

Reputation System Aggregation and Ageing Factor

Selection using Subjective Opinions Classification

Abdelmageed Algamdi, Frans Coenen and Alexei Lisitsa

Department of Computer Science

University of Liverpool

Liverpool, UK

(A.Algamdi - f.coenen - a.lisitsa)@liverpool.ac.uk

Abstract—This paper presents an adaptive approach to the

selection of appropriate values for ageing and aggregation factors

in reputation systems, based on a novel approach to subjective

opinions classification. The idea is that users express the service

evaluations as binomial subjective opinion which changes the

system’s old rating values using aggregation and ageing factors.

The approach has three stages, first we use randomly generated

opinions which are classified and visualized to the testers and ask

the tester to estimate the resulting rating value. The second stage

is to collect the estimated ratings as well as the calculated ratings

from the suggested formula using aggregation and ageing with

initial aggregation and ageing values. The third stage is to use the

collected data from different users at different situations to

adaptively change the aggregation constant and ageing factor so

that we have minimum average error between the suggested

formula and the tester’s opinions. The same procedure can be

applied on calculation of trust for various systems.

Keywords-component; Reputation systems; Aggregation factor

selection; Ageing factor selection; Subjective opinions

I. INTRODUCTION

Over the last decade, cloud computing has become an
important area of research. Cloud computing offers cheap and
reliable IT services to users such as storage services, complex
and fast calculation and so on. Despite the many services and
benefits offered over the cloud, users still have concerns about
issues such as privacy, data protection and service quality.
Reputation systems were designed to quantify the trust that
cloud users can place in a service [1-3]. This can be calculated
in various ways. The reputation system presented in [9]
considers only self-assessment by providers after releasing a
service and submitting required certificates through the Cloud
Trust Protocol (CTP) [4,5] to the cloud audit. In previous work
the authors presented an approach that allowed cloud service
users to conduct assessments based on evidence provided by
other cloud users that had reviewed providers’ self-assessment’s
and modify such assessments in a way that reflected their
satisfaction [6]. The assessment was done by modeling cloud
user opinion as a subjective binomial opinion [12-14] and
classifying this user opinion into one of six rating classes, which
after that helps to decide the ratio of the aggregation constant
used in the update action. The aggregation constant is the a fixed
value in which we multiply it with the rating class value to get
the update effect of the user assessment using the aggregation

operation. The resulting trustworthiness value for a service can
be also calculated by doing not only aggregation but also ageing
between the current and the pervious opinions which aggregates
the current opinion update effect with a ratio from the old
assessments history of the same user. The problem faced is that
the results are highly affected by the values of the aggregation
and ageing factors. This paper thus presents a good selection for
the aggregation constant and similarly the ageing factor that
cause minimal error in average between the calculated update
and the human --user or tester—opinion.

More specifically, in this paper, an adaptive method to
estimate the aggregation constant and ageing factor enables user
to first assume different values for the parameters, then calculate
the update of various randomly generated opinions, asking
testers for estimation based on the opinions visualization and
finally using these values to provide good estimation for the
parameters.

The rest of the paper is organised as follows: Section 2
presents the background information and related work. Section
3 demonstrates the proposed opinion classification method using
Barycentric coordinates and Section 4 demonstrates the ways
which can be used to update the trust values generated before
either by aggregation or by aggregation with ageing. It also
shows how we can choose the best values for the aggregation
constant and the ageing factors using some experiments. Section
5 concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Trust and Reputation (TR) Systems

In cloud computing, cloud trust management systems [7-9]
are responsible for calculating the trustworthiness for all the
services offered over the cloud and finding the trustworthy ones.
Trust and reputation (TR) systems [1-3] are example of these
systems which support trust management based on service
environment attributes such as security, compliance and data
governance. Some of these systems use the cloud trust protocol
(CTP) [4-5] as a source of information where any cloud user can
request and retrieve documents and certificates about the
services. After that, trust assessment techniques are used to
extract the users’ opinions and convert them somehow to update
the trustworthiness values of the services being assessed. There
are two types of assessments techniques either to do only the
provider self-assessment [9] or to do the self-assessment plus a

lot of users assessments which update the trustworthiness values
generated from the self-assessments. The self-assessment uses
the Consensus Assessments Initiative Questionnaire (CAIQ)
[10] questionnaire which covers the main attributes –
compliance, data governance such as in [6,9] while the user
assessment uses the Smals ICT [11] for society group
questionnaire generated for normal or experts clients as in [6].
The answers of the questionnaire are either Yes, No or
Unknown. So, these answers are modeled as subjective binomial
opinion which will be later affects the latest trust value stored
for the service being assed. The questionnaire designed for users
covers four main characteristics expected of the cloud service:
Governance, Identity and Access Management (IAM), IT
Security and Operational Security.

B. Binomial Subjective Opinions

The subjective opinions consider the uncertainty, the belief
ownership and incomplete knowledge which is essential for the
assessment methods. As the questionnaire answers are either
Yes, No or Unknown, the binomial subjective opinions are the
best type to deal with this situation [12-14].

A binomial opinion over a variable x is represented in

subjective logic by a quadruple of real numbers 𝜔𝑥 =
(𝑏𝑥, 𝑑𝑥 , 𝑢𝑥, 𝑎𝑥) all from the interval [0…1], subject to the

constraint 𝑏𝑥 + 𝑑𝑥 + 𝑢𝑥 = 1 . They are referred to as belief,

disbelief, uncertainty and relative atomicity of x, respectively.

Both the user and the provider opinions are expressed as

binomial opinions. These binomial opinions are calculated based

on the answers of multiple choices questionnaires designed

specifically to assess the service from two different views

(provider and user) [12-14].

The binomial opinion can be visualized inside Barycentric

Coordinates. As shown in Fig 1, the Barycentric Coordinates are

simply an equal side triangle with vertices belief (𝑏𝑥), disbelief

(𝑑𝑥) and uncertainty (𝑢𝑥) . The opinion is represented as a

center of gravity (barycenter or geometric centroid) of locating

three masses 𝑀𝐴, 𝑀𝐵 and 𝑀𝐶 at the triangle vertices. These

masses are located over three axis perpendicular over the

opposite triangle side of each vertex. These masses are

represented 𝑏𝑥 , 𝑑𝑥 and 𝑢𝑥 respectively. The base rate 𝑎𝑥 is

represented by a point in the base. The line connecting the u

vertex to the point represented by 𝑎𝑥 is called the director. The

projected probability 𝑃𝑥 of an opinion 𝜔𝑥 can be determined by

drawing a line from the opinion point 𝜔𝑥 to the base and parallel

to the director line [12-14].

For homogenous Barycentric coordinates, the edges are

normalized in order to achieve 𝑏𝑥 + 𝑑𝑥 + 𝑢𝑥 = 1 . The

projected probability can be calculated as follow, 𝑃𝑥 = 𝑏𝑥 +
𝑢𝑥𝑎𝑥 [13].

In this paper, we assume that we have the overall subjective

opinion which reflects the user opinion towards a service. The

aim is to show how this opinion updates the latest trustworthy

scalar value stored using aggregation and ageing operations.

III. THE PROPOSED OPINION CLASSIFICATION METHOD

The basic idea of this classification method is based on the
representation of the binomial opinion inside the Barycentric
coordinates [13]. From the triangle shown in Fig 1, we can split
the inside area into sub areas where each sub area has common
ranges for 𝑏𝑥 , 𝑑𝑥 and 𝑢𝑥 and can be represented as a fuzzy
meanings. As shown in Fig 2, our classification approach [6],
we classify any subjective opinion into one out of 6 different
classes. These classes named as very good, good, very bad,
bad, un-named, and very uncertain classes. These fuzzy
classes can be converted later into scalar ratings like 𝑘 = 1 for
class named very good and 𝑘 = −1 for the class named very
bad. Table 1 shows the six rating classes with their classification
schemes.

Figure 1: Binomial opinion representation inside the Barycentric

coordinates.

Figure 2: A binomial opinion rating classification.

Region Belief Disbelief Uncertainty

Very Good

Certain
𝑏𝑥 ≥ 0.5 𝑑𝑥 < 0.5 𝑢𝑥 < 0.5

Good

Certain
0.25 < 𝑏𝑥 < 0.5 𝑑𝑥 < 0.25 𝑢𝑥 < 0.5

Very Bad

Certain
𝑏𝑥 < 0.5 𝑑𝑥 ≥ 0.5 𝑢𝑥 < 0.5

Bad

Certain
𝑏𝑥 < 0.25 0.25 < 𝑑𝑥 < 0.5 𝑢𝑥 < 0.5

Unnamed

Certain
0.25 ≤ 𝑏𝑥 < 0.5 0.25 ≤ 𝑑𝑥 < 0.5 𝑢𝑥 < 0.5

Very

Uncertain

--- --- 𝑢𝑥 ≥ 0.5

Table 1

The value of k is determined as follow and depends on the rating

class for the consumer opinion:

 For very good and certain class (𝑘 = 1).

 For good and certain class (𝑘 =
1

2
).

 For very bad and certain class (𝑘 = −1).

 For bad and certain class (𝑘 = −
1

2
).

 For un-named and certain class (𝑘 =
1

4
 if 𝑃𝑥 ≥ 0.5 and

𝑘 = −
1

4
 if 𝑃𝑥 < 0.5)

 For very uncertain class (𝑘 = 0).

IV. UPDATING THE TRUST

The provider has the ability to do the first assessment for its
service by answering the CAIQ questionnaire which produces
initial scalar trust value. This can be done by collecting the
provider’s opinion using the approach suggested by the author
in [6]. Then, the opinion will be classified into a rating class
using the classifier described in Section 3 and also the class
rating value k will be obtained. Finally the 𝑘 value which ranges
from -1 to +1 will be scaled to another scalar value from 0 to 100
respectively. The cloud users also have the ability to reassess the
service after using it and submit their opinions towards the
service operation in the form of questionnaire as mentioned
before in section 2. The user opinion updates the latest scalar
trust value by either doing aggregation only or aggregation with
ageing. The update depends on which rating class the user
opinion has been classified into.

A. Update by aggregation only

There are a lot of methods to do the aggregation. In this

paper, we do aggregation of ratings by using the simple

addition. This can be done by using an aggregation constant

𝜆 ∈ [0,1]. The aggregation has no effect on the original ratings

if 𝜆 = 0 while it has the largest effect with 𝜆 = 1.

Let’s define

 𝑟𝑦,𝑡 is the initial rating value (only provider) generated

from the provider self-assessment for service 𝑦.

 𝑅𝑦,𝑡
𝑥 is the old rating value (provider and user 𝑥) over

time 𝑡 for service 𝑦.

 𝑅𝑦,(𝑡+1)
𝑥 represents the overall (provider and user 𝑥) new

accumulated rating value after time period 𝑡 + 1 for

service 𝑦.

 𝑅𝑦,(𝑡+1) represents the overall (provider and all users)

new accumulated rating value after time period 𝑡 + 1 for

service 𝑦.

In order to give a permission to any user to do the assessment

any number of time, our method of calculating the reputation

(rating) value generated from any agent 𝑥 towards service 𝑦

depends not only on the current opinion rating class 𝑘𝑡+1 but

also on the previous one 𝑘𝑡 . The idea behind doing another

assessment is to remeasure the reputation again and produce

new value instead of the generated old one. so, our method

based on updating the overall reputation value with the new

opinion and removing the old one for all the users that do many

assessments.

Assuming that the value of previous opinion rating class for

those agents that do their first assessment is 𝑘𝑡 = 0. The new

accumulated rating 𝑅𝑦,(𝑡+1)after time period 𝑡 + 1 can be

expressed as:

 For the first user assessment: 𝑅𝑦,(𝑡+1)
𝑥 = 𝜆′ + 𝑟𝑦,𝑡 where

0 ≤ 𝜆 ≤ 1, 𝜆′ = (𝑘𝑡+1 − 𝑘𝑡)𝜆.
 For any user assessment except the first one: 𝑅𝑦,(𝑡+1)

𝑥 =

𝜆′ + 𝑅𝑦,𝑡
𝑥 where 0 ≤ 𝜆 ≤ 1,

 𝜆′ = (𝑘𝑡+1 − 𝑘𝑡)𝜆.
The overall reputation (rating) generated from all users 𝑥 ∈ 𝑋 -

where 𝑋 is the set of all users did the assessments- is simply

generated from the average overall users’ ratings as follows:

𝑅𝑦,(𝑡+1) =
∑ 𝑅𝑦,(𝑡+1)

𝑥
𝑥∈𝑋

|𝑋|

We assume that the overall reputation 𝑅𝑦,(𝑡+1) has lower

bound of 0 and higher bound of 100. If the calculated overall
reputation lies out of the boundaries we modify it to lie on the
boundaries 0 if smaller and 100 if bigger.

B. Aggregation constant estimation

In this sub-section, the proposed method runs a lot of
supervised tests in order to provide good estimation for the
aggregation constant λ in the range between 0 and 1. We mean
by the word supervised that we will have human testers who test
whether our approach correct and we use these reviews to
readjust the parameters values on our approach. The procedure
is listed below:

1. Generate n- random subjective opinions 𝜔𝑋 =
{𝜔𝑥1

, 𝜔𝑥2
, … , 𝜔𝑥𝑛

} that act as the overall opinions

generated from the assessments done by the set of users
𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} assessments for a given service y.

2. Find the set of opinions’ ratings 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛}.

3. Visualize the set of random opinions 𝜔𝑋 as shown in
Fig 3.

4. Choose an initial value of 𝜆 ∈ [0,1].

5. Ask the human tester to give estimation to the final trust

value 𝑅𝑦,(𝑡+1)
𝑒𝑠𝑡 after showing him the visualization

picture, the value of 𝜆 and the latest trust just before the
process.

6. Let the program calculate the updated trust value using
the following equation.

𝑅𝑦,(𝑡+1)
𝑐𝑎𝑙𝑐 = Σ{𝑖≤𝑛}𝑘𝑖 × 𝜆 + 𝑅𝑦,𝑡

Where,
𝑅{𝑦,(𝑡+1)} is the updated trust value of the service 𝑦.

𝑅{𝑦,𝑡} is the latest trust value of service 𝑦 before this

process.

7. Find the absolute error 𝑒 = | 𝑅𝑦,(𝑡+1)
𝑐𝑎𝑙𝑐 − 𝑅𝑦,(𝑡+1)

𝑒𝑠𝑡 | and

store the values (𝜆, 𝑒).

8. Repeat steps 1 to 7 with different values of 𝑛 and 𝜆.

9. Repeat the whole process from 1 to 8 with 𝑚 ≥ 1

testers.

We can do this procedure for the values

𝑛 ∈ {1, 5, 10, 15, 20} and 𝜆 ∈
{0.1, 0.2, 0.4, 0.5, 0.8, 1}.

10. For every 𝜆 find the average absolute error

𝑒𝜆 , {𝑎𝑣𝑔} =
Σ 𝑒𝜆

𝑚 × 𝑛

11. Select the best 𝜆 value that minimizes the average
absolute error.

We’ve implemented software using java and Microsoft
Access database (MS access) that provides a graphical user
interface (GUI) that enables both the cloud providers and the
cloud users to do their assessments. The login window supports
three different logins: cloud provider, cloud user and tester. For
the cloud provider logins, we enable the addition of new services
to the system and also do the provider self-assessment by
answering the CAIQ questionnaire. For cloud user logins, the
user will be asked to enter his/her details and choose the service
to be assessed. Then, the user questionnaire will be appeared to
the user to be answered. For both provider and user assessments,
we enables YES, NO, and UNKOWN answers to the MCQ
questions. Then the provider/user opinion is collected using the
approach in [6] and classified using the classifier in Section 3.
For user assessments, the update action will be performed either
by using aggregation only as described in Section 4-A or by
using aggregation with ageing using the approach described later
in Section 4-C. All the assessments data like the questionnaire
answers, opinions and the update effects are stored in the
database.

On the other hand, the tester login is designed to test the
suggested assessment system by human testers. For testing, we
use randomly generated answers (values) for the user
questionnaire. Once we have the random answers, we use the
same approach in [6] to collect the overall random user opinion
and visualize it inside the Barycentric triangle shown in Figure
2. The visualization window will be outputted to the user with
the rating classes shown also on the same figure and ask the
tester to give a guess for the overall trust value. The tester will
be informed with the latest trust as well as the aggregation
constant value before giving his estimation. Note that, the tester
will not be informed with the k-values for each rating class as
we want to compare the suggested approach with the human
feelings. The tester estimation as well as the actual calculated
trust value using the approach in Section 4-A will be stored in
the database. The tester repeats this procedure with different

values of aggregation constant and different number of random
users opinions to the same service.

For the test, the tool asks the tester to enter his details and
then the testing procedure continues. For every tester, we do lot
of tests with different 𝜆 and 𝑛 values. The value of 𝑛 represents
how many random opinions will be outputted to the tester for the
same service. Once we show the visualized opinions to the user
and informing him the values for aggregation constant and the
latest trust for the service, the tester guesses the new trust value
for the situation while our program calculates the trust value
from the equations shown before ad save these values on a
database. This situation will be repeated over all the possible
combinations of values for 𝑛 and 𝜆.

We run this test over 𝑚 = 10 testers and the average
absolute error relation is shown in Fig 4.

 The horizontal axis represent the values of 𝜆 ∈
{0.1, 0.2, 0.4, 0.5, 0.8, 1} and the vertical axis demonstrates the
average absolute error 𝑒𝜆 , {𝑎𝑣𝑔}. We can conclude that for our

situation the best value for 𝜆 that result in minimum error in
average is 0.1.

C. Update by ageing (Consider the history)

Figure 3: A snapshot of the visualization for 10 random opinions.

Figure 4: Relation between the aggregation constant and the

average absolute error after doing 10 complete tests.

The previous way of collection users’ opinions depends only on

the last assessment of each user by removing all the history

created before. Another way of collecting users’ opinions is to

do the aggregation between the last assessment outcome for

each user with an aged value of the history generated by the

same user. Let’s define an aging factor Λ ∈ [0,1] The value of

Λ determines the history ratio of the user’s opinions that

contributes with the new opinion to generate the current

reputation value of the user towards any service. The history is

forgotten as shown in the previous method if Λ = 0 and

contributes with the full ration if Λ = 1. [6]

We can define an update 𝛿𝑥,𝑡 for every user 𝑥 assessed the

service. The update value for can be calculated as follows:

 For the first user assessment, there is no assessment

history for the user 𝑥 towards the service 𝑦. So, there

is no need for doing any form of ageing here in the

first user assessment where 𝜆 is the aggregation

constant.

𝛿𝑥,𝑡 = 𝑘𝑡𝜆.

 For any assessment except the first one, we have

opinions in the past for the user 𝑥 so, we should use

the ageing factor now.

𝛿𝑥,𝑡 = 𝑘𝑡𝜆 + Λδx,(t−1).

o For decreasing the effect of the history we use Λ =
0.01 (very close to 0).

o For increasing the contribution of the history in the

calculation of the current reputation value we use

Λ = 0.99 (very close to 1).
The overall reputation (rating) generated from all the users

𝑥 ∈ 𝑋 towards the service 𝑦 where X is the set of all users did
the assessments is the sum of all the updates done by all the users
𝑋 plus the initial trust 𝑟𝑦 generated from the provider self-

assessment. This is shown as follow

ℝ𝑦,(𝑡) = ∑ 𝛿𝑥

𝑥∈𝑋

+ 𝑟𝑦

We assume that the overall reputation ℝ𝑦,(𝑡) has lower

bound of 0 and higher bound of 100. If the calculated overall
reputation lies out of the boundaries we modify it to lie on the
boundaries 0 if smaller and 100 if bigger.

D. Ageing factor estimation

In this sub-section, we also run a lot of supervised tests like
the previous section but now we aim to find the best value for
ageing factor results in minimum error in average. We are going
to operations in order to update the trust value. The first one is
the ageing with a factor of Λ which affects the latest trust value
(the past) and the second operation is the aggregation with
aggregation constant λ = 0.1 (as concluded from sub-section B)
which represent the update effect of the current user opinion.
The procedure is listed down below:

1. Assume that the aggregation constant always 𝜆 = 0.1.

2. We are going to do the following steps for the testers
{𝑡1, 𝑡2, … , 𝑡𝑚} , 𝑚 ∈ ℕ{>0} .

3. We do the following steps for various ageing factor
Λ ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 0.99}.

4. For every tester 𝑡𝑖 , we ask him to do n-random test
trials with every single value of Λ.

5. For every trial, we ask the tester to select positive
random integer 𝑙 which represents how many random
opinions will be generated. Each opinion represents a
different time frame.

6. We visualize each opinion alone as shown in Fig. 5 and
ask the tester to give estimated value about the updated
trust value giving him the latest trust value (the past).

7. We let the program calculate the overall updated trust
value as described in sub-section C.

8. Calculate the absolute error 𝑒{Λ} between the estimated

value and the calculated value

9. Repeat steps from 5 to 8 for the rest (𝑙 − 1) trials.

10. Repeat steps from 5 to 9 with all values of Λ.

11. Repeat steps from 5 to 10 with all the other (𝑚 − 1)
testers.

12. After finishing all the testers we calculate for every Λ

the average absolute error 𝑒Λ ,{avg} =
Σ𝑒Λ

𝑙×𝑚
 .

13. Select the best ageing factor Λ with the minimum

average absolute error 𝑒Λ ,{avg} .

For Fig. 6, the test procedure is that we have 10 testers. Each
tester do tests for Λ = {0.01, 0.2, 0.4, 0.6, 0.8, 0.99} . At each
value the tester is doing 10 test situations such that at trial i we
generate i random opinions at different time frames. For
example, the trial i=1, we generate only one opinion to a random
user (this is the first time for this user to do the assessment). At
i=2, we generate two opinions to the random user which means
that the user had a previous assessment (his first one) plus the
new assessment and so on. From Fig. 6, we can conclude that
the best value for the ageing factor that could cause minimum
absolute error in average is 0.01.

For our users system – cloud users assessments – we prefer
low values for both aggregation constant and ageing factor. For
aggregation constant, the reason is that we have a very large
number of the cloud users nowadays so, if we have a large
aggregation constant, the trust value could change rapidly
(increasing or decreasing) after small number of assessments
which is not fair as the majority of users still didn’t do the
assessment yet. For the ageing factor, we prefer small values
because for large Λ values we give the cloud user the power to
update the trust with portions bigger than his right. We can
explain this as follow:

Suppose that we have aggregation constant 𝜆 and ageing
factor Λ = 1. Let’s consider a service 𝑦 with 10 users. For
every user, it is very fair to give him an update of ±0.1𝐹
where 𝐹 is the maximum trust value.

For a single user, for his first assessment the user contributes
an update of ±𝜆 at most. For the second assessment, the user
could contribute ±𝜆 for his present opinion plus another ±𝜆
from his opinion in the past as the ageing ration Λ = 1. So,
with only one user the trust value could reach 𝐹 after 𝑛

assessments without any consideration for the other 9 users’
opinions.

If Λ = 0.01 , the maximum update a user can do is
±(𝜆 + 0.02𝜆) = ±1.02 𝝀 which is acceptable because for
any user, all of his opinions towards a service contributes
only with ±1.02 𝝀 which is very near to the setting if one
user gives only one opinion for every service that has a
maximum update of ±𝝀 .

V. CONCLUSION

We can conclude that using the Barycentric classifier, we can
get a realistic trust update for the cloud user assessments using
only aggregation constant of value 0.1 without any consideration
for the past where each user contributes always with his very
recent opinion or if we want to consider the past we use ageing
factor with small values like 0.01 in order to be fair and reliable
updates. Secondly, the more partitions we uses inside the
Barycentric classifiers, the more precision we get in the
classification and hence on the updates.

REFERENCES

[1] Jøsang A, Ismail R, Boyd C, “A survey of trust and reputation systems
for online service provision”, Decision Support Systems 2007,
43(2),P(618 – 644).

[2] A. Jøsang, X. Luo and X. Chen, “Continuous Ratings in Discrete
Bayesian Reputation Systems”, The International Federation for
Information Processing, vol. (263), P(151--166), 2008.

[3] A. Whitby, A. Jøsang and J. Indulska, “Filtering Out Unfair Ratings in
Bayesian Reputation Systems”, Autonomous Agents and Multi Agent
Systems Conference, 2004.

[4] Knode, Ronald, “Digital Trust in the Cloud” August 2009.
www.csc.com/security/insights/32270-digital_trust_in_the_cloud

[5] Knode, Ronald with Egan, Douglas, “Digital Trust in the Cloud: Into the
Cloud with CTP – A Precis for the CloudTrust Protocol, V2.0” ,July 2010,
http://www.csc.com/cloud/insights/57785-into_the_cloud_with_ctp

[6] Algamdi, A., Coenen F. and Lisitsa, A., “A trust evaluation method based
on the distributed Cloud Trust Protocol (CTP) and opinion sharing”,
International Conference on Computer Applications & Technology
(ICCAT'17), 2017.

[7] F. Doelitzscher, C. Reich, M. Knahl, A. Passfall, and N. Clarke, “An agent
based business aware incident detection system for cloud environments,”
Journal of Cloud Computing: Advances, Systems and Applications 2012.

[8] A. Sumetanupap and T. Senivongse, “Enhancing Service Selection with a
Provider Trustworthiness Model”, Eighth International Joint Conference
on Computer Science and Software Engineering (JCSSE), 20ll, P(281-
286).

[9] S. Habib, S. Ries, M. Muhlhauser and P. Varikkattu, “Towards a Trust
Management System for Cloud Computing Marketplaces: using CAIQ as
a trust information source”, Security and Communication Networks,
2014.

[10] CSA. “Consensus assessments initiative”
https://cloudsecurityalliance.org/research/initiatives/consensus-
assessments-initiative/

[11] T. Martin, “Modèle d’évaluation de sécurité cloud”, Smals Research.
https://www.smalsresearch.be/tools/cloud-security-model-fr/

[12] A. Jøsang and D. McAnally, “Multiplication and comultiplication of
beliefs”, International Journal of Approximate Reasoning 38 : P(19–-51),
2005.

[13] A. Jøsang, “Book : Subjective Logic”, Universitas Osloensis, 2015

[14] D. Ceolin, A. Nottamkandath, and W. Fokkink, “Subjective Logic
Extensions for the Semantic Web

Figure 5: Three random opinions at three consecutive time slots

(t+1), (t+2) and (t+3).

Figure 6: Relation between the ageing factor and the average

absolute error after doing 10 complete tests.

http://www.csc.com/security/insights/32270-digital_trust_in_the_cloud
http://www.csc.com/cloud/insights/57785-into_the_cloud_with_ctp
https://cloudsecurityalliance.org/research/initiatives/consensus-assessments-initiative/
https://cloudsecurityalliance.org/research/initiatives/consensus-assessments-initiative/
https://www.smalsresearch.be/tools/cloud-security-model-fr/

