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Abstract. A novel framework is described for mining fuzzy Association Rules 

(ARs) relating the properties of composite attributes, i.e. attributes or items that each 

feature a number of values derived from a common schema. To apply fuzzy 

Association Rule Mining (ARM) we partition the property values into fuzzy 

property sets. This paper describes: (i) the process of deriving the fuzzy sets 

(Composite Fuzzy ARM or CFARM) and (ii) a unique property ARM algorithm 

founded on the correlation factor interestingness measure. The paper includes a 

complete analysis, demonstrating: (i) the potential of fuzzy property ARs, and (ii) 

that a more succinct set of property ARs (than that generated using a non-fuzzy 

method) can be produced using the proposed approach.  

 
Keywords: Association rules, fuzzy association rules, composite attributes, 

quantitative attributes. 

1 Introduction 

Association Rule Mining (ARM) now a well known and established data mining topic 

among researchers. Mainly, ARM finds frequent items (attributes, usually binary valued) 

and then identifies patterns in the form of Association Rules (ARs) from large transaction 

data sets [5, 6, 12]. ARM has been applied to quantitative and categorical (non-binary) 

data [1, 13, 16]. With the latter, values can be split into linguistically labeled ranges such 

that each range represents a binary valued; for example “low”, “medium”, “high” etc. 

Values can be assigned to these attribute ranges using crisp or fuzzy boundaries. The 

application of the latter is referred to as fuzzy ARM (FARM) [1]. Objectively, fuzzy 

ARM identifies fuzzy ARs. Fuzzy ARM has been shown to produce more expressive ARs 

than the “crisp” methods [1, 3, 4,]. ARM (both fuzzy and standard) algorithms typically 

operate using the support-confidence framework, however with a number of 

disadvantages including (among others) the tendency to generate many and mostly 

redundant ARs not any more useful, expressive, succinct or significant. In contrast, the 

correlation measure produces a more succinct set of rules [3] and we explore this aspect.  



We approach the problem differently in this paper by introducing “Composite item”  

Fuzzy ARM (CFARM) whose main objective is the generation of fuzzy ARs associating 

the “properties” linked with composite attributes [15] i.e. attributes or items composed of 

sets of sub-attributes or sub-items that conform to a common schema. For example, given 

an image mining application, we might represent different areas of each image in terms of 

groups of pixels such that each group is represented by the normalized summation of the 

RGB values of the pixels in that group. In this case the set of composite attributes ( I) is 
the set of groups, and the set of properties (P ) shared by the groups is equivalent to the 
RGB summation values (i.e.P = {R,G,B}). Another could be market basket analysis 
where I  is a set of groceries, and P is a set of nutritional properties that these groceries 
posses i.e. P = {Pr, Fe, Ca, Cu,..}  standing for protein, Iron etc. Note that the actual 

values (properties) associated with each element of I will be constant, unlike in the case of 

the image mining example. We note that there are many examples depending on 

application area but we limit ourselves to these given here. For quantitative attributes, we 

can partition them into intervals [13] and rename these with linguistic values (fuzzy sets) 

[1].   

The contributions in this paper are : 

• The framework of the concept of “Composite item” mining of property ARs 

• The potential of using property ARs in many applications 

• Greater accuracy using the certainty factor measure as against confidence  

• Demonstration of a more succinct set of property ARs (than that generated using 
a non-fuzzy method) can be produced using the proposed approach.  

The paper is organised as follows. In section 2 we present the background and related 

work to the proposed composite fuzzy ARM approach described, Section 3 presents a 

sequence of formal definitions for the work and section 4, the detail of the CFARM 

algorithm; a complete analysis of the CFARM algorithm is given in Section 5, and section 

6 concludes the paper with a summary of the contribution of the work and directions for 

future work. 

2. Background and Related Work 

Most ARM algorithms in general concentrate on performance [2, 3, 5] by first 

generating all large (frequent) itemsets and then find ARs from them. To limit the number 

of ARs generated a confidence threshold is used. However great care must be taken not to 

remove low support items but from which high confidence rules may be generated. In 

literature the term “composite item” has been used in the context of data mining. In [8, 

16], a composite item is defined as a combination of several items e.g. if itemset {A, B} 

and {A, C} are not large then rules {B}�{A} and {C}�{A} will not be generated, but 

by combining B and C to make a new composite item {BC} which may be large, rules 

such as {BC}�{A} may be generated. In this paper we define composite items 



differently as indicated earlier, to be an item with properties (see Section 3) and also in 

[15], composite attributes are defined in this manner. 

In ARM, quantitative attributes are usually discretised into various partitions, with each 

partition regarded as a binary valued attribute. One major problem in this approach is that 

of “sharp boundary problems”. Fuzzy ARM [3, 7, 14] has been shown to resolve this 

problem by mapping numeric values to membership degrees from their partitions with 

total individual item contributions to support counts remaining as unity value (1.0) 

regardless of whether an item value belongs to one or more fuzzy sets (similar to the 

approach in [1]). Detailed overviews of FARM are given in [1, 3, 9, 14]. 

To illustrate the concepts, we consider super market basket analysis (table 1) where the 

set of groceries (I) (or edible items) have a common set of nutritional quantitative 

properties.  

 

Items/Nutrients      Protein Fibre Carbohydrate Fat … 

Milk     3.1 0 4.7 .2 … 

Bread 8 3.3 43.7 1.5 … 

Biscuit 6.8 4.8 66.3 22.8 … 

… … … … … … 

Table 1.  Example composite attributes (groceries) with their associated properties (nutrients) 

To illustrate the context of our problem, composite items (edible items) have common 

properties like  Protein, Fibre, Iron etc and are defined by the same five fuzzy sets {Very 

Low, Low, Ideal, High, Very High}. The objective is then to identify patterns linking 

these properties and so derive fuzzy association rules (see next section).     

3. Problem Definition 

In this section a sequence of formal definitions is presented to define composite 

attributes, describe FARM concept, the normalization process for Fuzzy Transactions 

(FT) and interestingness measures. 

3.1. Terms and definitions 

Definition 1: A Fuzzy Association Rules [3] is an implication of the form:  

if XA,   then YB,  

where A and B are disjoint itemsets and X and Y are fuzzy sets.  

Definition 2: Raw Dataset (the input data) D  consists of a set of 

transactions },,,,{
321

nttttT L= , composite items },,,,{ ||321 IiiiiI L=  and 



properties },,,,{ 321 mppppP L= . Each transaction it  is some subset of I , and each 

item ][ ji it  (the “j
th
” item in the “i

th
” transaction) is a subset of P . Thus ji has associated 

sets of values in set P , i.e. { }mji vvvvvit ,,,,|][ 321 L= .  

TID Record 

1 {<a,{2,4,6}>, <b,{4,5,3}>} 

2 {<c,{1,2,5}>, <d,{4,2,3}>} 

3 {<a,{2,4,6}>, <c,{1,2,5}>, <d,{4,2,3}>} 

4 {<b,{4,5,3}>, <d,{4,2,3}>} 

Table 2. Example raw dataset D. 

The “k
th
” property (categorical or quantitative) value for the “j

th
” item in the “i

th
” 

transaction is given by ]][[ kji vit . An example is given in Table 2 where each composite 

item is represented using the notation <label, value>.  In the rest of this paper the term 

“item” is used to mean an item in an itemset as used in traditional ARM, and the term 

attribute is used to mean a property item (sub-item). 

Definition 3: A given raw dataset D  is initially transformed into a property data set
pD  

with property transactions },,,,{
321

p

n

pp ttttT pp
L=  and property attributes P (instead of 

a set of composite items I ). Thus Pt p

i ⊂∀ . The value for each property attribute 

][ j

p

i pt  (the “j
th
” property attribute in the “i

th
” property transaction) is obtained by 

aggregating the numeric values for all jp  in it  (See Table 3). Thus: 
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TID X Y Z 

1 3.0 4.5 4.5 

2 3.0 2.0 4.0 

3 2.3 2.3 4.7 

4 4.0 3.5 3.0 

Table 3: Example property data set
pD generated from raw data set given in table 2 

Definition 4: Once a property data set
pD  is defined, it is then transformed into a Fuzzy 

Dataset D′ . A fuzzy dataset D′ consists of fuzzy transactions },...,,,{ 321 n
ttttT ′′′′=′  and 



a set of fuzzy property attributes P′  each of which has fuzzy sets with linguistic 

labels },...,,,{ ||321 LllllL = . Each property attribute ][ j

p

i pt  is associated (to some 

degree) with several fuzzy sets and given by a membership degree value in ]1..0[ in some 

fuzzy linguistic labels. The “k
th
” label for the “j

th
” property attribute for the “i

th
” fuzzy 

transaction is given by ]][[ kji lpt ′ . The nature of the user defined fuzzy ranges is 

expressed in a properties table (see definition 6 below). The numeric values for each 

property attribute ti
p[p j ] are fuzzified (mapped) into the appropriate membership degree 

values using a membership function )],[( kj

p

i lptµ  that applies the value of ][ j

p

i pt  to 

a label Llk ∈ , e.g. 

)}]],[(,),]],[(),]],[(),]],[({][ ||321 Lj

p

ij

p

ij

p

ij

p

iji lptlptlptlptpt µµµµ L=′ . The 

complete set of fuzzy property attributes P′ is then given by LP × . A fuzzy data (Table 

4) based on the property data set (Table 3) is given.  

Table 4: Example Fuzzy data set ( }largemedium,small,{=L , µ unspecified). 

Definition 5: Composite Itemset Value (CIV) table allows us to get property values for 

specific items. Note that a CIV table is not always required; the values may be included in 

the raw data as in the case of the example raw dataset presented in Table 2 where property 

values are all in the range [1..6]. The CIV table for the example raw dataset given in Table 

2 is given in Table 5 below. 

Property attributes Item 
X Y Z 

A 2 4 6 

B 4 5 3 

C 1 2 5 

D 4 2 3 

Table 5:  Composite Itemset Value Table for raw dataset given in Table 2 

Definition 6: Properties Table is a table that maps all possible values for each property 

attribute ti
p[p j ] onto user defined (and overlapping) linguistic labels L . An example is 

given in Table 6 for the raw data set given in Table 2.  

X Y Z TID 

Small Medium Large Small Medium Large Small Medium Large 

1 0.0 1.0 0.0 0.0 0.4 0.6 0.0 1.0 0.0 

2 0.0 1.0 0.0 1.0 0.0 0.0 0.3 0.7 0.0 

3 0.3 0.7 0.0 1.0 0.0 0.0 0.0 0.9 0.1 

4 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 



Linguistic values Property 

Low Medium High 

X 3.2≤kv  7.30.2 ≤< kv  kv<3.3  

Y 3.3≤kv  3.40.3 ≤< kv  kv<1.4  

Z 0.4≤kv  1.56.3 ≤< kv  kv<7.4  

Table 6: Properties Table for raw dataset given in Table 2 

Definition 7: A property attribute set A , where LPA ×⊆ , is a Fuzzy Frequent 

Attribute Set if its fuzzy support value is greater than or equal to a user supplied minimum 

support threshold (see sub-section 3.3 below).   

Definition 8: Fuzzy Normalisation is the process of finding the contribution to the fuzzy 

support value, m′ , for individual property attributes ( ti
p[p j[lk ]]) such that a partition of 

unity is guaranteed. This is given by the equation (where µ is the membership function): 
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(2) 

Without normalisation, the sum of the support contributions of individual fuzzy sets 

associated with an attribute in a single transaction may no longer be unity. This is 

illustrated in Tables 7 and 8. In the tables, the possible values for the item “Proteins” have 

been ranged into five fuzzy sets labelled: “Very Low” (VL), “Low” (L), “Ideal”, “High” 

(H) and “Very High” (VH). Table 7 shows a set of raw membership degree values, while 

Table 8 shows the normalised equivalents. The normalisation process ensures membership 

 

Proteins … TID 

 VL L Ideal H VH … 

1 0.0 0.0 0.0 1.0 0.32 … 
2 0.83 0.38 0.0 0.0 0.0 … 
3 … … … … … …  

Proteins  TID 

 VL L Ideal H VH … 

1 0.0 0.0 0.0 0.76 0.24 … 
2 0.69 0.31 0.0 0.0 0.0 … 
3 … … … … … … 

 Table 7: Fragment data set without normalization   Table 8:  Fragment data set with normalization 

values for each property attribute are consistent and are not affected by boundary values.   

3.2. Fuzzy Support and Confidence 

The support-confidence framework can also be applied to fuzzy association rule 

mining through fuzzy support (significance) values. Fuzzy Support (FS) is typically 

calculated as follows [1]: 



FS A( )=
Sum of votes satisfying A 

Number of records in T
 

 

 

where },...,,,{ ||321 AaaaaA =  is a set of property attribute-fuzzy set (label) pairs such 

that A⊆ P×L. A record ′ t i  “satisfies” A if A⊆ ′ t i . The individual vote per record is 
found by multiplying the membership degree with an attribute-fuzzy set pair Ali ∈]][[ : 

So we have,  

n

lit

A
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1 ]][[
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(4) 

Frequent attribute sets with fuzzy support above the specified threshold are used to 

generate all possible rules. A fuzzy AR derived from a fuzzy frequent attribute set C  is 

of the form: 

BA →  

where A  and B  are disjoint subsets of the set LP × such that .CBA =∪  Fuzzy 

Confidence (FC) is calculated in the same manner that confidence is calculated in 

classical ARM: 

)(

)(
)(

AFS

BAFS
BAFC

∪
=→  

 

(5) 

3.3. Fuzzy Correlation  

The Fuzzy Confidence measure (FC) described does not use )(BFS but the fuzzy 

correlation measure (FCORR) addresses this. The correlation measure is a statistical 

measure founded on the concepts of covariance (Cov) and variance (Var) and is 

calculated as follows: 

)()(

),(
)(

BVatAVar

BACov
BAFCORR

×
=→  

 

(6) 

In statistics covariance is calculated by subtracting the product of the individual 

expected values for A and B from the expected value of C  where BAC ∪= . The 

∏
∈∀

′=
Ali

ii litAt
]][[

]][[ satisfying for  vote  (3) 



value of correlation ranges from -1 to +1. Value -1 means no correlation and +1 means 

maximum correlation. Thus we are only interested in rules that have a correlation value 

that is greater than 0. As the certainty value increases from 0 to 1, the more related the 

attributes are and consequently the more interesting the rule.  

4. The CFARM Algorithm 

Fuzzy ARM can use standard ARM algorithms and few works report on their efficient 

implementations [7]. Fuzzy ARM do a significant amount of processing (filtration, 

conversions, normalization) to prepare the raw data prior to mining it.  

The proposed Composite Fuzzy ARM (CFARM) algorithm (similar to Apriori [5]), 

belongs to the breadth first traversal family of ARM algorithms, developed using tree 

data structures [6]. The CFARM algorithm consists of four major steps: 

1. Transformation of ordinary transactional data set (T ) into a property data set 

(
p

T ).  

2. Transformation of property data set (
pT ) into a fuzzy data set ′ T . 

3. Apply an Apriori style fuzzy association rule mining algorithm to ′ T using fuzzy 
support, confidence and correlation measures of the form described above to 

produce a set of frequent item sets F . 

4. Process F and generate a set of fuzzy ARs R  such that Rr ∈∀ the certainty 

factor (either confidence or correlation as desired by the end user) is above some 

user specified threshold. 

 

 Table 9: rawToPropertyDataSetConverter(T) Table 10 : propertToFuzzyDataSetConverter(Tp) 

The algorithms for steps 1and 2 are presented in Tables 9 and 10. To illustrate steps 1 

and 2 a fragment of a raw data set (T ) is given in Table 11(a). This raw data is then cast 

into a properties data set (
P

T ) by averaging the property values for each transaction (see 



definition 3 and table 3). For example, assuming the CIV table given in table 5 and 

considering transaction },{1 bat = , from Table 5, a  has property values {2, 4, 6} and b  

has property values {4, 5, 3}. Thus }2/)36(,2/)54(,2/)42{(1 +++=pt }5.4,5.4,0.3{= , 

assuming the properties table of the form presented in Table 4 where 

}LargeMedium,mall,{SL = . The result is as shown in Table 11(b) which is then cast into 

a fuzzy data set T ′ as shown in Table 11(c).  

(a)  Raw data  (T ) (b) Property data set  

(
PT ) 

(c) Fuzzy data set (T ′ ) 

TID Items 

1 a, b 

2 c 

3 a, b, d 

4 …  

TID X Y Z 

1 3.0 4.5 4.5 

2 1 2 5 

3 3.3 3.3 4.0 

4 … … …  

TID X Y Z 

 S M  L S M L S M L 

1 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.7 0.3 

2 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.8 

3 0.0 0.7 0.3 0.4 0.6 0.0 0.0 1.0 0.0 

4 … … … … … … … … …  

Table 11 Some example data sets (raw, property, conventional) 

An alternative approach is to discretise the data. For example, again assuming no 

overlapping (say) 2Small< , 4Medium2 <<  and arge4 L< , then the values in 

Table 12(b) can be discretised into the set of attributes 

},,,,,,,,{ LargeMediumSmallLargeMediumSmallLargeMediumSmall ZZZYYYXXX  and then 

assigned to a sequence }9,8,7,6,5,4,3,2,1{ . In that case the property data set in Table 11(b) 

could be represented in conventional ARM terms, which can then be mined using a 

conventional ARM algorithm. The significance is that we shall use an example property 

dataset cast into this format for evaluation purposes in Section 5.  

The final part of the CFARM algorithm is given in Table 12. In the Table: kC is the set 

of candidate itemsets of cardinality k , F is the set of frequent item sets, R  is the set of 
potential rules and R′ is the final set of generated fuzzy ARs. Note that the certainty 
factor can be confidence or a correlation or some other certainty measure. 

5.   Experimental Results 

To demonstrate the effectiveness of the approach, we performed several experiments 

using a T10I4N0.6KD100k data set generated using IBM Quest data generator [11]. The 

data is a transactional database containing 100K records. For the purpose of the 

experiment we mapped the 600 item numbers onto 600 products in a real RDA table.  

 



 

Table 12: fuzzyDataSetToFuzzyARs(T ′ ) 

5.1. Experiment One: (Quality Measures) 

 
Our experiment in the first instance compares CFARM, with and without 

normalisation, against standard (discrete) ARM with respect to: (i) the number of frequent 

sets generated and (ii) the number of rules generated (using both the confidence and the 

correlation measure). Figure 1 shows the results and demonstrates the difference between 

the number of frequent itemsets generated using (i)Standard ARM using discrete 

intervals, (ii)CFARM with fuzzy partitions without normalization (CFARM1), and 

(iii)Fuzzy ARM with fuzzy partitions with normalization (CFARM2).  

For standard ARM, the Apriori-TFP algorithm was used [6] with a range of support 

thresholds. As expected the number of frequent itemsets increases as the minimum 

support decreases. From the results, it is clear that standard ARM produces more frequent 

itemsets (and consequently rules) than fuzzy ARM (figure 1). 



 

Fig. 1. Number of frequent Itemsets 

This is because the frequent itemsets generated more accurately reflect the true patterns in 

the data set than the numerous artificial patterns resulting from the use of crisp boundaries 

in standard ARM. At low support threshold levels, the approach with normalization 

(CFARM2) starts to produce less frequent itemsets than the approach without 

normalization (CFARM1). This is because the average contribution to support counts per 

transaction is greater without using normalization than with normalization.  

Figures 2 and 3 shows the comparison of number of interesting rules generated using 

user specified fuzzy confidence and fuzzy correlation values respectively. In both cases, 

the number of interesting rules is less as using CFARM2; this is a direct consequence of 

the fact that CFARM 2 generates fewer frequent itemsets. Note that fewer, but arguably 

better, rules are generated using the correlation measure (Figure 3) than the confidence 

measure (Figure 2). The experiments show that using the proposed fuzzy normalization 

process less fuzzy ARs are generated. In addition, the novelty of the approach is its ability 

 

Fig. 2. No. of Interesting Rules using 

confidence 

 

Fig. 3. No. of Interesting Rules using 

Correlation 



to analyse datasets comprised of composite items e.g. nutritional properties. Some 

example fuzzy ARs generated has the form: 
IF Protein intake is Low THEN Vitamin A intake is High. 

IF Protein intake is High AND Vitamin A intake is Low THEN Fat intake is High. 

These rules would be useful in analysing customer buying patterns concerning their 

nutrition. 

 

5.2. Experiment Two: (Performance Measures) 

 
Experiment two investigated the effect on execution time by varying the number of 

attributes and the size of data (number of records) with and without normalization using a 

support threshold of 0.3, confidence 0.5 and correlation value to 0.25. Figure 4 shows the 

effect of increasing the number of records partitioned into 10 equal partitions 10K, 

20K,..,100K with all 27 nutrients (properties) used. Both algorithms have similar timings 

with execution time scales linearly with the number of records. Figure 5 shows the effect 
on execution time using different numbers of attributes each with 5 fuzzy sets and thus 

uses 135 columns (27x5).  

6.  Conclusion and future work 

In this paper, we have presented a novel framework for extracting fuzzy ARs from 

“composite items” with quantitative properties (sub itemsets) using derived fuzzy sets. 

The CFARM algorithm produces a more succinct set of fuzzy association rules using 

fuzzy measures and correlation as the interestingness (certainty) measure and thus 

presents a new way for extracting association rules from items with properties. This is 

different from normal quantitative ARM. We also showed the experimental results with 

market basket data where edible items were used with nutritional content as properties. 

Largely, CFARM offers potential to apply this framework in varied applications with 

composite items.  

 
Fig. 4  : Execution time: No. of Records 

 
Fig. 5 : Execution time: No. of Attributes 
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