of potential techniques that can be adopted for ROI representation this thesis

focuses on four techniques as follows:

1. Tree representations: The representation of ROI in terms of quad-trees

coupled with the application of a weighted frequent subgraph mining tech-

nique to identify frequently occurring subgraphs which can then be used as

the input to a standard classification algorithm.

2. Time series representations: The representation of ROI as time series

coupled with the application of a Case Based Reasoning (CBR) process to

achieve the desired classification.

3. Hough Transform: The application of Hough transform methods to ROIs

so as to extract a “signature” that encapsulates the desired details of the

ROI which can then be used in conjunction with appropriate classification

algorithms.

4. Zernike Moments: The representation of ROIs using Zernike moments

so as to define a “signature”, as in the case of (3), that both encapsu-

lates details of the ROI and is compatible with appropriate classification

algorithms.

The first two were selected because they were two very distinct techniques that

have (to the best knowledge of the author) not been previously applied in the

context of ROIBIC for MRI brain scan data. The third and fourth options were

selected because, from the literature, the Hough transform and Zernike moments

have frequently been applied in the context of image classification.

To facilitate the above an appropriate segmentation technique was required

so as to isolate the desired ROI contained within a given input image collection.

The investigation therefore commenced with the consideration of the nature of

the segmentation techniques that might be required. This was then followed by
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consideration of the above four selected representations. To evaluate the effec-

tiveness of each technique standard measures (classification accuracy, specificity,

sensitivity and runtime) were used to assess the performance of the resulting clas-

sification. The aim was to identify the best performing technique. To support

the evaluation a number of MRI brain scan data sets were used. In each case

the proposed ROIBIC was directed at the classification of MRI brain scan data

according to the nature of the corpus callosum (introduced above).

1.4 Contributions

The contributions of the research work presented in this thesis can be summarized

as follows:

(a) A variation of the multiscale normalized cuts algorithm to achieve the desired

segmentation and delineation of a ROI contained across an image data set.

(b) A novel approach to MR image classification based on the Hough transform

coupled with a polygonal approximation. The aim of the application of the

polygonal approximation to the ROI was to obtain a smooth curve over a min-

imum number of line segments describing the region boundary. The Hough

transform was then used to extract (1D) image signatures.

(c) An effective approach to MR image classification based on a quad tree repre-

sented hierarchical decomposition coupled with a weighted frequent subgraph

mining algorithm in order to identify frequently occurring subgraphs (sub-

trees) within the quad-tree representation. The identified frequent subtrees

were viewed as defining a feature space which could be used to represent the

image set.

(d) A novel mechanism to speed up the computation of exact Zernike Moments,

also based on a quad-tree decomposition, and the usage of the resulting exact

Zernike moments to define signatures for input to a classification system.

(e) An effective mechanism to describe ROIs in the form of a time series cou-

pled with the use dynamic time warping to determine the similarity between

images within the context of a CBR framework.
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1.5 Thesis Organisation

The organisation of the rest of this thesis is as follows. Chapter 2 provides

an extensive literature review on medical image classification systems and also

discusses the challenges associated with 2D image segmentation to identify the

desired ROIs. Chapter 3 describes the nature of the MRI brain scan datasets

and the application domain used as the focus for the work described in this thesis

and to evaluate the proposed techniques. The necessary data preparation and

image pre-processing is also described in this chapter. The four techniques con-

sidered are then described in the following four chapters. Chapter 4 deals with

image classification techniques using the Hough transform. A variation of the

Hough transform that employs a polygonal approximation of the curves repre-

senting the regions of interest is proposed. Chapter 5 describes the tree based

approach to image classification and an associated weighted frequent subgraph

mining technique is used to identify frequently occurring “patterns”. Chapter 6

presents the Zernike moments based signature representation ROIBIC technique

and includes consideration of mechanisms for the fast computation of Zernike

moments to enhance the accuracy and efficiency of the technique. In Chapter 7

the image classification framework based on a time series representation is de-

scribed. The chapter includes discussion of a “dynamic time warping” similarity

matching mechanism. Finally, in Chapter 8, this dissertation is concluded with a

summary, presentation and discussion of the main findings, and some suggestions

for future work.

1.6 Summary

This chapter has provided the necessary context and background to the research

described in this thesis. In particular the motivation for the research and the

thesis objectives have been detailed. A literature review of the related previous

work, with respect to this thesis, is presented in the following chapter (Chapter

2).
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Chapter 2

Background and Literature
Review

2.1 Introduction

In this chapter a review of the background and previous work with respect to the

research described in this thesis is presented. The chapter starts, Section 2.2, with

a review of the MRI brain scan application domain. In Section 2.3 a brief review

is then presented concerning image preprocessing, a necessary precursor to any

image analysis process. Broadly the work described in this thesis falls within the

domain of data mining, and more specifically image mining. Section 2.4 therefore

introduced the concept of data mining and then goes on to consider, in more

detail, the sub-domains of image mining and image classification. In particular

the application of Case Based Reasoning (CBR) to the classification problem and

frequent subgraph mining are discussed, because these are two of the techniques

used (in part) to provide an answer to the research question central to this thesis

(how best to process image collections so that efficient and effective classification,

according to some ROI contained across the image set, can be achieved?).

One of the main issues associate with image classification is how best to

represent the image input set so that an appropriate image mining technique can

be applied. The nature of this representation is of course related to the nature of

the image mining techniques to be adopted. A review of various representation

techniques, that impact on the representations proposed in this thesis, is thus

given in Section 2.5. A chapter summary is presented in Section 2.6.
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2.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) came into prominence in the 1970s. MRI

is similar to Computerized Topography (CT) in that cross-sectional images are

produced of some object. MRI uses a strong magnetic field and radio waves

to produce high quality and detailed computerized images of the inside of some

object. MRI is based on the principle of Nuclear Magnetic Resonance (NMR),

a spectroscopic technique used by scientists to obtain microscopic chemical and

physical information about molecules. The first successful Nuclear Magnetic Res-

onance (NMR) experiments were conducted in 1946 independently by two scien-

tists, Felix Bloch and Edward Purcell, both of whom were awarded the Nobel

Prize in 1952. In 1977, Raymond Damadian discovered the basis for using MRI

as a tool for medical diagnosis and demonstrated the first MRI examination of a

human subject [32]. The technique was called MRI rather than Nuclear Magnetic

Resonance Imaging (NMRI) because of the negative connotations associated with

the word nuclear in the late 1970’s. MRI started out as a tomographic imaging

technique, that is it produced an image of the NMR signal in a thin slice through

the human body. Since then MRI has advanced beyond a tomographic imaging

technique to a 3D imaging technique.

MRI is commonly used to examine the spine, joints, abdomen, and pelvis.

A special kind of MRI exam, called Magnetic Resonance Angiography (MRA)

can be used to examine blood vessels. MRI is also used for brain diagnosis, for

example to detect abnormal changes in different parts of the brain. A MRI of the

brain produces a very detailed picture. An example brain scan image is given in

Figure 2.1.

As noted in the previous chapter the focus of the work described in this

thesis is directed at the classification/categorisation of MRI brain scans according

to a particular feature (ROI) within these scans, namely the corpus callosum.

MRI brain scans underpin the diagnosis and management of patients suffering

from various neurological and psychiatric conditions. Analysis of MRI data relies

on the expertise of specialists (radiologists) and is therefore subjective. More

specifically the focus of the work is the classification of MRI brain scan data

according to a feature called the corpus callosum. Figure 2.2 gives an example

midsagittal slice of a MRI scan, the corpus callosum is located in the centre of
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Figure 2.1: An example brain scan image. The three images show (from left
to right) sagittal, coronal and axial planes. A common point is marked in each
image.

the image. The midsagittal slice is the middle slice with a MRI scan, where a

MRI scan comprised a sequence (or bundle) of “image slices”.

The size and shape of the corpus callosum has been shown to be correlated

to sex, age, neurodegenerative diseases (e.g. epilepsy, multiple sclerosis and

schizophrenia) and various lateralized behaviour in people (such as handedness).

It is also conjectured that the size and shape of the corpus callosum reflects cer-

tain human characteristics (such as a mathematical or musical ability). Within

neuroimaging research considerable effort has been directed at quantifying pa-

rameters such as length, surface area and volume of structures in living adult

brains, and investigating differences in these parameters between sample groups.

Several studies indicate that the size and shape of the corpus callosum, in humans,

is correlated to sex [4, 34, 128], age [128, 151], brain growth and degeneration

[61, 98], handedness [31], epilepsy [27, 124, 149] and brain disfunction [38, 74]. It

is worth noting that although the work described in this thesis is directed at MRI

brain scan classification there are other features in MRI brain scans to which the

techniques could be applied, such as the ventricles.

2.3 Image Preprocessing, Registration and Seg-

mentation

The automated analysis of images, regardless of the nature of this analysis, typi-

cally requires some form of image pre-processing. This may include simple noise
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Figure 2.2: Midsagital MRI brain scan slice showing the corpus callosum (high-
lighted in the right-hand image).

removal and “deblurring” of objects. More advanced image preprocessing may

require operations such as registration and segmentation.

Registration is the process where by one or more images are aligned with a

reference image. This is important so that a collection of images can be effectively

compared. Image registration is used in a range of application domains, such as

medical image analysis (e.g. diagnosis), neuroscience (e.g. brain mapping), com-

puter vision (e.g. stereo image matching for shape recovery), astrophysics (e.g.

the alignment of images from different frequencies), etc. Image registration in the

medical domain is particularly difficult when complex (e.g. nonlinear) geometric

transformations are required to relate the images, e.g. when registering images

of different human brains (multi-subject registration). Registration of medical

image data sets can be defined as the problem of identifying a set of geometric

transformations which map the coordinate system of one data set to that of the

others. In the context of the work described in this thesis, image registration was

undertaken to ensure that all brain MRI scans in a given collection conformed

to a single set of coordinate axes. Therefore, all scans in the study have been

aligned manually by trained physicians.

Image segmentation is defined as the partitioning of an image into non-
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overlapping meaningful regions that are homogeneous with respect to some char-

acteristic such as intensity, colour or texture or by extracting one or more specific

objects in images such as medical structures. Ideally a segmentation method finds

the group of pixels that correspond to anatomical structures or regions of interest

in the image, usually this is done by distinguish objects or regions of interest (the

“foreground”) from everything else (the “background”). In the simplest cases

there are only two pixel types (foreground and background), consequently the

segmentation results in a binary image. Segmentation is often the first stage in

an image analysis process. Once the regions of interest are isolated from the rest

of the image, certain characterizing measurements can be made and these can be

used to (say) classify the regions.

Image segmentation has gone through many stages of development and refine-

ment over the last few decades [108]. However, any individual image segmentation

technique is not likely to achieve reliable results under all circumstances; there

is no all purpose “best” segmentation technique. Medical image segmentation is

a key task in many medical applications such as surgical planning, post-surgical

assessment and abnormality detection. Segmentation is used, for example: (i)

in the detection of organs such as the brain, heart, lungs or liver in MRI scans;

and (ii) to distinguish pathological tissues, such as tumours, from normal tis-

sue. The most basic attributes used to identify the ROI are image grey scale

level or brightness, but other properties such as texture can be used. Medical

images mostly contain complicated structures and precise segmentation is often

deemed necessary for clinical diagnosis. A lot of methods for automatic and semi-

automatic image segmentation fail to partition medical images precisely due to

poor image contrast, inhomogeneity and weak boundaries between regions. This

includes brain image segmentation. The segmentation of brain MRI scans is a

challenging problem that has received much attention [118, 154].

A variety of artifacts (noise) may appear in MRI data. Since the artifacts

change the appearance of the image they may also affect the performance of a

segmentation algorithm. The most significant artifacts in image segmentation are

intensity inhomogeneities and the partial volume effect. Intensity inhomogeneities

are not always visible to the human eye, but can nonetheless have negative influ-

ence on automatic segmentation. This may manifest itself by making intensities
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in one part of the image brighter or darker than another part. It is often caused

by the Radio Frequency (RF) coils used in the MRI acquisition process. The

partial volume effect occurs when a pixel can not be accurately assigned to one

tissue type. This is because the intensity of the pixel originates from more than

one tissue. It occurs when one pixel covers a number of different tissue types and

the collective signal emitted from these tissue cells makes up the detected inten-

sity of the pixel. The partial volume effect is most apparent at edges between

different tissues (regions).

Many image segmentation techniques are used in the context of brain MRI

segmentation including pixel classification, deformable models, statistical models,

fuzzy based approaches and graph based approaches. Each is discussed in the

following sub-sections.

2.3.1 MRI Segmentation Using Pixel Classification

Pixel classification methods segment brain structures pixel by pixel based on spa-

tial and appearance information, which are represented by pixel features. These

pixel features can include pixel coordinates describing the location, as well as

intensity values of filtered versions of MRI data that describe the appearance

of the region of interest. In classification-based segmentation image pixels are

represented as points in a high-dimensional space, in which the coordinate axes

are defined by the feature values associated with the pixel (for example colour

intensity). To segment an unlabelled target image using supervised classification

techniques, first manually labelled example images are used to train a pixel clas-

sifier. This is done by first sampling pixels from the training images and mapping

them to the feature space. In the feature space a decision boundary is then found

that best separates the groups of pixels labelled as regions, from the pixels that

were labelled as background in the examples. Different types of classifiers use

different methods to derive this boundary from the training samples. After train-

ing, the classifier is applied to the unlabelled target pixels by mapping them into

the feature space, and labelling them according to the decision boundary. The

more pixel features that are used the better the classifier’s ability to model the

region’s appearance and location. However, it also tends to increase the complex-

ity of the decision boundary which increases the risk of over-training (where the
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classifier is over tuned to a particular training set) causing errors when classifying

images that were not used for training. This risk can be decreased by increasing

the number of examples, constraining the complexity of the decision boundary,

or decreasing the number of features by ignoring those that are not considered

relevant to the classification accuracy. The most important differences between

brain structure segmentation methods based on pixel classification are the num-

ber and type of pixel features used. In Powell et al. [117] up to 100 features

were employed, including the intensities of pixels and their direct neighbours.

Morra et al. [104] segmented the hippocampus using thousands of features and

the AdaBoost ensemble classification method [53].

2.3.2 MRI Segmentation Using Deformable Models

Methods based on the deformable model paradigm, such as the active contour

model, also called snakes, delineate brain regions of interest by fitting a boundary

model to the image, which incorporates some form of global shape knowledge.

Using Snake and Level Sets the shape information is relatively weak, as these tech-

niques merely enforce smooth boundaries [11]. Statistical shape models enforce

stronger shape constraints and are therefore better equipped to deal with low-

contrast boundaries. These models are constructed by parametrizing the shapes

of manually labelled examples, and learning their mean shape and typical varia-

tions. Examples of shape models used for brain segmentation have been reported

in [71, 80]. The most important difference between these methods is the flexibility

of the parametrization. As a general rule, models with many degrees of freedom

can describe a complex boundary, but also require more labelled examples to

represent the potential shape variation. The initialization of the boundary of-

fers a way to incorporate spatial information in a deformable model. Deformable

models operate by minimizing a cost function that generally has several local

minima. This usually ensures that the final result is close to the initialization

and can therefore be used as a de-facto constraint on the spatial domain of the

segmentation.
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2.3.3 MRI Segmentation Using Statistical Models

Methods based on the statistical model paradigm pay attention to spatially in-

trinsic characteristics. The most popular stochastic model is the Markov Random

Field (MRF) model [14]. The MRF model, and its variants, have been successfully

used for brain MRI segmentation [138]. Ruan et al. proposed a fuzzy Markovian

method for brain tissue segmentation from magnetic resonance images that cal-

culated a fuzzy membership value for each pixel to indicate the partial volume

degree [125].

In unsupervised statistical segmentation techniques the number of class labels

and the model parameters are assumed to be unknown. Hence, estimations of

model parameters and image labels (where each group of pixels characterizing a

region of interest can be represented as an image label) are required simultane-

ously. Since, the image label estimation depends upon the optimal set of parame-

ters, the segmentation problem can be viewed as an incomplete data problem. To

handle this problem, an iterative scheme, the Expectation-Maximization (EM)

algorithm, has been proposed [103]. Zhang et al. proposed a Hidden Markov

Random Field (HMRF) model to achieve brain MRI segmentation in the case

of unsupervised statistical techniques [169]. A new Bayesian method for auto-

matic segmentation of brain MRI was proposed in [99] where a variant of the

EM algorithm was used so as to make the whole procedure more computationally

efficient.

2.3.4 MRI Segmentation Using Fuzzy Based Approaches

Fuzzy based segmentation approaches are increasing popular because of recent

developments in fuzzy set theory, the development of various fuzzy set based

mathematical modelling techniques, and its successful application in computer

vision systems [139]. Ahmed et al. proposed a bias correction Fuzzy C-Means

(FCM) segmentation algorithm in which they incorporated a neighbourhood reg-

ularizer into the FCM objective function to allow labelling of a pixel to be influ-

enced by the labels in its immediate neighbourhood [3]. The algorithm is realized

by incorporating the spatial neighbourhood information into the standard FCM

algorithm and modifying the membership weighting of each cluster. Siyal et al.

presented a modified FCM algorithm formulated by modifying the objective func-
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tion of the standard FCM and used a special spread method for the classification

of tissues [137]. Wang et al. proposed a modified FCM algorithm, called mFCM,

for brain MR image segmentation [148]. Aboulella et al. proposed a statisti-

cal feature extraction technique for diagnosis of breast cancer mammograms by

combining fuzzy image processing with rough set theory [65].

2.3.5 MRI Segmentation Using Graph Based Approaches

Recently, automatic segmentation of MR images of the developing new born brain

has been addressed [118] using graph clustering and parameter estimation for find-

ing the initial intensity distributions. Cocosco et al. [24] used sample selection

through minimum spanning trees for intensity-based classification. Shi and Ma-

lik [135] proposed the Normalized Cuts (NCut) algorithm for image segmentation

problems, which is based on Graph Theory. The NCut algorithm treats an im-

age pixel as a node of a graph, and considers segmentation in terms of a graph

partitioning problem. A variation of this technique is used in the context of the

work described later in this thesis. Chapter 3 gives more details of this image

segmentation technique.

Note that with respect to the work described in this thesis a necessary pre-cursor

for the desired classification is the identification (segmentation) of the corpus cal-

losum, although the precise nature of the adopted segmentation algorithm is not

significant as its is the relative performance of the proposed representations with

respect the classification task that is central to the investigation described in this

thesis.

2.4 Data Mining and Image Classification

Data Mining is broadly concerned with the identification of hidden patterns in

data. Data mining is part of a super process called Knowledge Discovery in

Databases (KDD) [47, 48, 64] and draws on the fields of statistics, machine learn-

ing, pattern recognition and database management. Data mining first came to

prominence in the early 1990s when advances in computing technology meant

that large quantities of data could be effectively collected and stored, and sub-

sequently analysed. However, we can trace the origins of data mining to much

earlier work on machine learning and statistics [18, 48, 49, 64]. Originally data
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mining was directed at tabular data, for example the analysis of the contents of

super market baskets [2]. Subsequently data mining techniques have been ap-

plied to many forms of data: examples include text [17], web usage logs [168],

and graphs [72]. The work described in this thesis is directed at image mining.

Image mining deals with the extraction of implicit knowledge from image

collections, for example image relationships or patterns, that are not explicitly

stored in the image database. The main challenge of image mining is concerned

with mechanisms to translate low-level pixel representations into high-level image

objects that can be efficiently mined [69, 110, 114, 166, 167].

One branch of data mining, and that of interest with respect to the work de-

scribed here, is classification (also sometimes referred to as categorisation). Clas-

sification is concerned with software systems to generate a “classifier” which can

then be used to classify (categorise) new data. Typically a pre-labelled training

set is used to build the classifier. Thus, in the case of the corpus callosum ap-

plication; the training data will comprise a set of labelled images, (say) epilepsy

and non-epilepsy, from which a classifier can be generated. This classifier can

then be used to categorise new images. Thus the goal of image classification is

to build a model that will be able to predict accurately the class of new, unseen

images. There are various techniques that can be used to generate the desired

classifier, examples include decision trees [122], Support Vector Machines (SVMs)

[28], KNN [100] and Naive Bayes [95].

For the work described in this thesis, the popular C4.5 decision tree classifier

[122] and SVMs [28] were adopted in Chapters (see 5 and 6). A C4.5 decision

tree consists of internal nodes that specify tests on individual input variables

or attributes that split the data into smaller subsets, and a series of leaf nodes

assigning a class to each of the observations in the resulting segments. The C4.5

algorithm builds decision trees using the concept of information entropy [122].

The entropy of a sample S of classified observations is given by:

Entropy(S) = −p1 log2(p1)− p0 log2(p0), (2.1)

where p1(p0) are the proportions of the class values 1(0) in the sample S, respec-

tively. C4.5 examines the normalised information gain (entropy difference) that

results from choosing an attribute for splitting the data. The attribute with the
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highest normalised information gain is the one used to make the decision. The

algorithm then recurs on the smaller subsets.

Support Vector Machines (SVMs) have proved to be a useful technique for

data classification. SVMs have provided improvements in the fields of handwrit-

ten digit recognition, object recognition and text categorization, among others.

SVMs try to map the original training data into a higher dimensional space by

a kernel function Φ. The aim is then to identify a linear separating hyper-plane,

with the maximal margin between negative and positive samples, in this higher

dimensional space. From the mathematical point of view, given a training set of

instance label pairs (xi, yi); i = 1 · · · l, where xi ∈ Rn and y ∈ {−1, 1}l, SVMs

search for a solution to the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to : yi(w
TΦ(xi) + b) ≥ 1− ξi; ξi > 0 (2.2)

Here training vectors xi are mapped into the higher dimensional space by the

function Φ. C > 0 is the penalty parameter of the error term. Furthermore,

K(xi, xj) ≡ Φ(xi)
TΦ(xj) is the kernel function. There are four basic kernel

functions: linear, polynomial, radial basis and sigmoid functions. SVMs are able

to deal with two-class problems, but there exists many strategies to allow SVMs

work with a larger number of categories.

The automatic categorization of medical images is a challenging task that can

be of importance when managing real data collections. More specifically, be-

cause of the increasing amount of medical image data available, locating relevant

information in an efficient way presents a particular challenge. Moreover, the ex-

traction of appropriate visual descriptors to reduce the gap between the semantic

interpretation and the visual content of medical images remains a research issue

[106].

There has been a substantial amount of work on the application of classifi-

cation techniques within the medical domain. For example, Antonie et al. [161]

distinguished mammography tumours from the normal mammography using a

medical image classification approach. Many successful techniques for automatic

categorization of medical images rely on the same kind of feature space descrip-

tors as more general methods for generic image classification. For example, Avni
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et al. [7] have successfully applied a Bag-of-Features (BoF) approach to the clas-

sification of X-Ray images. Their method uses histograms of vector quantized

scale invariant features for automatic organ recognition. Their Scale Invariant

Feature Transform (SIFT) technique computes a 128-bin gradient histogram as

a description vector for each salient region [96]. They have also applied their

method to discriminate between healthy and pathologic cases on a set of chest

radiography images. SIFT descriptors and the BoF representation have also been

successfully applied to binary classification problems related to endomicroscopic

images, thus enabling users to discriminate between neoplastic and benign cases

with high accuracy [5]. Another tool for feature extraction in medical image

retrieval and classification is the Local Binary Patterns (LBP) descriptor [109].

This descriptor is based on a very simple idea to efficiently describe the local

texture pattern around a pixel. LBP comprises a binary code that is obtained

by thresholding a neighbourhood according to the grey value of its centre. The

effectiveness of LBP for radiographic images has been recently demonstrated by

Jeanne et al. [78], who have found significant performance improvement over

other common visual descriptors. In the context of MRI scan classification, Yang

et al. [157] proposed an automatic categorization of brain MRI scans based on

Independent Component Analysis (ICA) coupled with an SVM technique to dis-

criminate MRI scans among Alzheimer patients, mild cognitive impairment, and

control subjects using whole brain images. In [83], a hybrid approach combines

an SVM technique and Genetic Algorithm (GA) to classify tumour and normal

tissue of brain MRI scans based on wavelet descriptors.

2.4.1 Case Based Reasoning

Case-Based Reasoning (CBR) is a well established Artificial Intelligence (AI).

CBR operates by using a Case Base (CB) of previous cases to solve a new case.

Essentially the features of the new case are compared with the features of the

cases in the CB and the identified most similar cases are used to formulate a

solution to the new case. Thus the basic idea behind CBR is to solve a current

problem by reusing solutions that have been applied to similar problems in the

past. At the highest level of generality, the CBR cycle may be described by four

tasks [1]: (i) retrieve the most similar case or cases, (ii) reuse the information and
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knowledge in the retrieved cases to solve the problem, (iii) generate a solution,

and (iv) retain in the CB the parts of this experience likely to be useful for

future problem solving. In order to do the retrieval, case representation and case

indexing techniques are required so that it is possible to retrieve cases using a

similarity computation. The retrieved cases are then reused to provide a possible

solution to the given problem and therefore, a case adaptation mechanism is also

required.

CBR is not normally thought of as a data mining technique. However, if we

think of a case base (CB) as comprising a set of examples each with an associated

label then CBR can be used for classification purposes. CBR style systems have

been applied successfully in the context of classification. For example Nearest-

Neighbour Classification (NNC) systems [100] can be characterised as a simple

CBR technique. As noted above the goal of classification is to predict the class

membership of given entities. The basic idea of NNC is to use information about

records (cases) for which the class membership is already known. In order to

classify a new record (case), its description has to be compared to the descrip-

tions of the known records. From an abstract point of view, each record can be

characterised as a point in some problem space defined by the properties used

to describe the record (see Figure 2.3). To predict the class of the new record

its nearest neighbours within the problem space is identified using some distance

metric. Finally, the information about the class membership of these nearest

neighbours is used to predict the class the new record. Either the class of the ac-

tual nearest neighbour may be used or a weighted voting system may be adopted

where k nearest neighbours have been identified. In the example shown in Fig-

ure 2.3 the entities belong either to the class “+” or “-”. Using a 5-NNC the

prediction for the shown query would be that it belongs to class “+”, because

3 of the 5 nearest neighbours belong to this class. From the CBR point of view

it is obvious that this approach requires no sophisticated adaptation methods as

long as the number of cases exceeds the number of possible classes significantly.

Excellent reviews of the foundations of CBR techniques, systems and tools can

be found in [1] and [136].

In the context of CBR based image classification the main issue is the simi-

larity matching technique to be adopted; given a case to be classified how best
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Figure 2.3: An example of 5-Nearest Neighbour Classification.

can this be matched with cases in the CB. The traditional measures used to com-

pare cases in CBR are distance measures (assuming of course that we are only

considering numerical attributes). Popular examples of such distance measures

are: Minkowsky distance, Hausdroff Distance, Bottleneck Distance and Reflection

Distance [143]. In the case of the work described here a Dynamic Time Warping

(DTW) technique has been adopted, this is described further in Chapter 7.

2.4.2 Graph Mining

Graph mining is the process of discovering hidden patterns (frequent subgraphs)

within graph datasets. From the literature graph mining can be categorized

in terms of transaction graph mining and single graph mining. In transaction

graph mining the dataset to be mined comprises a collection of small graphs

(transactions). The goal is to discover frequent recurring subgraphs across the

dataset. In single graph mining the input of the mining task is one single large

graph, and the objective is to find frequent subgraphs which occur within this

single graph. Frequent Subgraph Mining (FSM) has demonstrated its advantages

with respect to various tasks such as chemical compound analysis [73], document

image clustering [13], graph indexing [156], etc.

The straightforward idea behind FSM is to “grow” candidate subgraphs in

either a Breadth First Search (BFS) or Depth First Search (DFS) manner (can-
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didate generation), and then determine if the identified candidate subgraphs occur

frequently enough in the graph data for them to be considered interesting (sup-

port counting). The two main research issues in FSM are thus how to efficiently

and effectively: (i) generate the candidate frequent subgraphs and (ii) determine

the frequency of occurrence of the generated subgraphs. Effective candidate sub-

graph generation requires that the generation of duplicate or superfluous candi-

dates is avoided. Occurrence counting requires repeated comparison of candidate

subgraphs with subgraphs in the input data, a process known as subgraph iso-

morphism checking. FSM, in many respects, can be viewed as an extension of

Frequent Itemset Mining (FIM) popularised in the context of Association Rule

Mining (ARM). Consequently, many of the proposed solutions to addressing the

main research issues effecting FSM are based on similar techniques found in the

domain of FIM.

It is widely accepted that FSM techniques can be divided into two categories:

(i) the Apriori-based approach (also called the BFS strategy based approach)

and (ii) the pattern growth approach. These two categories are similar in spirit

to counterparts found in ARM, namely the Apriori algorithm [2] and the FP-

growth algorithm [63] respectively. The Apriori-based approach proceeds in a

“generate-and-test” manner using a BFS strategy to explore the subgraph lattice

of the given database. Therefore, before exploring any (k+1)-subgraphs, all the k-

subgraphs should first be explored. For each discovered subgraph g, this approach

extends g recursively until all the frequent supergraphs of g are discovered [62].

Pattern growth approaches can use both BFS and DFS strategies, but the latter

is preferable to the former because it requires less memory usage.

One of the main challenges associate with FIM and FSM is the substantial

number of patterns which can be mined from the underlying database. This

problem is particularly important in the case of graphs since the size of the

output can be extremely large.

The significance of FSM with respect to the work described here is that one

of the techniques proposed uses this technique for the purpose of generating a

feature space. The application of FSM algorithms to the datasets described

in this work entails a significant computational overhead because of the great

number of generated frequent subgraphs. To reduce this overhead a Weighted
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FSM approach can be applied, the objective being to focus on the identification

of those frequent subgraphs that are likely to be the most significant according

to some weighting scheme.

2.5 Image Representation

As noted above, image representation is an important issue with respect to image

classification. It is currently not computationally possible to present images to a

classification algorithm in their entirety, consequently it is necessary to process the

images in such a way that the classification process is tractable while at the same

time minimising information loss. Thus, one of the fundamental challenges of

image mining is to determine how the low-level pixel representation contained in a

raw image or image sequence can be efficiently and effectively processed to identify

high-level spatial ROIs and their relationships. Image classification techniques use

visual contents such as colour, texture, and shape to represent and classify images.

Colour and texture have been explored more thoroughly than shape. Because

shape is a more intrinsic property of ROIs than colour or texture, and given the

considerable evidence that natural ROIs are recognized based primarily on their

shape [107], the increasing interest in using the shape features of ROIs for image

classification is not surprising. The focus of this research is therefore on shape-

based image classification. Since humans can often recognize the characteristics

of ROIs using only their shapes, it is possible to expect shape-based techniques

to be intuitive as a tool for classifying images. However, image classification

by shape is still considered to be a more intrinsically difficult task compared to

image classification based on other visual features [107]. In addition, the problem

of shape-based image classification becomes more complex when the extracted

ROIs are corrupted by occlusions or noise as a result of the image segmentation

process.

Deriving shape descriptions is an important task in image classification. Once

the ROI has been acquired in the image, a set of techniques can be applied in

order to extract information from its shape, so that it can be analysed further.

This process is called shape description and generally results in a feature vector

(a shape descriptor). Shape description can be viewed as a mapping from a

shape space to a vector space that satisfies the requirement that two similar
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shapes will also have close-to-identical shape descriptors while still allowing for

discrimination between different shapes. Note that it is not a requirement that

the original shape can be reconstructed from the feature vector. In most studies,

the terms shape representation and description are used interchangeably. Since

some of the representation methods are used as shape descriptors, there is no well-

defined separation between shape representation techniques and shape description

techniques. However, shape representation and description methods are defined in

[93] as follows. Shape representation results in non-numeric values of the original

shape. Shape description results in numeric values and is a step subsequent to

shape representation. For the sake of simplicity, we consider representation and

description to be synonymous and, throughout the rest of this section, collectively

refer to such techniques as shape description methods.

During the last decade, significant progress has been made with respect to

both the theoretical and practical aspects of shape description, and the litera-

ture reports a variety of techniques directed at describing ROIs based on their

shape. Two main approaches to deriving shape descriptors are region-based and

boundary-based (also known as the contour-based approach). In the region-based

approach, all the pixels defining a ROI are used in order to obtain the desired

shape descriptors (vectors). On the other hand, the boundary-based descriptor

approach uses only the boundary of a ROI to extract its shape descriptor. The

two approaches are considered in more detail in subsection 2.5.1 and 2.5.2 be-

low. The representations proposed in this thesis include both region based and

boundary based descriptions.

The problem of shape analysis has been pursued by many authors, thus,

resulting in a great amount of research. Recent review papers [93, 165] as well as

books [29, 41] provide a good overviews of the subject.

2.5.1 Region Based Methods

Region based shape descriptors express the pixel distribution within a 2D ROI.

They can be used to describe complex ROIs consisting of multiple disconnected

regions as well as simple ROIs with or without holes. Since it is based on the

regional property of a ROI, the descriptor is insensitive to noise that may be

introduced inevitably in the process of segmentation. From the literature we can
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identify a number of techniques for generating region based shape descriptors,

examples include: (i) moments, (ii) simple scalar descriptors, (iii) angular radial

transformation descriptors, (iv) generic Fourier descriptors, (v) grid descriptors,

(vi) shape decomposition and (vii) medial axis transforms. A number of these

techniques form the foundation for some of the representations formulated later

in this thesis. Others have been included for consideration in this sub-section

purely for comparison purposes or because they are of historical interest.

2.5.1.1 Moments

Moments are widely used as shape descriptors. These moments can be classified

as being either orthogonal or non-orthogonal according to the basis used to derive

them. The most popular type of moments are called geometric moments which are

non-orthogonal moments that use a power basis (xp yq). The geometric moment

mpq of order p+ q of an (N ×M) digital image f(x, y) is defined as:

mpq =
M−1∑
x=0

N−1∑
y=0

xpyqf(x, y) (2.3)

The use of moments for shape description was initiated in [70], where it was

proved that moment-based shape description is information preserving. The ze-

roth order moment m00 is equal to the shape area assuming that f(x, y) is a

silhouette function with value one within the shape and zero outside the shape.

First order moments can be used to compute the coordinates of the center of

mass as xc = m10/m00 and yc = m01/m00. Based on the moments formulated

in equation 2.3, a number of functions can be defined that are invariant under

certain transformations such as translation, scaling and rotation. The moment

invariants are then put into a feature vector. Global object features such as area,

circularity, eccentricity, compactness, major axis orientation, Euler number and

algebraic moments can all be used for shape description [120].

Central moments are constructed by subtracting the centroid from all the

coordinates. These moments are represented as:

µpq =
M−1∑
x=0

N−1∑
y=0

(x− xc)p(y − yc)qf(x, y) (2.4)

The disadvantage of using these moments is that the basis used to derive these

moments is not orthogonal, so these moments suffer from a high degree of in-
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formation redundancy. A generalization of moment transforms to other basis

is also possible by replacing a conventional basis xp yq by a form Pp(x)Pq(y),

for example orthogonal polynomials. In this case, the moments produce mini-

mal information redundancy, which is important for optimal utilization of the

information available in a given number of moments [93]. Some of the orthogonal

polynomial systems include Legendre and Zernike polynomials [141]. Teague [141]

adopt Zernike orthogonal polynomials to derive a set of invariant moments, called

Zernike moments. Zernike moments are defined as the projections of f(x, y) on

complex Zernike polynomials which form a complete orthogonal set over only the

interior of the unit circle; that is, x2 + y2 ≤ 1. The function of complex Zernike

moments with an order p and repetition q in polar coordinates is defined as:

ZMpq =
p+ 1

π

∫ 2π

0

∫ 1

0

f(r, θ).V ∗pq(r, θ). r dr dθ (2.5)

Vpq(r, θ) is the Zernike polynomial, defined as:

Vpq(r, θ) = Rpq(r).e
iqθ, i =

√
−1 (2.6)

where p is a positive integer or zero and q is a positive integer subject to the

constraints that p− |q| is even and q ≤ p, r is the length of the vector from the

origin to the (x, y) pixel; i.e.,r =
√
x2 + y2, θ is the angle between the vector

r and the x axis in a counter-clockwise direction, the symbol (∗) denotes the

complex conjugate, and Rpq(r) is a real-valued Zernike-radial polynomial defined

as follows:

Rpq(r) =

p−|q|/2∑
k=0

(−1)k.
(p− k)!

k!
(
p+|q|

2
− k
)

!
(
p−|q|

2
− k
)

!
.rp−2k (2.7)

Many researchers have adopted Zernike moments for many applications, such

as character recognition [15], face recognition [10], and shape retrieval [81]. Zernike

moment invariants have been shown to outperform several other shape descriptors

and to be highly effective in terms of image representation [85, 164]. Teh and Chin

[123] evaluated the performance of several moments with respect to issues such

as representation ability, noise sensitivity, and information redundancy. In terms

of overall performance, Teh and Chin showed that Zernike moments outperform

geometrical and Legendre moments. Further details about Zernike moments will
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presented in Chapter 6 as this is the foundation of one of the representations

considered in this thesis.

2.5.1.2 Simple Scalar Descriptors

A shape can be described using scalar measures based on its simple geomet-

ric characteristics. These simple descriptors of a shape can often discriminate

only between shapes with large dissimilarities; therefore, they are usually used in

the context of image classification to act as filters to eliminate false hits or are

combined with other techniques to differentiate shapes. The advantage of these

descriptors is that they have a physical meaning. A brief description of the most

commonly used simple global descriptors is given below.

Eccentricity: Eccentricity (E) has been widely used as a scalar descriptor. It

illustrates the way in which the pixels of a ROI are scattered around the

centre of the ROI. E is defined as the ratio of the major axis of the ROI to

the minor axis. It is calculated using central moments such that [153]:

E =
µ20 + µ02 +

√
µ2

20 + µ2
02 − 2µ02µ20 + 4µ2

11

µ20 + µ02 −
√
µ2

20 + µ2
02 − 2µ02µ20 + 4µ2

11

(2.8)

where µpq are the central moments of order (p+ q).

Solidity: Solidity (S) is computed as the ratio between the ROI area A0 and the

area of the corresponding convex hull. Solidity is computed as follows [153]:

S =
A0

Convex Area
(2.9)

Extent (Rectangularity): Extent (EX) is a measure that reflects the rectan-

gularity of a ROI [21], in other words, how much of a ROI fills its minimum

enclosing rectangle (MER). Extent is defined as:

EX =
A0

AMER

(2.10)

where AMER is the area of the ROI’s MER.

Circularity (Compactness): Circularity (C) is a measure of roundness and is

defined as follows:

C =
4π ∗ A0

(P0)2 (2.11)
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where A0 is the ROI area, and P0 is the ROI perimeter.

It is sometimes used as inverse formula C = (P0)2

4π∗A0
.

Euler’s Number: Euler’s Number is the difference between the number of con-

tiguous parts and the number of holes in the ROI.

Elongatedness: Elongatedness is the ratio between the length and width of the

region bounding rectangle.

2.5.1.3 Angular Radial Transform Descriptors

For region-based shape descriptions, the MPEG-7 working group has selected

angular radial transform descriptors [19] as MPEG-7 region based shape descrip-

tor. Angular radial transform (ART) descriptors are similar to Zernike moments

descriptors. The main difference is that ART descriptors are based on cosine

functions rather than on Zernike polynomials. The ART basis functions are sep-

arable along the angular and radial directions and are defined on the unit circle

as follows [19]:

Vpq(x, y) = Vpq(r, θ) =
1

2π
Rp(r)e

iqθ (2.12)

The complex ART descriptors of order p with repetition q for a continuous

function f(x, y) are defined in polar coordinates as:

ARTpq =
1

2π

∫ π

0

∫ 1

0

f(r, θ).Rp(r).e
−iqθ r dr dθ (2.13)

where

Rp(r) =

{
1 p = 0
2cos(pπr) p 6= 0

(2.14)

For a digital image, the integrals are replaced by summations to obtain:

ARTpq =
1

2π

∑
r

∑
θ

f(rcosθ, rsinθ).Rp(r).e
−iqθ r dr dθ , r ≤ 1 (2.15)

One of the advantages of the ART method is the compactness and efficiency in

describing the properties of multiple disjoint regions, simultaneously. It describes

the ROIs that may be split into disconnected sub-regions in the segmentation

process. It has been reported that Zernike moments outperform angular radial

transform descriptors in classifying ROIs that can be classified based on their
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contours, but that ART descriptors perform better in the case of complex ROIs,

i.e., ROIs that consist of multiple contours, which can be classified only by region-

based techniques [101].

2.5.1.4 Generic Fourier Descriptors

A one-dimensional Fourier transform has been used successfully in image analysis

to derive shape descriptors from shape contours. Zhang and Lu [163] adopted

the 2D Fourier transform to derive a set of invariant descriptors called Generic

Fourier descriptors (GFD). In this method, the 2D ROI is transformed to the

polar coordinates, and the 2D Fourier transform is then applied in order to derive

shape descriptors. The rotation of the original ROI corresponds to a shift in the

normal Cartesian coordinates. This property makes it possible to derive rotation

invariant features by applying the 2D Fourier transform on the polar image and

then taking the magnitude while ignoring the phase. The 2D Fourier transform

of a polar image is give by [163]:

GFD(ρ, φ) =
∑
r

∑
i

f(r, θi)e
−j2π( rRρ+ 2πi

T
φ) (2.16)

where 0 ≤ r =
√

(x− xc)2 + (y − yc)2 < R and θi = i(2π/T ), (0 ≤ i < T );

(xc, yc) is the center of mass of the ROI; 0 ≤ ρ < R, 0 ≤ φ < T . R and T are the

radial and angular resolutions.

The experiments conducted by Zhang and Lu [163] showed that GFD outper-

formed the use of ZM in retrieving ROIs based on the content of a region. Li

and Lee [91] proposed a technique which utilizes the magnitude of the Fourier

transform as well as phase coefficients in order to derive a set of invariant features.

2.5.1.5 Fourier-Mellin Descriptors

The Fourier-Mellin transform takes advantage of the properties of the Fourier

and Mellin transforms in order to define a new set of image invariants called

Fourier-Mellin Descriptors (FMDs). The Fourier-Mellin transform for f(r, θ) is

defined as follows [133]:

FMsl =
1

2π

∫ π

−π

∫ ∞
0

rs−1.f(r, θ).e−jlθ r dr dθ (2.17)
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This transformation shows a radial-Mellin transform with parameter s and an

explicit circular-Fourier transform with parameter l [133]. The rotation invariant

can be achieved by taking the magnitude of the transform. Translation invariance

is conventionally achieved by placing the origin of the coordinates at the image

centroid.

Sheng and Duvernoy [133] employed the Mellin transform and the angular

Fourier complex componential factor to drive invariant Fourier-Mellin descrip-

tors. The problem associated with Fourier-Mellin descriptors is that the kernel

function of the Mellin transform is not orthogonal; hence, these invariants suf-

fer from a high degree of information redundancy. To overcome this problem,

Sheng and Shen [134] applied the Gram-Schmidt orthogonalization process to

orthogonalize the kernel function of the Mellin transform and used the resul-

tant orthogonal polynomial to derive a set of orthogonal Fourier-Mellin moments.

Their experiments demonstrated that, for small images, the description produced

by orthogonal Fourier-Mellin moments is better than that produced by Zernike

moments in terms of image-reconstruction errors and signal-to-noise ratio.

2.5.1.6 Grid Descriptors

The grid-based method has attracted interest because of its simplicity with re-

spect to representations [97]. In this technique, the given ROI is overlaid by a

grid space of a fixed size. A value of one is assigned to cells if they are at least

15% covered, and a zero is assigned to each of the other cells [97]. Then the 1s and

0s are scanned from left to right and top to bottom to obtain a binary sequence

for the ROI. It is also evident that the smaller the cell size, the more accurate

the representation of the ROI, but the greater the storage and computation re-

quirements. It is evident that the representation is translation invariant, but it

is not invariant to scale and rotation. Rotation and scale normalization are thus

necessary when grid descriptors are used to compare two ROIs. To achieve scale

normalization, all ROIs are scaled proportionally so that the major axes have the

same fixed length. For rotation invariance, the given ROI is rotated so that its

major axis is in parallel with the x-axis. The key problem associated with grid

descriptors is the problematic major axis normalization. The major axis is sensi-

tive to noise and can be unreliable even in the absence of noise effects. Moreover,
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online classification usually involves extremely complex computations due to the

high degree of dimensionality of the feature vectors.

2.5.1.7 Shape Decomposition

This approach assumes that shape description is a hierarchical process and decom-

poses a ROI into a union of primitives that comprise the simplest elements which

form the region. Given the decomposition, a graph representation is constructed.

Syntactic pattern recognition techniques are, then, applied. Shape decomposition

methods generally use mathematical morphology. A morphological shape decom-

position technique is proposed in [116] where the binary ROIs are decomposed

into a union of simple regions. A structuring element (disk) is defined as the

simplest ROI component and the image is analysed as a union of the disks. The

representation is shown to be unique and invariant under rotation, translation

and scaling. Another morphological decomposition method, which is called Mor-

phological Signature Transform (MST) was developed in [94]. The MST method

utilizes multiresolution morphological image processing by multiple structuring

elements. The idea of this approach is to process decomposed, multiple shapes

instead of the original one. The decomposed shapes, called signature shapes,

contain substantial information about the whole shape. The method calculates

the area of the shape signatures obtained from multiple structuring elements and

multiple ROI scales to generate shape descriptors. Multiple structuring elements

are obtained by rotating single or multiple structuring elements. One of the ear-

liest types of shape decomposition of image data is the quad-tree [92]. It is a

tree-like representation of image data, where the image is recursively divided into

smaller regions. A quad-tree is a tree data structure in which each internal node

has exactly four children. The quad-tree decomposition is based on a recursive

subdivision of the image block into four quadrants according to the complexity

of the block. If a subimage is not a homogeneous block, it is subdivided into

four equal sized subimages again until all the subimages are homogeneous blocks.

A subimage is called a homogeneous block if the grey-level of each of the pixels

in the block is the same with respect to some specified constant. More details

concerning the quad-tree representation coupled with weighted frequent subgraph

mining is given in Chapter 5.
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One of the problems in shape decomposition is the definition of the compo-

nents. The result of the decomposition does not always correspond to a human

intuitive shape representation. Furthermore, the results are not always unique.

The decomposition of similar shapes may result in different elements. In many

cases, the derivation of the decomposition is rather tedious and the computa-

tional complexity is relatively high compared to the other region based shape

description methods such as ART and moments.

2.5.1.8 Medial Axis Transform

The idea of the Medial Axis Transform (MAT) is to represent the shape by a

graph in which the important shape features are preserved [35]. The shape graph

is based on the region skeleton and the first step is the skeleton construction. The

skeleton is the set of all region points, which have the same minimum distance

from the region boundary for at least two separate boundary points. Generally,

MAT techniques use the region of the shape skeleton in order to derive shape

descriptors. The idea behind obtaining the skeleton of the region of a shape

is to preserve the topological information of the shape and to eliminate redun-

dant information. In other words, the skeletonization extracts a region-based

shape feature that represents the general form of a ROI. The shape’s skeleton

can be obtained by several techniques such as thinning algorithms, mathemati-

cal morphologic-based algorithms, and distance map-based algorithms [59]. After

skeletonization, the skeleton is decomposed into parts and represented as a graph.

Matching shapes then becomes a graph-matching problem. The difficulty with

skeleton-based techniques is that a small amount of noise or a variation in the

boundary often generates redundant skeleton branches that may seriously disturb

the topology of the skeleton’s graph [9]. Therefore, one of the weaknesses in the

medial axis transform is its sensitivity to noise in the shape boundary.

2.5.2 Boundary Based Methods

Boundary based shape description methods exploit only shape boundary informa-

tion. The shape properties of a ROI boundary are crucial to human perception in

judging shape similarity and recognition. Many authors who have studied the hu-

man visual perception systems, agree on the significance of high curvature points
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of the shape boundary in visual perception [6]. In the psychological experiments,

it is suggested that corners have high information content and, for the purpose

of shape description, corners are used as points of high curvature. Therefore, the

shape boundary contains more information than the shape interior, in terms of

perception.

The previous sections have provided a review of several descriptors that are

based on the internal content of the shape. However, in many applications, the

internal content of the shape is not as important as its boundary. Boundary-

based techniques tend to be more efficient for handling shapes that are described

according to their contours [101]. From the literature we can identify a number

of techniques for generating boundary based shape descriptors, examples include:

(i) polygonal approximation, (ii) Hough transform, (iii) stochastic representation,

(iv) boundary approximation, (v) Fourier descriptors, (vi) coding, (vii) Curvature

Scale Space Descriptors and (viii) simple boundary descriptors. Each is discussed

in further detail below.

2.5.2.1 Polygon Approximation

Polygon approximation is one of the most popular shape representation methods,

where the continuous shape is represented by a set of vertices of a polygon [93].

The main idea is to eliminate the redundant and insignificant shape features by

reducing the number of boundary points. This is performed by searching the

break points on the boundary, based on an approximation criteria, such as mini-

mal error, minimal polygon perimeter or maximal internal polygon area. One of

the most widely used polygonal approximation algorithm is a heuristic method

called the Douglas-Peucker algorithm [37]. This iterative procedure repeatedly

splits the curve into smaller and smaller curves until the maximum of the per-

pendicular distances of the points on the curve from the line segment is smaller

than the error tolerance ε. In the approaches which use the split and merge algo-

rithm [113], where the curve is split into segments until some acceptable error is

reached, the split segments are merged if the resulting segment approximates the

curve within some maximum error. In [88] curve evolution is used as a polygonal

approximation method. Curve evolution reduces the influence of noise and sim-

plifies the shapes by removing the irrelevant features, keeping relevant ones. In
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this method, a digital curve is regarded as a polygon, where each boundary point

is assumed to be a vertex, at the beginning of the evolution. In every evolution

step, a pair of consecutive line segments is substituted with a line segment, join-

ing the end points. The evolution process halts when the difference between the

evolved polygon and the original curve is higher than a given threshold. Curve

evolution methods assume that the shape boundary consists of various sources

of distortion, which should be removed by smoothing. The process of smoothing

depends on the predefined threshold value, which halts the evolution.

Corner detection is another approach for polygonal approximation. Popular tech-

niques for corner detection use Wavelet Transform Modulus Maxima (WTMM)

[121]. First, the shape boundary is represented by a 1D signal such as the con-

tour’s orientation profile. The singularities on that signal are then detected by

determining the local maxima of the wavelet transform of the signal.

2.5.2.2 Hough Transform

The Hough Transform (HT) is a widespread technique in image analysis. Its main

idea is to transform the image to a parameter space where clusters or particular

configurations identify instances of a shape under detection. HT based techniques

are used for shape detection, either parametrized or generalized. The HT was

first introduced by Paul Hough in 1962 [67] with the aim of detecting alignments

in T.V. lines. It became later the basis of a great number of image analysis

applications. The HT is mainly used to detect parametric shapes in images. It

was first used to detect straight lines and later extended to other parametric

models such as circles or ellipses, being finally generalized to any parametric

shape [12].

One major advantage offered by the HT is that it is highly robust against

image noise and degradation. The HT is used for extracting shape signatures

which can be used as a feature vector in the classification process. The HT is

suitable for this task because it maintains the spatial information associated with

an image ROI (feature). The “classic” HT performs a mapping between the X-

Y image space onto a ρ − θ space. The transformation is ρ = xcosθ + ysinθ,

where (x, y) are the coordinates of the pixel to be transformed, and (ρ, θ) are

the parameters of a corresponding line passing through the pixel. The parameter
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space is suitably quantized into bins and represented by means of an accumulator

matrix initially set to zeros. Each pixel (x, y) can be conceptualised as a sinusoidal

(parametric) curve in the new ρ − θ space,where θ varies from the minimum

to the maximum values, giving the corresponding ρ values. The corresponding

sinusoidal positions can be stored in an accumulator matrix A, where each row

corresponds to one value of ρ, and each column to one value of θ. The cells in A

are then incremented by the parametric curve. The local maxima within A then

correspond to the dominant boundary lines of the ROI. Further details about the

HT are presented in Chapter 4.

2.5.2.3 Stochastic Representation

stochastic representation methods are based on the stochastic modelling of a

one dimensional function obtained from the shape boundary [93]. The idea is

to interpret the one dimensional function as a stochastic process realization and

use the model parameters obtained by estimation, as shape descriptors. For

example the Autoregressive (AR) model proposed in [82] to represent the closed

shape boundary. The one dimensional representation is obtained using a centroid

distance function. The AR model is, then, characterized by a set of unknown

parameters and an independent noise sequence. Given the function u(s), the

stochastic process is defined by:

u(s) = α +
m∑
j=1

θju(s− j) +
√
βωs (2.18)

where θj is the AR coefficients to be estimated, α is a constant to be estimated,
√
β is the variance of prediction noise and ωs is the independent random noise

source. θ1, ..., θm, α, β are called the model parameters. The shape descriptor vec-

tor is constructed using these parameters estimated by the Maximum Likelihood

Method. The same AR model is used in [39] with additional methods for improv-

ing classification performance. In [33], the AR model is extended to the bivariate

case and the classification results are further improved. The disadvantage of the

AR model is the sensitivity to shape occlusion [66]. The reason for this drawback

is that it models the whole shape with only one set of predictive parameters. If

the shape contains a large number of sample points and the contour varies rad-

ically, the shape may seem unpredictable. Therefore, an AR model with a finite
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number of parameters is not adequate for the whole shape. In order to overcome

this drawback, the AR model is combined with the Hidden Markov Model in [66].

This approach segments closed shapes into segments, describes each segment by

AR modeling and finally analyzes the resulting vectors using a Hidden Markov

Model.

2.5.2.4 Boundary Approximation

Boundary approximation methods represent the curves by piecewise polynomial

interpolation, which results in a set of smooth curves inflected at control points.

Splines are used for the interpolation of functions to approximate shape segments.

The power of splines comes from the approximation of a given function with a

curve having the minimum average curvature. The main disadvantage of splines

is that the local function value modification changes the complete spline represen-

tation [93]. For this reason, B-splines are constructed so that the local function

value change does not spread to the rest of the intervals. Bsplines are piecewise

polynomial curves, whose shape is closely related to their control polygon which

is a chain of vertices giving a polynomial representation of a curve. If a control

polygon vertex changes its position, a resulting change of the spline curve oc-

cur only in a small neighbourhood of that vertex. In [25], curve representation

and matching is performed by B-splines. Another method, described in [26], use

splines for ROI modelling and shape estimation. Shape preserving approximation

based on splines is proposed in [68].

2.5.2.5 Fourier Descriptors

The Fourier representation decomposes a shape contour into its frequency com-

ponents (Fourier descriptors) obtained via its Fourier transform. The Fourier

transform is applied to the boundary function and the resulting coefficients are

used for shape description. For a given closed curve, which in turn is represented

by a one dimensional function u(s), the discrete Fourier transform is defined by:

an =
1

N

N−1∑
s=0

u(s)exp(−j2πns/N) (2.19)

The coefficients an, n = 0, 1, ..., N − 1, are used to derive Fourier descriptors.

In order to achieve translation and rotation invariance the phase information of
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an is ignored and only the magnitude |an| is used. The magnitudes are divided

by the DC component |a0|, to achieve the scale invariance. In order to obtain

one dimensional function from the shape boundary, various methods have been

suggested such as tangent angle [160] and centroid distance [162]. The “classical

method” is to express the shape as a sequence of coordinates in the complex plane,

namely u(s) = x(s) + jy(s). Modified Fourier descriptors are used in [126] to

efficiently compute the feature matching. The Fourier descriptors represent global

information about the boundary. Therefore, local spatial information about the

shape is not readily available and the level of shape detail can only be controlled

on a global basis.

2.5.2.6 Coding

Coding methods describe a ROI by a sequence of unit size line segments with

a given orientation. One of the most popular coding scheme is Freeman’s chain

code [51], which is essentially obtained by mapping the shape boundary into a

2D parameter space, which is made up of codes. The chain code is defined as

the direction of the ROI’s contour from a starting point. This representation is

typically based on 4- or 8-connectivity, and the resulting chain code is a sequence

of numbers. There are many variations of Freeman chain codes. A generalized

chain code is proposed in [52], where the nodes surrounding a center node are

enumerated counter-clockwise in ascending order from inside out.

2.5.2.7 Curvature Scale Space Descriptors

Scale space representations are based on tracking the position of inflection points

in a boundary, filtered by low-pass Gaussian functions of variable widths [93]. The

inflection points, remaining in the representation are expected to be significant

object characteristics [93]. The Curvature Scale Space (CSS) approach proposed

in [102] is the most popular one in this class of methods. It has been selected as

the MPEG-7 contour based shape descriptor. Mathematically speaking, let Γ be

a closed planar curve and u be the normalized arc length parameter on Γ:

Γ = {(x(u), y(u)) |u ∈ [0, 1]} . (2.20)
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In order to smooth the curve, functions x(u) and y(u) is convolved with a one

dimensional Gaussian kernel at different levels:

X(u, σ) = x(u) ∗ g(u, σ),

X(u, σ) = y(u) ∗ g(u, σ), (2.21)

g(u, σ) is a Gaussian kernel of width σ. The curvature of the smoothed curve is

then computed as:

k(u, σ) =
Ẋ(u, σ)Ÿ (u, σ)− Ẍ(u, σ)Ẏ (u, σ)(

Ẋ2(u, σ) + Ẏ 2(u, σ)
)3/2

, (2.22)

where Ẋ , Ẏ and Ẍ , Ÿ are the first and second derivatives of x(u, σ) and y(u, σ).

As σ increases, the shape of Γσ changes. This process of generating ordered

sequences of curves is referred to as the evolution of Γ. During evolution, the lo-

cations of curvature zero crossings of every Γσ is determined. The points are then

plotted in (u, σ) plane. The result of this process is represented as a binary image,

called a CSS image of the curve. Finally, shapes are described by the positions of

their CSS contour maxima. These positions projected onto the simplified object

contours give the positions of the mid points of the maximal convex/concave arcs,

obtained during the curve evolution. Since the small contours on the CSS image

represent some information about the existing noise on the actual object, those

maxima which are lower than a threshold are discarded. The shape similarity

measure between two shapes is computed by relating the positions of the max-

ima of the corresponding CSSs. The CSS image representation is invariant to

scale, rotation and translation. It is also robust to significant non-rigid deforma-

tions and perspective deformations. The basic drawback of this representation is

the difficulty in the determination of a threshold value in order to remove small

contours in CSS image. This process results in a decreased resolution, depending

on the predefined threshold value. Therefore, it requires procedures, which find

the necessary level of detail or use empirical parameters for sufficient resolution

of the shape contour.

2.5.2.8 Simple Boundary Descriptors

Boundary descriptors are mostly based on the geometric properties of the bound-

ary. Because of the discrete character of digital images, all of them are sensitive
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to image resolution. In the following, popular geometric descriptors are provided

for the sake of completeness:

Bending Energy: Given a plane curve Γ = (x(u), y(u)) and its curvature func-

tion C(u) is given by:

C(u) =
Ẋ(u)Ÿ (u)− Ẍ(u)Ẏ (u)(
Ẋ2(u) + Ẏ 2(u)

)3/2
, (2.23)

where Ẋ , Ẏ and Ẍ , Ÿ are the first and second derivatives of x(u) and

y(u). The bending energy is defined as:

E =
1

N

N∑
u=1

C(u)2 (2.24)

Centroid Distance: The centroid distance function is expressed by the distance

of the boundary points from the centroid (xc, yc) of the ROI:

Dcentroid(s) =
√

(x(s)− xc)2 + (y(s)− yc)2 (2.25)

Convexity(CX): A convex hull is the minimal covering of an ROI. A ROI con-

vexity can be defined as the ratio of perimeters of the convex hull to that

of the original contour (P0). The convexity is represented as [115]:

CX =
Convex perimeter

P0

(2.26)

Aspect Ratio (AR): The aspect ratio is defined as the height of the ROI di-

vided by its width and is expressed as:

AR =
Height of the ROI

Width of the ROI
(2.27)

2.6 Summary

This chapter has presented the background and previous work with respect to

the research described in this thesis. Image classification, as a sub-domain of im-

age mining, and the challenges of medical image categorization were described.

In the context of image pre-processing prior to the application of image classi-

fication, several image segmentation techniques that may be applied to medical

40



images were introduced. A review of the literature concerned with ROIBIC was

presented. This review indicated that the number of types of shape descriptors

for image classification has been rapidly increasing over the last decade; however,

each technique has a number of shortcomings. In the next chapter the medical

brain MRI scan datasets that were used for the performance evaluation of the

proposed techniques are described. The process of preparing these images for

image classification, including image registration and image segmentation, will

also be presented.

41



42



Chapter 3

MRI Datasets: Preprocessing
and Segmentation

3.1 Introduction

There have been major advances in the field of medical imaging over the past two

decades. New medical imaging technologies have provided physicians with pow-

erful, non-invasive techniques to analyse the structure, function, and pathology

of the human body. In more recent years the improvement in (and the devel-

opment of) many image acquisition techniques, the enhancement of the general

quality of the acquired images, advances in image processing and the develop-

ment of large computational capacities; have considerably enhanced the analysis

task. The acquisition of medical images in 2D or 3D has become a routine task

for clinical research applications. Image acquisition techniques include Magnetic

Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission To-

mography (PET) and functional MRI (fMRI). The corresponding increase in the

quantity and detail of the available imagery has highlighted the need for more

efficient and more effective computer automated, or semi-automated, techniques

to support the interpretation of this data in order to provide better diagnosis and

treatment options.

The analysis of the increasingly detailed amount of information available con-

stitutes a great challenge for the medical imaging community, and requires sig-

nificant innovations in all aspect of image processing. One particular challenge

is related to the delineations of anatomical structures from medical images, this

is seen as a critical step for many clinical and research applications. As noted in

the introduction to this thesis the anatomical structure of interest is the corpus
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callosum, a distinctive feature in MRI brain scans. Some background concerning

this application domain is therefore presented in Section 3.2.

The automated recognition of meaningful image components, anatomical struc-

tures, and other regions of interest, such as the corpus callosum, is typically

achieved using some kind of registration and segmentation techniques. Some

background concerning the registration of brain MRI scans is therefore consid-

ered in Section 3.3 as well as mechanisms to align collections of MRI scans to

some standard coordinates system. Some background concerning MRI brain scan

segmentation techniques is then presented in Section 3.4. In this section a vari-

ation of the Normalized Cut segmentation algorithm is proposed, an additional

contribution of this thesis, to identify the corpus callosum regions within brain

MRI scans. The section commences with some details concerning the original

“standard” normalized cuts algorithm, and the multiscale normalized cuts al-

gorithm. The latter was introduced to overcome the computational complexity

problem encountered when the standard normalized cuts algorithm is applied

to large images. Although, the multiscale normalized cuts produces good re-

sults with respect to many image segmentation applications it was found not

work efficiently with respect to the application domain considered in this thesis.

Therefore, a variation of the multiscale normalized cuts was proposed to deal

with this problem. This is fully described at the end of Section 3.4.

This chapter is concluded (Section 3.5) with some details concerning the image

data sets used for evaluation purposes with respect to the work described in the

reminder of this thesis.

3.2 Application Domain

MRI brain scans underpin the diagnosis and management of patients suffering

from various neurological and psychiatric conditions. Analysis of MRI data relies

on the expertise of specialists (radiologists) and is therefore subjective. The focus

of the research work described in this thesis is brain MR images, and in particular

a specific structure in these images called the corpus callosum which connects the

two hemispheres of the brain. Figure 3.1 gives an example of a brain MRI scan,

the corpus callosum is located in the centre of the image. The corpus callosum

was selected to evaluate the work described because it is of interest to medical
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researchers for a number of reasons. The size and shape of the corpus callosum has

been shown to be correlated to sex, age, neurodegenerative diseases (e.g. epilepsy,

multiple sclerosis and schizophrenia) and various lateralized behaviour in people

(such as handedness). It is also conjectured that the size and shape of the corpus

callosum reflects certain human characteristics (such as a mathematical or musical

ability). Within neuroimaging research, considerable effort has been directed at

quantifying parameters such as length, surface area and volume of structures

in living adult brains, and investigating differences in these parameters between

sample groups. Several studies indicate that the size and shape of the corpus

callosum, in humans, is correlated to sex [4, 34, 128], age [128, 151], brain growth

and degeneration [61, 98], handedness [31], epilepsy [27, 124, 149], special skills

(e.g.musical ability) [111, 132] and brain disfunction [38, 74].

Figure 3.1: The location of the corpus callosum in a brain MR image.

3.3 Image Preprocessing and Registration

Each MRI scan comprised a sequence of “image slices”, we refer to this as a

bundle. The raw dataset used to evaluate the techniques described in this thesis

consist of collections of MRI scan bundles. For our experiment we only required
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the middle slice from each bundle. This is referred to as midsagittal slice and is

the slice that separates the left and the right hemispheres of the brain.

It should be noted that as a part of the collection process, all slices in all

bundles were aligned so that each bundle was centered on the same axes. The

alignment (registration) was conducted manually by trained physicians using the

Brain Voyager QX software package [56]. Figure 3.2 shows a typical MRI brain

scan registered to a “standard” coordinate system using the Brain Voyager QX

software package.

BrainVoyager uses several different coordinate systems: the internal axes, the

standard Dicom and Talairach axes and the OpenGL axes. The Talairach trans-

formation is at present the most widespread method for brain normalization and

registration. The Talairach transformation is based on the 8 Talairach point

landmarks that have to be specified: the anterior commissure (AC) and posterior

commissure (PC) located on the midsagittal plane (MSP); and 6 cortical land-

marks determining the extents of the brain in the anterior (A), posterior (P), left

(L), right (R), superior (S), and inferior (I) directions. The AC is taken to be the

origin of the coordinate system, the AC-PC line to be the y axis, the vertical line

passing through the interhemispheric fissure to be the z-axis, and the line passing

through the AC and at right angles to the y and z axes to be the x-axis. The three

axes, along with a line parallel to the x-axis passing through the PC, divide the

brain into 12 cubic rectangular regions. An appropriate translation parameters

(in x, y and z directions) will be specified manually to determine these 8 points.

The image bundle is then transformed using a trilinear interpolation. Once the

image registration is completed, the midsagittal slice is extracted to delineate the

ROI (the corpus callosum with respect to the work described here).

3.4 Brain MR Image Segmentation

As noted in the previous chapter the objective of image segmentation is to parti-

tion images into meaningful regions. The segmentation of medical MRI scans is

a difficult task for a variety of reasons. Firstly segmentation algorithms tend to

operate on the intensity or texture variations of a given image and are therefore

sensitive to artifacts produced by the image acquisition process such as: image

noise, image intensity inhomogeneity or non-uniformity, and partial volume av-
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Figure 3.2: A typical brain MRI scan, (a) before the registration (first row scans),
and (b) after the registration (second row scans).

eraging effect(as described in Chapter 2). Recall that if only a single tissue type

is present in a voxel, the signal intensity will be characteristic of that tissue type.

However, if more than one tissue type is present, the signal will be a combination

of the contributions of the different tissues. This is known as the partial volume

effect. Consequently, it blurs the intensity distinction between tissue classes at

the border of the two tissues. In the case of brain MRI segmentation the partial

volume effect makes it particularly difficult to accurately locate the boundaries of

features such as the corpus callosum boundary. For example, if we consider the

MRI brain scan given in Figure 3.1 the corpus callosum is located in the centre

of the image. A related structure, the fornix, is also indicated. The fornix often

blurs into the corpus callosum and thus presents a particular challenge in the

context of the segmentation of these images so as to isolate the corpus callosum.

In this section, we discuss the segmentation of the midsagittal brain MRI slice

to delineate the corpus callosum. To this end a variation of the Normalized Cuts

(NCut) segmentation technique is proposed. NCut formulates segmentation as

a graph-partitioning problem. The basic NCut algorithm, proposed by Shi and

Malik [135], is presented in the Section 3.4.1. An illustration of the computation
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of the optimal partitioning of a graph using NCuts, as proposed by Shi and

Malik, is presented in Subsection 3.4.2. The basic NCuts algorithm does not

operate well when applied to large images such as MRI brain scan images. An

established enhancement to the basic NCuts algorithm, the multiscale normalized

cuts algorithm proposed by Cour et al. [30], is therefore presented in Section

3.4.3. In the context of the corpus callosum application it was found that the

multiscale normalized cuts algorithm could be improved upon so as to reduce the

computational resource required to achieve the segmentation. A variation of the

multiscale normalized cuts algorithm, proposed by the author of this thesis, is

therefore presented in Section 3.4.4.

3.4.1 Normalized Cuts Criterion

In the image segmentation problem based on graph theory, an image is repre-

sented by an undirected graph G = (V,E) where V is the set of nodes and E is

the set of edges. A weighting matrix W is then defined to measures the similarity

between nodes. Each node vi ∈ V corresponds to a locally extracted image pixel

and each edge ei ∈ E connects pairs of nodes. The edges are determined by

the proximity of pixels: each pair of pixels (nodes) is connected by an edge if

they are located within a distance r from each other. An edge ei has a weight

proportional to the similarity of the properties of the connected nodes (e.g. pixel

intensities). Given such a graph representation, image segmentation becomes

equivalent to partitioning the nodes of the graph into disjoint sets. Formally, the

graph G = (V,E) can be partitioned into two disjoints sets of nodes V1, V2, where

V1 ∪ V2 = V and V1 ∩ V2 = φ. The degree of dissimilarity between these two sets

can be expressed as:

Cut(V1, V2) =
∑

u∈V1,v∈V2

w(u, v). (3.1)

where w(u, v) is the similarity between nodes u and v. The weight of the edges

that stay within the same set should be as high as possible and the weight of the

edges that connect the two sets should be as low as possible. The optimal bipar-

titioning of a graph is one that minimizes this cut value. Finding the minimum

cut is a well-studied problem and there exist efficient algorithms for solving it.

Despite the merits of the graph cut formulation and its proposed algorithms, it is
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biased towards producing cuts that contain a small number of nodes. Therefore

Shi and Malik [135] proposed the normalized cuts algorithm (NCuts) as a new

measure of disassociation, the normalized cut (NCut) is defined as follows:

NCut(V1, V2) =
cut(V1, V2)

SumCon(V1, V )
+

cut(V1, V2)

SumCon(V2, V )
(3.2)

where SumCon(V1, V ) is the total weights of the edges connecting nodes from a

set V1 to all nodes in the original set V and SumCon(V2, V ) is the total weights

of the edges connecting nodes from a set V2 to all nodes in the original set V . The

weight of the edges that stay within the same set are contained in SumCon(V1, V )

and SumCon(V2, V ), the weight of the edges that connect the two sets are con-

tained in cut(V1, V2). By minimizing this criterion the similarity across partitions

is minimized and the similarity within partitions is maximized simultaneously.

Unfortunately, minimizing this criterion constitutes an NP-complete problem but

Shi and Malik showed that when the normalized cut problem is embedded in a

real valued domain an approximate discrete solution can be found efficiently. The

details of solving this minimization problem is described in next section.

3.4.2 Optimal Graph Partition Computation

Shi and Malik [135] developed an efficient computational technique based on

a generalized eigenvalue problem to minimize the normalized cut. First, W is

defined as the affinity matrix of the graph which determines the connectivity of

the graph and defines the edges weights. Then the edges weights need to be

determined based on the similarity and distance between pixels. This is done by

applying the following formula for each edge:

wi,j =

{
exp

−‖Ii−Ij‖2

σ2
I
· exp−‖Xi−Xj‖

2

σ2
X

if ‖Xi −Xj‖ ≤ r

0 otherwise
(3.3)

where: (i) wi,j is the weight of the edge that connects node i with node j, (ii) Ii

is the intensity of pixel i, (iii) Xi is the spatial location of pixel i, (iv) Ij is the

intensity of pixel j and (v) Xj the spatial location of pixel j. If there is no edge

between node i and node j then wi,j = 0 where the distance between node i and

node j is greater than distance r. The effect of this procedure is that the pixels

that are located very close to each other and that have a very small difference in
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intensity get a high weight on the edge that connects them. The pixels that are

located very far from each other and that have a very big difference in intensity

get a low weight on the edge that connects them. All the weights wi,j are saved

in a matrix W .

By using matrices Shi and Malik reformulated NCut(V1, V2) to:

(1 + x)T (D−W) (1 + x)

k1TD1
+

(1− x)T (D−W) (1− x)

(1− k)1TD1
(3.4)

where x is an indicator vector, xi = 1 if node i is in set V1 and xi = −1 if

node i is in set V2, D is a diagonal matrix with di =
∑

j wi,j on its diagonal

and k =
∑
xi=1 di∑
i di

. After some transformations, defining b = k/(1− k) and setting

y = (1 + x) − b(1 − x), the normalized cut problem can be translated into the

following formula:

minxNCut(x) = miny
yT (D−W) y

yTDy
(3.5)

with the condition yi ∈ {1,−b} and yTD1 = 0. This formula is known as the

Rayleigh quotient, if y is relaxed to take on real values, it can be minimized by

solving the generalized eigenvalue problem:

(D−W) y = λDy (3.6)

The eigenvector corresponding to the second smallest eigenvalue is the real valued

solution of the normalized cut problem. The approximate Lanczos method is often

used to compute such an eigenvalue problem [58].

In the ideal case, the eigenvector components yi corresponding to node i should

only take on two discrete values. For example, if yi = 1 or −1 then the signs tell

us exactly how to partition the graph nodes V into V1 and V2 as follows: node i is

in V1 if the eigenvector components yi, corresponding to node i, equals to 1 and

node i is in V2 if the eigenvector components yi, corresponding to node i, equals to

−1. i.e. the splitting point is 0 and the sign tells us exactly how to partition this

graph (V1 = {V i|yi > 0}, V2 = {V i|yi <= 0}). However, eigenvector y is relaxed

to take real values, therefore, a splitting point is needed to determine the two

sets of nodes. To finally get the approximate discrete solution the eigenvector

is split into two parts by mapping the real values to the discrete set of values

over the interval {1,−b}. This mapping is done by sorting the real values of
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this eigenvector and evaluating NCut(V1, V2) for a few evenly spaced splitting

points. The split point that produces the lowest NCut(V1, V2) will then finally

give us the approximate solution: the disjoint sets V1 and V2 together with their

NCut(V1, V2) value. The algorithm is recursively applied to every subgraph until

the value of NCut exceeds a certain threshold or the total number of nodes in

the partition is smaller than a pre-specified threshold value.

From the above, the procedure for image segmentation based on normalized

cuts can be summarized as follows:

1. Given an image I, construct an N × N symmetric similarity matrix W

according to Equation 3.3 and D as a diagonal matrix with di =
∑

j wi,j on

its diagonal.

2. Solve the generalized eigenvalue problem

(D−W) y = λDy

and get the eigenvector with the second smallest eigenvalue.

3. Find the splitting point of eigenvector y, where yi ∈ {1,−b}, that minimizes

the NCut

4. Bipartition the graph nodes V into V1 and V2 according to this splitting

point.

5. Repeat the bipartition recursively, stop if the NCut value is larger than a

pre-specified threshold value or the total number of nodes in the partition

is smaller than a pre-specified threshold value.

The normalized cuts algorithm is computationally expensive when the dimen-

sion of the weight matrix is large because the pixel-based weight matrix required

to compute the N × N weight matrix becomes very dense. Consequently the

derivation of the eigenvalues becomes computationally expensive even though

the approximate eigenvalue method and associated algorithm are designed to

optimize this process.

3.4.3 Multiscale Normalized Cuts

Cour et al. [30] proposes a Normalized Cut adaptive technique, the Multiscale

Normalized Cuts algorithm, that focuses on the computational problem created
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by large graphs, which yields a better segmentation than the original Normalized

Cuts. Cour et al. suggested the use of multiscale segmentations, decomposing a

large graph into independent subgraphs. The main contribution of this technique

is that larger images can be better segmented with linear complexity. In this

technique, a graph representation of the image is again used as well as in the

original normalized cuts segmentation approach described above. Basically this

representation again comprises an undirected weighted graph G = (V,E) where

each node vi ∈ V corresponds to a locally extracted image pixels and the edges ei

in E connect pairs of nodes. The edges are determined by the proximity of pixels:

each pair of pixels (nodes) is connected by an edge if they are located within

a distance r from each other; also called the graph connection radius. A larger

graph radius r generally makes segmentation better and facilitates the detection

of objects described by faint contours against a cluttered background, but it

is computationally expensive because the similarity matrix W becomes denser.

In the multiscale normalised cuts algorithm, two cues are used to determine

the connectivity of the graph; the intensity and position grouping cue and the

intervening contours grouping cue. The edge weights can then be determined

based on the similarity and distance between pixels. The intensity and position

grouping cue of each edge is given by:

wIP (i, j) =

{
exp

−‖Ii−Ij‖2

σ2
I
· exp−‖Xi−Xj‖

2

σ2
X

if ‖Xi −Xj‖ ≤ r

0 otherwise
(3.7)

where wIP (i, j) is the weight of the edge that connects node i with node j, Ii

is the intensity of pixel i, Xi is the spatial location of pixel i, Ij is the intensity

of pixel j and Xj is the spatial location of pixel j. If there is no edge between

node i and node j then wi,j = 0. This grouping cue, used separately; often gives

bad segmentations because some natural images (including medical images) are

affected by “texture clutter”. The intervening contours grouping cue evaluates

the affinity between two pixels by measuring the image edges between them. The

measure of similarity regarding this grouping cue is given by[30]:

wC(i, j) = exp−
(
max(x∈line(i,j))ε2

σc

)
(3.8)

where line(i, j) is a straight line joining pixels i and j and ε = ‖Edge(x)‖ is the
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image strength at location x. These two cues can be combined as shown by[30]:

w(i, j) =
√
wIP (i, j) wC(i, j) + wC(i, j) (3.9)

The multiscale normalized cut algorithm [30] works on multiple scales of the

image so as to capture both coarse and fine levels of details. The construction of

the image segmentation graph is given according to their spatial separation, as

in:

W = W1 +W2 + ...+Ws, (3.10)

where W represents the graph weights w(i, j) and s the scale, i.e. Ws contains

similarity measure between pixels with certain scale s. Two pixels i, j are con-

nected only if rs−1 < ‖Xi −Xj‖ ≤ rs. The r value is a tradeoff between the

computation cost and the segmentation result. The decomposition graph above

can alleviate this situation. Ws can be compressed using recursive sub-sampling

of the image pixels. Cour et al. determine representative pixels at each scale s as

follows. First they sample representative pixels at (2r + 1)s−1 distance apart on

the original image grid, and denote the representative pixels at each scale s by

Is and denote W c
s as a compressed similarity matrix with connections between

representative pixels in Is, i.e. for the first graph scale, every pixel is a graph

node and two nodes are connected with a graph edge if the two pixels are within

r distance apart. They then construct W c
1 as a compressed similarity matrix with

connections between representative pixels in I1. For the second graph scale, they

consider pixels at distance 2r+1 apart in the original grid as representative nodes,

I2 and construct W c
2 as a compressed similarity matrix with connections between

representative pixels in I2. For the third graph scale, they consider pixels at dis-

tance (2r+1)2 apart in the original grid as representative nodes, I3 and construct

W c
3 as a compressed similarity matrix with connections between representative

pixels in I3. In general, they consider pixels at distance (2r + 1)(s−1) apart in

the original grid as representative nodes, Is. Then the full multiscale similirity

matrix W can be expressed as:

W =

 W c
1 0

. . .

0 W c
s

 (3.11)
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Cour et al. reformulated the constrained multiscale normalized cut into the

following formula:

maximize ϕ(X) =
1

K

K∑
l=1

XT
l WXl

XT
l DXl

subject to : CX = 0 (3.12)

where X is an indicator vector s.t. X ∈ {0, 1}N∗×K , N∗ =
∑

sNs, Ns is the

number of representative pixels in Is. The cross-scale constraint matrix C:

C =

 C1,2 −I2 0
. . . . . .

0 CS−1,S −IS

 (3.13)

where Cs,s+1(i, j) = 1
|Ni| if j ∈ Ni and Ni is the neighbourhood which specifies

the projection of i ∈ Is+1 on the finer layer Is.

The NP-complete constrained normalized cut is thus transformed into the

following eigenvalue problem:

W̄ X̄ = λX̄ (3.14)

where:

W̄ = QD−1/2WD−1/2Q (3.15)

and

Q = I −D−1/2CT (CD−1CT )−1CD−1/2 (3.16)

The K first eigenvectors of W̄ is used to find the indicator vectors X to segment

the image into K partitions.

From the above, the image segmentation procedure based on multiscale nor-

malized cuts can be summarized as follows:

1. Given an m× n image I, for s = 1..S (S = number of scales):

(a) Sample m
ρ
× n

ρ
pixels i ∈ Is from Is−1, where ρ is the sampling factor.

(b) Compute constraint Cs,s+1(i, j) = 1
|Ni| , j ∈ Ni sampling neighbour-

hood of i.
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(c) Compute the similarity matrix W c
s for the representative pixels Is.

2. Compute W , C from (Ws, Cs−1,s) as in (3.11),(3.13).

3. Solve the eigensystem W̄ X̄ = λX̄ as in (3.15), (3.16).

4. Use the first k eigenvectors of W̄ to partition the image into k segments.

The multiscale normalized cuts algorithm has been shown to work well in

many studies; however it was found that, in the context of the corpus callosum

application, the algorithm did not work as well as expected with respect to all

brain MRI scans in the test data sets. This was because: (i) MRI brain scans

include a lot of noises, (ii) the intensity-level distributions between different soft

tissues were not widely distributed and (iii) the complexity of tissue boundaries

caused many pixels to contain mixtures of tissues. Although one can visually

recognize the outline of the corpus callosum (Figure 3.1), portions of its bound-

ary are indistinct, which can make it difficult to apply segmentation algorithms

based on edge information alone. A further problem is that, quite often, intensity

variations within the corpus callosum can be comparable or exceed the difference

with the surrounding tissues. For these reasons it is desirable to enhance the con-

trast of the MR images. A variation of the multiscale normalized cuts algorithm

was therefore developed. This is described in the following Subsection 3.4.4.

3.4.4 Proposed Approach

As noted above, the multiscale normalized cuts algorithm when applied to brain

MRI scans to delineate the corpus callosum within these scans did not give satis-

factory results with respect to all brain MRI scans in the test data. In the case of

some scans the corpus callosum region can be clearly identified as shown in Figure

3.3 but blurred into other surrounding tissues in some other scans. Therefore a

variation of the multiscale normalized cuts algorithm was developed that applied

a threshold interval to extract objects with the same intensity values (such as the

corpus callosum) during the application of the segmentation. This was found to

give a much improved result.

The proposed variation of the multiscale normalized cuts algorithm was founded

on the observation that the corpus callosum, which is located at the centre of the
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Figure 3.3: The results obtained by the multiscale normalized cuts algorithm,
(a-d) the original brain MRI scans, (e-h) the corpus callosum obtained by the
multiscale normalized cuts.

Figure 3.4: Histogram of the pixel greyscale values of the corpus callosum.
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brain, comprises white matter tissue (i.e. the pixel represented corpus callosum

have high intensity values). Figure 3.4 shows a pixel intensity value histogram

of the corpus callosum derived from 30 selected MR images (256 grey levels were

used) where the corpus callosum was very well defined and easy to detect using

the multiscale normalized cuts algorithm. From the figure it can be seen that:

• The corpus callosum tends to have relatively high intensity values, and

• The distribution of intensity values seems to follow the normal distribution.

The latter is demonstrated in Figure 3.5 where it can be seen that the corpus

callosum pixel values follow the normal distribution with mean X̄ = 160 and

standard deviation S = 20. Figure 3.6a shows that with a threshold interval of

X̄ ± S, the corpus callosum can barely be recognized. With a threshold interval

X̄ ± 2S a relatively distinct callosum shape is evident with a few other non-

adjacent structures visible as shown in Figure 3.6b. With the threshold interval

set at X̄ ± 3S, the corpus callosum is clearly defined, although additional non-

adjacent structures are also visible (Figure 3.6c). In Figure 3.6d, the corpus

callosum starts to “blur” into the surrounding tissues using a threshold interval

wider than X̄ ± 3S. The significance here is that although the threshold values

may differ depending on individual images, the high intensity property of the

corpus callosum can be exploited to yield a segmentation algorithm that is both

effective and efficient across the input image set. Therefore the interval X̄±3S was

chosen, so as to exclude intensity values outside the interval. This strategy was

incorporated into multiscale normalized cuts algorithm and used to successfully

extract the corpus callosum (and other incidental objects with the same intensity

values).

The operation of the proposed image segmentation approach can be summa-

rized as follows:

1. Apply the multiscale normalized cuts algorithm to the brain MRI scans

datasets.

2. Calculate the sample mean X̄ and standard deviation S corresponding to

the fully segmented corpus callosum regions.
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Figure 3.5: Probability plot of the corpus callosum pixel values.

Figure 3.6: Thresholding with various threshold intervals.
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3. Apply the threshold interval X̄±3S to the reminder of the brain MRI scans

where the corpus callosum is not delineated correctly.

4. Apply the multiscale normalized cut algorithm to the brain MRI scans

resulting in step 3

For evaluation purposes the proposed approach was applied to brain MRI

scans where the corpus callosum was not completely identified using the multiscale

normalized cuts algorithm. Figure 3.7 presents a comparison between results

obtained using the Multiscale Normalised Cuts algorithm (Figure 3.7(e) to (h))

and the proposed approach (Figure 3.7(i) to (j)). From the figure it can be seen

that better results were obtained using the proposed approach.

Some data cleaning was also undertaken to remove the “incidental objects”

discovered during segmentation. The heuristic used was that the object repre-

senting the corpus callosum can be identified using statistical measures (it is the

largest object and is locate in roughly the centre of the brain). Having identified

the corpus callosum object any other high intensity objects could be removed.

Figure 3.7: The results obtained by the multiscale normalized cuts algorithm
and the proposed approach, (a-d) the original brain MRI scans, (e-h) the corpus
callosum obtained by the multiscale normalized cuts, (i-l) the corpus callosum
obtained by the proposed algorithm.
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3.5 Medical Image Datasets

To evaluate the ROIBIC techniques described in this thesis to classify medical

images according to a particular object that features across the data sets a num-

ber of data sets were used. As already noted the data sets were generated by

extracting the midsagittal slice from MRI brain scan data volumes (bundles), one

image per volume. Each data set thus comprised a number of brain MRI scans

each measuring 256× 256 pixels, with 256 greyscale levels and each describing a

midsagittal slice. To support the evaluation the data sets were grouped as fol-

lows: (i) musicians, (ii) handedness and (iii) epilepsy. Each group is described in

some further detail as follows:

Musicians datasets. For the musicians study the data set comprising 106 MRI

scans, 53 representing musicians and 53 non-musicians (i.e. two equal

classes). The study was of interest because of the conjecture that the size

and shape of the corpus callosum reflects human characteristics (such as a

musical or mathematical ability) [111, 132].

Handedness datasets. For the handedness study a data set comprising 82 MRI

scans was used, 42 representing right handed individuals and 40 left handed

individuals. The study was of interest because of the conjecture that the

size and shape of the corpus callosum reflects certain human characteristics

(such as handedness) [31].

Epilepsy datasets. For the epilepsy study three data sets (Ep106, Ep159 and

Ep212)were used. The first data set, Ep106,comprised the control group from

the musicians study (the non-musicians) and 53 MRI scans from epilepsy

patients so as to give a balanced data set. The second data set, Ep159, used

all 106 MRI scans from the musicians study and 53 epilepsy scans. The

third data set, Ep212 was the same as the second but augmented with a

further 53 epilepsy cases to create a balanced data set. The objective was

to seek support for the conjecture that the shape and size of the corpus

callosum is influence by conditions such as epilepsy [27, 124, 149].

All three brain MRI datasets were preprocessed using the variation of the mul-

tiscale normalized cuts algorithm described above (Subsection 3.4.4) to extract

60



the corpus callosum feature. On completion of data cleaning a “local” registration

process was undertaken by fitting each identified corpus callosum into a Minimum

Bounding Rectangle (MBR) so that each identified corpus callosum was founded

upon the same origin.

3.6 Summary

This chapter has provided the necessary context to the preprocessing of the brain

MRI scan data so as to detect and extract the desired ROI (the corpus callosum).

A variation of the multiscale normalized cuts algorithm was proposed to achieve

the desired segmentation. A description of the medical image datasets, used

for evaluation purposes later in this thesis, was also given. In the following

four chapters the four different techniques, whereby MRI brain scan data can be

classified according to a particular ROI (namely the corpus callosum), considered

in this thesis are described and evaluated. The first technique considered is the

Hough Transform technique which is presented in the following chapter.
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Chapter 4

Region Of Interest Image
Classification Using a Hough
Transform Signature
Representation

4.1 Introduction

As noted in Chapter 2 the Hough transform was first introduced by Paul Hough

in 1962 [67]. It later became the basis for a great number of image analysis

techniques with respect to many applications. The Hough transform is mainly

used to detect parametric shapes in images. It was first used to detect straight

lines and later extended to other parametric models such as circles or ellipses,

being finally generalized to detect any parametric shape [12]. The key idea of

the Hough transform is that spatially extended patterns are transformed into

a parameter space where they can be represented in a spatially compact way.

Thus, a difficult global detection problem in the image space is reduced to an

easier problem of peak detection in a parameter space. A set of collinear image

points (x, y) can be represented by the equation:

y −mx− c = 0 (4.1)

where m and c are the standard parameters slope and intercept, which character-

ize the line equations. Equation 4.1 maps each value of the parameter combination

(m, c) to a set of image points. But Equation 4.1 can be “read” as a backpro-

jection, i.e. it represents the set of straight lines, each defined by a point (m, c)
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in the parameter space, passing through an image point (x, y). From this point

of view, each image point (x, y) defines a straight line in the parameter space

which represents all possible combinations of (m, c) that defining a line passing

through (x, y). Points which are collinear in the image space all intersect at a

common point in the parameter space and the coordinates of this point charac-

terizes the straight line connecting the image points. Thus, the problem of line

detection in the image space is transformed to the problem of finding intersection

points (peaks) in the parameter space, a much simpler problem to resolve. The

straight line Hough transform can easily be extended to detect other parametri-

cally defined curves that may be contained in an image. Image points of a curve

characterized by n parameters α1, ..., αn can be defined by an equation of the

form:

f(α1, ..., αn, x, y) = 0 (4.2)

Following the same idea, an image point (x, y) can be used to define a hy-

persurface in some n-dimensional parameter space (α1, ..., αn) . The intersections

of such hypersurfaces indicate the parameters which are likely to characterize

instances of the searched curves in the image space. The Hough transform offers

several advantages:

1. Each image point is treated independently and therefore parallel processing

is possible, consequently the method is suitable for real-time applications,

such as CCTV surveillance analysis.

2. The method is robust to the presence of noise since noisy image points are

very unlikely to contribute to a peak in the parameter space.

3. Since each image point contributes independently to the set of parameter

space points, the algorithm is able to work even if the shape is occluded.

4. The Hough transform is able to detect different instances of the desired

shape at the same time, depending on the number of peaks which are con-

sidered in the parameter space.

The main drawbacks of the Hough transform are its large storage and compu-

tational requirements. The computational load can be reduced by using informa-
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tion from the image to restrict the range of parameters which must be calculated

from each image point. For example, Ballard [12] described how to optimize cir-

cle detection by the use of gradient information. The storage requirements can

also be reduced by multistage processing so as to decompose a high dimensional

problem into separate lower dimensional ones; parameter reduction techniques

also involve a reduction of the computational load. A similar approach to reduc-

ing the storage requirements and computational load is to analyze the parameter

space at different scales using a coarse-to-fine technique which focuses the analysis

on those areas of the parameter space that have a high density.

In the rest of this chapter we first, Section 4.2, further describe the Straight

Line Hough Transform (SLHT) as this is the basis for the proposed Hough trans-

form based method for image classification according to the nature of region of

interest. In Section 4.3 the most common extensions of the Hough transform

are reviewed. The review is not exhaustive because these extensions are outside

of the scope of the research direction of concern; however they are considered

because the Vlachos approach described in this section provides the basis for the

proposed method. The proposed Hough transform based approach is presented

in section 4.4, the novel element of this approach is the polygonal approximation

technique included in the classification process. The evaluation of the proposed

approach is described and discussed in sections 4.5 and 4.6 respectively. The

chapter is then concluded with a summary in section 4.7.

4.2 The Straight Line Hough Transform

The Straight Line Hough Transform (SLHT) was the first, and probably the most

used, of the parameter-based transformations derived from the Hough concept

[67]. The SLHT was introduced in the previous section starting from Equation

4.1. However, a problem arises when lines have large slopes, i.e. m→∞. Duda

and Hart [40] solved the problem of an unbounded parameter space suggesting

that straight lines might be more usefully parametrized by the use of polar coor-

dinates, i.e. the length ρ and the orientation θ of the normal vector to the line

from the image origin. Thus, a straight line can be represented by the following

equation:
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ρ = xcosθ + ysinθ (4.3)

In the conventional implementation, the Hough transform essentially consists

of three stages:

1. Characteristic point detection. Not all the image points (pixels) are

mapped to the parameter space. An information reduction process is first

applied to the image in such a way that it preserves the shapes to be de-

tected. To achieve this some image pixels are selected according to certain

local properties (e.g. gradient magnitude and gradient orientation). Usually

the information reduction process comprises local edge detection.

2. Transform mapping. Each characteristic point of the image space is

mapped to the parameter space. This parameter space is represented by a

two-dimensional accumulator array (n-dimensional for detection of higher-

order shapes). A voting rule usually underlies the transform mapping. This

voting rule determines how the transform mapping affects the contents of

the accumulator array. The simplest voting rule is to increment the polar

parameter points (ρ, θ) mapped from an image point (x, y).

3. Peak detection. The final stage is to extract the corresponding parame-

ter values of the detected shape from the accumulator array. The simplest

method is to apply some form of global thresholding on the accumulator

array. The threshold is chosen either using prior knowledge, or it can be

automatically selected by analysing the distribution of counts in the accu-

mulator array, e.g. a fixed fraction of the maximum count on any single

accumulator bin. Since the presence of noise and distortion may result in

true peaks being split between several accumulator cells and, thus causing

them not to be detected, different kinds of clustering procedures are also

applied.

Two types of Hough transform are usually distinguished depending on the

representation which is used:

• One to many (1-m). Each characteristic point (x, y) of the image space is

mapped to m points in the parameter space which represent the m possible
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straight lines which passes through the point (x, y). Thus, in an ideal case,

a straight line in the image space formed by n points will be mapped to a

point (ρ, θ) in the parameter space with an accumulation value equal to n.

• Many to one (m-1). In this case m represents the number of points

necessary to define, without ambiguity, the parametric shape to be detected.

As for straight lines, m is equal to 2 since in the R2 space a straight line

can be defined from two points. Hence, each pair of points of the image

space is mapped to one point (ρ, θ) in the parameter space which defines

the straight line passing through both image points. Therefore, in an ideal

case, a straight line in the image space formed by n points will be mapped

to an accumulation point with value equal to (n(n− 1))/2.

Figure 4.1 illustrates the 1-m and m-1 SLHT. It can be observed, when the

transformation is 1-m, that four collinear image points result in four sinusoidal

functions in the parameter space. These functions intersect at point (ρ, θ) defining

the straight line shared by the four image points. On the other hand, when the

m-1 transformation is computed, each pair of image points give a “vote” in the

accumulator array. Thus, the peak (ρ, θ) which defines the straight line will have

a value of 6 in the accumulator array.

4.3 Extensions of the Basic Hough Transform

The basic Hough transform has been extended to more complex shapes. Two

examples are considered in this section. The first is concerned with higher-

dimensional parametrized shapes, such as circles and ellipses; these can be de-

tected using a similar approach to that of the SLHT but with a parameter space

with more dimensions. The main drawback of this method is the increase in the

number of dimensions, which in turn results in a larger storage requirement. The

second example is concerned with approaches which use the Hough transform to

detect more arbitrary shapes; shapes which can not be analytically represented.

4.3.1 Circles and Ellipses

The use of the Hough transform to detect circles was first proposed by Duda

and Hart [40]. The points (x, y) belonging to a circle characterized by its centre

67



ρ
i

θ

y

ρρρρ

θ
i

x

θθθθ

ρ
i

θ
i θθθθ

ρρρρ

Figure 4.1: The 1-m and m-1 SLHT.

coordinates (xc, yc) and its radius r can be represented by the equation:

(x− xc)2 + (y − yc)2 = r2 (4.4)

This equation indicates that point (x, y) of the image space can be mapped

to a cone surface in the (xc, yc, r) parameter space which represents all possible

circles passing through (x, y). If the cones corresponding to many edge points

intersect at a single point, then all the image points lie on the circle defined

by those three parameters. The Hough transform for circle detection can also

be computed as a 1 − m or m − 1 transform. Figure 4.2 illustrates these two

possible transformations. Similarly an ellipse can be parametrized by its centre

coordinates, major and minor radii, and orientation, i.e. (xc, yc, a, b, θ). Thus, the

Hough transform for ellipse detection requires a 5-dimensional parameter space.

In general, a circle can be considered as a particular case of an ellipse where

a = b = r, and θ is not considered. However, circles have specially designed

algorithms. The conventional Hough transform for circle finding requires a 3-

dimensional accumulator array of O(mnR) cells, where m × n is the image size
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and R is the number of possible radii. The method is of course extremely compu-

tationally intensive. The use of the gradients of the image points can reduce the

memory requirements and the computational load. Davies [35] used a standard

Sobel operator to estimate the gradient for each image point. A normal to the

tangent to the circle at the point (x, y) will then pass through the centre of the

circle and make an angle θ with the horizontal axis. The data triples (x, y, θ)

are mapped into a two dimensional parameter space (xc, yc) as straight lines rep-

resenting all possible centres. The intersection between many straight lines in

this parameter space then determines the centre coordinates of the circle. These

coordinates are then used to calculate a histogram of possible radius values. A

similar method was developed by Kierkegaard [84] to detect circular arcs in im-

ages of industrial environments. Circular arc detection requires the computation

of two additional parameters which define the angular orientation and size. It is

performed using a histogramming procedure which accumulates the angles of the

vectors from the image points to the center of the circle to which they belong.

Yip et al. [158] proposed a variation of the Hough transform for circle and ellipse

detection which only requires a 2-dimensional accumulator array. They use five

geometric properties of symmetric points of an ellipse to reduce the dimension

of the accumulator array. Each pair of image points with the same gradient de-

fines two parallel lines which may be considered as tangents to an ellipse. The

parameters (xc, yc, a, b, θ) are computed from these two image points with respect

to the five geometric properties. A technique which transforms the ellipse’s pa-

rameters (xc, yc, a, b, θ) to a 2-dimensional format is used. This technique consists

of transforming the parameters (xc, yc, a, b, θ) to the four vertex positions of the

corresponding ellipse (i.e. the intersections between the ellipse and the major and

minor radii, respectively) which are accumulated in a 2-dimensional array. Hence,

the ellipse parameters can be recovered by detecting the four vertex positions in

the 2-dimensional array. For further discussion regarding a variety of circle de-

tection methods based on variations of the Hough transform the interested reader

is referred to the comparative study by Yuen et al. [159].
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Figure 4.2: 1-m and m-1 Hough transforms for circle detection.

4.3.2 Generalized Shapes

Various authors have developed variations on the Hough transform to detect

shapes other than straight lines, circles and ellipses. The Hough transform has

been extended to detect arbitrary shapes which can not be analytically repre-

sented. The work of Ballard [12] is a standard reference concerning generalized

shape detection using what is known as the Generalized Hough Transform (GHT).

Ballard uses the directional information associated with each characteristic point,

computed by an edge detection preprocessing, to detect arbitrary shapes. Given

an random shape (see Figure 4.3), a reference point P is selected within it. Each

boundary point of the shape can be represented by the distance r and the di-

rection φ the line connecting the boundary point and the reference point. These

two values are represented as a functions of the local edge normal direction θ, i.e.

r(θ) and φ(θ), and stored in a lookup table, called an R-table. Given an image

in which we wish to detect a shape, each edge point has associated with it an

attribute describing the direction θ computed by a gradient operator. Using θ to

index into the R-table, each point gives a “vote” for an hypothetic reference point

P . Thus, peaks will localize the shape under detection. This method works when
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shapes are of fixed orientation and scale, otherwise more than two parameters

must be used for the description of the shape. For further information interested

readers are referred to Davies [35] who conducted a comprehensive study of the

GHT and its computation.

Figure 4.3: An example of generalized Hough transform for arbitrary shapes.

The detection of shapes combining the SLHT with the information reported

by the lines tangent to the boundary shape is a widespread task. Using this

idea of obtaining the tangents of a shape from its corresponding (ρ, θ) space af-

ter computing the SLHT, Leavers [89] proposed an alternative method of shape

detection which uses the Hough transform to decompose an edge image into its

constituent shape primitives (straight lines and circular arcs). The parameters

associated with these primitives are then used to build a symbolic representation

of the shape to be detected. This method uses the SLHT iteratively in order to

extract straight line features first and then circular arcs. Another outstanding

work concerning the use of the SLHT to generalized shape detection was devel-

oped by Pao et al. [112]. First, they analyzed how translation, rotation and

scaling of an image space affects the parameter space. Consequently, they pro-

posed to decompose the SLHT parameter space into three subspaces, namely, the

translation space, rotation space, and the intrinsic space. A second transform,

referred to as the signature of the shape, is performed on the SLHT parameter

space by computing the distances between pairs of points in the (ρ, θ) space that
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have the same θ value. This is equivalent to computing the perpendicular dis-

tances between pairs of parallel tangents to the curves. This signature has the

following properties: (i) it is invariant to translation, (ii) rotations in the image

space correspond to circular shiftings of the signature, and (iii) it can be easily

normalized. The recognition of a shape is performed by a one-dimensional corre-

lation between the candidate signature and the normalized model signature. The

peak of this correlation also indicates the orientation of the object. Finally, the

location of the shape is obtained by an inverse transform from the (ρ, θ) space to

the (x, y) space. In [145], Vlachos et al. adopted the SLHT to extract a region

signature to be used in the image classification process. They use the projection

of the accumulator array from ρ− θ space to θ space. Then the region signature

can be expressed as one dimensional vector in terms of θ after the normalization

of that vector by dividing it by its mean value. The significance of Vlachos ap-

proach with respect to this thesis is that it has been adopted for the proposed

Hough transform based ROIBIC process.

4.4 Proposed Image Classification Method

The proposed image classification based on the Hough transform focuses primarily

on the extracting of shape signatures which can be used as a feature vector in the

classification process. Therefore, it is assumed that the input image is a binary

representation of a region of interest (i.e. the corpus callosum with respect to the

focus of the work described in this thesis), that has been appropriately segmented

from “source” MRI brain scans of the form previously described in Chapter 3. The

proposed shape signature extraction method is founded on that first presented in

Vlachos et al. [145] which was briefly described in Subsection 4.3.2. This method

gives good results when classifying simple line drawn symbol images according to

their shapes. However, Vlachos approach was found to perform consistently badly

with respect to the classification of brain MRI scans according to the nature of

the corpus callosum. Therefore the proposed method commences by simplifying

the shape of the region of interest within the MRI brain scans using a polygonal

approximation method. Then the signature extraction process, using Vlachos

approach, was applied.

The proposed image classification technique based on the Hough transform is
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Figure 4.4: The framework of the proposed approach based on Hough transform.

thus composed of three majors steps as depicted in Figure 4.4. Referring to the

figure, we start with a data set of pre-labelled images. Then (Step 1), for each

image, the region of interest, i.e. the corpus callosum, is pre-processed using a

Canny edge detector to determine its boundary. Secondly (Step 2), a polygonal

approximation technique is applied to reduce the complexity of the boundaries

and approximate these boundaries with a minimum number of line segments.

Thirdly (Step 3), signature extraction using the SLHT is applied to extract the

feature vector which is then placed in a Case Base (CB). The CB ultimately

comprises feature vectors extracted from all the images in the given training set

and their corresponding class labels. This CB was then used, in the context of

a Case Based Reasoning (CBR) framework, to classify unseen MRI brain scans

according to the nature of the corpus callosum. Steps 1, 2 and 3 are discussed in

further detail in the following three sub-sections.

4.4.1 Step 1: Preprocessing

The extraction of the desired shape signatures (one per region of interest within

each image) commences by applying the Canny edge detector technique [20]. The

Canny operator detects the edge pixels of an object using a multi-stage process.
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First of all, the region boundary is smoothed by applying a Gaussian filter. Then

the edge strength is calculated by applying a simple 2D first derivative operator.

The region is then scanned along the region gradient direction, and if pixels are

not part of the local maxima they are set to zero, a process known as non-maximal

suppression. Finally, a threshold is applied to select the correct edge pixels. When

the edge detection technique is applied to the corpus callosum each region will

be represented by its boundaries.

4.4.2 Step 2: Polygonal Approximation

The aim of the region boundary simplification step is to obtain a smooth curve

over a minimum number of line segments describing the region’s boundary. This

process is referred to as the polygonal approximation of a polygonal curve which

consists of a set of vertices. The approximation of polygonal curves aims at finding

a subset of the original vertices so that a given objective function is minimized.

The problem can be formulated in two ways:

• min-ε problem: Given N -vertex polygonal curve C, approximate it by an-

other polygonal curve Ca with a given number of straight line segments M

so that the approximation error is minimized.

• min-# problem: Given N -vertex polygonal curve C, approximate it by an-

other polygonal curve Ca with a minimum number of straight line segments

so that the error does not exceed a given maximum tolerance ε.

One of the most widely used polygonal approximation algorithm is a heuristic

method called the Douglas-Peucker (DP) algorithm [37]. This algorithm considers

the case of the min-# problem. In this work, the Douglas-Peucker (DP) algorithm

is used to simplify the boundaries of the regions of interest before the application

the Hough transform to extract signatures. The DP algorithm uses the closeness

of a vertex to an edge segment. This algorithm works from the top down by

starting with a crude initial guess at a simplified polygonal curve, namely the

single edge joining the first and last vertices of the polygonal curve. Then the

remaining vertices are tested for closeness to that edge. If there are vertices

further than a specified tolerance, ε > 0, away from the edge, then the vertex

furthest from it is added to the simplification. This creates a new guess for the
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simplified polygonal curve. Using recursion, this process continues for each edge

of the current guess until all vertices of the original polygonal curve are within

tolerance of the simplification.

More specifically, in the DP algorithm, the two extreme endpoints of a polyg-

onal curve are connected with a straight line as the initial rough approximation of

the polygonal curve. Then, how well it approximates the whole polygonal curve

is determined by computing the perpendicular distances from all intermediate

polygonal curve vertices to that (finite) line segment. If all these distances are

less than the specified tolerance ε, then the approximation is good, the endpoints

are retained, and the other vertices can be discarded without the smoothed curve

being worse than ε . However, if any of these distances exceeds the ε tolerance,

then the approximation is not good enough. In this case, the point that is furthest

away is chosen as a new vertex subdividing the original polygonal curve into two

(shorter) polygonal curves. The procedure is repeated recursively on these two

shorter polygonal curves. If at any time, all of the intermediate distances are less

than the ε threshold, then all the intermediate points are discarded. The routine

continues until all possible points have been discarded.

In the case of the approximation of the corpus callosum boundary as a closed

curve, we have to find an optimal allocation of all approximation vertices includ-

ing the starting point. A straightforward solution is to try all vertices as the

starting points, and choose the one with minimal error. The complexity of this

straightforward algorithm for a N-vertex curve is N times that of the algorithm

for an open curve. There exist a number of heuristic approaches for selecting the

starting point. In this work we adopted a heuristic approach founded on that

presented in Sato [131]. In this approach, the farthest point from the centroid of

the region of interest is chosen as the starting point.

The value of the tolerance ε affects the approximation of the original polygonal

curves. For smaller values of tolerance, the polygonal curve is approximated

by a large number of line segments M which means that the approximation is

very similar to the original curve. While the larger values give a much coarser

approximation of the original curve with smaller number of line segments M .

Figure 4.5 shows an example of a simplification of the boundaries of a corpus

callosum corresponding to tolerance ε = 0.9 and number of line segments M = 17
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Figure 4.5: Polygonal approximation of corpus callosum corresponding to ε = 0.9
and M = 17.

Figure 4.6: Polygonal approximation of corpus callosum corresponding to ε = 0.4
and M = 52.
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and Figure 4.6 shows another example of a simplification of the boundaries of the

corpus callosum corresponding to tolerance ε = 0.4 and number of line segments

M = 52.

4.4.3 Step 3: Shape Signature Extraction

The generation of the shape signature based on the Straight Line Hough Trans-

form (SLHT) relies on creating the M×N accumulator matrix A, where each row

corresponds to one value of ρ, and each column to one value of θ. The procedure

for generating the feature vector from the accumulator matrix is founded on that

presented in Vlachos et al. [145] and is as follows:

1. Determine the set of boundary pixels corresponding to the region of interest.

2. Transform each pixel in the set into a parametric curve in the parameter

space.

3. Increment the cells in the accumulator matrix A determined by the para-

metric curve.

4. Calculate a preliminary feature vector:

Fj =
M∑
i=1

A2
ij(ρ, θ), j = 1..N

5. Calculate vector mean

µ̂ =
1

N

N∑
j=1

Fj

6. Normalize the feature vector:

FVj(θ) =
Fj
µ̂
, j = 1..N

In (2) the transformation can be as in Equation 4.1, where (x, y) are the

coordinates of the pixel to be transformed, and ρ and θ are the parameters of the

corresponding line. Thus, every pixel (x, y) can be seen as a curve in the (ρ, θ)

parameter space, where θ varies from the minimum to the maximum value, giving

the corresponding ρ values. By transforming every point (x, y) in the image into

the parameter space, the line parameters can be found in the intersections of the
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parametrized curves in the accumulator matrix as show in Figure 4.1. In step 4,

the accumulator matrix is projected to a one-dimensional θ vector by summing

up the ρ values in each column. Finally the feature vector is normalized according

to its mean (5) and (6). The extracted feature vector describing the ROI within

each image can then be used as an image signature.

4.4.4 Classification

The signatures from a labelled training set can thus be collected together and

stored in a Case Base (CB) within a Case Based Reasoning (CBR) framework.

Euclidean distance may then be used as a similarity measure in the context of a

CBR framework. Let us assume that we have the feature vector T for a prelabelled

image and the feature vector Q for the test image (both of size N). Their distance

apart is calculated as:

dist(T,Q) =
N∑
j=1

(Tj −Qj)
2

Here dist = 0 indicates identical images and dist = distmax indicates two images

with maximum dissimilarity.

To categorise “unseen” MRI brain scans, according to the nature of the corpus

callosum, signatures describing the unseen cases were compared with the signa-

tures of labelled cases held in the CB. The well established K-Nearest Neighbour

(KNN) technique was used to identify the most similar signature in the CB from

which a class label was then be extracted.

4.5 Evaluation

The evaluation of the proposed image classification approach was undertaken

in terms of classification accuracy, sensitivity and specificity. The three studies

introduced in Chapter 3 were used for the investigation: (i) a comparison between

musician and non-musician MRI scans, (ii) a comparison between left handedness

and right handedness, and (iii) an epilepsy screening process. A description of

the datasets was presented in Chapter 3.

As noted above, euclidean distance was used to calculate the similarity be-

tween the test image signature and the pre-labelled image signatures. The KNN
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Table 4.1: TCV classification results for musicians study

ε Acc Sens Spec
V-HT - 83.02 84.91 81.13

Poly-HT 0.1 83.02 84.91 81.13
Poly-HT 0.2 83.02 84.91 81.13
Poly-HT 0.3 83.02 84.91 81.13
Poly-HT 0.4 85.85 86.79 84.91
Poly-HT 0.5 87.74 88.68 86.79
Poly-HT 0.6 91.51 92.45 90.57
Poly-HT 0.7 86.79 88.68 84.91
Poly-HT 0.8 80.19 83.02 77.36
Poly-HT 0.9 77.36 75.47 79.25
Poly-HT 1 77.36 75.47 79.25

Table 4.2: TCV classification results for handedness study

ε Acc Sens Spec
V-HT - 78.05 80.00 76.19

Poly-HT 0.1 79.27 82.50 76.19
Poly-HT 0.2 79.27 82.50 76.19
Poly-HT 0.3 81.71 87.50 76.19
Poly-HT 0.4 84.15 90.00 78.57
Poly-HT 0.5 84.15 90.00 78.57
Poly-HT 0.6 87.80 92.50 83.33
Poly-HT 0.7 90.24 92.50 88.1
Poly-HT 0.8 86.59 92.50 80.95
Poly-HT 0.9 75.61 82.50 69.05
Poly-HT 1 75.61 82.50 69.05

technique was used to identify the most similar signature in the CB from which

a class label could be extracted. In the experiments, 1-NN was used to identify

the most similar image signatures. Thus an unseen record is classified according

to the “best match” discovered in the CB.

Tables 4.1 to 4.5 show the performance results, for the different datasets,

obtained using the proposed approach compared to the original approach founded

on Vlachos et al. [145]. Poly-HT refers to the proposed approach and V-HT refers

to Vlachos. The performance of the Poly-HT approach is tested with different

values of tolerance (ε). There is no value of the tolerance ε associated with the

V-HT technique because it was applied to the original boundaries of the corpus

callosum without the application of polygonal approximation. In the tables, Acc,
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Table 4.3: TCV classification results for Ep106

ε Acc Sens Spec
V-HT - 66.98 69.81 64.15

Poly-HT 0.1 66.98 69.81 64.15
Poly-HT 0.2 66.98 69.81 64.15
Poly-HT 0.3 66.98 69.81 64.15
Poly-HT 0.4 68.87 71.70 66.04
Poly-HT 0.5 68.87 71.70 66.04
Poly-HT 0.6 69.81 71.70 67.92
Poly-HT 0.7 72.64 71.70 73.58
Poly-HT 0.8 65.09 67.92 62.26
Poly-HT 0.9 63.21 66.04 60.38
Poly-HT 1 63.21 66.04 60.38

Sens and Spec refer to accuracy, sensitivity and specificity respectively. Values

indicated in bold font show the best results obtained in each case.

Inspection of Tables 4.1 and 4.5 indicates that the best classification accuracy

achieved, using the proposed approach, was 91.51% coupled with a tolerance of

ε = 0.6 with respect to musician study, and 90.24% coupled with a tolerance of

ε = 0.7 with respect to handedness study. The proposed approach did not perform

as well for the epilepsy study; the best classification accuracy was achieved using

ε = 0.6

Tables 4.1 to 4.5 indicate that the trend of the classification accuracy, for all

datasets, improved as the value of ε was increased up to specific value (0.6 for

the musician study, and 0.7 for the handedness and epilepsy studies), after which

the classification accuracy begin to fall.

The time complexity of the image classification approach based on the Hough

transform, using the three datasets (musician, handedness and Ep212), is pre-

sented in Figure 4.7. All the experiments were performed with 1.86 GHz Intel(R)

Core(TM)2 PC with 2GB RAM. The code was designed using Matlab 7. The

run time includes the time required for the signature extraction process using the

Hough transform coupled with a polygonal approximation, as well as the KNN

classification.
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Table 4.4: TCV classification results for Ep159

ε Acc Sens Spec
V-HT - 66.67 67.92 66.04

Poly-HT 0.1 66.67 67.92 66.04
Poly-HT 0.2 66.67 67.92 66.04
Poly-HT 0.3 66.67 67.92 66.04
Poly-HT 0.4 69.81 71.70 68.87
Poly-HT 0.5 71.70 73.58 70.75
Poly-HT 0.6 71.70 73.58 70.75
Poly-HT 0.7 74.84 77.36 73.58
Poly-HT 0.8 63.52 64.15 63.21
Poly-HT 0.9 63.52 64.15 63.21
Poly-HT 1 63.52 64.15 63.21

Table 4.5: TCV classification results for Ep212

ε Acc Sens Spec
V-HT - 67.92 73.58 62.26

Poly-HT 0.1 67.92 73.58 62.26
Poly-HT 0.2 67.92 73.58 62.26
Poly-HT 0.3 67.92 73.58 62.26
Poly-HT 0.4 70.75 76.42 65.09
Poly-HT 0.5 73.11 78.30 67.92
Poly-HT 0.6 73.11 78.30 67.92
Poly-HT 0.7 76.42 81.13 71.70
Poly-HT 0.8 67.45 72.64 62.26
Poly-HT 0.9 65.09 69.81 60.38
Poly-HT 1 65.09 69.81 60.38
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Figure 4.7: Run time complexity for the classification of different datasets.

4.6 Discussion

The overall performance accuracies presented in Section 4.5 above indicate that

the proposed approach, based on the Hough transform coupled with the applica-

tion of a polygonal approximation, outperformed the Vlachos approach.

The tolerance ε affected the performance of the proposed approach. The

effectiveness of the classification of the proposed approach is nearly similar to

the Vlachos approach when ε is small, because of the conjecture that a small

ε produces a polygonal approximation of the corpus callosum that is nearly the

same as the original, as shown in Figure 4.5. Consequently, the proposed approach

acts like the Vlachos approach. When the value of ε is increased, the application

of the polygonal approximation tends to simplify the boundary description of the

corpus callosum. The results obtained indicate that the polygonal approximation

maintains the necessary boundary details describing a corpus callosum. The

amount of detail in the boundary description becomes coarser as the value of ε is

further increased and the consequent classification performance starts to decrease

(reference to medical domain experts has indicated that this is the case).
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4.7 Summary

In this chapter a new approach to ROIBIC using the Hough transform, coupled

with a polygonal approximation, has been described. The Hough transform is a

popular technique used in image processing and analysis. Essentially it allows

the translation of an image into a higher dimension which in turn facilitates the

automated detection of objects. A number of variations of the Hough transform,

directed at different types of shape, were considered. The technique of interest

was that of Vlachos et al. which was used as the foundation for the proposed

Hough transform classification process. The distinction between the two tech-

niques is that the proposed technique adopted a polygonal approximation of the

region of interest. The reported evaluation indicated that the proposed technique

outperformed the Vlachos approach (which did not use any polygonal approxima-

tion). Reasonable classification results were obtained. However, in the following

Chapter an alternative approach to classifying images according to a common

image feature, founded on a tree representation, that outperforms the proposed

Hough transform technique will be described.
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Chapter 5

Region Of Interest Image
Classification Using a Weighted
Frequent Subgraph
Representation

5.1 Introduction

As already noted, the application of techniques to classify image data according

to some common object that features across an image set requires the repre-

sentation of the image objects in question using some appropriate format. The

previous chapter consider representing image objects using a signature generation

process founded on the Hough transform. In this chapter an image decomposi-

tion method is considered whereby the ROIs are represented using a quad-tree

representation. More specifically the Minimum Bounding Rectangles (MBR) sur-

rounding the ROIs are represented using a quad-tree representation. The con-

jectured advantage offered is that a quad-tree representation will maintain the

structural information (shape and size) of the ROI contained in the MBR. By

applying a weighted frequent subgraph mining algorithm, gSpan-ATW [79], to

this representation, frequent subgraphs that occur across the tree represented set

of MBR can be identified. The identified frequent subgraphs each describing, in

terms of size and shape, some part of the MBR, can then be used to form the

fundamental elements of a feature space. Consequently, this feature space can

be used to describe a set of feature vectors, one per image, to which standard

classification processes can be applied (e.g. decision tree classifiers, SVM or rule

based classifiers). A schematic of the graph based approach is given in Figure
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Figure 5.1: Framework of graph based approach.

From the Figure the graph based approach for image classification commences

with segmentation and registration to isolate the Region Of Interest (ROI) as de-

scribed in Chapter 3. Secondly, image decomposition takes place to represent

the details of the identified ROI in terms of a quad-tree data structure. Feature

extraction using a weighted frequent subgraph mining approach (gSpan-ATW) is

then applied to the tree represented image set (one tree per image) to identify

frequent subgraphs. The identified subtrees (subgraphs) then form the funda-

mental elements of a feature space, i.e. a set of attributes with which to describe

the image set. Finally, due to a substantial number of features (frequent sub-

graphs) being generated, feature selection takes place to select the most relevant

and discriminatory features. Standard classifier generation techniques can then

be applied to build a classifier that can be applied to unseen data.

The rest of this chapter is organised as follows. Image decomposition using the

quad tree generation process is presented in Section 5.2. Feature extraction, using

the proposed weighted frequent subgraph mining algorithm (gSpan-ATW), is then
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described in Section 5.3. Feature selection and the final classification is then

considered in Section 5.4. The evaluation of the proposed approach is presented

in Section 5.5, followed by some discussion in Section 5.6 and a summary and

some conclusions in Section 5.7.

5.2 Image Decomposition

Image decomposition methods are commonly used in image analysis, compres-

sion, and segmentation. There are different types of image decomposition meth-

ods, including quad-tree, pyramids, and the scale-space representation [29]. In

this chapter, a quad-tree representation is proposed to characterize the ROI. A

quad-tree is a tree data structure which can be used to represent a 2D area

(such as images) which have been recursively subdivided into “quadrants” [92].

In the context of the representation of ROIs in terms of quad-tree, the pixels

represented the MBR surrounding each ROI are tessellated into homogeneous

sub-regions [43, 45]. The tessellation can be conducted according to a variety of

image features such as colour or intensity. With respect to the corpus callosum a

binary encoding was used, the “tiles” included in the corpus callosum were allo-

cated a “1” (black) and the tiles not included a “0” (white). A tile was deemed

to be sufficiently homogeneous if it was 95% black or white. As already noted,

the tessellation process entails the recursive decomposing of the ROI, into quad-

rants. The tessellation continues until either sufficiently homogeneous tiles are

identified or some user specified level of granularity is reached. The result is then

stored in a quad-tree data structure such that each leaf node represent tiles. Leaf

nodes nearer the root of the tree represent larger tiles than nodes further away.

Thus the tree is “unbalanced” in that some leaf nodes will cover larger areas of

the ROI than others. It is argued that tiles covering small regions are of greater

interests than does covering large regions because they indicate a greater level of

detail (they are typically located on the boundary of the ROI). The advantage

of the representation is thus that it maintains information about the relative lo-

cation and size of groups of pixels (i.e. the shape of the corpus callosum). The

decomposition process is illustrated in Figures 5.2 and 5.3. Figure 5.2 illustrates

the decomposition (in this case down to a level of 3), and Figure 5.3 illustrates

the resulting quad-tree.
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Figure 5.2: Hierarchical decomposition (tessellation) of the corpus callosum.

Figure 5.3: Tree representation of the hierarchical decomposition given in Figure
5.2.
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5.3 Feature Extraction Using gSpan-ATW Al-

gorithm

This section provides an overview of the weighted frequent subgraph mining algo-

rithm, gSpan-ATW, adopted for use with the quad-tree representation described

in Section 5.2. The section is divided into a number of sub-sections. Sub-section

5.3.1 first presents some necessary preliminary definitions. This is followed by

Sub-section 5.3.2 that presents an overview of frequent subgraph mining and

the gSpan algorithm on which gSpan-ATW is founded. The adopted weighted

frequent subgraph mining process is then described in Sub-section 5.3.3.

5.3.1 Definitions

The necessary definitions to support the discussion on frequent subgraph mining

presented in Sub-section 5.3.2 are introduced in this section. The definitions are

presented as follows.

Labelled Graph: A labelled graph can be represented as G(V,E, lV , lE, fV , fE),

where V is a set of nodes, E ⊆ V × V is a set of edges; lV and lE are node

and edge labels respectively, and fV and fE are the corresponding functions

that define the mappings V → lV and E → lE.

Subgraph: Given two graphsG1(V1, E1, lV1 , lE1 , fV1 , fE1) andG2(V2, E2, lV2 , lE2 , lV2 , lE2),

G1 is a subgraph of G2, if G1 satisfies the following conditions.

V1 ⊆ V2, ∀v ∈ V1, fV1(v) = fV2(v),

E1 ⊆ E2, ∀(u, v) ∈ E1, fE1(u, v) = fE2(u, v) .

G2 is also called a supergraph of G1 [76].

Graph Isomorphism: A graph G1(V1, E1, lV1 , lE1 , fV1 , fE1) is isomorphic to an-

other graph G2(V2, E2, lV2 , lE2 , fV2 , fE2), if and only if a bijection ψ : V1 → V2

exists such that:

∀u ∈ V1, fV1(u) = fV2(ψ(u)),

∀u, v ∈ V1, (u, v) ∈ E1 ⇔ (ψ(u), ψ(v)) ∈ E2,

∀(u, v) ∈ E1, fE1(u, v) = fE2(ψ(u), ψ(v)).
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The bijection ψ is an isomorphism between G1 and G2. A graph G1 is

subgraph isomorphic to a graph G2, denoted by G1 ⊆sub G2, if and only if

there exists a subgraph g of G2 such that G1 is isomorphic to g [72].

5.3.2 Frequent Subgraph Mining

From the literature (see also Chapter 2) two separate problem formulations for

Frequent Subgraph Mining (FSM) can be identified: (i) transaction graph based,

and (ii) single graph based. In transaction graph based mining, the input data

comprises a collection of relatively small graphs, whereas in single graph based

mining the input data comprises a very large single graph. The graph mining

based approach described in this thesis focuses on transaction graph based mining.

Table 5.1 lists the notation, in relation to transaction graph based mining, which

will be employed through out the rest of this section (and where appropriate the

rest of this thesis).

Table 5.1: Notation used throughout this chapter.

Notation Description
D A graph database.
Gi A transaction graph such that Gi ∈ D.
k-(sub)graph A (sub)graph of size k in terms of nodes, or edges, or paths.
gk A k-(sub)graph.
Ck A set of subgraph candidates of size k .
Fk A set of frequent k-subgraphs.
| · | The cardinality of a set.

In the context of transaction graph based mining, FSM aims to discover all

the subgraphs whose occurrences in a graph database are over a user defined

threshold. Formally, given a database D comprised of a collection of graphs and

a threshold σ(0 < σ ≤ 1), the occurrence of a subgraph g in D is defined by

δD(g) = {Gi ∈ D|g ⊆sub Gi}. Thus, the support of a graph g is defined as the

fraction of the graphs in D to which g is subgraph isomorphic:

supD(g) = |δD(g)|/|D| (5.1)

A subgraph g is frequent if and only if supD(g) ≥ σ. The frequent sub-

graph mining problem is to find all the frequent subgraphs in D. Frequent

subgraph mining has been widely studied. A number of FSM algorithms have
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been proposed these include: (i) AGM [75], (ii) FSG [87], (iii) gSpan [155], (iv)

FFSM [72]. The weighted frequent subgraph mining algorithm used with respect

to the representation described here was founded on gSpan [155]. An outline of

the gSpan algorithm is given in Algorithm 5.1, note that the algorithm recursively

calls the “subGM” procedure. In the procedure, when subGM runs each time,

it grows one edge from c and discovers all frequent children of c (lines 6 to 12).

The recursive procedure in subGM follows the pre-order traversal as described in

[155].

Algorithm 5.1: gSpan(c, σ, D, F )

Input: c = a subgraph represented by a DFS code, σ = minimum
support, D = a graph dataset

Output: F , a set of frequent subgraphs

1 Sort labels of the nodes and edges in D by their frequency
2 Remove infrequent nodes and edges
3 Relabel the remaining nodes and edges in descending frequency
4 F1 ← {all frequent 1-edge subgraphs in D}
5 Sort F1 in DFS lexicographic order
6 F ← ∅
7 foreach c ∈ F1 do
8 subGM(c,D, σ,F)
9 D ← D − c

10 if |D| < σ then
11 break
12 end

13 end

Frequent subgraph mining is computationally expensive because of the can-

didate generation and support computation processes that are required. The

first process is concerned with the generation of candidate subgraphs in a non-

redundant manner such that the same graph is not generated more than once.

Thus graph isomorphism checking is required to remove duplicate graphs. The

second process is to compute the support of a graph in the graph database. This

also requires subgraph isomorphism checking in order to determine the set of

graphs where a given candidate occurs. As mentioned in [155], using an efficient

canonical labelling and a lexicographical ordering in graphs, gSpan was designed

to reduce the generation of duplicate graphs. As shown in Procedure subGM,

c 6= min(c) (line 1) guarantees that gSpan does not extend any duplicate graph
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Procedure subGM(c, D, σ, F)

1 if c 6= min(c) then
2 return
3 end
4 F ← F ∪ {c}
5 Ck ← ∅
6 Scan D once, find every edge e such that c can be right-most extended to
c ∪ e, Ck ← c ∪ e

7 Sort Ck in DFS lexicographic order
8 foreach gk ∈ Ck do
9 if support(gk) ≥ σ then

10 subGM(gk, D, σ, F)
11 end

12 end

because the candidate generation process adheres to a canonical labelling. Fur-

ther, the rightmost extension shown at line 6 in Procedure subGM guarantees

that the complete set of frequent subgraphs will be discovered. Although gSpan

can achieve competitive performance compared with other FSM algorithms, its

performance degrades considerably when the graph size is relatively large or the

graph features few node and/or edge labels. One mechanism for addressing this

issue is to use weighted frequent subgraph mining.

5.3.3 Weighted Frequent Subgraph Mining

Given the quad-tree representation advocated in Section 5.2, a weighted frequent

subgraph mining algorithm (gSpan-ATW) was applied to identify frequently oc-

curring subgraphs (subtrees) within this tree representation. The Average Total

Weighting (ATW) scheme weights nodes according to their occurrence count.

The nodes in the tree (see for example Figure 5.3) are labelled as being either:

“black”, “white” or “nothing”. The black and white labels are used for the leaf

nodes and represent the shape of the corpus callosum. These should therefore be

weighted more highly than the “nothing” nodes. It can also be argued that these

should be weighted more highly because they are further away (on average) from

the root than the “nothing” nodes, and therefore the leaf nodes can be said to

provide more detail. The ATW scheme achieves this and is described in more

detail in the following sub-section.
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5.3.3.1 The Average Total Weighting (ATW) Scheme

The weighting scheme adopted in the gSpan-ATW algorithm is the Average Total

Weighting (ATW) scheme [79], which in turn is inspired by the work of [140].

Given a graph data set D = {G1, G2, · · · , Gt}, the weight for a subgraph g is

calculated by dividing the sum of the average weights in the graphs that contain

g with the sum of the average weights across the entire graph data set D. Thus:

Definition 5.3.1. Given a graph data set D = {G1, G2, · · · , Gt}, if Gi is node

weighted by assigning {w1, w2, · · · , wk} to a set of nodes {v1, v2, · · · , vk} respec-

tively, then the average weight associated with Gi is defined as:

Wavg(Gi) =

∑k
j=1 wj

k
. (5.2)

Where wj can be determined using an appropriate weighting function described

as follows:

wj =
occ(vj)∑

1≤i≤t size(Gi)
. (5.3)

Where occ(vj) denotes the number of times vj occurs in D, and size(Gi) denotes

the size of Gi in terms of the number of nodes in Gi. Thus, the total weight of D
is further defined as:

Wsum(D) =
t∑
i=1

Wavg(Gi) . (5.4)

Using both (5.2) and (5.4), the weight of a subgraph can be calculated by (5.5).

Definition 5.3.2. Given a graph data set D = {G1, G2, · · ·Gt} and an arbitrary

subgraph g, let the set of graphs where g occurs equal δD(g). Then, the weight of

g with respect to D is:

WD(g) =

∑
Gi∈δD(g) Wavg(Gi)

Wsum(D)
. (5.5)

WD(g) is used to quantify the actual importance of each discovered subgraph g

in a graph database. According to (5.1), the weighted support of a subgraph g is

then defined as the product of the support of g and the importance factor of g:
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wsupD(g) = WD(g) · supD(g) =
WD(g) · |δD(g)|

|D|
. (5.6)

Definition 5.3.3. A subgraph g is weighted frequent with respect to D, if wsupD(g) ≥
τ , where 0 < τ ≤ 1 is a weighted support threshold.

Figure 5.4: An example of calculating weights by the ATW scheme.

Example: Considering the graph data set D = {G1, G2, G3} shown in Figure

5.4, where the symbol inside each node indicates the node label (the edge labels

are not included in the figure). Given a node with a label ‘b’ in the candidate

subgraph g (in Figure 5.4), occ(b) = 6, and
∑3

i=1 size(Gi) = 20. Thus wD(b) =

6/20 = 0.3. Similarly, for nodes with labels ‘t’, ‘n’, ‘m’ and ‘k’ in D, the nodes

weights are wD(t) = 5/20 = 0.25, wD(n) = 3/20 = 0.15, wD(m) = 3/20 =

0.15, wD(k) = 3/20 = 0.15 respectively. Given a subgraph g, which occurs

in G1 and G3, Wavg(G1) = 0.15+0.15+0.15+0.25+0.3+0.3+0.25
7

≈ 0.2214, Wavg(G2) =

0.15+0.15+0.15+0.25+0.3+0.25+0.3
7

≈ 0.2214, Wavg(G3) = 0.15+0.15+0.15+0.3+0.3+0.25
6

≈
0.2167. Thus, Wsum(D) = 0.2214 + 0.2214 + 0.2167 ≈ 0.6595, WD(g) =

0.2214+0.2167
0.6595

≈ 0.6643, wsupD = 2/3 × WD(g) ≈ 0.4429

5.3.3.2 The gSpan-ATW Algorithm

The ATW weighting scheme was incorporated into the gSpan algorithm to pro-

duce gSpan-ATW. Since only the procedure ‘subGM’ as described in Section 5.3.2

needed to be modified, the procedure of integrating ATW into the revised ver-

sion of gSpan required this procedure to be replaced with ‘subgSpan-ATW’. The

procedure is presented below. In the procedure, a weighted support threshold

τ is introduced to replace the threshold σ used in Algorithm 5.1. The input to
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gSpan-ATW is a collection of graphs D (in our case D comprises a collection of

trees each representing a corpus callosum). The gSpan-ATW algorithm operates

in a depth first manner, level by level, following a “generate, calculate support,

and prune” loop. A candidate subgraph, g, is considered to be frequent if its

weighted support, wsupD(g), is greater than some user specified threshold, τ ;

otherwise it is pruned. Note that the lower the value of τ the greater the number

of frequent subgraphs that will be identified.

Procedure subgSpan-ATW(c, D, τ , F)

1 if c 6= min(c) then
2 return
3 end
4 if WD(c)× supD(c) ≥ τ then
5 F ← F ∪ {c}
6 else
7 return
8 end
9 C ← ∅

10 Scan D once, find every edge e such that c can be right-most extended to
c ∪ e, C ← c ∪ e

11 Sort C in DFS lexicographic order
12 foreach gk ∈ C do
13 if WD(gk)× supD(gk) ≥ τ then
14 subgSpan-ATW(gk, D, τ , F)
15 end

16 end

The identified frequent subgraphs (i.e. subtrees) each describing, in terms of

size and shape, some part of a ROI that occurs regularly across the data set, are

then used to form the fundamental elements of a feature space. In this context a

feature space is an N dimensional shape where N is equivalent to the number of

features identified. Using this feature space each image (ROI) can be described

in terms of a feature vector of length N, with each element having a value equal

to the frequency of that feature.

5.4 Feature Selection and Classification

As noted above the graph mining process typically identifies a great many frequent

subgraphs; more than required for the desired classification. Therefore a feature
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selection strategy was applied to the feature space so that only those subgraphs

that serve as good discriminators between cases are retained. A straightforward

wrapper method was adopted whereby a decision tree generator was applied to

the feature space. Features included as “choice points” in the decision tree were

then selected, while all remaining features were discarded. For the work described

here, the well established C4.5 algorithm [122] was adopted, although any other

decision tree generator would have sufficed. On completion of the feature selection

process each image was described in terms of a reduced feature vector indicating

the selected features (subgraphs) that appear in the image. Once the image set

had been represented in this manner any appropriate classifier generator could

be applied. With respect to the work described here two classification techniques

were used for the evaluation: (i) Decision Trees (C4.5) [122] and (ii) Support

Vector Machines (SVMs) [28], to examine the performance of the graph based

approach. For the C4.5 classifiers, the WEKA implementations [60] were used,

and for the SVM classifier, the LIBSVM implementation [22] was used. In the

experiments, all the classification results were computed using Ten-fold Cross

Validation (TCV).

5.5 Evaluation

The proposed graph based image classification approach was evaluated with re-

spect to the corpus callosum application. This section describes the evaluation.

The evaluation was undertaken in terms of classification accuracy, sensitivity and

specificity. The three studies introduced earlier were used for the evaluation: (i)

comparison between musician and non-musician MRI scans, (ii) comparison be-

tween left handedness and right handedness, and (iii) epilepsy screening. The

description of these datasets was presented in Chapter 3. The result of three

evaluations are discussed in detail in Sub-sections 5.5.1, 5.5.2 and 5.5.3 below.

The effect of the feature selection technique is considered in Subsection 5.5.4.

The run time analysis of the proposed approach is presented in Subsection 5.5.5

5.5.1 Musicians Study

For the musicians study four graph datasets were generated: QT-D4, QT-D5,

QT-D6, and QT-D7. These four datasets represent the same collection of brain
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Table 5.2: TCV classification results for QT-D4 data of musician study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 24549 15 71.70 69.81 73.58 70.75 71.70 69.81
30 4264 16 71.70 69.81 73.58 69.81 71.70 67.92
40 1193 18 73.58 71.70 75.47 68.87 71.70 66.04
50 639 19 69.81 71.70 67.92 71.70 73.58 69.81
60 262 16 66.98 69.81 64.15 68.87 71.70 66.04
70 151 21 61.32 62.26 60.38 61.32 62.26 60.38
80 86 16 62.26 66.04 58.49 52.83 56.60 49.06
90 54 17 58.49 62.26 54.72 50.94 54.72 47.17

MRI scans but with different levels of quad-tree decomposition (4, 5, 6 and 7

respectively). The number of trees in each of the dataset is of course the same

(one tree per image). However, the trees in QT-D7 have more nodes and edges

than those in QT-D6 which have more nodes and edges than those in QT-D5.

QT-D4 have the least number of nodes and edges compared to the other datasets:

QT-D5, QT-D6, and QT-D7.

Tables 5.2 to 5.5 show the TCV results obtained using the musician dataset.

The SVM and C4.5 columns indicate the results using the SVM and C4.5 clas-

sification techniques respectively. Acc, Sens and Spec refer to accuracy, sensi-

tivity and specificity respectively. The Fbefore and Fafter indicate the number

of features before and after the application of feature selection. τ indicates the

support threshold which is the minimum frequency with which a subgraph must

occur across the dataset for the subgraph to be considered “frequent”. Results

indicated in bold font show the best results obtained in each case.

Inspect of tables 5.2 to 5.5 indicates that the best accuracies achieved were

91.51% (SVM) and 95.28% (C4.5). The best sensitivity and specificity were

92.45% and 90.57% (SVM) and 96.23% and 94.34% (C4.5). The best accuracy

obtained using the two classifier SVM and C4.5 occurred when using QT-D6

coupled with a support threshold of τ = 30.

From the tables it can also be observed that the best classification accuracies

obtained using SVM were 73.58%, 82.08%, 91.51% and 89.62% corresponding

to the different quad-tree levels of 4, 5, 6, and 7 respectively. While the best

classification accuracy obtained using C4.5 were 71.70%, 90.57%, 95.28% and

89.62% corresponding to quad-tree levels of 4, 5, 6, and 7 respectively.
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Table 5.3: TCV classification results for QT-D5 data of musician study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 16094 12 76.42 79.25 73.58 90.57 92.45 88.68
30 4630 12 82.08 84.91 79.25 83.96 86.79 81.13
40 2100 10 80.19 83.02 77.36 80.19 83.02 77.36
50 1155 13 79.25 83.02 75.47 85.85 86.79 84.91
60 637 14 78.30 81.13 75.47 80.19 83.02 77.36
70 405 14 78.30 81.13 75.47 81.13 83.02 79.25
80 252 18 73.58 67.92 79.25 80.19 83.02 77.36
90 130 17 67.92 69.81 66.04 70.75 73.58 67.92

Table 5.4: TCV classification results for QT-D6 data of musician study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 35223 11 85.85 86.79 84.91 85.85 86.79 84.91
30 9461 10 91.51 92.45 90.57 95.28 96.23 94.34
40 4059 12 86.79 92.45 81.13 84.91 86.79 83.02
50 2260 11 82.08 84.91 79.25 83.96 86.79 81.13
60 1171 11 84.91 88.68 81.13 90.57 92.45 88.68
70 741 13 79.25 86.79 71.70 83.96 86.79 81.13
80 433 13 78.30 81.13 75.47 77.36 75.47 79.25
90 232 14 74.53 71.70 77.36 75.47 73.58 77.36

Table 5.5: TCV classification results for QT-D7 data of musician study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 48683 13 88.68 90.57 86.79 83.96 86.79 81.13
30 34440 12 89.62 92.45 86.79 85.85 86.79 84.91
40 11998 11 86.79 92.45 81.13 89.62 90.57 88.68
50 6402 10 83.96 86.79 81.13 86.79 88.68 84.91
60 3317 13 82.08 84.91 79.25 87.74 88.68 86.79
70 2032 13 78.30 81.13 75.47 75.47 73.58 77.36
80 1117 13 73.58 67.92 79.25 76.42 79.25 73.58
90 476 12 71.70 73.58 69.81 78.3 81.13 75.47
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Table 5.6: TCV classification results for QT-D4 data of handedness study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 9245 22 68.29 75.00 61.90 67.07 72.50 61.90
30 2875 14 70.73 77.50 64.29 68.29 75.00 61.90
40 1424 13 73.17 80.00 66.67 69.51 75.00 64.29
50 745 14 71.95 77.50 66.67 70.73 77.50 64.29
60 324 15 68.29 75.00 61.90 67.07 72.50 61.90
70 278 19 63.41 70.00 57.14 59.76 65.00 54.76
80 167 15 62.20 65.00 59.52 51.22 57.50 45.24
90 42 16 57.32 62.50 52.38 48.78 52.50 45.24

From these results it can also be observed that accuracy increases as the

quad-tree levels are increased, up to level 6, and then begins to fall of. It is

conjectured that this is because “over fitting” starts to take place as the quad-

tree representation starts to get to be too detailed.

Regardless of the quad-tree level, the trend of the classification accuracy im-

proved as the threshold support decreased. This is because more frequent sub-

graphs are identified as can be seen from the Fbefore column. It is likely that as

the support threshold increases, significant subgraphs are no longer discovered by

the graph mining algorithm.

5.5.2 Handedness Study

For the handedness study four graph datasets were again generated: QT-D4,

QT-D5, QT-D6, and QT-D7. These four datasets represent the same collection

of brain MRI scan but with different levels of quad-tree decomposition (4, 5, 6

and 7 respectively).

Tables 5.6 to 5.9 show the TCV results obtained using the handedness dataset.

The column headings should be interpreted in the same way as for Table 5.2.

From tables 5.6 to 5.9 it can be seen that the best accuracy achieved was 91.46%

(SVM) and 93.90% (C4.5). The best sensitivity and specificity were 92.50% and

90.48% (SVM) and 95.00% and 92.86% (C4.5). The best accuracy obtained using

the SVM classifier occurred when using QT-D6 coupled with support threshold

of τ = 20. While The best accuracy obtained using C4.5 occurred when using

QT-D6 coupled with a support threshold of τ = 30.

Tables 5.6 to 5.9 indicate that the best classification accuracy obtained using
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Table 5.7: TCV classification results for QT-D5 data of handedness study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 14223 25 73.17 77.50 69.05 78.05 80.00 76.19
30 3974 16 87.80 92.50 83.33 82.93 87.50 78.57
40 1997 14 85.37 87.50 83.33 89.02 95.00 83.33
50 975 17 82.93 87.50 78.57 84.15 90.00 78.57
60 592 19 78.05 80.00 76.19 79.27 82.50 76.19
70 387 22 75.61 82.50 69.05 78.05 80.00 76.19
80 235 14 73.17 80.00 66.67 78.05 80.00 76.19
90 77 16 68.29 75.00 61.90 69.51 75.00 64.29

Table 5.8: TCV classification results for QT-D6 data of handedness study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 26341 28 91.46 92.50 90.48 84.15 90.00 78.57
30 8362 15 85.37 92.50 78.57 93.90 95.00 92.86
40 3861 17 81.71 87.50 76.19 89.02 95.00 83.33
50 1870 14 84.15 90.00 78.57 84.15 90.00 78.57
60 963 16 78.05 80.00 76.19 82.93 87.50 78.57
70 602 14 78.05 80.00 76.19 79.27 82.50 76.19
80 367 13 71.95 72.50 71.43 75.61 82.50 69.05
90 137 17 69.51 75.00 64.29 74.39 80.00 69.05

SVM were 73.17%, 87.80%, 91.46% and 85.37% corresponding to different quad-

tree levels of 4, 5, 6, and 7 respectively. While the best classification accuracy

obtained using C4.5 were 70.73%, 89.02%, 93.90% and 87.80% corresponding to

quad-tree levels of 4, 5, 6, and 7 respectively.

From these results, as in the case of the musicians study, it can again be ob-

served that accuracy increases as the number of quad-tree levels are increased,

up to a level of 6, and then begins to fall of. As noted previously it is conjectured

that this is because “over fitting” starts to take place as the quad-tree represen-

tation starts to get to be too detailed. Also as noted before, regardless of the

quad-tree level, the trend of the classification accuracy improved as the threshold

support decreased because more frequent subgraphs are identified (as can be seen

from the Fbefore columns).
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Table 5.9: TCV classification results for QT-D7 data of handedness study.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 36781 25 82.93 87.50 78.57 82.93 87.50 78.57
30 28744 22 85.37 92.50 78.57 84.15 90.00 78.57
40 9456 17 81.71 87.50 76.19 87.80 92.50 83.33
50 4207 15 76.83 77.50 76.19 86.59 92.50 80.95
60 2421 12 74.39 80.00 69.05 85.37 92.50 78.57
70 1611 14 67.07 72.50 61.90 76.83 77.50 76.19
80 936 13 64.63 70.00 59.52 74.39 80.00 69.05
90 255 15 62.20 67.50 57.14 71.95 77.50 66.67

Table 5.10: TCV classification results for QT-D4 data of Ep106.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 6471 35 61.32 62.26 60.38 56.60 62.26 50.94
30 2411 32 64.15 66.04 62.26 59.43 58.49 60.38
40 1721 28 60.38 60.38 60.38 61.32 62.26 60.38
50 1193 29 56.60 62.26 50.94 58.49 62.26 54.72
60 476 25 54.72 58.49 50.94 59.43 58.49 60.38
70 282 19 54.72 58.49 50.94 56.60 62.26 50.94
80 127 17 51.89 54.72 49.06 53.77 58.49 49.06
90 87 15 50.94 56.60 45.28 51.89 54.72 49.06

5.5.3 Epilepsy Study

For the epilepsy study three data collections (Ep106, Ep159, Ep212) with different

sizes (106, 159 and 212 respectively) were used. Each of these three collections

was used to generate four datasets (QT-D4, QT-D5, QT-D6, and QT-D7) giving

a total of 12 datasets.

Tables 5.10 to 5.21 show the TCV results obtained using the three epilepsy

collections. The column headings should be interpreted in the same way as for

Table 5.2. From tables 5.10 to 5.21 it can be seen that the best accuracy of

achieved was 84.91% (C4.5), 86.16 (SVM) and 86.32% (C4.5) for the three collec-

tions Ep106, Ep159, and Ep212 respectively. High sensitivity and specificity were

also achieved, associated with the corresponding best accuracies obtained. The

best accuracy obtained using the SVM and C4.5 occurred when using QT-D6

coupled with a support threshold of τ = 30. Best results were obtained using the

larger, 212 Epilepsy MRI scan data collection because this included many more
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Table 5.11: TCV classification results for QT-D5 data of Ep106.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 3567 37 79.25 86.79 71.70 73.58 71.70 75.47
30 1944 35 83.02 86.79 79.25 78.30 81.13 75.47
40 849 37 82.08 86.79 77.36 81.13 83.02 79.25
50 478 29 79.25 86.79 71.70 79.25 81.13 77.36
60 312 27 73.58 69.81 77.36 72.64 71.70 73.58
70 165 20 69.81 71.70 67.92 66.04 69.81 62.26
80 102 19 67.92 69.81 66.04 62.26 66.04 58.49
90 78 21 64.15 67.92 60.38 57.55 60.38 54.72

Table 5.12: TCV classification results for QT-D6 data of Ep106.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 16934 39 82.08 86.79 77.36 76.42 79.25 73.58
30 9841 33 84.91 88.68 81.13 84.91 86.79 83.02
40 6104 28 81.13 83.02 79.25 79.25 81.13 77.36
50 4201 27 78.30 81.13 75.47 72.64 71.70 73.58
60 983 19 73.58 69.81 77.36 66.04 69.81 62.26
70 755 16 69.81 71.70 67.92 66.04 69.81 62.26
80 503 14 66.98 69.81 64.15 62.26 66.04 58.49
90 212 12 64.15 67.92 60.38 60.38 60.38 60.38

Table 5.13: TCV classification results for QT-D7 data of Ep106.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 38712 43 71.70 73.58 69.81 74.53 71.70 77.36
30 19837 35 76.42 79.25 73.58 77.36 75.47 79.25
40 10798 37 68.87 75.47 62.26 73.58 71.70 75.47
50 6499 37 66.04 69.81 62.26 69.81 73.58 66.04
60 4634 39 68.87 75.47 62.26 62.26 66.04 58.49
70 2100 26 62.26 66.04 58.49 57.55 60.38 54.72
80 1586 18 61.32 62.26 60.38 58.49 62.26 54.72
90 622 15 56.60 62.26 50.94 54.72 58.49 50.94
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Table 5.14: TCV classification results for QT-D4 data of Ep159.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 6723 36 57.23 58.49 56.60 59.12 60.38 58.49
30 2405 32 60.38 62.26 59.43 61.01 62.26 60.38
40 1657 29 58.49 56.60 59.43 62.26 66.04 60.38
50 1203 29 55.35 56.60 54.72 59.12 60.38 58.49
60 498 25 57.23 58.49 56.60 55.97 56.60 55.66
70 286 22 50.94 49.06 51.89 52.20 50.94 52.83
80 135 17 50.31 49.06 50.94 52.20 50.94 52.83
90 92 16 50.31 49.06 50.94 50.94 49.06 51.89

Table 5.15: TCV classification results for QT-D5 data of Ep159.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 9435 43 81.13 86.79 78.30 76.10 79.25 74.53
30 3870 38 81.13 86.79 78.30 79.87 84.91 77.36
40 1978 32 82.39 88.68 79.25 74.21 75.47 73.58
50 911 32 77.36 81.13 75.47 70.44 71.70 69.81
60 523 27 73.58 75.47 72.64 64.15 64.15 64.15
70 334 24 75.47 77.36 74.53 65.41 67.92 64.15
80 182 18 69.81 71.70 68.87 61.64 62.26 61.32
90 124 15 65.41 67.92 64.15 59.12 60.38 58.49

Table 5.16: TCV classification results for QT-D6 data of Ep159.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 17736 39 83.02 88.68 80.19 79.25 84.91 76.42
30 10005 32 86.16 94.34 82.08 84.91 92.45 81.13
40 6430 26 84.91 92.45 81.13 81.13 86.79 78.30
50 4309 24 83.02 88.68 80.19 82.39 88.68 79.25
60 1012 16 80.50 86.79 77.36 78.62 83.02 76.42
70 874 13 73.58 75.47 72.64 74.21 75.47 73.58
80 551 15 71.07 73.58 69.81 69.18 69.81 68.87
90 244 16 67.92 69.81 66.98 68.55 69.81 67.92
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Table 5.17: TCV classification results for QT-D7 data of Ep159.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 39008 45 76.73 79.25 75.47 69.81 71.70 68.87
30 20905 38 79.25 84.91 76.42 71.07 73.58 69.81
40 11988 42 76.73 79.25 75.47 77.99 81.13 76.42
50 6959 37 74.21 75.47 73.58 75.47 77.36 74.53
60 4814 41 69.81 71.70 68.87 75.47 77.36 74.53
70 2165 29 65.41 67.92 64.15 67.92 69.81 66.98
80 1602 19 61.01 62.26 60.38 62.26 66.04 60.38
90 638 17 58.49 56.60 59.43 57.86 58.49 57.55

Table 5.18: TCV classification results for QT-D4 data of Ep212.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 6814 38 62.26 66.98 57.55 59.43 62.26 56.60
30 2454 34 66.04 69.81 62.26 61.32 65.09 57.55
40 1692 29 64.15 68.87 59.43 63.21 67.92 58.49
50 1265 31 62.26 66.98 57.55 60.38 64.15 56.60
60 514 23 58.49 62.26 54.72 60.38 64.15 56.60
70 293 19 56.60 59.43 53.77 52.36 53.77 50.94
80 141 15 51.89 53.77 50.00 44.34 46.23 42.45
90 99 13 51.89 53.77 50.00 42.45 44.34 40.57

training examples.

Inspection of tables 5.10 to 5.21 again indicates that accuracy increases as

the quad-tree levels are increased, up to level of 6, and then begins to fall of as

“over fitting” starts to take place. The overall accuracy results obtained using the

epilepsy data collection is less than those obtained using musician and handedness

datasets. This was also observed with respect to the Hough transform technique

described in Chapter 4. It is suggested that the reason for this is that epilepsy is

also infulenced by other conditions in addition to the size and shape of the corpus

callosum.

5.5.4 The Effect of Feature Selection

The results where feature selection was not applied were not as good as those

obtained using the proposed feature selection technique. Table 5.22 shows the

results with and without the use of the proposed feature selection technique for

all five datasets. The parameters were set to QT-D6 and a support threshold
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Table 5.19: TCV classification results for QT-D5 data of Ep212.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 10001 47 75.94 81.13 70.75 76.89 82.08 71.7
30 4681 39 79.25 83.96 74.53 82.08 86.79 77.36
40 2103 36 78.77 83.02 74.53 77.36 82.08 72.64
50 947 35 74.53 80.19 68.87 75.47 80.19 70.75
60 582 31 70.75 76.42 65.09 72.17 77.36 66.98
70 364 27 68.87 75.47 62.26 68.4 74.53 62.26
80 201 19 65.09 69.81 60.38 62.26 66.98 57.55
90 154 16 56.6 59.43 53.77 59.43 62.26 56.6

Table 5.20: TCV classification results for QT-D6 data of Ep212.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 18440 42 81.60 84.91 78.30 82.08 86.79 77.36
30 10597 37 83.02 85.85 80.19 86.32 87.74 84.91
40 6933 28 78.77 83.02 74.53 80.19 84.91 75.47
50 4602 24 77.36 82.08 72.64 76.42 81.13 71.70
60 1341 18 69.81 75.47 64.15 73.11 78.30 67.92
70 923 16 67.45 72.64 62.26 67.45 72.64 62.26
80 602 14 64.62 69.81 59.43 65.09 69.81 60.38
90 298 15 64.62 69.81 59.43 62.26 66.98 57.55

Table 5.21: TCV classification results for QT-D7 data of Ep212.

τ SVM C4.5
% Fbefore Fafter Acc. Sens. Spec. Acc. Sens. Spec.
20 39414 48 76.42 81.13 71.70 75.00 80.19 69.81
30 21342 42 78.30 81.13 75.47 77.36 82.08 72.64
40 12301 44 72.17 77.36 66.98 79.25 83.96 74.53
50 7240 39 70.28 76.42 64.15 80.19 84.91 75.47
60 5201 43 68.40 74.53 62.26 78.30 81.13 75.47
70 2201 27 64.15 68.87 59.43 70.28 76.42 64.15
80 1881 23 59.43 62.26 56.60 63.21 67.92 58.49
90 703 19 58.02 60.38 55.66 60.38 64.15 56.60
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Table 5.22: The effect of feature selection for different datasets.

Datasets Fb Fa Accb Acca
Musician 9461 10 66.98 95.28

Handedness 8362 15 62.20 93.90
Ep106 9841 33 58.49 84.91
Ep159 10005 32 56.60 84.91
Ep212 10597 37 59.43 86.32

of τ = 30%. Fa and Fb indicate the number of feature with and without the

application of feature selection. Acca and Accb indicate the classification accuracy

with and without the application of the feature selection. From the table it can

clearly be seen that feature selection improves the classification performance.

Figure 5.5: Run time complexity of image classification using musician dataset.

5.5.5 Time Complexity of the Proposed Graph Based Im-
age Classification Approach

The computation time required by the graph based ROI image classification ap-

proach using the musician, handedness, and Ep212 datasets with different quad-

tree levels (QT-D4, QT-D5, QT-D6, and QT-D7) are illustrated in Figures 5.5,

5.6, and 5.7 respectively. All the experiments were performed with 1.86 GHz In-

tel(R) Core(TM)2 PC with 2GB RAM. From the figures it can be observed that
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Figure 5.6: Run time complexity of image classification using handedness dataset.

Figure 5.7: Run time complexity of image classification using Ep212 dataset.
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the computation time increases as the quad-tree level increases because quad-trees

with higher levels contain many more nodes and edges. Regardless of the quad-

tree level used, the computational time also increases as the support threshold

decreases. This is because the number of discovered frequent subgraphs increases

as the support threshold decreases.

Experiments were also conducted using an unweighed FSM algorithm (gSpan),

however the memory and runtime requirements were such that they were deemed

to be unacceptable.

5.6 Discussion

The overall classification accuracies presented in Section 5.5 above indicate that

the proposed graph based approach, using a tree representation to which weighted

frequent subgraph mining was applied, performed well over different brain MRI

datasets. However, The proposed graph based approach did not perform as well

for the epilepsy study (but was still reasonable). As noted above the suspicion

here is that the results reflect the fact that although the nature of the corpus

callosum may play a part in the identification of epilepsy there are also other

factors involved. Two parameter affect the overall classification accuracy: the

depth of the quad-tree and the support threshold. The classification accuracy

increases when the quad-tree level increases till a specific level is reached and

then starts to fall of. This is because “overfitting” starts to take place as the

quad-tree representation starts to get to be too detailed. Regardless the quad-

tree level, the classification accuracy trend improved as the support threshold

decreased. This was because more frequent subgraphs were identified as the

support threshold decreased. It is likely that as the support threshold increases,

significant subgraphs are overlooked by the graph mining algorithm.

5.7 Summary

In this chapter a new ROIBIC approach has been described. The technique was

directed at classifying Magnetic Resonance Image (MRI) brain scans according

to the nature of a ROI (the corpus callosum with respect to the focus applica-

tion considered in this thesis). The approach used a hierarchical decomposition
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whereby each MRI scan was decomposed into a hierarchy of “tiles” which could

then be represented as a quad-tree structure (one quad-tree per scan). A weighted

frequent subgraph mining mechanism was then applied so that subgraphs that

occurred frequently across the image set could be identified. These frequent sub-

graphs could be viewed as describing a feature space; as such the input images

could be translated, according to this feature space, into a set of feature vec-

tors (one per image). A feature selection mechanism was applied to the feature

vectors so as to select the most significant features to which standard classifica-

tion techniques could be applied. The reported evaluation indicates that high

classification accuracy results were obtained when using higher quad-tree levels

of decomposition, coupled with low support threshold, although if the level of

decomposition gets too high “over fitting” starts to take place. In the following

chapter an alternative approach for classifying images according to a common

image feature, founded on Zernike moments, is described.
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Chapter 6

Region Of Interest Image
Classification Using a Zernike
Moment Signature
Representation

6.1 Introduction

Moments are scalar quantities used to characterize a function and to capture

its significant features. They have been widely used for hundreds of years in

statistics for the description of the shape of probability density functions and in

classic “rigid-body” mechanics to measure the mass distribution of a body. From

the mathematical point of view, moments are “projections” of a function onto a

polynomial basis. The general moment Gpq of an image function f(x, y), where

p, q are non-negative integers and r = p + q is called the order of the moment,

defined as:

Gpq =

∫∫
D

Ppq(x, y) f(x, y) dx dy, (6.1)

where P00(x, y), P10(x, y), ..., Pkj(x, y), ... are polynomial basis functions defined

on D. Depending on the polynomial basis used, various systems of moments may

be defined. The most common is a standard power basis Pkj(x, y) = xkyj that

leads to geometric moments, Mpq:

Mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y) dx dy. (6.2)

Geometric moments of low orders have an intuitive meaning - M00 is a “mass” of

the image (for binary images, M00 is an area of the object), M10/M00 andM01/M00
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define the centroid of the image. Another popular choice of the polynomial basis

Pkj(x, y) = (x+ iy)k(x− iy)j, where i =
√
−1, leads to complex moments, Cpq:

Cpq =

∞∫
−∞

∞∫
−∞

(x+ iy)p (x− iy)q f(x, y) dx dy. (6.3)

If the polynomial basis {Pkj(x, y)} is orthogonal, i.e. if its elements satisfy

the condition of orthogonality for any indexes p 6= m or q 6= n then:∫∫
D

Ppq(x, y).Pmn(x, y) dx dy = 0 (6.4)

The advantage of orthogonal moments is their ability to capture the image fea-

tures in an improved, nonredundant way. Zernike moments are a class of orthogo-

nal moments (moments produced using orthogonal basis sets) that can be used as

an effective image descriptor. Zernike moments were first introduced by Teague

[141]. Teh and Chin [142] evaluated various image moments in terms of their

image description capabilities and noise sensitivity, The evaluation included: (i)

geometric, (ii) Legendre, (iii) Zernike, (iv) pseudo-Zernike, (v) rotational, and

(vi) complex moments. They showed that Zernike moments outperformed the

other moments. Unfortunately, direct computation of Zernike moments from

the Zernike polynomial is computationally expensive. This makes it impracti-

cal for many applications. This limitation has prompted considerable study of

algorithms for fast evaluation of Zernike moments [15, 86, 105, 119]. Several

algorithms have been proposed to speed up the computation. Belkasim et al.

[15] introduced a fast algorithm based on the series expansion of radial polyno-

mials. Parta et al. [119] and Kintner [86] have proposed recurrence relations

for fast computation of radial polynomials of Zernike moments. However, these

techniques are not applicable in many cases for the computation of Zernike mo-

ments where ((p = q) and (q = 0)), and (p − q < 4) respectively. Chong et

al. [23] modified Kintners method so that it would be applicable for all cases.

Unfortunately, all of these methods approximated Zernike moment polynomials

and consequently, produced inaccurate sets of Zernike moments. On the other

hand, Wee et al. [150], proposed a new algorithm that computed exact Zernike

moments through a set of exact geometric moments. Their method is accurate,

but it is time consuming. In this chapter, we introduce a new method for ex-

act Zernike Moment computation based on the observation that exact Zernike
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moments can be expressed as a function of geometric moments. Wu et al. [152]

describe a fast algorithm that accelerates the computation of geometric moments.

The algorithm is based on a quad-tree representation of images (similar to that

described in Chapter 5) whereby a given pixel represented region is decomposed

into a number of non-overlapping tiles. Since the geometric moment computation

for each tile is easier than that for the whole region, the algorithm proposed by

Wu reduces the computational complexity significantly.

In this chapter a mechanism for fast Zernike moment calculation, based on the

work of Wu [152], is proposed. The resulting Zernike moments are used to define

a feature vector (one per image) which can be input to a standard classification

mechanism (a SVM and C4.5 were used for evaluation). The rest of this chapter

is organized as follows. In Section 6.2 a review of Zernike moments is presented in

terms of their general application to image analysis. In Section 6.3 the calculation

of Zernike moments in terms of geometric moments is presented. Section 6.4

then presents a mechanism, first proposed in [152], for the fast calculation of

geometric moments using the quad-tree decomposition. The proposed mechanism

for the fast calculation of Zernike moments is presented in Section 6.5. In Section

6.6 feature extraction based on Zernike moments, to support ROI based image

classification, is introduced. The evaluation of the proposed approach is presented

in Section 6.7. Finally, Some discussion and summary is then presented in Section

6.8.

6.2 Zernike Moments

The complex 2D Zernike moments of order p and repetition q of an image intensity

function f(r, θ) are defined as:

Zpq =
p+ 1

π

∫ 2π

0

∫ 1

0

[
Vpq(r, θ)

]∗
f(r, θ) r dr dθ (6.5)

where p = 0, 1, 2, ...,∞ and q is an integer such that p− |q| = even, |q| ≤ p. * is

the complex conjugate. The p-th order Zernike polynomials with repetition q are

defined as:

Vpq(r, θ) = Rpq(r)e
iqθ (6.6)
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where r =
√
x2 + y2, r ∈ [−1, 1] is the length of the vector from the image

pixel (x, y) to the origin, θ = arctan(y/x) is the angle between vector r and the

principle x-axis and i =
√
−1. These Zernike polynomials describe a complete

set of complex-valued orthogonal functions defined on the unit circle, x2 +y2 ≤ 1.

The real-valued radial polynomials Rpq(r) are defined as:

Rpq(r) =

p∑
k=q

p−k=even

Bp|q|kr
k (6.7)

where the polynomial coefficients, Bp|q|k, are defined as:

Bp|q|k =

(−1)

(
p− k

2

)(
p+ k

2

)
!(

p− k
2

)
!

(
k + q

2

)
!

(
k − q

2

)
!

(6.8)

The Zernike polynomial coefficients can be computed using the recurrent re-

lations proposed in [105] as follows:

Bppp = 1

Bp(q−2)p =
p+ q

p− q + 2
Bpqp

Bpq(k−2) = − (k + q)(k − q)
(p+ k)(p− k + 2)

Bpqk (6.9)

Zernike polynomials satisfy the orthogonality relationship:

2π∫
0

1∫
0

Vnm(r, θ)Vpq(r, θ) r dr dθ =

{
π
p+1

, p = n, q = m

0, otherwise
(6.10)

Zernike moments are by nature rotation invariant, therefore the magnitudes

of Zernike moments are unaffected and remain constant with respect to an image

function regardless of any rotation. If an image function f(r, θ) with a Zernike

moment Zpq is rotated counter-clockwise by angle α, the transformed image func-

tion is g(r, θ) = f(r, θ − α). The Zernike moment of the rotated image is given

by:

Zα
pq = e−iqαZpq. (6.11)
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This leads to the well-known rotational invariance property
∣∣Zα

pq

∣∣ = |Zpq|.
In the case of digital images the calculation becomes discrete because we are

working at the pixel level. Therefore to compute Zernike moments of a digital

(discrete) image intensity function of size N × N , the integrals are replaced by

summations to obtain:

Zpq =
p+ 1

π

N−1∑
i=0

N−1∑
j=0

V ∗pqf(x, y), x2
i + y2

j ≤ 1 (6.12)

Consequently, the latter generates approximation Zernike moments which in turn

gives rise numerical errors.

Figure 6.1: (a) Digital image, (b) Mapping the digital image onto the unit circle.

Zernike polynomials can thus be defined in terms of polar coordinates (r, θ)

over a unit circle, while the image intensity function is typically defined in terms

of Cartesian coordinates (x, y), therefore, the computation of Zernike moments

requires an image transformation. There are two traditional mapping approaches

[23]. In the first approach, the square image plan (Figure 6.1(a)) is mapped

onto a unit circle, where the centre of the image is assumed to be the origin

of the coordinate system (Figure 6.1(b)). In this approach, all pixels outside

the unit circle are ignored, which results in a loss of some image information as

shown in Figure 6.1. In the second approach, the whole square image plan is
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mapped inside a unit circle such that the centre of the image is assumed to be

the coordinate origin. In the work described here, the second approach is used

to avoid loss of information as illustrated in Figure 6.2. Then the transformed

image of size N × N is defined in the square [−1/
√

2, 1/
√

2] × [−1/
√

2, 1/
√

2],

and the transformed image coordinates are defined as:

xi =
2i−N − 1

N
√

2
, yj =

2j −N − 1

N
√

2
(6.13)

with i = 1, 2, ..., N and j = 1, 2, ..., N .

The transformed sampling intervals are:

∆xi =
√

2/N, ∆yj =
√

2/N (6.14)

Figure 6.2: (a) Digital image, (b) Mapping the digital image into the unit circle.

6.3 Calculation of Zernike moments in terms of

Geometric Moments

Zernike moments can be expressed in terms of geometric moments [142] using the

following relationship:
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Zpq =
p+ 1

π

p∑
k=|q|

p−k=even

s∑
n=0

|q|∑
m=0

(−w)m
(
s

n

)(
|q|
m

)
Bp|q|kMk−2n−m,2n+m (6.15)

where s = (k− |q|)/2, w =
√
−1, and M is a geometric moment computed inside

the unit circle.

Geometric moments Mpq with the order (p+ q) of a two dimensional function

f(x, y) are defined as:

Mpq =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)xp yq dx dy (6.16)

In a digital domain, the approximated moments Mpq of a digital f(x, y) with a

resolution of N ×N is given by:

Mpq =
N∑
x=1

N∑
y=1

f(x, y)xp yq (6.17)

The substitution of double integrals by double summations introduces a nu-

merical error. Consequently, computing Zernike moments using approximated

geometric moments yields an approximation of Zernike moments. Exact Zernike

moments can be computed by using exact geometric moments [150]. For exact

geometric moments GMpq, Equation (6.17) is written as

GMpq =
N∑
i=1

N∑
j=1

f(xi, yj)hp,i gq,j (6.18)

where hp,i and gq,j can be expressed by using the normal mathematical integration

rule:

hp,i =

xi+∆xi/2∫
xi−∆xi/2

xpdx =

[
xp+1

p+ 1

]xi+∆xi/2

xi−∆xi/2

gq,j =

yj+∆yj/2∫
yj−∆yj/2

yqdy =

[
yq+1

q + 1

]yj+∆yj/2

yj−∆yj/2

(6.19)

Using the image transformation into a unit circle approach (as demonstrated in

Figure 6.2). (6.19) can be rewritten as:
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hp,i =

[
Up+1
i+1 − U

p+1
i

p+ 1

]

gq,j =

[
U q+1
j+1 − U

q+1
j

q + 1

]
(6.20)

with

Ui+1 =
2i−N
N
√

2

Ui =
2(i− 1)−N

N
√

2
(6.21)

Then the numerical error introduced by replacing the double integrals with

double summations can be eliminated by calculating exact Zernike moments in

terms of exact geometric moments. Thus:

Zpq =
p+ 1

π

p∑
k=|q|

p−k=even

s∑
n=0

|q|∑
m=0

(−w)m
(
s

n

)(
|q|
m

)
Bp|q|kGMk−2n−m,2n+m (6.22)

Therefore the above mechanism was adopted for use with the ROIBIC method

suggested in this chapter. On the other hand, computation of exact geometric

moments as described above is time consuming. Therefore, in the next section,

a method to speed up this computation is described.

6.4 Fast Calculation of Geometric Moments

To speed up the calculation of Zernike moments in terms of geometric moments

as described in the foregoing, we use a quad-tree decomposition similar to that

used in the graph based approach described in Chapter 5. Wu et al. [152] also

proposed using the quad-tree decomposition as the first stage of their geometric

moment computation method. The decomposition operates using square images,

ideally with a size of power of two. The image is iteratively divided into four

quadrants (tiles). The homogeneity of each quadrants is checked and if the whole

quadrants lies either in the region or in the background, it is not further divided. If
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it contains both region and background pixels it is divided into further quadrants

and the process is repeated until all tiles are homogeneous.

After the decomposition, the ROI will be represented by a quad-tree of k

non-overlapping square tiles B1, B2, ..., Bk. Then the computational complexity

of the geometric moments can be decreased by computing the geometric moments

of these k tiles. For each tile Bi, the coordinate indices of its upper left corner

are (a, b) and the length of tile side is w. The geometric moments GMpq,i for the

block Bi can then be calculated using equations 6.18, 6.19 and 6.20, as:

GMpq,i =

xa+w−1+ ∆x
2∫

xa−∆x
2

xpdx

yb+w−1+ ∆y
2∫

yb−∆y
2

yqdy

=

[
Up+1

2 − Up+1
1

p+ 1

] [
U q+1

4 − U q+1
3

q + 1

]
(6.23)

with:

U1 =
2(a− 1)−N

N
√

2

U2 =
2(a+ w − 2)−N

N
√

2

U3 =
2(b− 1)−N

N
√

2

U4 =
2(b+ w − 2)−N

N
√

2
(6.24)

Then, the geometric moment of the ROI can be easily calculated by summing

the geometric moments of all k tiles in the decomposition that are part of the

ROI, since the computation of geometric moments of tiles is easier than that for

the whole ROI where k < N2. Then, the geometric moment for the entire ROI

can be calculated as follows:

GMpq =
k∑

n=1

GMpq,n (6.25)

In the work described here the decomposition is conducted down to the pixel

level (unlike in the case of the quad-tree decomposition described in Chapter 5).

Also the homogeneity condition, unlike previously, is 100% black or white. This
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is to ensure that exact geometric moments are derived. Note that if the image is

entirely decomposed down to the pixel level (e.g. if we have a “checker board”

image) then the method will be similar to the Wee method [150].

6.5 Fast Calculation of Zernike Moments

The proposed mechanism for the fast calculation of Zernike moments adopts

the idea of representing the exact Zernike moments in terms of exact geometric

moments calculated using a quad-tree decomposition of the form described above.

This decomposition is used to speed up the computation of geometric moments as

also described above. The procedure for computing a full set of Zernike moments

is as follows (here Max is the maximum order of moments to be calculated):

1. Transform the image (or a ROI) into a unit circle so that the transformed

image of size N×N is defined in the square [−1/
√

2, 1/
√

2]×[−1/
√

2, 1/
√

2].

2. Decompose the image into k square tiles, B1, B2, ..., Bk, using a quad-tree

decomposition as described in Section 6.4.

3. For p=0 to Max

Compute the Zernike polynomial coefficients B as in Eq. (6.9).

4. For p=0 to Max & q=0 to Max

Compute GMpq using Eq. (6.23), (6.24), (6.25)

5. For p=0 to Max & For q=0 to p

Compute Zpq using Eq. (6.22).

The Zernike moment magnitudes thus calculated is then used to define a feature

space for each image (or ROI).

6.6 Feature Extraction Based on Zernike Mo-

ments

In the context of the proposed ROIBIC approach, the Zernike moment mag-

nitudes are used to define a feature space representing the image set. Each

image, or more specifically the object of interest within each image, can then
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be represented in terms of a feature vector. The feature vector {AFV }N will

then consist of the accumulated Zernike moment magnitudes from order p = 0

to order p = N with all possible repetitions q. For example, where N = 4,

the feature vector {AFV }4 will consist of the set of all Zernike moments cor-

responding to the orders p = 0, 1, 2, 3, 4 coupled with all possible repetitions q:

{|Z00|, |Z11|, |Z20|, |Z22|, |Z31|, |Z33|, |Z40| , |Z42|, |Z44|}.
Consequently a set of images that contain a common ROI (such as the corpus

callosum in the case of the brain MRI scan data of interest with respect to this

thesis) can be represented as a set of feature vectors which can be input to

standard classification techniques.

6.7 Evaluation

This evaluation section is divided into four subsections: (i) experimental studies

on the validity of the proposed method of Zernike moments computation, (ii)

speed of the calculation of Zernike moments according to the proposed approach,

(iii) the evaluation of using Zernike moments in the context of image classification,

and (iv) run time analysis of the proposed classification technique.

6.7.1 Experimental Studies on the Validity of the Pro-
posed Method of Zernike Moments Computation

An artificial image were used to demonstrate the validity of the proposed method.

The artificial image used was a 4 × 4 pixel image in which all pixel intensity

values were one, f(x, y) = 1 for all pixels (x, y). The image defined in the square

[−1, 1] × [−1, 1] was mapped to be inside the unit circle where the coordinate

origin was the center of the circle. The mapped image was defined in the square

[−1/
√

2, 1/
√

2] × [−1/
√

2, 1/
√

2]. The theoretical values of the exact Zernike

moments, ZTheo
pq , were then computed using:

ZTheo
pq =

p+ 1

π

p∑
k=q

p−k=even

Bpqk

s∑
n=0

(
s

n

) |q|∑
m=0

(−w)m
(
q

m

)∫ 1√
2

−1√
2

x(k−2n+m) dx

∫ 1√
2

−1√
2

y(2n+m) dy

(6.26)

where s = (k − q)/2 and w =
√
−1. The approximated Zernike moments Zapprox

pq

were calculated using Equations (6.15),(6.17) while the proposed exact Zernike
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Table 6.1: Comparison of theoretical ZTheo
pq , proposed Zprop

pq , and approximated
Zapprox
pq for f(xi, yj) = 1.

p q ZTheo
pq Zprop

pq Zapprox
pq

0 0 0.6366 0.6366 0.6366
2 0 -0.6366 -0.6366 -0.7162
2 2 0 0 0
4 0 -0.2122 -0.2122 -0.3233
4 2 0 0 0
4 4 -0.2122 -0.2122 -0.2455
6 0 0.2122 0.2122 0.3525
6 2 0 0 0
6 4 0.2122 0.2122 0.4026
6 6 0 0 0
8 0 0.1273 0.1273 0.3642
8 2 0 0 0
8 4 0.1273 0.1273 0.1850
8 6 0 0 0
8 8 0.1273 0.1273 0.1204
10 0 -0.1273 -0.1273 -0.1669
10 2 0 0 0
10 4 -0.1273 -0.1273 -0.1765
10 6 0 0 0
10 8 -0.1273 -0.1273 -0.2019
10 10 0 0 0

moments values Zprop
pq were calculated using Equations (6.22 - 6.20). Table 6.1

indicates that the theoretical Zernike moment values and exact Zernike moment

values generated by the proposed method are identical, while these values did not

match with the approximated Zernike moment values.

6.7.2 Speed of Calculation of Zernike Moments According
to the Proposed Approach

The speed of the proposed method of computation was compared with the Wee

method [150]. All the experiments were performed with 1.86 GHz Intel(R)

Core(TM)2 PC with 2GB RAM. The code was designed using Matlab 7. The

full set of Zernike moments was computed using both Wee’s [150] and the pro-

posed methods. A 128× 128 pixel binary image, as in Figure 6.3, was used. The

recorded CPU elapsed times are presented in Figure 6.4. From the figure it is

clear that the proposed method significantly reduced the execution time.
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Figure 6.3: 128× 128 Artificial binary test image.

Figure 6.4: CPU elapsed time(s) of the 128×128 binary test image for Wee [150]
and the proposed method.
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6.7.3 Classification Performance

The evaluation of the proposed Zernike moment based image classification ap-

proach, with respect to the corpus callosum application, is presented in this sec-

tion. This section describes the evaluation of the proposed technique using an

appropriate MRI image set. Two classification techniques were used for the eval-

uation: (i) Decision Trees (i.e. C4.5) [122] and (ii) Support Vector Machines

(SVMs) [28], to examine the performance of Zernike moments with respect to

ROI image classification. For the C4.5 classifier, the WEKA implementation

[60] was used, and for the SVM classifier, the LIBSVM implementation [22] was

used. In the experiments, all the classification results were computed using TCV.

The three studies used previously to evaluate proposed ROIBIC approaches were

again used: (i) a comparison between musician and non-musician MRI scans, (ii)

a comparison between left handedness and right handedness, and (iii) an epilepsy

screening process. (The description of the datasets was presented in Chapter 3.)

Table 6.2 shows the TCV results obtained using the musician dataset. The

SVM and C4.5 columns indicate the results using the SVM and C4.5 classification

techniques respectively. Acc, Sens and Spec refer to accuracy, sensitivity and

specificity respectively. The N indicates the maximum order of Zernike moments

to be generated which will then influence the size of the feature vectors ({AFV }N)

used to represent individual images.

Table 6.2 indicates that the best classification accuracy achieved using the

SVM was 96.23% when the maximum order of Zernike moments used was equal

to 10, while the best classification accuracy achieved by C4.5 was 94.34% when

maximum order of Zernike moments was equal to 9. The best sensitivity and

specificity were 98.11% and 94.34% (SVM) and 96.15% and 92.59% (C4.5) re-

spectively. The trend of the classification accuracies increased as the maximum

order N increased, as can be seen in Table 6.2. It is conjectured that this is

because higher orders of Zernike moments give a more detailed description of the

ROI.

For the handedness study, Table 6.3 indicates that the best classification accu-

racies achieved were 93.90% (SVM) and 90.24% (C4.5). These best classification

accuracies was obtained using a maximum order of N = 9. High sensitivity and

specificity were also achieved and were associated with the corresponding best
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Table 6.2: TCV classification results for musicians study.

N SVM C4.5
Acc. Sens. Spec. Acc. Sens. Spec.

2 57.55 60.38 54.72 57.55 60.38 54.72
3 68.87 75.47 62.26 59.43 58.49 60.38
4 76.42 79.25 73.58 64.15 66.04 62.26
5 84.91 86.79 83.02 69.81 71.70 67.92
6 87.74 88.68 86.79 83.02 84.91 81.13
7 90.57 92.45 88.68 87.74 88.68 86.79
8 94.34 96.23 92.45 87.74 88.68 86.79
9 95.28 94.34 96.23 94.34 96.15 92.59
10 96.23 98.11 94.34 89.62 90.57 88.68

Table 6.3: TCV classification results for handedness study.

N SVM C4.5
Acc. Sens. Spec. Acc. Sens. Spec.

2 54.88 62.50 47.62 57.32 62.50 52.38
3 62.20 67.50 57.14 60.98 67.50 54.76
4 69.51 75.00 64.29 62.20 67.50 57.14
5 75.61 82.50 69.05 73.17 82.50 64.29
6 79.27 82.50 76.19 80.49 87.50 73.81
7 87.80 92.50 83.33 85.37 92.50 78.57
8 90.24 95.00 85.71 84.15 90.00 78.57
9 93.90 95.00 92.86 90.24 92.50 88.10
10 91.46 92.50 90.48 89.02 95.00 83.33

accuracies obtained.

Tables 6.4 to 6.6 show the classification performance using the epilepsy datasets.

Inspection of these tables, indicates that the best classification accuracy obtained

using the SVM were 83.02%, 84.91% and 85.38% for the three epilepsy datasets

Ep106, Ep159, Ep212 respectively. The first two best accuracies were obtained

using N = 10, while the third was obtained using N = 9.

From the tables, it can again be observed that the classification accuracy in-

creases as the maximum Zernike moment order N increases. Again, it is suggested

that higher Zernike moment orders hold more detail about the ROI. The overall

classification accuracy results obtained using the epilepsy datasets was less than

those obtained using the musician and handedness datasets. As noted previously,

the suspicion here is that the results reflect the fact that although the nature of

the corpus callosum may play a part in the identification of epilepsy there are
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Table 6.4: TCV classification results for Ep106.

N SVM C4.5
Acc. Sens. Spec. Acc. Sens. Spec.

2 57.55 60.38 54.72 56.6 62.26 50.94
3 59.43 58.49 60.38 58.49 62.26 54.72
4 67.92 69.81 66.04 61.32 62.26 60.38
5 68.87 75.47 62.26 66.04 69.81 62.26
6 73.58 71.7 75.47 70.75 71.7 69.81
7 79.25 81.13 77.36 76.42 79.25 73.58
8 79.25 81.13 77.36 78.3 81.13 75.47
9 82.08 84.91 79.25 79.25 81.13 77.36
10 83.02 84.91 81.13 80.19 83.02 77.36

Table 6.5: TCV classification results for Ep159.

N SVM C4.5
Acc. Sens. Spec. Acc. Sens. Spec.

2 51.57 50.94 51.89 51.57 50.94 51.89
3 52.83 52.83 52.83 52.83 52.83 52.83
4 66.67 67.92 66.04 64.78 66.04 64.15
5 71.70 73.58 70.75 72.33 73.58 71.70
6 77.36 81.13 75.47 75.47 77.36 74.53
7 80.50 86.79 77.36 76.10 79.25 74.53
8 83.65 90.57 80.19 78.62 83.02 76.42
9 82.39 88.68 79.25 81.76 88.68 78.30
10 84.91 92.45 81.13 79.25 84.91 76.42
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Table 6.6: TCV classification results for Ep212.

N SVM C4.5
Acc. Sens. Spec. Acc. Sens. Spec.

2 60.85 64.15 57.55 54.25 55.66 52.83
3 66.98 70.75 63.21 55.19 56.6 53.77
4 68.4 74.53 62.26 61.32 65.09 57.55
5 76.42 81.13 71.7 63.21 67.92 58.49
6 80.66 85.85 75.47 68.87 75.47 62.26
7 84.43 86.79 82.08 74.06 78.3 69.81
8 84.43 86.79 82.08 80.19 84.91 75.47
9 85.38 87.74 83.02 81.6 86.79 76.42
10 84.43 86.79 82.08 80.19 84.91 75.47

also other factors involved.

6.7.4 Time Complexity of the Proposed Classification Ap-
proach Based on Zernike Moments

The computation time of the ROI image classification approach based on Zernike

moments, using the three datasets (musician, handedness and Ep212), is pre-

sented in Figure 6.5. All the experiments were performed with 1.86 GHz Intel(R)

Core(TM)2 PC with 2GB RAM. The code was designed using Matlab 7. Note

that the run time complexity increases as the maximum Zernike moments order

increases, this is to be expected as higher values of N necessitate more processing.

6.8 Discussion and Summary

In this chapter a new fast method for computing Zernike moments, based on

a quad-tree decomposition, has been described. A full set of Zernike moments

was used in the context of MR image classification. The use of Zernike moments

is a popular technique in image processing and analysis; this is the reason why

the use of Zernike moments was included in the research described in this thesis.

The reported evaluation indicated that the proposed technique gave reasonable

classification results. The overall performance classification accuracies presented

in Section 6.7 above indicate that:

1. The proposed approach, based on the Zernike moments gives a higher ac-

curacy using high orders of Zernike moments than when using lower orders.
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Figure 6.5: Run time complexity of image classification using different MRI
datasets.

2. The classification accuracy of musician and handedness studies is relatively

higher than that recorded for the epilepsy study.

3. Using the proposed computation method of exact Zernike moments reduces

the computational time required for the overall classification process.

In the following chapter an alternative approach for classifying images accord-

ing to a common image feature, founded on the representation of ROI as a time

series, is described.
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Chapter 7

Region Of Interest Image
Classification Using a Time
Series Representation

7.1 Introduction

In this chapter, a new approach to ROIBIC, founded on a time series represen-

tation coupled with a Case Based Reasoning (CBR) mechanism, is introduced.

In this approach the features of interest are represented as time series, one per

image. Two techniques for generating the desired time series are considered: (i)

ROI intersection (ROI Int.) time series generation and (ii) radial distance (Rad.

Dist.) time series generation. These time series are then stored in a Case Base

(CB) which can be used to categorise unseen data using a Case Based Reason-

ing (CBR) approach. The unseen data is compared with the categorisations in

the CB using a Dynamic Time Warping (DTW) similarity checking mechanism.

The class associated with the most similar time series (case) in the CB is then

adopted as the class for the unseen data. Note that the phrase “time series”

is used with respect to the adopted representation because the proposed image

classification technique is founded on work on time series analysis, not because

the representation includes some temporal dimension.

The rest of this chapter is organized as follows. Section 7.2 describes the

two techniques for generating the desired ROI time series signature based on the

shape of the ROI. In Section 7.3 the DTW similarity measure used to compare

ROI signatures is presented. The framework for the proposed ROIBIC approach

is presented in Section 7.4, and the evaluation of the proposed approach in Section
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7.5. The chapter is then concluded with a summary in Section 7.6.

Figure 7.1: ROI signature using the ROI Int. method.

7.2 Proposed Image Signature Based on Pseudo

Time Series

A shape signature is a 1D function that can be used to represent a 2D ROI, the

intention is to capture the nature of the shape. With respect to the approach

proposed in this chapter such signatures are defined in terms of a “pseudo” time

series. Two mechanisms for generating the desired time series are considered: (i)

ROI intersection time series generation (ROI Int.) and (ii) radial distance (Rad.

Dist.) time series generation. Each is discussed in further detail in the following

two subsections.

7.2.1 ROI Intersection Time Series Generation (ROI Int.)

Using the ROI intersection mechanism the desired image signature (“pseudo”

time series) is generated using an ordered sequence of M “spokes” radiating out

from a single reference point. The desired time series is then expressed as a series

of values (one for each spoke) describing the size (length) of the intersection

of the vector with the ROI. The representation thus maintains the structural

information (shape and size) of the ROI. It should also be noted that the value

of M may vary due to the differences of the shape and size of the individual ROI

within the image data set.

Formally speaking, assume that there are M spokes and each spoke i, radi-

ating out from some reference point, intersects the ROI boundary at two points

(x1(i), y1(i)) and (x2(i), y2(i)); then the proposed image signature is given by [44]:
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D(i) =
√(

(x1(i)− x2(i))2 + (y1(i)− y2(i))2), i = 1, 2, ...,M (7.1)

Figure 7.2: Conversion of corpus callosum into time series using the ROI Int.
method.

With respect to the corpus callosum application the time series generation

procedure is illustrated in Figure 7.1. The midpoint of the lower edge of the ob-

ject’s Minimum Bounding Rectangle (MBR) was selected as the reference point.

This was chosen as this would ensure that there was only two boundary intersec-

tions per spoke. The vectors were derived by rotating an arc about the reference

point pixel. The interval between spokes was one pixel measured along the edge

of the MBR. For each spoke the intersection distance Di (where i is the spoke

identification number) over which the spoke intersects with a sequence of corpus

callosum pixels was measured and recorded. The result is a time series with the

spoke number i representing time and the value Di, for each spoke, the magni-

tude (intersection length). By plotting Di against i a pseudo time series can be

derived as shown in Figure 7.2.
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Figure 7.3: ROI signature using the Rad. Dist. method

7.2.2 Radial Distance Time Series Generation (Rad. Dist.)

An alternative approach to that described in the foregoing sub-section is the radial

distance time series generation mechanism. This is founded on a well established

technique used in shape description. Using this mechanism the desired time series

is generated by sequentially determining the distance between each boundary

point and the centroid of the ROI (see Figure 7.3). More specifically the Radial

Distance time series (RD) is the distance between from each ROI boundary point

(x(i), y(i)) to the centroid (xc, yc) of the ROI:

RD(i) =
√(

(x(i)− xc)2 + (y(i)− yc)2), i = 1, 2, ..., N (7.2)

where N is the number of boundary points. The centroid is computed as follows:

xc =
1

N

N∑
i=1

x(i), yc =
1

N

N∑
i=1

y(i) (7.3)

Note that, as in the case of the the ROI Int. method, the number of elements in

the time series may vary from on image to another.

7.3 Similarity Measure Using Dynamic Time Warp-

ing

The objective of most similarity measures is to identify the distance between two

feature vectors. There are a number of methods where this may be achieved. A

common mechanism found in data mining, and especially text mining, is cosine

similarity where the cosine of the angle θ between two vectors is used to determine

similarity. If two vectors are identical (θ = 0) the cosine similarity will be one,

for all other angles the cosine similarity will be less than one. Alternatively we
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can compare each element in each vector individually. Both methods require the

vectors to be compared to be identical in length.

In the case of time series the series can also be thought of in terms of feature

vectors, although in this case it would not make sense to adopt measures such

as the cosine measure. However, given two feature vector represented time series

(of identical length), we can compare each pair of corresponding elements in the

two vectors and determine a total difference measure by summing the individual

differences. Various techniques are available to support difference measurement

between feature vector represented time series, for example the Minkowsky met-

ric. However, these techniques are not easily applicable given feature vectors of

different lengths where there is no straight forward one-to-one correspondence

between elements.

The time series used to describe the corpus callosum, as noted in Section

7.2, are not all of the same length; the number of spokes used to generate the

time series is dependent on the size of the MBR surrounding the ROI and the

number of radial distance measurements is dependent on the number of ROI

boundary pixels . In this case an appropriate correspondence may be found

by optimizing over all possible correspondences [130]. One such technique is

Dynamic Time Warping (DTW). The DTW algorithm is a well-known algorithm

in many areas. It was first introduced in 1960s [16] and extensively explored

in 1970s for application within speech recognition systems. It is currently used

in areas such as handwriting recognition and online signature matching [42], and

protein sequence alignment [144]. DTW was adopted with respect to the proposed

approach to allow for the comparison of pairs of corpora callosa.

DTW operates as follows. In order to align two time series (sequences) A

and B with lengths N and M , an N ×M matrix (D) is constructed, where each

element (i, j) of the matrix contains the distance between the points Ai and Bj.

The goal is to find a path through this matrix, which minimizes the sum of the

local distances of the points. An illustration of the alignment between two time

series is shown in Figure 7.4. The path from (1, 1) to (N,M) in the matrix D is

called the warping path W :

W = {w1, w2, ..., wk} (7.4)
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and it is subject to several constraints.

• Boundary condition: This requires the warping path to start at w1 = (1, 1)

and finish at wk = (N,M).

• Continuity: Given wk = (a, b), this constraint requires:

wk−1 = (c, d) (7.5)

where:

a− c ≤ 1, (7.6)

b− d ≤ 1

restricting the allowable steps in the warping path.

• Monotonicity: Given wk = (a, b) and wk−1 = (c, d), this constraint requires:

a− c ≥ 0, (7.7)

b− d ≥ 0

The above inequalities force the points in W to be monotonically spaced in

time. The warping path on the D matrix is found using some dynamic program-

ming algorithm, which accumulates the partial distances between the sequences.

If D(i, j) is the global distance up to (i, j) and the local distance at (i, j) is given

by d(i, j), then the DTW algorithm uses the following recurrence relation:

D(i, j) = d(Ai, Bj) + min


D(i− 1, j − 1)
D(i− 1, j)
D(i, j − 1)

(7.8)

Given D(1, 1) = d(A1, B1) as the initial condition, we have the basis for an

efficient recursive algorithm for computing D(i, j). The algorithm starts from

D(1, 1) and iterates through the matrix by summing the partial distances until

D(N,M), which is the overall matching score of the times series (sequences) A

and B. In Figure 7.4, given two time series (sequences) A = [1, 5, 4, 6, 4, 3, 3, 7, 4]

and B = [1, 4, 4, 6, 6, 3, 3, 7, 2, 1]. The DTW algorithm finds an optimal match

between the entries of the time series with an overall matching score.
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Figure 7.4: An example of the alignment of two time series using DTW, (D
matrix and the warping path).

Algorithm 7.1: DTW algorithm

1 N ← |A|
2 M ← |B|
3 D[ ]← new[N ×M ]
4 D(1, 1)← d(A1, B1)
5 for i← 2 to N do
6 D(i, 1)← D(i− 1, 1) + d(Ai, B1)
7 end
8 for j ← 2 to M do
9 D(1, j)← D(1, j − 1) + d(A1, Bj)

10 end
11 for i← 2 to N do
12 for j ← 2 to M do
13 D(i, j)← d(Ai, Bj) + min{D(i− 1, j − 1), D(i, j − 1), D(i− 1, j)}
14 end

15 end
16 return(D(N,M))

The DTW algorithm for the calculation of distance between two time series

(sequences) A and B is given in Algorithm 7.1. Initially, the total distance of the

cell (1, 1) is just its local distance d(A1, B1). The absolute value distance (also
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called city block distance) is used for calculating the local distance. Then, the

total distance for each successive cell in column 1 and row 1 is the local distance

for the cell, plus the global distance to the cell previous to it. The algorithm

iterates by calculating the global distance of the rest of the cells in the matrix

using the recurrence relation. At the cell (i, j), the total distance is the local

distance at (i, j) plus the minimum total distance at either (i−1, j−1), (i−1, j)

or (i, j − 1). The overall distance between the sequences is the value stored in

the cell (N,M).

Figure 7.5: Global warping path constraints: (a) Sakoe-Chiba band, and
(b)Itakura parallelogram.

The computational cost of the application of DTW is O(NM). In order to

improve the computational cost global constraints may be introduced whereby

we ignore matrix locations away from the main diagonal. Two well known global

constraints are the “Sakoe-Chiba band” [127] and “Itakura parallelogram” [77], as

shown in Figure 7.5. Alignments of points can be selected only from the respective

shaded regions. The Sakoe-Chiba band runs along the main diagonal and has a

fixed width R such that j − R ≤ i ≤ j + R for the indices of the warping

path wk(i, j) (see Figure 7.5(a)). While the Itakura parallelogram describes a

region that constrains the slope of a warping path. More specifically, for a fixed

S > 1, the Itakura parallelogram consists of all points that are traversed by some

warping path having a slope between 1/S and S (see Figure 7.5(b)). There are

several reasons for using global constraints, one of which is that they slightly
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speed up the DTW distance calculation. However, the most important reason

is to prevent pathological warpings, where a relatively small section of one time

series maps onto a relatively large section of another. In the work described here,

the Sakoe-Chiba band was adopted.

7.4 Framework for Image Classification Based

on Time Series Representation

The time series based image classification approach commences with the segmen-

tation and registration of the input images as described in Chapter 3. Once the

ROI have been segmented and identified the next step is to derive the time series

according to the boundary line circumscribing the ROI. In each case the ROI is

then represented using the proposed time series generation techniques described

in Section 7.2. Each ROI signature is then conceptualised as a proto-type or

case contained in a Case Base (CB), to which a Case Based Reasoning (CBR)

mechanism can be applied. As noted in Chapter 2, CBR is a branch of Artificial

Intelligence (AI) founded on the idea that humans solve problems according to

their experience, i.e. CBR conjectures that humans solve problems by attempting

to match previous successfully addressed problems to the current problem. As

such a CBR system comprises a Case Base (CB) and some matching strategy to

align a new problem (case) with previously solved problems (cases) in the CB.

Typically it will not be possible to find an exact match and thus some matching

strategy will have to be adopted to find the most relevant case or cases.

As noted previously CBR can be used for classification purposes where, given

an unseen record (case), the record can be classified according to the “best match”

discovered in the CB. With respect to proposed technique, and in the case of the

corpus callosum application, the CB comprises a set of pre-labelled (classified)

ROI time series “signatures”, each describing a ROI record. The DTW time

series matching strategy was then adopted to identify a best match with a new

(“unseen”) ROI signature. To do this each pre-labelled (classified) signature of

size N was compared to the test signature of size M using the DTW technique

and a sequence of similarity measures obtained. The well established k-nearest

neighbour technique (KNN) was used to identify the most similar signature in the

CB from which a class label was then extracted. In the experiments reported in
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Table 7.1: TCV classification results of different datasets.

Datasets ROI Int. Rad. Dist.
Acc. Sens. Spec. Acc. Sens. Spec.

Musician 98.11 100.00 96.23 94.34 96.23 92.45
Handedness 96.34 97.50 95.24 93.90 95.00 92.86
Ep106 75.47 73.58 77.36 74.53 71.70 77.36
Ep159 76.73 79.25 75.47 74.84 77.36 73.58
Ep212 77.36 82.08 72.64 75.47 80.19 70.75

the following section 1-NN was used to identify the most similar image signature.

In this manner an unseen record was classified according to the “best match”

discovered in the CB.

7.5 Evaluation

The evaluation of the proposed time series based ROIBIC approach is described

in this section. The evaluation was again conducted with respect to the corpus

callosum application. The evaluation was undertaken in terms of classification

accuracy, sensitivity and specificity. The three studies used to evaluate the pre-

vious techniques described in this thesis were again used for the investigation: (i)

a comparison between musician and non-musician MRI scans, (ii) a comparison

between left handedness and right handedness, and (iii) an epilepsy screening

process.

Table 7.1 shows the Ten Cross Validation (TCV) results obtained using the

different datasets and the two proposed time series generation techniques (ROI

Int. and Rad. Dist.). Acc, Sens and Spec refer to accuracy, sensitivity and

specificity respectively.

Inspection of Table 7.1 indicates that the best classification accuracy achieved,

using the proposed ROI Int. time series generation method, for the musician and

handedness datasets, were 98.11% and 96.34% respectively. The best sensitivity

and specificity obtained were also associated with these best classification ac-

curacies. As in the case of the reported evaluations for the previous ROIBIC

approaches considered, the proposed approach did not perform as well for the

epilepsy study (the results reflect the possibility that there are also other factors

involved). Overall the proposed ROI Int signature generation method outper-
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formed the Rad. Dist. method with respect to all five test datasets.

The limitation of the proposed ROI intersection signature generation method

is that it does not lend itself to application to more complex, non-convex, ROIs.

The method would fail to accurately capture the nature of a ROI if the spokes

radiating from a reference point may intersect with the ROI boundary at more

than two intersection places.

The time complexity of the image classification approach based on the time

series representations, using the three datasets (musician, handedness and Ep212),

is presented in Figure 7.6. All the experiments were performed with 1.86 GHz

Intel(R) Core(TM)2 PC with 2GB RAM. The code was designed using Matlab

7. The run time includes the time required for the proposed signature extraction

process, as well as the CBR based classification.
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Figure 7.6: Run time complexity for the classification of different datasets.

7.6 Summary

In this chapter a new approach to ROIBIC based on time series representation has

been described. Two image signature (pseudo time series) generation mechanisms

were considered, (i) ROI intersection (ROI Int.) time series generation and (ii)

radial distance (Rad. Dist.) time series generation. The first is a novel approach

proposed by the author and directed specially at describing shapes such as the

corpus callosum. The second, included for comparison purposes, is founded on

an established shape description approach. Dynamic Time Warping was used to

139



compare signatures as part of a CBR framework used to classify new records. The

reported evaluation indicated that the ROI Int. time series generation method

gave the best performance.
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Chapter 8

Conclusion

A summary of the proposed ROI image classification approaches, the compari-

son between these approaches, the main findings, the research contribution and

possible future directions, are presented in this chapter. Section 8.1 gives the

summary of the proposed ROI image classification approaches. The comparison

between these approaches with respect to their performance on the test data sets

is presented in Section 8.2. Statistical comparison between theses approaches is

presented in Section 8.3. The main findings and the contribution of the research

work are presented in Section 8.4. Finally some directions for future research are

presented in Section 8.5.

8.1 Summary

Four different ROIBIC approaches were proposed in this thesis to classifying

(categorise) MRI brain scans according to the nature of the corpus callosum, a

structure within the mammalian brain that connects the two brain hemispheres.

The evaluation of these four approaches, on different data sets derived from the

medical domain, suggests that there is no single ROIBIC approach that is best

suited to all the image data sets considered. All the four ROIBIC approaches

commenced with an image segmentation process so as to isolate and extract

the desired ROI (the corpus callosum with respect to the scenario that formed

the focus for the work described in this thesis). A variation of the Multiscale

Normalized Cuts algorithm was proposed to achieve the desired segmentation. All

the four ROI image classification approaches, although operating in very different

manners, are essentially supervised learning mechanisms whereby a prelabelled
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training set was used to build a “classifier” which can then be applied to unseen

data.

The first approach was founded on the concept of the Hough transform coupled

with a polygonal approximation. The aim of the application of the polygonal

approximation to the ROI was to obtain a smooth curve over a minimum number

of line segments describing the regions boundary. The Hough transform was

then used to extract a (1D) image signature vector, one per each image. The

signatures from a labelled training set can thus be collected together and stored

in a Case Base (CB) within a Case Based Reasoning (CBR) framework to be used

in the context of image classification. The reported evaluation indicated that the

proposed technique performed well in the case of the application of polygonal

approximation compared with not using such an approximation.

The second approach was founded on the concept of graph mining. This ap-

proach used a hierarchical decomposition technique, coupled with a quad-tree

based representation, one tree per image. A weighted frequent subgraph mining

algorithm, gSpan-ATW, was then applied to identify frequently occurring sub-

graphs (subtrees) within the quad-tree representation. The general assumption

for the application of the algorithm was that quad-tree nodes further away from

the root were more significant than those nearer the root because the more distant

nodes encapsulated a greater level of detail. The identified frequent subtrees were

viewed as defining a feature space which could be used to represent the image

set. A given image set can thus be recast into this format so that each image is

represented by a feature vector whose elements are some subset of the global set

of identified frequent subtrees making up the feature space. Standard classifier

generation techniques can then be applied to build a classifier that can be ap-

plied to unseen data. The reported evaluation indicated that high classification

accuracy results were obtained when using higher quad-tree decomposition levels

coupled with low support thresholds.

The third approach was founded on using Zernike moments. A new method

for the fast computation of Zernike moments, also based on a quad-tree decompo-

sition, was proposed. Using the proposed computation method for the generation

of exact Zernike moments reduced the computational time required for the overall

classification process. A full set of Zernike moments was used in the context of
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the desired MR image classification. The reported evaluation indicated that the

proposed technique gave more reasonable classification results using high orders

of Zernike moments than when using lower orders.

The fourth approach was founded on the representation of ROI as time series.

A new image signature generation mechanism, based on the size and shape of the

ROI, was proposed. As in the case of the proposed Hough transform technique,

the time series representing a particular image set were collected together in a

CB forming part of a CBR framework. A dynamic time warping technique was

adopted to calculate the similarity between new cases and time series held in

the CB. The reported evaluation revealed that the proposed technique performed

well with respect to the musicians and handedness studies, but not so well with

respect to the epilepsy study.

8.2 Comparison of the Proposed Approaches

The four advocated approaches to ROI based image classification were evaluated

in the context of the classification of brain MRI scans according to the nature of

a particular ROI that appears across such datasets, namely the corpus callosum.

This sections reports on an overall comparison between these approaches. The

comparison was undertaken in terms of classification performance and run time

complexity. The evaluation of each approach reported in the foregoing chapters,

considered the effect of parameter settings associated with each approach, and

is some cases variations of the approach. For the overall comparison reported

in this section the best performing parameters and/or variations with respect to

each technique were used (so as to consider each technique to its best advan-

tage). Moreover, the proposed approaches were compared with the two notable

techniques: the Curvature Scale Space (CSS) [102] (see Section 2.5.2.7) and the

Angular Radial Transform (ART) [19] (see Section 2.5.1.3). These two techniques

were used in this comparison because in the MPEG-7 standard, the curvature

scale space (CSS) has been adopted as the contour-based shape descriptor and

the angular radial transform (ART) has been adopted as the region-based shape

descriptor.

Table 8.1 shows the TCV results obtained using the musician data set. The

HT, GB, ZM, TS rows indicate the results using the Hough Transform, graph,
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Zernike moments, and time series based approaches respectively. The CSS, ART

rows indicate the MPEG-7 descriptors (Curvature Scale Space and the Angular

Radial Transform) respectively. The Acc, Sens, and Spec columns indicate ac-

curacy, sensitivity and specificity respectively. The best results are indicated in

bold font. Inspection of Table 8.1 demonstrates that the overall classification

accuracies obtained using the four advocated approaches were over 90%, while

the overall classification accuracy obtained using the time series based approach

significantly improved over that obtained using the other three approaches. The

best sensitivity and specificity were also obtained using the time series based

approach. The four advocated approaches also outperform the CSS and ART

techniques. These are excellent results.

Table 8.2 shows the TCV results obtained using the handedness data set.

The column and row headers are defined as in Table 8.1. Inspection of Table 8.2

indicates that the four advocated approaches also performed well with respect

to handedness study. The best overall classification results were again obtained

using the time series based approach, which showed significant improvement over

the other three approaches. The best sensitivity and specificity were also ob-

tained also using time series based approach. The four advocated approaches

also outperform the CSS and ART techniques. Again, these are excellent results.

Table 8.3 shows the TCV results obtained using the epilepsy data set (Ep212).

The column and row headers were defined as in Table 8.1. Inspection of Table

8.3 demonstrates that the Hough transform and time series based approaches

did not perform as well as the other two approaches. The graph based and

Zernike moments based approaches that consider all the pixels of each ROI in

the feature extraction process outperformed the Hough transform and time series

based approaches (recall that these approaches consider only the pixels of the

boundary of the ROI). The four advocated approaches also outperform the CSS

and ART techniques. The results for the epilepsy data set seem to be at odds

with those obtained using the musicians and handedness studies. This was also

noted with respect to the individual evaluations reported earlier in this thesis.

Subsequent discussion with medical domain experts did not give an indication as

to why this might be the case. However, as noted earlier, the suspicion is that

the results reflect the fact that although the nature of the corpus callosum may
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Table 8.1: TCV classification results of different approaches for musicians study.

Acc Sens Spec
HT 91.51 92.45 90.57
GB 95.28 96.23 94.34
ZM 96.23 98.11 94.34
TS 98.11 100.00 96.23

CSS [102] 86.79 88.68 84.91
ART [19] 89.62 90.57 88.68

Table 8.2: TCV classification results of different approaches for handedness study.

Acc Sens Spec
HT 90.24 92.50 88.1
GB 93.90 95.00 92.86
ZM 93.90 95.00 92.86
TS 96.34 97.50 95.24

CSS [102] 85.37 85.00 85.71
ART [19] 87.80 90.00 85.71

play a part in the identification of epilepsy there are also other factors involved.

With respect to classification accuracy in general all four ROI based image

classification approaches performed remarkably well, although the time series

based approach produced the best results for the musicians and handedness stud-

ies while the graph based approach produced the best results for the epilepsy

study. There is no obvious reason why this might be the case, visual inspection

of the MRI scans does not indicate any obvious distinguishing attributes with

respect to the size and shape of the corpus callosum. Tracing the cause of a par-

ticular classification back to a particular part of the corpus callosum is thus seen

Table 8.3: TCV classification results of different approaches for epilepsy study
(Ep212).

Acc Sens Spec
HT 76.42 81.13 71.70
GB 86.32 87.74 84.91
ZM 85.38 87.74 83.02
TS 77.36 82.08 72.64

CSS [102] 68.40 72.64 64.15
ART [19] 70.28 73.58 66.98
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Figure 8.1: Run time complexity for the classification of the musician dataset
using the four proposed ROIBIC approaches.

Figure 8.2: Run time complexity for the classification of the handedness dataset
using the four proposed ROIBIC approaches.
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as a desirable “avenue” for future research (see below). It is also interesting to

note that the Hough transform based approach performed consistently badly with

respect to all of the above evaluation studies suggesting that generating shape

signatures using the Hough transform is not a technique to be recommended in

the context of feature based classification, although the use of Hough transform

is popular in other branches of image analysis.

In the literature there are a few reported studies on classifying medical im-

ages according to the nature of the corpus callosum. For example, Sampat et

al. [129] used the cross sectional area of the corpus callosum and the infe-

rior subolivary medulla oblongata volume (MOV) to distinguish patients with

relapsing-remitting multiple sclerosis (RRMS), secondary-progressive multiple

sclerosis (SPMS), and primary-progressive multiple sclerosis (PPMS). Their study

produced a classification accuracy of 80%. Fahmi et al. [46] proposed a classifi-

cation approach in order to distinguishing between healthy controls and autistic

patients according to the nature of the corpus callosum. They analysed the

displacement fields generated from the non-rigid registration of different corpus

callosum segments onto a chosen reference within each group. Their reported

result indicated that the classification accuracy was 86%. Golland et al. [57]

adopted a version of skeletons for feature extraction coupled with the Fisher lin-

ear discriminant and the linear support vector machines for the classification of

corpus callosum data for schizophrenia patients. The best classification accu-

racy achieved using the support vector machine classification method was less

than 80%. These studies indicated how impressive are the classification results

obtained using the four proposed ROIBIC approaches. The results obtained us-

ing the mechanism proposed in this thesis significantly improved on the results

produced in these earlier studies.

The classification of medical images may be affected by the preprocessing

procedures applied to the input image set; these procedures include image reg-

istration and image segmentation. The aim of medical image registration is to

establish spatial correspondence between one image and another, an image and

an atlas or an image and some physical space. Accurate registration of brain MRI

scans is critical to any image classification study. The presence of any registra-

tion and segmentation errors produced in delineating the ROIs in the images may
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affect the accuracy of image classification. Therefore testing of robustness of the

proposed ROIBIC approaches with respect to both registration and segmentation

errors is an ongoing and important problem to be considered as a part of future

work.

Figure 8.3: Run time complexity for the classification of the epilepsy dataset
(Ep212) using the four proposed ROIBIC approaches.

The run time complexity of the four ROIBIC approaches using the musician,

handedness, and Ep212 datasets, are presented in Figures 8.1, 8.2, and 8.3 re-

spectively. The classification time is the overall run time, i.e. it incorporates

the feature extraction, training and testing phases. All the experiments were

performed with 1.86 GHz Intel(R) Core(TM)2 PC with 2GB RAM. The graph

based approach was computationally the most expensive, while the time series

based approach was computationally the least expensive. However, it is worth

remarking that, especially in the medical context, it is the classification accuracy,

not speed, which is the most important feature of the proposed processes.

In summary we can note that there is no constant “winner” among the four

proposed ROI based image classification approaches. However, excellent classifi-

cation results were produced.
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8.3 Statistical Comparison of the Proposed Im-

age Classification Approaches

Statistical tests in the literature mainly use error rate for comparison. Receiver

Operating Characteristics (ROC) curves and/or Area Under the ROC Curve

(AUC) statistic can also be used for comparing classifier performances as proposed

by Baesens et al. [8].

The ROC is a two dimensional graphical illustration of the trade-off between

the true positive rate (sensitivity) and false positive rate (1-specificity). The

ROC curve illustrates the behaviour of a classifier without having to take into

consideration the class distribution or misclassification cost. In order to compare

the ROC curves of different classifiers, the Area Under the receiver operating

characteristic Curve (AUC) must be computed. An example of ROC curve is

depicted in Figure 8.4. The diagonal line represents the trade-off between the

sensitivity and (1-specificity) for a random model, and has an AUC of 0.5. For

a well performing classifier the ROC curve needs to be as far to the top left-

hand corner as possible. In the example shown in Figure 8.4, the classifier that

performs the best is the ROC1 curve.

Figure 8.4: An example of ROC curve.

Friedman’s test [36, 54] was used to compare the AUCs of the different clas-
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Table 8.4: Area Under the receiver operating characteristic Curve (AUC) results.

Friedman test statistic = 10.68 (p < 0.005)
Musician Handedness Ep106 Ep159 Ep212 AR

HT 92.6 (4) 91.3 (4) 74.2 (4) 77.0 (4) 78.6 (4) 4
GB 97.1 (2) 96.2 (2) 86.4 (1) 87.7 (1) 88.3 (1) 1.4
ZM 96.4 (3) 94.7 (3) 85.6 (2) 86.4 (2) 87.2 (2) 2.4
TS 99.1 (1) 96.8 (1) 76.5 (3) 78.7 (3) 79.3 (3) 2.2

sifiers. The Friedman test statistic is based on the average ranked (AR) per-

formances of the classification techniques on each data set, and is calculated as

follows:

χ2
F =

12N

K(K + 1)

[
K∑
j=1

AR2
j −

K(K + 1)2

4

]
(8.1)

where ARj = 1
N

∑N
i=1 r

j
i , N denotes the number of data sets used in the study,

K is the total number of classifiers and rji is the rank of classifier j on data set i.

χ2
F is distributed according to the Chi-square distribution with K − 1 degrees of

freedom. If the value of χ2
F is large enough, then the null hypothesis that there

is no difference between the techniques can be rejected. The Friedman statistic

is well suited for this type of data analysis as it is less susceptible to outliers.

The post hoc Nemenyi test [36] was applied to report any significant differ-

ences between individual classifiers. The Nemenyi post hoc test states that the

performances of two or more classifiers are significantly different if their average

ranks differ by at least the Critical Difference (CD), given by

CD = qα,∞,K

√
K(K + 1)

12N
(8.2)

Table 8.4 reports the AUCs for all four techniques when applied to the five

data sets. The numbers in the parentheses indicate the average rank of each

technique. The Friedman test statistic and corresponding p-value is also shown.

As these were all significant (p < 0.005) the null hypothesis that there is no

difference between the techniques can be rejected and a post hoc Nemenyi test

applied to each class distribution. In Table 8.4 the technique achieving the highest

AUC on each data set and the overall highest ranked technique is indicated in

bold font. From the table it can be seen that the graph based approach (GB) has
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the highest Friedman score (average rank (AR)). The AR of the Hough transform

approach are statistically worse than the AR of the Graph based approach at the

5% critical difference level (α = 0.05), as shown in the significance diagram in

Figure 8.5. In this formula, the value qα,∞,K is based on the Studentised range

statistic [36]. The results from the Friedmans statistic and the Nemenyi post hoc

tests are displayed using a modified version of the Demšar (2006) significance

diagram [90]. This diagram displays the ranked performances of the classification

techniques, along with the critical difference, to highlight any techniques which

are significantly different to the best performing classifiers.

Figure 8.5: AR comparison between the proposed image classification approaches.

Figure 8.5 displays the AUC performance rank of the proposed image classi-

fication approaches, along with Nemenyi’s critical difference (CD) tail. The CD

value for the diagram shown in Figure 8.5 is equal to 1.48. This diagram shows

the classification techniques listed in ascending order of ranked performance on

the y-axis, and the image classification techniques’ average rank across all five

data sets displayed on the x-axis. The graph based (GB) approach is the best per-

forming classification technique with an AR value of 1.4. This diagram clearly

shows that, despite its popularity, the Hough transform performs significantly

worse than the best performing classifier with value of 4.

In summary, when considering the AUC performance measures, it can be con-
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cluded that the graph based technique yields a very good performance. However,

Hough transform approach performs significantly worse than the best performing

technique. The majority of classification techniques yielded classification perfor-

mances that are quite competitive with each other.

8.4 Main Findings and Contributions

In this thesis, the concept of image classification according to the nature of ROIs

contained within image data set, was considered. Four ROIBIC approaches were

proposed. These approaches considered four different ROI representations to

maintain the structural information (shape and size) of ROIs coupled with an

appropriate classification technique. The proposed approaches were designed to

address the research question introduced in Chapter 1 and a number of associated

research issues. In this Section the research question and issues are returned to.

In the following each of the identified research issues is discussed in turn and the

manner in which the proposed research addresses each individual issue briefly

highlighted.

(a) “The techniques derived should serve to maximize classification

accuracy.”

The proposed approaches, as described in Chapters 4, 5, 6 and 7, were able

to achieve high classification accuracy in the context of classifying different

image data sets.

(b) “To achieve the desired classification accuracy any proposed fea-

ture extraction (representation) method should capture the salient

elements of the ROI without knowing in advance what those salient

elements might be. In other words any proposed feature extrac-

tion method, whatever form this might take, should retain as much

relevant information as possible.”

According to the work described in Chapters 4, 5, 6 and 7, the different

representations of ROI were able to capture the salient elements of the ROI

under consideration (the corpus callosum) so as to maintain the structural

information (shape and size) of these ROIs. As proposed in Chapter 5, the
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application of a weighting scheme puts an emphasis on the most important

frequent subgraphs instead of identifying all the frequent subgraphs during

the mining process. Also, using exact Zernike moments with a higher order,

effectively captures the salient elements of a ROI as described in Chapter 6.

Similarly, the signature approach based on the Hough transform and the time

series approaches were also able to capture these salient elements.

(c) “It is also desirable to conduct the classification in reasonable time,

there is thus a trade off between accuracy and efficiency that must

be addressed.”

Some of the proposed approaches conducted the desired classification in rea-

sonable time, such as the Hough transform and time series approaches (with-

out any speed up mechanisms). With regard to the graph based approach,

the application of a weighting scheme (ATW) enabled the weighted FSM al-

gorithm (gSpan-ATW) to identify a significantly smaller number of frequent

subgraphs than might have been achieved using standard FSM algorithms.

Of note also is the mechanism proposed to speed up of the computation of

exact Zernike moments so as to reduce the overall classification time with

respect to the Zernike moments approach.

(d) “Not all potential representations are compatible with all available

classification paradigms, thus different representations may require

the application of different classification techniques.”

The proposed approaches worked in different manners according to the nature

of the proposed ROI representation. Using the Hough transform and time

series approaches a CBR technique was adopted to classify the unseen cases.

Although different similarity measures were used, euclidean distance for the

Hough transform technique and DTW for the time series based approach.

Standard classification techniques (SVM and decision trees) were adopted

in the case of the graph and Zernike moments based approaches. Therefore

it is possible to conclude that the adopted classification mechanism were

dependent on the nature of the ROI representation technique adopted.

Returning to Chapter 1, the overriding research question was: “How best

to process image collections so that efficient and effective classifica-
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tion, according to some ROI contained across the image set, can be

achieved?”

The work described in the foregoing chapters clearly indicates that the answer

to this question is that the proposed ROI representations, coupled with appro-

priate classification techniques, can clearly classify such images in a way that is

both efficient and effective.

The primary contributions of the research work presented in this thesis can

thus be summarized as follows:

(a) A variation of the multiscale normalized cuts algorithm to achieve the desired

segmentation and delineating of a ROI contained across an image data set.

(b) A novel approach to MR image classification based on the Hough transform

coupled with a polygonal approximation.

(c) An effective approach to MR image classification based on a quad tree repre-

sented hierarchical decomposition coupled with a weighted frequent subgraph

mining algorithm.

(d) A novel mechanism to speed up the computation of exact Zernike Moments,

also based on a quad-tree decomposition, and the usage of the resulting

Zernike moments to define signatures for input to a classification system.

(e) An effective mechanism to describe ROIs in the form of a time series cou-

pled with the use dynamic time warping to determine the similarity between

images within the context of a CBR framework.

8.5 Future Work

The research described in this thesis has sparked a number of promising directions

for future research. In the concluding section of this chapter, and this thesis, these

future research directions are briefly outlined below.

• Explanation facility. In Section 8.2 it was noted that although excellent

classification results were produced (using all four methods) none of the

methods included an explanation facility. If any of the proposed techniques

are to be used in clinical practice the clinicians using the techniques will
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require some explanation as to the reason for a particular classification.

Therefore mechanisms whereby the cause of a particular classification can

be traced back, through the representation, to a particular part of the ROI

under consideration is therefore seen as an important avenue for future

research.

• Classification of volumetric medical image datasets. The work de-

scribed in this thesis has concentrated on 2D analysis. One avenue for

proposed future work would seek to investigate feature based classification

techniques that can be applied to 3D volumetric data. The work would

require the extension of the proposed techniques to encompass 3D data as

follows:

– 3D Tree Based Representations: Current work has been directed at

quad-trees, however this can be extended into 3D space by adopting

an oct-tree representation.

– 3D Time Series Based Representations: A 3D feature can be described

in terms of a “mesh” which in turn can be described in terms of a series

of “time series curves” and thus a sequence of time series comparisons

can be applied within a CBR setting. Alternatively we can describe

features in terms of a 3D surface and extend existing (2D) time series

techniques so that they can be applied to such surfaces.

– 3D Zernike moments: Current work has been directed at 2D Zernike

moments, however this can be extended into 3D space using 3D Zernike

moments. Consequently, there will be a further need to speed up the

computation of Zernike moments.

– Hough transform can be extended into 3D space using 3D Hough trans-

form.

Note that the application of all these techniques will also require 3D seg-

mentation and registration so that the desired 3D objects can be isolated.

The main challenge will be the significant size of the volumetric data sets to

be considered (an order of magnitude greater than the 2D images considered

in this thesis).
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• Parallel weighted frequent subgraph mining. The inherent combi-

natorial complexity of the frequent subgraph mining process continues to

present a challenge as we wish to mine graph sets of ever increasing size,

especially when extending the tree representation from the 2D (quad-tree)

representation to the 3D (oct-tree) representation. Weighted frequent sub-

graph mining can alleviate this computation to some degree. An alternative

approach is to adopt some sort of parallel weighted frequent subgraph min-

ing.

• Integrating feature selection into the weighted FSM algorithms.

Feature selection plays an important role in the framework for image clas-

sification based on weighted FSM. It is it possible to incorporate feature

selection techniques into weighted FSM so as to directly identify the most

discriminative weighted subgraphs which are effective with respect to the

classification task. There is still much room for additional researcher to uti-

lize classic data mining techniques and integrate them into weighted FSM.

• Ensemble of ROI based image classifiers. The work described in this

thesis established that, at least in the context of the corpus callosum appli-

cation, no single best classification algorithm can be identified. The use of

“ensembles” of different classifiers as an alternative approach based on the

exploitation of the complementary characteristics of different classifiers may

offer a promising mechanism for increasing overall classification accuracy.

From the literature we can identify a number of techniques to generate en-

semble classifiers, the most common are bagging and boosting. The basic

idea of ensemble classifiers based on bagging is to build independent classi-

fiers and use a voting scheme to establish the most appropriate class label

for each test image. More investigation is needed with respect to ROI based

image classification to determine how this might be implemented. The ba-

sic idea of boosting is to feed the results from one classifier into another

so as to improve the initial classification results. Typically a number of

“weak” classifiers are used in sequence. Thus boosting attempts to produce

new classifiers that are better able to predict cases for which the current

ensemble’s performance is poor. Again further work is required on how best

this may be implemented with respect to ROIBIC.
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• Experiments with alternative data sets. The evaluation described in

this thesis has concentrated on ROIBIC using the corpus callosum found

in MRI data. The work does not necessarily establish a generic ROIBIC

approach. Further experiments and evaluation are therefore desirable to

establish whether the proposed approaches have generic applications. There

are other objects located in MRI scans to which ROIBIC may be applied,

for example the ventricles.
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