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Abstract: Although Deep Learning (DL) models have been introduced in various fields as effective prediction 1

tools, they often do not care about uncertainty. This can be a barrier to their adoption in real-world applications. 2

The current paper aims to apply and evaluate Monte Carlo (MC) dropout, a computationally efficient approach, 3

to investigate the reliability of several skip connection-based Convolutional Neural Network (CNN) models 4

while keeping their high accuracy. To do so, a high-dimensional regression problem is considered in the 5

context of subterranean fluid flow modeling using 376,250 generated samples. The results demonstrate the 6

effectiveness of MC dropout in terms of reliability with a Standard Deviation (SD) of 0.012-0.174, and of 7

accuracy with a coefficient of determination (R2) of 0.7881-0.9584 and Mean Squared Error (MSE) of 0.0113- 8

0.0508, respectively. The findings of this study may contribute to the distribution of pressure in the development 9

of oil/gas fields. 10

Keywords: deep learning; Monte Carlo dropout; reliability; regression; fluid flow modeling; mixed GMsFEM; 11

standard deviation 12

1. Introduction 13

The terms Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are 14

frequently used interchangeably. From a holistic perspective, DL is a subcategory of ML which, in 15

turn, is a subdivision of AI. Artificial intelligence is a far-reaching branch of computer science in 16

which a range of tools and techniques are used to make machines (namely computers and robots) 17

more intelligent and consequently more effective and efficient. Computational methods of ML 18

such as Neural Networks (NNs), support vector machines, and decision trees are employed to find 19

relevant patterns within a dataset. DL methods represent more sophisticated extensions of classical 20

ML techniques, and are generally superior to them. There are various DL algorithms such as 21

Convolutional Neural Networks (CNNs), deep auto-encoders, and generative adversarial networks. 22

ML and DL models have been introduced in various fields [1–8] to make decisions using 23

available data and domain knowledge. It is crucial to consider both accuracy and reliability when 24

evaluating such models. These models are typically assessed based on their accuracy using statistical 25

error metrics such as: (i) for regression: the coefficient of determination (R2), Mean Squared Error 26

(MSE), and relative error, and (ii) for classification: precision, F1 score, and confusion matrix. 27

In terms of reliability, ML and DL deal with two main types of uncertainty: (i) aleatoric uncer- 28

tainty (also called irreducible uncertainty/data uncertainty/inherent randomness) and (ii) epistemic 29

uncertainty (also called knowledge uncertainty/subjective uncertainty) [9]. Aleatoric uncertainty 30

arises from an inherent property of the data and cannot be reduced even with a higher volume 31

of samples. The data used to develop a model can be sourced from experimental measurements, 32

collected from other resources, or produced via simulation/programming. This data always contains 33

noise, which refers to the data distribution and errors made while measuring, collecting, or generat- 34

ing data. A related problem is incomplete coverage of the domain. That is why most models are 35

constructed based on a limited range of data and cannot be generalized. Epistemic uncertainty is a 36
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property of a model caused by factors such as the selection of very simple or complex structures, the 37

stochastic nature of optimization algorithms, or the type of statistical error metrics. This uncertainty 38

is reducible by feeding enough training samples into the model. 39

Uncertainty Quantification (UQ) techniques are beneficial to limit the effect of uncertainties on 40

decision-making processes. According to [9], there are three main types of UQ: (i) Bayesian methods 41

such as Monte Carlo (MC) dropout, Markov chain Monte Carlo, variational inference, Bayesian 42

active learning, Bayes by backprop, variational autoencoders, Laplacian approximations, and UQ in 43

reinforcement learning like Bayes-adaptive Markov decision process, (ii) ensemble techniques such 44

as deep ensemble, deep ensemble Bayesian/Bayesian deep ensemble, and uncertainty in Dirichlet 45

deep networks like information-aware Dirichlet networks, and (iii) other methods such as deep 46

Gaussian Process (GP) and UQ in the traditional ML domain using ensemble techniques like support 47

vector machine with Gaussian sample uncertainty. 48

Typically, researchers tend to apply their techniques or methods to existing datasets. Even when 49

using new data, it may still face limitations such as a restricted sample size or low dimensionality. 50

Moreover, while both classification and regression algorithms are supervised learning techniques, 51

previous studies on DL have mostly focused on classification, and regression has received much 52

less attention. Additionally, despite much research into the accuracy of DL models, their reliability 53

analysis remains inadequate. Finally, MC dropout is a computationally efficient method that uses 54

dropout as a regularization term to estimate uncertainty. Putting these points together, the main 55

contribution of this paper is to demonstrate the potential of using MC dropout in skip connection- 56

based CNN models based on big data. 57

A high-dimensional regression problem from the domain of petroleum engineering is included 58

as a case study because subsurface flow problems usually involve some degree of uncertainty 59

due to the lack of data with which models are constructed. Moreover, despite extensive efforts 60

towards renewable energy, the oil/gas sector still supplies a significant proportion of global energy 61

consumption, so this research has real-world applications. 62

The rest of this paper is arranged as follows. Section 2 provides an overview of MC dropout 63

and references a number of relevant publications. In Section 3, the mixed Generalized Multiscale 64

Finite Element Method (GMsFEM) is briefly explained as a case study. Section 4 presents the 65

characteristics of the skip connection-based CNN models used along with MC dropout. The results 66

are given in Section 5. Section 6 provides some discussion and the limitation of the research. The 67

conclusions and future study are given in Section 7. 68

2. MC dropout and its related work 69

Standard deterministic deep NNs operate on a one input-one output basis. Unlike single-point 70

predictions of such models, Bayesian methods such as Bayesian Neural Networks (BNNs) and 71

(GPs) give predictive distributions. The weights of BNNs are incorporated with priors distribution, 72

whereas GPs introduce priors over functions. A drawback of BNNs and GPs is the computational 73

cost, which becomes prohibitive given a very large network, as in the case of deep networks. BNNs 74

need to get the posterior distribution across the network’s parameters, in which all possible events 75

are obtained at the output. Gaussian processes require to sample prior functions from multivariate 76

Gaussian distribution, wherein the dimension of Gaussian distribution increases proportionally with 77

the number of training points involving the whole dataset during predictions. 78

A computationally more efficient method called MC dropout has been recently developed [10]. 79

A NN with any depth and non-linearities accompanying dropout before weight layers might be 80

interpreted as a Bayesian approximation of the probabilistic deep GP. Additionally, the dropout 81

objective minimizes Kullback-Leibler (KL) divergence between an approximate distribution and the 82

posterior of a deep GP. 83

Dropout basically serves as a regularization technique within the training process to reduce 84

over-fitting in NNs. For the testing samples, the dropout is not applied, but weights are adjusted, 85

e.g. multiplied by ’1 – dropout ratio’. With regards to MC dropout, the dropout is applied at both 86

training and test time. So, the prediction is no longer deterministic at test time. 87

Given that ŷ is an output of a NN model with hidden layers L. Also, w = {W1, . . . , WL} 88

represents the NN’s weight matrices, and y∗ is the observed output corresponding to input x∗. 89
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By defining X = {x1, . . . , xN} and Y = {y1, . . . , yN} as the input and output sets, the predictive 90

distribution is expressed as: 91

p(y∗ | x∗, X, Y) =
∫

p(y∗ | x∗, w)p(w | X, Y)dw (1)

here, p(y∗ | x∗, w) and p(w | X, Y) are the NN model’s likelihood and the posterior over the weights. 92

The predictive mean and variance are used in the predictive distribution to estimate uncertainty. 93

The posterior distribution is, however, analytically intractable. As a replacement, an approximation 94

of variational distribution q(w) can be obtained from the GP such that it is as close to p(w | X, Y) as 95

possible, in which the optimization process happens through the minimization of the KL divergence 96

between the preceded distributions as shown below: 97

KL(q(w) | p(w | X, Y)) (2)

With variational inference, the predictive distribution can be described as follows: 98

q(y∗ | x∗) =
∫

p(y∗ | x∗, w)q(w)dw (3)

According to [10], q(w) is selected to be the matrices distribution whose columns are randomly 99

set to zero given a Bernouli distribution specified as: 100

Wi = Mi.diag([zi, j]
Ki
j=1) (4)

where zi, j ∼ Bernoulli(pi) for i = 1, . . . , L and j = 1, . . . , Ki−1 with Ki × Ki−1 as the dimension of 101

matrix Wi. Also pi represents the probability of dropout and Mi is a matrix of variational parameters. 102

Therefore, drawing T sets of vectors of samples from Bernoulli distribution gives (W t
1, . . . , W t

L)
T
t=1, 103

and consequently, the predictive mean will be: 104

Eq(y∗ |x∗)(y∗) ≈
1
T

T∑
t=1

ŷ∗(x∗, W t
1, . . . , W t

L) = pMC(y∗ | x∗) (5)

Where ŷ∗ is the output obtained by the given NN for input x∗, and pMC is the predictive mean of 105

MC dropout, equivalent to doing T stochastic forward passes over the network during the testing 106

process with dropout and then averaging the results. It is useful to view this method as an ensemble 107

of approximated functions with shared parameters, which approximates the probabilistic Bayesian 108

method known as deep GP. In this method, there are several outputs (considered 30, 50, 100, and 109

200 in this research) for a given input. Subsequently, uncertainty could be examined in terms of 110

factors such as variance, entropy, and mutual information. 111

In the following, four examples are given to show the application of MC dropout in modelling 112

subsurface fluid flow. The researchers in [11] investigated the uncertainty involved in ML seismic 113

image segmentation models. A salt body detection was considered as an example. They used MC 114

dropout and concluded the developed models were reliable. 115

The researchers in [12] used the dropout method for a classification problem to quantify the 116

fault model uncertainty of a reservoir in Netherlands. The networks were trained with dropout ratios 117

of 0.25 and 0.5. The researchers concluded that the model variance increased by increasing the 118

dropout ratio. Also, they suggested training with more data is needed. 119

The MC dropout approach and a bootstrap aggregating method were used to quantify uncer- 120

tainties of CO2 saturation based on seismic data in [13]. The researchers carried out DL inversion 121

experiments using noise-free and noisy data. The results showed that the model can estimate 2D 122

distributions of CO2 moderately well, and UQ can be done in real time. 123

A semi-supervised learning workflow was used to effectively integrate seismic data and well 124

logs and simultaneously predicting subsurface characteristics in [14]. It had three distinct benefits: 125

(i) using 3D seismic patterns for developing an optimal nonlinear mapping function with 1D logs, (ii) 126

being capable of automatically filling the gap of vertical resolution between seismic and well logs, 127

and (iii) having a MC dropout-based epistemic uncertainty analysis. The results of two examples 128
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showed reliable seismic and well integration, and robust estimation of properties like density and 129

porosity obtained by this procedure. 130

3. Case Study 131

Fluid flow in petroleum reservoirs is typically governed by: (i) the equation of mass conserva- 132

tion, (ii) momentum law (Darcy’s law), (iii) energy equation, (iv) fluid phase behavior equations 133

(also known as equations of state) and certain rock property relationships (such as compressibility) 134

[15]. To solve this system of equations, it is necessary to specify boundary and initial conditions. 135

Analytical (exact) solutions can be determined for relatively simple reservoirs (i.e., by making 136

several assumptions). An alternative is to apply numerical (approximate) solutions, such as finite 137

difference method, finite element method, finite volume method, spectral method, and meshless 138

method. 139

A mixed GMsFEM framework, as a numerical method, has recently been proposed for a 140

single-phase fluid in 2D heterogeneous (matrix composition and fracture distribution) porous media 141

[16]. The model approximates reservoir pressure in multiscale space. It does so by applying several 142

multiscale basis functions to a single coarse grid of the reservoir volume. The fluid velocity is 143

directly estimated across a fine grid space. Generally, the number of Partial Differential Equations 144

(PDEs) requiring solutions to enable multiscale basis functions to be derived is dependent on the 145

number of local cell and local eigenvalue problems involved, which necessitates a substantial 146

overhead. Therefore, it is reasonable to replace PDE solvers with ML/DL approaches, given 147

their exceptional abilities and general acceptance in recent years. Readers are referred to [16] for 148

additional information, especially what the original flow problem is and how the mixed GMsFEM 149

works. 150

For the configuration defined in this paper, the computational domain was set to be Ω = 151

[0, 1] × [0, 1] (Figure 1). The fine grid system adopted involves a uniform 30 × 30 mesh. On the 152

other hand, a sparser, uniform 10 × 10 mesh was applied to represent the coarse grid network. This 153

configuration consists of 1300 separate PDEs, made up of 1200 (100 × 12) PDEs addressing the 154

local cell problems plus 100 (100 × 1) local eigenvalue problems. There were five multiscale basis 155

functions, identified as Basis 1, 2, 3, 4, and 5 for each generated permeability field (as the only 156

input). A range of values for the permeability of the matrix was chosen from 1 to 5 milliDarcies 157

(mD) incrementing in steps of 1 (i.e., 1, 2, 3, 4, and 5 mD); and for the permeability of the fracture 158

from 500 to 2000 mD incrementing in steps of 250 (i.e., 500, 750, 1000, 1250, 1500, 1750, and 159

2000 mD). The number of fractures was set to 1, 2, 3, . . . , 23, 24, and 25 (25 cases). Basis 1 is a 160

piecewise constant, with binary values of -1 and +1. Basis 1 is defined as part of the finite element 161

method, it hence requires no training for DL modeling. However, Basis 2, 3, 4, and 5 take values 162

distributed across the range (-1, +1), and therefore require training for DL modeling. 163

In terms of supervised learning, our problem was mapping an input of 100 × 9 to an output of 164

900 × 1. Because there were four different basis functions, we had four distinct mappings. In this 165

regard, 376,250 samples were produced in the MatLab software including 306,250 examples for the 166

training, 35,000 for the validation, and 35,000 for the testing. Due to the random generation of the 167

permeability fields, duplicates might have been present. Consequently, the generated dataset was 168

filtered to remove any duplicate data records. This is necessary to remove the risk of introducing bias 169

towards specific model configurations in the DL analysis. For our data, 1739 training, 579 validation, 170

and 6121 testing samples were kept out. This reduced the training, validation and testing samples to 171

304,511, 34,421, and 28,879, respectively. 172

4. Skip Connection-based CNN Model Architecture 173

Depending on the way in which an algorithm learns from data sets, DL (and also ML) al- 174

gorithms fall into four categories: (i) supervised, (ii) unsupervised, (iii) semi-supervised, and (iv) 175

reinforcement. Our problem is a supervised learning task. There are several approaches that can be 176

adopted in this category such as Recurrent Neural Networks (RNNs) and CNNs. RNNs are often 177

applied to process video, sound, and text data. On the other side, CNNs are particularly designed 178

for problems invovling 2D arrays like the regression case study in this research, where an input of 179

100 × 9 is mapped to an output of 900 × 1. The format defined for the permeability field was as a 180
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Figure 1. A typical permeability field of a fractured porous medium. The matrix permeability is assumed to
be 4 mD. The fracture permeability is assumed to be 2000 mD. The fine grid squares represent the formation
matrix (blue) in some cases and fractures (yellow) in other cases (selected randomly). The red lines define the
coarse grid. Each coarse grid square contains of nine fine grid squares. There are fifteen fractures assigned to
this porous medium.

vector (900 × 1), subsequently adjusted to be expressed as a 2D tensor (100 × 9), in which, coarse 181

grid units=100 and each coarse grid contains 9 fine grids. Each row in the array therefore represents 182

a coarse grid. Such a configuration enables the use of 2D CNN kernels. Furthermore, there was a 183

logical and convincing mathematical procedure behind convolutional filters. Convolutional neural 184

networks also automatically and adaptively learn the spatial hierarchies of features. Lastly, it can 185

reduce the number of parameters without sacrificing model quality. With regards to the output, it 186

was necessary to maintain the five basis functions as 900 × 1 vectors, so that they could be evaluated 187

in the Fully Connected (FC) layers (dense layers) forming the final section of the CNN network. 188

A classic CNN model is normally composed of alternate convolutional and pooling layers, 189

followed by one or more FC layers at the end. In some situations, it is sensible to replace an FC 190

layer with a global average pooling layer. The convolutional and pooling layers perform feature 191

extraction, while the FC layers map the extracted features into an output layer. 192

Distinct CNN model configurations, involving various combinations of convolutional, pooling, 193

FC, Batch Normalization (BN), regularization, and dropout filtering were tested separately for each 194

basis function requiring training (Basis 2, 3, 4, and 5). A similar optimal CNN configuration was 195

obtained for each of those four basis functions (Figure 2). It consists of five convolutional layers, 196

two FC layers but does not include any pooling layers. Each convolutional layer is followed by 197

a single BN layer of the same dimensions. Typically, neural network models are able to apply 198

higher learning rates and converge more quickly when the input to each layer is normalized; hence 199

the value of adding the BN layers. Normalized input data tends to generate average (normalized) 200

dependent variable prediction values that approximate zero with (normalized) standard deviations 201

approximating one. The two FC layers contain 2000 neurons with a dropout rate of 0.05. 202

The gradient of the loss function might quickly approach zero when a deep NN back propagates 203

the gradient from the final layers to earlier layers close to the input layer. This refers to the ’vanishing 204

gradient problem’, that makes the earlier layers not benefit from additional training. Using the skip 205

connection (shortcut) strategy, which enables the gradient to be directly back propagated to earlier 206

layers of a network, is one of the most effective ways to tackle this problem. After testing different 207
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cases, we found out it would be better to add simultaneously two shortcut schemes to the main CNN 208

structure: (i) from the middle to the last layer and (ii) from the middle to the second-to-last layer. 209

The model, treated as a Bayesian approach, produces a different output each time called with 210

the same input. This is because each time a new set of weights is sampled from the distributions to 211

develop the network and produce an output. Here, we arranged to have 30 outputs for a given input. 212

The models employ the activation function of ‘Rectified Linear Unit (ReLU)’ for the convolutional 213

layers, ‘sigmoid’ for the FC layers, and ‘linear’ for the output. 214

5. Evaluation 215

To understand the role of MC dropout in the developed CNN models based on accuracy, two 216

statistical error metrics of R2 and MSE are included: 217

R2 = 1 −
∑N

i=1(ŷi − yi)2∑N
i=1(ŷi − ȳ)2

(6)

MS E =
1
N

N∑
i=1

(ŷi − yi)
2 (7)

where yi, ȳ, and ŷi are the actual basis function of the i-th data point, the average of actual basis 218

function for all samples, and the predicted basis function for the i-th data point, respectively. Also, 219

N is the number of data points. As mentioned earlier, each basis function is in the form of a 900 × 1 220

tensor and R2 of all outputs are averaged, weighted by the variances of each individual output. The 221

R2 value lies between −∞ and 1 [17]. The closer the value is to 1, the more accurate the predictions 222

produced by the model. The error metric of MSE measures the average of squares of errors (i.e., the 223

difference between predicted and real values). It is basically non-negative, where values closer to 224

zero indicate more-accurate performance. The models without dropout yield promising results when 225

evaluated on the training subset using R2 and MSE metrics. Except for Basis 5, the R2 of others is 226

above 0.9. The values obtained for MSE lie within the range of 0.0075 to 0.0243. The constructed 227

models perform suitably for the validation subset, with an R2 of 0.7900 to 0.8811 and MSE 0.0128 228

of to 0.0512. Because the validation and testing subsets were selected from the similar distribution 229

of data, we can see almost the same results over the testing samples: an R2 of 0.7857 to 0.8809, and 230

MSE 0.0126 of to 0.0513. 231

According to Table 1, the dropout after two FC layers enhances performance over all subsets 232

for all multiscale basis functions. For the training subset, it has the maximum effect on the model for 233

Basis 3 and the minimum effect for Basis 4. For basis 3, R2 increases from 0.9327 to 0.9584, and 234

MSE decreases from 0.0141 to 0.0113. There is an R2 increase from 0.9283 to 0.9326 and MSE 235

decrease from 0.0107 to 0.0101 for Basis 4. 236

Adding dropout to the initial architecture has generally a marginal positive effect on the 237

validation and testing samples. The range of R2 and MSE is 0.7919-0.8858 and 0.0120-0.0507 for 238

validation. The R2 and MSE lie in the range of 0.7881-0.8839 and 0.0121-0.0508 for testing. 239

As a general result, it is evident that the use of dropout has a positive impact on the perfor- 240

mance of the developed models across the training subset, regardless of the basis functions used. 241

Furthermore, it also demonstrates a similar positive impact over the validation and testing subsets 242

for Basis 3 and Basis 5. However, for Basis 2 and Basis 4, there is only a marginal difference 243

between the performance of CNNinitial and CNNdropout models. The probable reasons for this could 244

be attributed to the high-dimensional regression problem considered in this paper and the complexity 245

and non-linear nature of DL models. Nonetheless, even this slight improvement in the models’ 246

performance could help reduce overfitting and enhance generalization in the constructed CNNdropout 247

models. Additionally, it can significantly affect the pressure distribution obtained through the basis 248

functions. 249

Depending on the input/output dimensions, type (classification/regression), and approach 250

applied to a problem, the magnitude of uncertainty can be analyzed statistically and graphically. 251

Standard deviation measures the dispersion of a data set relative to its average. It is the square root 252

of the variance. The closer the value of SD is to zero, the values of data are closer to the average. A 253

high SD indicates that the values are spread out over a broad range. Basically, the variance and SD 254
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Table 1. Performance of the developed models without dropout for Basis 2, 3, 4, and 5 in terms of R2 and MSE.

Subset Model
R2 MS E

Basis 2 Basis 3 Basis 4 Basis 5 Basis 2 Basis 3 Basis 4 Basis 5

Training
CNNinitial 0.9002 0.9327 0.9283 0.8847 0.0243 0.0141 0.0107 0.0075

CNNdropout 0.9113 0.9584 0.9326 0.9089 0.0211 0.0113 0.0101 0.0058

Validation
CNNinitial 0.7900 0.8434 0.8811 0.8038 0.0512 0.0329 0.0176 0.0128

CNNdropout 0.7919 0.8620 0.8858 0.8155 0.0507 0.0290 0.0170 0.0120

Testing
CNNinitial 0.7857 0.8422 0.8809 0.8044 0.0513 0.0332 0.0177 0.0126

CNNdropout 0.7881 0.8622 0.8839 0.8132 0.0508 0.0290 0.0173 0.0121

is defined for a single-point data set (there is only one output). On the other hand, the output (basis 255

functions) in this study is in the form of a 900× 1 vector. While dealing with a vector, it is necessary 256

to calculate the variance of each element of the vector separately. Then, the obtained variances are 257

averaged to reach the total variance. Finally, the SD is obtained as the square root of the variance for 258

each case. Standard CNNs (without dropout) give only one output for a given input. That is why the 259

SD is not defined for such models (it is always zero). 260

According to Table 2, the SD values lie within 0.0181-0.158, 0.0179-0.152, 0.0169-0.104, and 261

0.0121-0.086 for the CNN models with dropout developed for Basis 2, 3, 4, and 5 based on the 262

training subset. For all basis functions, most samples have an SD lower than 0.05. For instance, 263

221006 out of 304511 samples for Basis 3 are in the range of 0-0.05. In general, SD exceeds 0.15 264

only for 547 samples. The SD obtained for Basis 4 and 5 is lower than that for Basis 2 and 3. 265

With regards to the validation subset, the developed models for Basis 2, 3, 4, and 5 have an SD 266

of 0.0268-0.174, 0.0237-0.124, 0.019-0.171, and 0.012-0.097, respectively. Generally, only 27 out 267

of 34421 samples have an SD higher than 0.15. The model built for Basis 5 has the best performance 268

in terms of uncertainty, 24276 samples with an SD of lower than 0.05 and 10145 samples with an 269

SD of 0.05-0.1. After that, the models developed for Basis 4 and 3 come. The model designed for 270

Basis 2 has the worst performance because only 2577 samples have an SD of 0-0.05. 271

For the testing subset, the SD values lie within 0.025-0.169, 0.024-0.142, 0.020-0.113, and 272

0.012-0.098 for the CNN models with dropout developed for Basis 2, 3, 4, and 5. The trend is the 273

same as the validation subset. In other words, the model for Basis 5 has the best, and the one for 274

Basis 2 has the worst performance, respectively. Also, there is no sample with an SD higher than 275

0.15, except with 24 cases for Basis 2. 276

As mentioned earlier, the output is in the form of a 900 × 1 vector, which is too big to show in 277

a graph. Additionally, basis functions in the mixed GMsFEM are defined in one coarse grid element, 278

which includes 9 fine grids. Figure 3 gives the 30 values obtained for each of nine points using MC 279

dropout for a coarse grid with the matrix permeability of 1 mD (as a representative sample). The 280

average of 30 outputs (for each point) is considered as the model’s output. The figure demonstrates 281

that the values are close to each other (some overlap) and have a very low SD. 282

In order to visualize the pressure changes over the defined computational domain, three 283

examples are illustrated for selected training (Figure 4a), validation (Figure 4b), and testing (Figure 284

4c) subsets. The plots in the left-side columns display the permeability fields, for representative 285

sample grids. The plots in the central columns display the pressure distribution derived by FEM 286

(considered to be true distribution). The plots in the right-side columns display the predicted pressure 287

distributions using the skip connection-based CNN models developed in this study. In fact, the 288

pressure is obtained through the multiscale basis functions. Generally, there is a better match for the 289

training sample in comparison with the validation and testing cases. 290
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Table 2. Reliability of the developed models for Basis 2, 3, 4, and 5 using MC dropout in terms of SD.

Subset Range of S D Basis 2 Basis 3 Basis 4 Basis 5

Training

[0-0.05) 197572(0.649) 221006(0.726) 238107(0.782) 261537(0.859)

[0.05-0.1) 99364(0.326) 81227(0.267) 63189(0.208) 42974(0.141)

[0.1-0.15) 7143(0.023) 2163(0.007) 3215(0.01) -

≥ 0.15 432 115 - -

Validation

[0-0.05) 2577(0.075) 4679(0.136) 7475(0.217) 24276(0.705)

[0.05-0.1) 19296(0.561) 29395(0.854) 26937(0.783) 10145(0.295)

[0.1-0.15) 12522(0.364) 347(0.01) 8 -

≥ 0.15 26 1 1 -

Testing

[0-0.05) 2245(0.079) 3984(0.138) 6232(0.216) 20725(0.718)

[0.05-0.1) 16321(0.565) 24599(0.852) 22641(0.784) 8154(0.282)

[0.1-0.15) 10289(0.356) 296 6 -

≥ 0.15 24 - - -

6. Discussion 291

In terms of accuracy, it was perceived that considering high initial sets of weights does not 292

influence the accuracy of the models. More specifically, no meaningful improvement was observed 293

by defining 50, 100, and 200 sets. Hence, the number of 30 sets considered here seems almost 294

optimal given the developed models’ high accuracy and low SD for multiscale basis functions. 295

In a standard deterministic NN, a single prediction is obtained for a given input, with no 296

information about the uncertainty of the used data or the model fitness. This is because only one 297

initial set of weights/biases is used/updated in such models. The Bayesian methods can be applied to 298

tackle this issue somewhat, taking a positive step towards the reliability of NN models. Bayesian 299

neural networks are different from standard NNs in that their weights are assigned a probability 300

distribution rather than a single value or point estimate. These probability distributions describe 301

the uncertainty in weights and can be used to estimate uncertainty in predictions. In this research, 302

we used the MC dropout only for the FC layers of the CNN structures. In other words, the dropout 303

technique was not used regarding the convolutional layers because it negatively affected on the 304

accuracy of the models. Moreover, although multiple techniques were used to quantify the data 305

uncertainty, we got some errors. So, it would be better to consider both uncertainty sources to 306

construct more reliable CNN models. 307

In terms of UQ statistical investigation, we defined several indices for uncertainty such as 308

entropy, Negative Log Likelihood (NLL), and SD for the statistical measures. However, the values 309

obtained for entropy and NLL were meaningless. Therefore, it would be helpful to use more 310

applicable statistical measures to convey the information about the uncertainty more meaningfully. 311

7. Conclusions 312

Standard deterministic deep NNs converge on a one input-one output basis, with no information 313

about the uncertainty of the data or model fitness. Bayesian approaches are effective in uncertainty 314

estimations. However, they face a high computational cost when applied to large datasets. That is 315

why MC dropout, a computationally more efficient method, was used in this study as a positive step 316
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towards the reliability of skip connection-based CNN models based on 376,250 samples from the 317

oil/gas domain. The SD values obtained confirm the robustness of MC dropout in terms of epistemic 318

uncertainty, in addition to the high degree of accuracy. There are two suggestions for mitigating the 319

limitations of the present study: (i) quantifying the aleatoric uncertainty for the developed models, 320

and (ii) using more dropout ratios and comparing it with the ratio of 0.05 considered here. 321
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Figure 2. Structure of the skip connection-based CNN model used in this study.
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Figure 3. Values dispersion of a representative coarse grid: (a) for Basis 2, (b) for Basis 3, (c) for Basis 4, and
(d) for Basis 5.
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Figure 4. A comparison between the actual pressure distributions and those obtained by the skip connection-
based CNN models: (a) training sample, (b) validation sample, and (c) testing sample.
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