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Abstract: In time series classification the most commonly used approach is k Nearest Neighbor classification, where
k = 1, coupled with Dynamic Time Warping (DTW) similarity checking. A challenge is that the DTW process
is computationally expensive. This paper presents a new approach for speeding-up the DTW process, Sub-
Sequence-Based DTW, which offers the additional benefit of improving accuracy. This paper also presents an
analysis of the impact of the Sub-Sequence-Based method in terms of efficiency and effectiveness in compar-
ison with standard DTW and the Sakoe-Chiba Band technique.

1 INTRODUCTION

A time series is a set of sequentially recorded points
where each point references some numerical value;
examples include daily stock market prices (Chen and
Chen, 2015) or temperature recordings (Byakatonda
et al., 2018). Time series analysis is concerned with
the acquisition of an application specific understand-
ing of data. A common application domain is the clas-
sification of time series according to a predefined set
of labels. The most frequently used time series classi-
fication technique is the k Nearest Neighbour (kNN)
technique with k = 1 (1-NN)(Tan et al., 2018; Silva
et al., 2018). Alternatives include Decision Trees
(Brunello et al., 2019), Artificial Neural Networks
and Support Vector Machines (SVM) (Agrawal and
Jayaswal, 2019).

When using kNN time series classification, and
many other time series classification techniques, the
choice of similarity measure to be used is a signif-
icant one. The criteria for selecting the most suit-
able distance measure depends on the nature of the
data (Rakthanmanon et al., 2012). In time series
data, to measure the similarity between two time se-
ries, Euclidean Distance is commonly used. How-
ever, alternatives have been found to be more effec-
tive. One of these alternatives is the Dynamic Time
Warping (DTW) technique (Silva et al., 2018; Tan
et al., 2018; Silva and Batista, 2016). The process
of DTW can be described as follows. Given two time
series, S1 = [p1, p2, . . . , px] and S2 = [q1,q2, . . . ,qy],
where x and y are the lengths of S1 and S2 respec-

tively, a distance matrix M of size x× y is dynami-
cally constructed. The value held at each cell in M is
derived by applying a distance calculation to the as-
sociated points pi ∈ S1 and q j ∈ S2 using Equation 1,
where di, j = |pi − q j| is the absolute difference be-
tween the value pi and q j. At the end of the pro-
cess the minimum warping distance (wd) will be held
at mx,y which in turn provides a similarity measure.
The minimum warping distance is associated with the
minimum warping path from m0,0 to mx,y, which in
turn will approximate to the leading diagonal. Note
that if wd = 0 the two time series in question will be
identical and the minimum warping path will equate
to the leading diagonal. DTW offers the additional
advantage that the time series being compared do not
have to be of the same length, not the case when con-
sidering Euclidean distance similarity.

mi, j = di, j +min{mi−1, j,mi, j−1,mi−1, j−1} (1)
The computational complexity of DTW is given

by O(x× y). One of the challenges of DTW is thus
that the time complexity increases exponentially with
the size of the time series to be compared, an issue
that is compounded in the context of kNN time se-
ries classification which involves many comparisons.
One way of addressing this issue is to consider a sub-
set of cells in M defined by a warping window, the
cells located near the leading diagonal where a “best”
minimum warping path is likely to exist. The nature
of the warping window can be predefined or learnt
using training data. The first involves the user pre-
specifying the dimensions of the warping window and



is the most straight forward; the dimensions are often
referred to as global constraints (global constraints
on the minimum warping path generation process).
Examples include the Sakoe-Chiba band (S-C Band)
(Sakoe and Chiba, 1978) and the Itakura parallelo-
gram (Itakura, 1975).

Table 1: Symbol Table
Symbol Description
p or q A point in a time series described by a single value.
S A time series such that S = [p1 , p2 , . . . ] or S = [q1 ,q2 , . . . ].
x or y The length of a given time series.
M A distance matrix measuring x× y.
mi, j The distance value at location i, j in M.
WP A warping path [w1 ,w2, . . . ] where wi ∈M.
wd A warping distance derived from WP.
` the band width of a warping window (for the Sakoe-Chiba band).
α A warping window such as that generated using the Sakoe-Chiba

band.
s A number of sub-sequences into which a given time series is split.
C A set of class labels C = {c1 ,c2 , . . .}.
D A collection of time series {S1 ,S2 , . . . ,Sr}
r The number of time series in D.
z The runtime (secs.) to process a single point p in the context of DTW.

The idea presented in this paper, instead of consid-
ering the time series to be compared in their entirety,
is to split the time series into s sub-sequences and
to compare the sub-sequences. The time complexity
then decreases from O(x× y) to O( x×y

s ). The ques-
tions to be answered then are: (i) does this retain an
adequate level of accuracy? And (ii) how should s be
defined? This paper explores both these questions in
the context of 1-NN classification coupled with stan-
dard DTW, and coupled with DTW applied only over
a “warping window” (the Sakoe-Chiba band). The
presented analysis was conducted using 10 different
time series datasets taken from the UEA and UCR
(University of East Anglia and University of Califor-
nia Riverside) Time Series Classification Repository
(Bagnall et al., 2016).

The rest of this paper is organised as follows. A
review of previous work is presented in Section 2.
The operation of the proposed Sub-Sequence-Based
DTW method is then presented in Section 3 followed
by brief a description of kNN (1NN) time series clas-
sification in Section 4. The theoretical computa-
tional complexity of the proposed approach is then
discussed in Section 5. The evaluation of the pro-
posed approach is presented in Section 6. The paper
is concluded in Section 7. For convenience, a sym-
bol table is given in Table 1 listing the symbols used
throughout this paper.

2 PREVIOUS WORK

This section presents a review of previous work that
has been conducted to speed up DTW. Previously pro-
posed techniques have mostly been directed at limit-
ing the number of distance matrix values to be cal-
culated by defining a “warping window” α such that

α ⊆M. In other words, by placing constraints on the
matrix area to be considered when calculating a min-
imum warping path. These techniques can be cate-
gorised as follows:

1. Predefined: Techniques where the nature of the
warping window is predefined using one or more
parameters (global constraints).

2. Learnt: Techniques where the nature of the warp-
ing window is learnt using training data.

The use of a warping window α thus defines a con-
strained area inside the matrix M for which cell val-
ues need to be calculated. In addition, it prevents any
pathological alignment by forcing the warping path to
remain inside the constrained warping window area.

2.1 Predefinition

The simplest mechanism for predefining a warping
window is to define a band, of width `, stretch-
ing from m0,0 to mx,y (given two time series S1 =
[p1, p2, . . . , px] and S2 = [q1,q2, . . . ,qy]). From the
literature the most well-documented example of this
approach is the Sakoe-Chiba band (Sakoe and Chiba,
1978), originally introduced and used by the speech
analysis community. In (Sakoe and Chiba, 1978) it
was suggested that that the value for ` defining the
band width should be set to 10% of the time series
length.

An alternative to using a warping window in the
shape of a band is to use a parallelogram thus avoid-
ing unnecessary calculation at the start and end of the
warping path. The best-known example of this is the
Itakura parallelogram where the warping window α is
defined by two slope constraints (Itakura, 1975). The
Sakoe-Chiba band and the Itakura parallelogram are
illustrated in Figure 1.

Figure 1: Left: The Sakoe-Chiba band, Right: The Itakura
Parallelogram (Niennattrakul and Ratanamahatana, 2009).

2.2 Learning

The predefinition of a warping window requires the
user to, more-or-less, guess at the required defini-
tion of the window; users thus tend to err on the
side of caution. A more accurate way of defining



the warping window is to use a machine learning ap-
proach, although this requires training data. The idea
of learning the nature of the warping window was
first proposed in (Niennattrakul and Ratanamahatana,
2009) in the context of time series classification. The
idea here was to produce an arbitrarily shaped win-
dow. This was defined by considering each class in
the training set in turn and identifying the minimum
warping path for each pair of time series subscribing
to that class. The collected warping paths for each
class then defined warping sub-windows which were
then merged to define a global warping window. The
approach is illustrated in Figure 2 where the training
set features three classes (red, blue and green) whose
associated warping sub-windows are merged to form
a global window.

Figure 2: Warping Window learning example using three
individual classes (red, blue, green) (Niennattrakul and
Ratanamahatana, 2009).

3 SUB-SEQUENCE-BASED DTW

In this section the proposed Sub-Sequence-Based
DTW mechanism is presented. The proposed pro-
cess is similar to the fundamental (standard) DTW
process; the only difference is the splitting of the
time series into sub-sequences. Thus given two
time series S1 and S2 these are divided into s sub-
sequences so that we have S1 = [U11 ,U12 , . . .U1s ] and
S2 = [U21 ,U22 , . . .U2s ]. DTW is then applied to each
sub-seqence paring U1i ,U1 j where i = j. The final
minimum warping distance arrived at will be the ac-
cumulated warping distance for all sub-sequences af-
ter s application of DTW. There are two mechanisms
whereby s can be defined:

1. Fixed number: Directly by specifying a value for
s, a number of sub-sequences.

2. Fixed length: In terms of a predefined sub-
sequence length len, such that s = x

len , where x is
the length of the two time series to be compared
(assuming they are of equal length).

Considering two time series, S1 = [1,2,
2,3,2,1,1,0,1,0,3,2,4, 2,0] and S2 = [1,2,4,3,3,0,

3,3,1,2,1,1,3,4,2], using standard DTW the ma-
trix M will measure 15 × 15 (the lengths of the
two time series); Figure 3 shows the distance
matrix. However; in case of the Sub-Sequence-
Based method the first step is to define the
number of splits s. Assuming s = 3 there will
be three sub-sequences in each time series, S1 =
[U1,1,U1,2,U1,2] = [[1,2,2,3,2], [1,1,0,1,0], [3,2,4,
2,0]] and S2 = [U2,1,U2,2,U2,2] = [[1,2,4,3,3], [0,3,
3,1,2], [1,1,3,4,2]]. Figure 4 shows the three result-
ing distance matrices. Figure 5 shows the resulting
distance matrix using a Sakoe-Chiba band warping
window when sub-sequence splitting is not used, and
Figure 6 when sub-sequence splitting is used, with
respect to the same example data. Where the green
cell presents the value of the warping distance wd.

Figure 3: Distance Matrix and Warping Path (red line) for
the example time series S1 and S2 generated using standard
DTW.

Figure 4: Distance Matrices and Warping Paths (red lines )
for the example time series S1 and S2 generated using the
Sub-Sequence-Based method (s = 3).

Figure 5: Distance Matrix and Warping Path (red line) for
the example time series S1 and S2 generated using standard
DTW coupled with a Sakoe-Chiba band warping window.



Figure 6: Distance Matrices and Warping Paths (red lines
) for the example time series S1 and S2 generated using
the Sub-Sequence-Based method (s= 3) and a Sakoe-Chiba
band warping window.

4 K-NN TIME SERIES
CLASSIFICATION

In time series classification the most appropriate clas-
sification technique to be adapted depends on the na-
ture of the data (Rakthanmanon et al., 2012). As
noted earlier in this paper, k-nearest neighbour clas-
sification is the most common technique used in time
series classification; k = 1 is most frequently used
(Silva et al., 2018; Tan et al., 2018; Silva and Batista,
2016).

The fundamental idea of kNN (1NN) classifica-
tion is to use pre-labelled data as a data bank (a data
repository) D, comprised of r examples each asso-
ciated with a class c taken from set of class labels
C = {c1,c2, . . .}. A new time series to be labelled
is then compared with every time series in D and the
labels associated with the k most similar time series
used to label the new time series. Where k > 1 there is
a possibility of conflict, in which case a conflict reso-
lution mechanism, such as voting, is required. Where
k = 1 this issue does not arise. Further detail concern-
ing the k-NN algorithm can be found in (Singh et al.,
2016).

5 TIME COMPLEXITY

From the foregoing the time complexity for compar-
ing two time series using standard DTW was given
by O(x× y). However, in most 1NN applications
the time series to be considered are all of the same
length, in which case the standard DTW time com-
plexity (DTWcomplexityStand) can be expressed as:

DTWcomplexityStand = O
(
x2× z

)
(2)

where z is a constant describing the time complexity
associated with a single cell mi, j in the distance ma-
trix M. The time complexity, when standard DTW is

combined with the Sakoe-Chiba band warping win-
dow (DTWcomplexityStand+SC), using the proposed sub-
sequence-based mechanism (DTWcomplexitySplit+SC)
and the proposed mechanism with the Sakoe-Chiba
band warping window (DTWcomplexitySplit+SC) can be
expressed as follows:

DTWcomplexityStand+SC = O
(

x2× `

100
× z
)

(3)

DTWcomplexitySplit = O
(

x2

s
× z
)

(4)

DTWcomplexitySplit+SC = O

(
x2× `

100
s

× z

)
(5)

If we have a data repository with r examples the
time complexity to classify a single record using 1NN
is given by:

O
(
r×DTWcomplexity

)
(6)

If there are t new time series to be classified (t > 1)
the complexity is given by:

O
(
r×DTWcomplexity× t

)
(7)

In the case of cross-validation, as presented in the fol-
lowing section, the complexity becomes:

O
(
r×DTWcomplexity× t×numFolds

)
(8)

When using ten cross validation the data set D is split
into tenths, in which case r = 9×|D|

10 , t = |D|
10 and the

number of fold will equal 10:

O
(

9×|D|
10

×DTWcomplexity×
|D|
10
×10

)
(9)

Which simplifies to:

O
(

9×|D|2

100
×DTWcomplexity

)
(10)

6 EVALUATION

The evaluation of the proposed Sub-Sequence-Based
DTW is presented in this section. The evaluation was
conducted using 1NN classification and ten selected
datasets from the UEA and UCR Time Series Classi-
fication repository (Bagnall et al., 2016). Further de-
tail concerning the data sets used for the experiments
is given in Sub-section 6.1 below. Experiments were
conducted using: (i) Standard DTW, the benchmark



Table 2: Time Series Datasets Used for Evaluation Pur-
poses.

ID No. Dataset Length (x) No. records (r) Size x r No. Classes Type

1 GunPoint 150 200 30000 2 Motion

2 OliveOil 570 60 34200 4 Spectro

3 Trace 275 200 55000 4 Sensor

4 ToeSegment2 343 166 56938 2 Motion

5 Car 577 120 69240 4 Sensor

6 Lightning2 637 121 77077 2 Sensor

7 ShapeletSim 500 200 100000 2 Simulated

8 DiatomSizeRed 345 322 36000 4 Image

9 Adiac 176 781 137456 37 Image

10 HouseTwenty 2000 159 318000 2 Image

approach (Standard DTW); (ii) DTW coupled with
time series splitting (Subsequence DTW); (iii) Stan-
dard DTW coupled with the Sakoe-Chiba band warp-
ing window (Standard DTW + SC) and (iv) DTW
coupled with time series splitting and the Sakoe-
Chiba band warping window (Subsequence DTW +
SC). To define the Sakoe-Chiba band, ` = 10% was
used as proposed in (Sakoe and Chiba, 1978).
The objectives of the evaluation were:

1. To determine the most suitable mechanism for
selecting a value for s (fixed number or fixed
length).

2. To evaluate the run-time advantages gained using
the time series Sub-Sequence-Based approach.

3. To determine whether the classification accuracy
of the proposed approach was commensurate with
that obtained using standard DTW.

The first two are considered in Sub-section 6.2 and the
third in Sub-section 6.3. Ten Cross Validation (TCV)
was adopted throughout (Roberts et al., 2017). For
the experiments, a desktop computer with a 3.5 GHz
Intel Core i5 processor and 16 GB, 2400 MHz, DDR4
of primary memory was used. The evaluation metrics
collected comprised run time (seconds), and accuracy
and the F1-score; the later derived from a confusion
matrix (Deng et al., 2016). The values reported later
in this section are average values, collected with re-
spect to each “fold” of the TCV, together with stan-
dard deviation values to indicate the “spread” of the
results obtained.

6.1 Data Sets

This section presents a brief overview of the data sets
used for the DTW analysis presented in this section.
In total ten datasets were downloaded from the UEA
and UCR repository. These were selected so that a
mix of datasets was obtained in terms of number of

points, number of records, number of classes and the
nature (type) of the data sets. An overview of the
ten data sets is given in Table 2. Column five, x× r,
gives an indication of the overall size of each dataset,
a measure referenced later in this section. The “Type”
of the data set describes the nature of the data set; the
terminology used is that used with respect to the UEA
and UCR repository (Bagnall et al., 2016). Sensor
data is time series data obtained by some form of sen-
sor such as an electric power signal sensor. Motion
data is time series data describing some of the body
motion. Spectro data is time series data collected us-
ing a spectrograph. Image data is time series data
collected through some boundary identification pro-
cess applied as a consequence of image segmentation.
Simulated data is artificial time series data generated
using some form of simulation.

6.2 Selection of The s Parameter

This subsection reports on the experiments conducted
to determine the most appropriate mechanism for se-
lecting s, fixed number or fixed length, and what the
most appropriate value for s should be. The crite-
ria were: (i) a recorded accuracy commensurate with
DTW methods without splitting, and (ii) a reduced
run time compared to DTW methods without split-
ting. Experiments were conducted comparing the use
of the Sub-Sequence-Based approach coupled with
“Standard” DTW and the Sub-Sequence-Based ap-
proach coupled with a Sakoe-Chiba band warping
window. For the fixed number, experiments a range
of values for s was used from s = 1 to 10 increas-
ing in steps of 1. Note that s = 1 is equivalent to
not using splitting at all. For fixed length, a range of
sub-sequence size was considered from len = 10 to
50 points increasing in steps of 10 points. The antici-
pation was that as s increased runtime would decrease
in a corresponding manner, whilst accuracy would re-
main the same or better in most cases for the higher
values of s.

The run time results are presented in Tables 3 to
6. From the tables it can be seen that, as expected,
as s increased the recorded runtime correspondingly
decreased. Figure 7 and 8 show the fixed number of
sub-sequences runtime results, taken from Tables 3
and 4, for two selected data sets, “Lighting2” dataset
and “ShapeletSim” dataset. In the figures, best re-
sults, using the Sub-Sequence-Based approach, are
highlighted in green. For completeness, best results
without sub-sequencing are also included (s = 1).

The accuracy results are given in Tables 7 and 8.
From the tables, it can be seen that the accuracy ob-
tained using a fixed number of sub-sequences was bet-



ter than the accuracy obtained using fixed length sub-
sequences. However, there was no single best value
for s. Therefore, it is suggested that the best value of
s should be learnt using a training data set as in the
case of work on learning warping windows (Niennat-
trakul and Ratanamahatana, 2009).

Figure 7: Runtime Results for Lighting2 Dataset.

Figure 8: Runtime Results for ShapeletSim Dataset.

Table 3: Recorded runtime (Secs) using fixed number time
series sub-sequences, the Standard DTW, and a range of val-
ues for s.

Dataset s

1 3 5 7 9

GunPoint 8.11 5.03 4.54 4.38 4.26

OliveOil 8.06 3.28 2.44 1.98 1.7

Trace 18.41 7.33 5.57 4.79 4.91

ToeSegment2 23.81 9.06 6.82 6.18 5.29

Car 32.45 11.37 7.49 6.19 5.12

Lightning2 37.69 13.58 9.18 7.35 5.75

ShapeletSim 64.02 24.13 16.00 12.36 10.7

DiatomSizeRed 77.91 30.83 22.10 18.38 16.87

Adiac 156 74.83 65.94 60.87 58.3

HouseTwenty 727 224 133 93 74.3

6.3 Performance Comparison

The performance of the proposed Sub-Sequence-
Based method, in terms of accuracy and the F1 mea-
sure, compared to standard approaches, is considered
in this sub-section. The best results are presented in
Table 7 and 8, and included the s values that pro-
duced the best results. The figures in parenthesis are

Table 4: Recorded runtime (Secs) using fixed number time
series sub-sequences, the Sakoe-Chiba band, and a range of
values for s.

Dataset s

1 3 5 7 9

GunPoint 5.51 3.72 4.56 4.30 4.11

OliveOil 4.03 1.98 1.52 1.40 1.25

Trace 8.18 4.65 4.25 3.96 3.78

ToeSegment2 10.1 5.13 4.66 4.31 4.14

Car 13.67 5.5 4.25 3.50 3.20

Lightning2 14.94 6.35 4.63 3.98 3.39

ShapeletSim 25.85 11.57 8.37 7.47 6.79

DiatomSizeRed 34.21 17.11 13.52 13.37 12.21

Adiac 83.58 55.34 52.65 51.93 51.41

HouseTwenty 328.21 84.26 49.94 37.36 29.76

Table 5: Recorded runtime (Secs) using fixed length time
series sub-sequences, the standard DTW, and a range of val-
ues for len (s = x

len ).

Dataset Name len

10 20 30 40 50

GunPoint 7.26 6.94 6.92 6.74 6.56

OliveOil 1.96 1.90 1.81 1.81 1.77

Trace 7.27 7.19 7.12 6.76 6.58

ToeSegment2 7.90 7.63 7.58 7.52 7.03

Car 5.04 4.72 4.72 4.41 4.25

Lightning2 5.83 5.49 5.48 5.26 4.92

ShapeletSim 13.41 12.31 12.25 11.96 11.71

DiatomSizeRed 24.25 22.33 21.29 21.04 19.72

Adiac 101.00 98.71 98.32 96.55 91.99

HouseTwenty 22.65 20.43 19.47 17.03 16.57

Table 6: Recorded runtime (Secs) using fixed length time
series sub-sequences, the Sakoe-Chiba band, and a range of
values for len (s = x

len ).

Dataset Name length

10 20 30 40 50

GunPoint 7.75 7.36 6.37 6.28 6.10

OliveOil 2.63 1.85 1.64 1.57 1.56

Trace 6.8 5.93 5.78 5.53 5.47

ToeSegment2 7.11 6.57 6.00 5.87 5.77

Car 4.55 3.82 3.75 3.69 3.62

Lightning2 5.71 4.33 4.16 4.12 4.08

ShapeletSim 11.45 9.81 9.17 9.46 9.05

DiatomSizeRed 20.44 18.48 17.81 16.87 16.54

Adiac 96.06 89.89 85.01 84.77 83.77

HouseTwenty 18.64 13.18 12.92 12.34 12.11

the standard deviations recorded after averaging over
the ten folds of the TCV. From the table it can be
seen that the performance using the proposed split-
ting method is not adversely affected; in some cases,
the performance improves. Where the performance
is improved, it is conjectured that this is because the
effect of noise is reduced when using splitting. The



Table 7: Fixed Number: Best accuracy and F1 results, overall best accuracies and F1 values highlighted in bold font

ID # Dataset

Benchmark
Standard

DTW

Splitting
Standard

DTW

DTW Using
the S-C Band

` = 10%

Splitting
the S-C Band

`=10%

Acc
(SD)

F1
(SD) #s Acc

(SD)
F1

(SD)
Acc
(SD)

F1
(SD) #s Acc

(SD)
F1

(SD)

1 GunPoint 93.97
(0.04)

0.94
(0.05)

4, 7,
8, 10

99.00
(0.02)

0.99
(0.02)

97.47
(0.02)

0.98
(0.03) 4 100

(0.00)
1.00

(0.00)

2 OliveOil 89.52
(0.15)

0.88
(0.16)

4, 8,
10

90.95
(0.16)

0.91
(0.16)

98.50
(0.15)

0.89
(0.16)

4, 7, 8,
9, 10

90.95
(0.13)

0.90
(0.14)

3 Trace 99.00
(0.03)

0.99
(0.03) 2 99.00

(0.03)
0.99

(0.03)
99.00
(0.03)

0.99
(0.03) 2 98.50

(0.05)
0.99

(0.05)

4 ToeSegment 89.07
(0.09)

00.88
(0.10) 7 93.33

(0.05)
0.93

(0.05)
92.71
(0.06)

0.92
(0.07) 3 92.23

(0.04)
0.92

(0.04)

5 Car 80.83
(0.07)

0.80
(0.09) 5 82.50

(0.07)
0.82

(0.09)
81.67
(0.07)

0.81
(0.08) 10 83.33

(0.11)
0.82

(0.13)

6 Lighting2 87.74
(0.09)

0.87
(0.08) 3 91.72

(0.05)
0.91

(0.06)
87.76
(0.08)

0.87
(0.09) 3 88.08

(0.09)
0.88

(0.10)

7 DiatomSizeReduct 99.36
(0.01)

0.99
(0.01)

3,
6 - 10

100
(0.00)

1.00
(0.00)

99.69
(0.01)

0.99
(0.01) 2 - 10 100

(0.00)
1.00

(0.00)

8 ShapeletSim 82.37
(0.09)

0.81
(0.11) 9 89.97

(0.06)
0.90

(0.06)
82.37
(0.11)

0.82
(0.11) 4 95.47

(0.04)
0.96

(0.04)

9 Adiac 64.63
(0.03)

0.62
(0.04) 7 65.74

(0.03)
0.63

(0.03)
64.63
(0.03)

0.62
(0.04) 7 65.89

(0.03)
0.63

(0.03)

10 HouseTwenty 95.00
(0.03)

0.95
(0.05) 2 95.00

(0.03)
0.95

(0.05)
93.08
(0.05)

0.93
(0.05) 10 93.71

(0.04)
0.93

(0.05)

Table 8: Fixed Length: Best accuracy and F1 results, overall best accuracies and F1 values highlighted in bold font

ID
#

Dataset
Name

Benchmark
Standard

DTW

Splitting
Standard

DTW

DTW Using
the S-C Band

` = 10%

Splitting
the S-C Band

` = 10%

Acc
(SD)

F1
(SD) Size Acc

(SD)
F1

(SD)
Acc
(SD)

F1
(SD) Size Acc

(SD)
F1

(SD)

1 GunPoint 93.97
(0.04)

0.94
(0.05) 40 99.47

(0.02)
0.99

(0.02)
97.47
(0.02)

0.98
(0.03) 20 99.00

(0.03)
0.99

(0.03)

2 Olive Oil 89.52
(0.15)

0.88
(0.16) 10 - 50 90.95

(0.16)
0.91

(0.16)
98.50
(0.15)

0.89
(0.16)

10,
30 - 50

90.95
(0.13)

0.90
(0.14)

3 Trace 99.00
(0.03)

0.99
(0.03) 4, 50 97.50

(0.03)
0.98

(0.04)
99.00
(0.03)

0.99
(0.03) 50 96.00

(0.06)
0.96

(0.07)

4 Toe Segment 89.07
(0.09)

00.88
(0.10) 50 92.75

(0.06)
0.92

(0.06)
92.71
(0.06)

0.92
(0.07) 50 90.46

(0.06)
0.90

(0.07)

5 Car 80.83
(0.07)

0.80
(0.09) 40 83.33

(0.10)
0.82

(0.11)
81.67
(0.07)

0.81
(0.08) 40 83.33

(0.09)
0.82

(0.10)

6 Lighting2 87.74
(0.09)

0.87
(0.08) 10 83.30

(0.06)
0.83

(0.06)
87.76
(0.08)

0.87
(0.09) 20 84.07

(0.08)
0.88

(0.10)

7 DiatomSize Reduct 99.36
(0.01)

0.99
(0.01) 10 - 50 100

(0.00)
1.00

(0.00)
99.69
(0.01)

0.99
(0.01) 10 - 50 100

(0.00)
1.00

(0.00)

8 ShapeletSim 82.37
(0.09)

0.81
(0.11) 40 89.97

(0.06)
0.90

(0.06)
82.37
(0.11)

0.82
(0.11) 40 89.42

(0.08)
0.89

(0.08)

9 Adiac 64.63
(0.03)

0.62
(0.04) 10 65.51

(0.04)
0.63

(0.04)
64.63
(0.03)

0.62
(0.04) 50 65.17

(0.06)
0.62

(0.07)

10 HouseTwenty 95.00
(0.03)

0.95
(0.05) 10 93.71

(0.06)
0.94

(0.06)
93.08
(0.05)

0.93
(0.05) 50 93.04

(0.05)
0.93

(0.06)



results highlight the issue of selecting the best num-
ber of splits, as noted earlier, there is no single best
value for s. In some cases, there is a range of values
for s that give the same accuracy and F1 score.

7 CONCLUSION

In this paper, a novel technique (known as Sub-
Sequence-Based DTW) to speed-up runtime of DTW
has been proposed. An analysis of the runtime
complexity and accuracy of DTW using the Sub-
Sequence-Based method was presented. The analy-
sis was conducted with ten time series datasets us-
ing the kNN classification technique with k = 1. Dif-
ferent numbers of splits (sub-sequences), defined us-
ing the parameter s were considered. A compari-
son between the Sub-Sequence-Based approach and
Standard DTW and Standard DTW coupled with the
Sakoe-Chiba Band was also presented. The recorded
evaluation results indicated that the DTW runtime us-
ing the Sub-Sequence-Based approach decreases as
the number of splits increased. The effect of s on
accuracy depends on the nature of the data, there-
fore it is suggested that selecting the most appropriate
value for s should be conducted using training data.
It should also be noted that the Sub-Sequence-Based
approach can be applied in any technique founded on
the use of DTW where time series are compared.
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