
nDrites: Enabling Laboratory Resource Multi-Agent
Systems

Katie Atkinson1, Frans Coenen1, Phil Goddard2, Terry R. Payne1, and Luke Riley1,2

(1) Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, United Kingdom, {atkinson,coenen,payne,l.j.riley}@liverpool.ac.uk.

(2) CSols Ltd., The Heath, Business & Technical Park, Blacon,
Runcorn WA7 4QX, United Kingdom, {phil.goddard,luke.riley}@csols.com.

Abstract. The notion of the multi-agent interconnected scientific laboratory has
long appealed to scientists and laboratory managers alike. However, the challenge
has been the nature of the laboratory resources to be interconnected, which typ-
ically do not feature any kind of agent capability. The solution presented in this
paper is that of nDrites, smart agent enablers that are integrated with laboratory
resources. The unique feature of nDrites, other than that they are shipped with
individual instrument types, is that they possess a generic interface at the “agent
end” (with a bespoke interface at the “resource end”). As such, nDrites enable the
required interconnectivity for a Laboratory Resource Multi Agent Systems (LR-
MAS). The nDrite concept is both formally defined and illustrated using two case
studies, that of analytical monitoring and instrument failure prediction.

1 Introduction

Analytical laboratories form a substantial industry segment directed at chemical anal-
ysis of all kinds (clinical, environmental, chemical, pharmaceutical, water, food etc).
Supplying this marketplace is a $100B per annum industry. Laboratory instruments
come in many forms but are broadly designed to undertake a particular type of chemical
analysis. Examples of laboratory instrument types include: inductively coupled plasma
- mass spectrometers (ICP-MS) for elemental analysis and Chromatography systems
for analyte separation. Such laboratory instruments, although usually “front-ended” by
a computer resource of some kind, typically operate in isolation. This is because the in-
terfaces used are specific to individual instrument types (of which there are thousands)
and individual manufactures. The industry acknowledges that there are significant ben-
efits to be gained if instruments, of all kinds, could “talk” to each other and to other de-
vices [10, 22]; an ability to support remote monitoring/managing of instruments would
on its own be of significant benefit. A potential solution is the adoption of a Multi-
Agent Systems (MAS) approach to laboratory resource interconnectivity: a Laboratory
Resource Multi Agent System (LR-MAS).

However, at present, there is no simple way whereby the LR-MAS vision can be
realised. This is not only because of the multiplicity of different interfaces for different
models, but also the complex mappings, translations and manipulations that have to be
undertaken in order to achieve the desired interconnectivity. Even when just consider-
ing specific laboratory instruments, rather than the wider range of laboratory resources,

2 nDrites: Enabling Laboratory Resource Multi-Agent Systems

there are many thousands of models being sold at any one time and a huge variety of
legacy systems still in routine use. The limited connectivity that exists is largely focused
on what are known as Laboratory Instrument Management Systems (LIMS); systems
that receive and store data from instruments (for later transmission to laboratory clients)
and manage wider laboratory activities. Some software does exist to facilitate connec-
tivity, for example the L4L (Links for LIMS) software package produced by CSols Ltd1

(a provider of analytical laboratory instrument software); but this still requires expen-
sive on-site visits by specialist engineers to determine the desired functionality and the
nature of the bespoke interfacing. All this serves to prevent the adoption of MAS capa-
bilities within the analytical laboratory industry, despite the general acknowledgement
that large scale MAS connectivity will bring many desirable benefits [10, 22].

The technical solution presented here is that of “smart agent enablers” called nDrites;
an idea developed as part of a collaboration between CSols Ltd and a research team at
the University of Liverpool, directed at finding a solution to allow the realisation of
the LR-MAS vision. The nDrite concept is illustrated in Figure 1. As shown in the fig-
ure, nDrites interact, at the “resource end”, in whatever specific way is required by the
laboratory resource type in question; whilst at the other end nDrites provide generic in-
teraction. Note that in the figure, for ease of understanding, the nDrite is shown as being
separated from the laboratory resource (also in Figure 2), in practice however nDrites
are integrated with laboratory resources. Thus nDrites provide system wide communi-
cations so as to allow agents to interact with laboratory resources to (say): (i) determine
the current state of an entire laboratory system, (ii) determine all past states of the sys-
tem (system history) or (iii) exert control on the laboratory resources operating within
a given laboratory framework. Thus, in general terms, nDrites are a form of intelligent
middleware that facilitate LR-MAS operation. The main advantage offered is that of
cost. The idea is to build up a bank of nDrites, one per instrument type, that are inte-
grated and shipped with the individual instruments in question. This will then alleviate
the need for expensive on-site visits and provide the desired LR-MAS connectivity. The
research team already have nDrites in operation with respect to two instrument types
(an auto-sampler and an ICP-MS2).

Fig. 1. nDrite smart agent enabler

The main contributions of this paper are thus: (i) the concept of nDrite smart agent
enablers that facilitate multi-agent laboratory resource interconnectivity, (ii) the asso-
ciated formalism that provides for the generic operation of nDrites, and (iii) two case
studies illustrating the utility of the nDrite concept (the first currently in production, the
second under development). The rest of this paper is organized as follows. In Section
2 some related work is presented. Our Laboratory Resource Multi-Agent System (LR-

1 http://www.csols.com/wordpress/.
2 The autosampler is manufactured by Teledyne CETAC Technologies,
http://www.cetac.com, while the ICP-MS is manufactured by Perkin-Elmer,
http://www.perkinelmer.com/.

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 3

MAS) framework, including the nDrite concept, is presented in Section 3. In Section 4,
we detail the communication method for our LR-MAS and how nDrites handle com-
munication aspects. The operation of the framework is then illustrated using two nDrite
application case studies. The first (Section 5) is an analytical monitoring case study
agent, the second (Section 6) is a resource monitoring application agent that operates
using a data stream classifier. The paper concludes with some discussion in Section 7.

2 Previous Work

The notion of the pervasive, service rich and interconnected scientific laboratory has
long appealed to scientists and laboratory managers of all kinds [10, 22]. Many scien-
tific laboratory processes have traditionally involved using a number of separate, but
interconnected tasks, performed by different systems and services (often bespoke) with
little support for automated interoperation or holistic management at the laboratory
level. To facilitate this interconnectivity, early work was directed at service oriented in-
frastructures using Grid (and later, Cloud) computing [8, 9, 15, 24], whereby laboratory
equipment, high-performance processing arrays, data warehouses, and in-silico scien-
tific modelling was wrapped, and managed, by a service-oriented client [8, 9]. The main
focus was that of a “service marketplace” used to discover different services [19] and to
schedule or provision their use, as well as to provide support for tasks such as: security
[2], notification [17], and scheduling [24]. The need for intelligent, autonomous support
for such Grid infrastructures has been well documented [8, 9, 14, 18, 24, inter alia].

The Grid Computing based laboratory infrastructure idea has now been superseded
by the emergence, and wide-scale adoption, of Web Services, and consequently MAS,
which exploit many of the standards used for the web, and resolved many problems
of interoperability between organisations that can effect grid based approaches. This
migration was essential to mitigate some of the pragmatic challenges with the inter-
connection of services within an Open Agent Environment [29]; however, the flexible
interoperation of systems and services (developed by different stakeholders with differ-
ent assumptions) is still a challenge. This motivated the adoption of a wrapper-based
approach to support wide spread usability within the nDrite concept.

The laboratory instrument MAS vision thus provides for the automation of process
models and workflows [28, 19]; sequences of processes that can occur both serially
and in parallel to achieve a more complex task. The laboratory workflow concept has
been extensively researched. The fundamental idea is that of a collection of software
services, whereby each service is either a process (often semantically annotated [8, 19,
14]), or manages and controls some laboratory resource. Such workflows are typically
orchestrated using editors or AI-based planning tools [19], resulting in either an instan-
tiated workflow (one where the specific service instances are identified and used) or in
an abstract workflow (one where the instantiation of the services themselves is delayed
until execution time). Stein et al. [24, 25] explored the use of an agent-based approach
to automatically discover possible service providers where abstract services are defined
within a workflow, by using probabilistic performance information about providers to
reason about service uncertainty and its impact on the overall workflow. The idea was
that by coordinating their behaviours, agents could “re-plan” if the providers of other

4 nDrites: Enabling Laboratory Resource Multi-Agent Systems

services discovered problems in their provision, such as failure, or unavailability. An
interesting aspect of this workflow planning approach was the use of autonomously
requesting redundant services for particularly critical or failure-prone tasks (thus in-
creasing the probability of success). However, to facilitate the notion of autonomous
control, the services themselves need to be endowed with the necessary capabilities to
be self monitoring (and thus self aware), discoverable, and communicable [20].

The notion of agents supporting the management of laboratory services through in-
teroperation and workflow (either defined a-priori or dynamically at runtime) is only
possible if the agents describe and publish their capabilities, using some discovery
mechanism [7]. Although many formalisms (such as UDDI, JINI, etc) have been pro-
posed to support white and yellow page discovery systems, the discovery of agent-based
capabilities based on knowledge-based formalisms describing inputs, outputs, precon-
ditions and effects was pioneered by Sycara et. al. in the work on LARKS [26], and later
with the Profile Model within OWL-S [1] and the machinery required to discover them
[21]. However, before these descriptions and their underlying semantics can be defined,
a formal model of the agent capabilities, and their properties should be modelled.

In the above previous work on the automation of process models and workflows
using MAS technology, it was assumed that communication services would either be
provided by some common or standardised interfaces or through some kind of mediator
[27]. However, as noted in the introduction to this paper, there is no agreed commu-
nication standard currently in existence, nor is there likely to be so; whilst currently
available mediators are limited to bespoke systems such as CSols’ L4L system. Hence
the nDrite concept as proposed in this paper.

3 The Laboratory Resource Multi-Agent System Framework

A high level view of the proposed nDrite facilitated Laboratory Resource Multi-Agent
System (LR-MAS) framework is presented in Figure 23, where various laboratory re-
sources are connected to nDrites, including: (i) two laboratory instruments (laser ab-
lation systems, auto-samplers, mass spectrometers, etc.), (ii) a Laboratory Instrument
Management System (LIMS) and (iii) a “links for LIMS” system (CSols’ legacy mech-
anism for achieving instrument connectivity to LIMS, but still in operation). The figure
also shows two users and a number of agents; for of which are connected directly to
one or more nDrites. Two provide linkages between pairs of laboratory resources, and
another two others are simply “front ends” to resources. The two remaining agents are
application agents, not directly connected to nDrites: one is an Instrument Failure pre-
diction agent and the other an Analytical Monitoring agent. We introduce Ag to denote
the set of all possible agents in a LR-MAS, where Ag = {ag1, ag2, . . . , agn}.

As noted in the introduction to this paper the interconnectivity between agents and
laboratory resources in our LR-MAS is facilitated by the nDrite smart agent enablers
(see Figures 1 and 2). The nDrites can be considered to be wrappers for laboratory
resources in the sense that they “wrap” around a laboratory resource to make the labo-
ratory resource universally accessible within the context of a MAS (LR-MAS). As such,

3 This figure represents a high level vision; in practice the connectivity/operation will be more
restrictive for reasons of data confidentiality and business efficacy.

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 5

Fig. 2. nDrite facilitated Laboratory Resource Multi-Agent System (LR-MAS) configuration

nDrites can be viewed as being both the agent actuators and sensors for the laboratory
resources with which they may be paired. This section provides detail of the nature
of nDrites. More specifically, a formalism is presented to enable the LR-MAS vision
given above. The section is organised as follows. Sub-sections 3.1 and 3.2 present the
formalism with respect to laboratory resources and nDrites (in their role as actuators
and sensors), respectively.

3.1 Laboratory Resources

As already noted, individual laboratories comprise a number of laboratory resources.
We introduce the set of laboratory resources as L = {L1, L2, . . . , Ln}. Each laboratory
resource has a set of one or more actions that the laboratory resource can perform.
The complete set of possible actions that laboratory resources can perform is denoted
by Ac = {α1, α2, . . . , αn}. To find the set of actions an individual resource Li can
perform we use the partial action function LRact : L 7→ 2Ac. Given that there are many
different types of laboratory resources (laboratory instruments, robots, data systems,
and so on) resources can be grouped into a set of categories T = {T1, T2, . . . , Tn},
where each Ti is some subset of L (Tj = {Lp, Lq, . . . , Lz}). Each category is referred
to as a laboratory resource type. Thus ∀Tj ∈ T , Tj ⊆ L and ∀Li ∈ Tj , Li ∈ L.
The intersection of the actions of all laboratory resources of a particular laboratory
resource type are called the critical actions for that type, denoted Ac∩Tj where for type
Tj :

⋂
∀Li∈Tj

LRact(Li) = Ac∩Tj . Note that individual resources can feature other
individual actions that are not shared through the critical action set.

3.2 nDrites

The principal function of nDrites is to provide MAS connectivity without exposing
the detailed operation of individual laboratory resources of many different kinds and
the many different data formats. Recall that laboratory instruments are produced by

6 nDrites: Enabling Laboratory Resource Multi-Agent Systems

many different vendors each using proprietary data formats; there are no standardised
language or communication protocols for these different resources. Therefore, nDrites
are used as wrappers for laboratory resources to provide a standardised method for
communicating data from, and exerting control over, every nDrite enhanced laboratory
resource. As such, nDrites can be viewed as both actuators and sensors. A formal defi-
nition of the operation of nDrites is presented below: initially in the context of nDrites
as actuators and later in the context of nDrites as sensors.

nDrites as Actuators The set of nDrites are denoted as Den = {D1, D2, . . . , Dn},
and the set of possible nDrite actions that the complete set of nDrites Den can expose
is Dc = {δ1, δ2, . . . , δn}. The following partial nDrite action function defines the set
of nDrite actions that a given nDrite can expose DenAct: Den 7→ 2Dc. Some nDrite
actions may only be possible with respect to particular laboratory resources, others will
be critical actions shared across a single laboratory resource type or a number of types.
To find the set of laboratory resource types to which an nDrite action may be applied we
use the function pos : Dc 7→ 2T . Actions may also be sequenced to define workflows.

Each nDrite action δi requires a corresponding action object, which details all the
necessary parameters for δi to operate successfully. The set of nDrite action objects is
Oa = {oa1, oa2, . . . , oan}. Each nDrite action object has a class type whereby each
object belongs to a class which in turn defines the nature of the object. The set of nDrite
object class types is given by Ot = {ot1, ot2, . . . , otn}. The class type of each nDrite
action object is found by the following function type: Oa 7→ Ot. To find out which
class type is required for each nDrite action δi, we use the object requirement function
req: Dc 7→ Ot (we assume only one object type is required for each nDrite action).

Recall that individual laboratory resources are likely to perform individual actions in
different ways. Hence, at the resource end, nDrites have bespoke interfaces (see Figure
1). As such, nDrites are paired with individual laboratory resources (recall Figure 2).
An nDrite Dj and a laboratory resource Li that are connected together are thought of
as an agent enabling pair: AEPk = (Li, Dj). The set of all agent enabling pairs is
defined as AEP = {AEP1, AEP2, . . . , AEPn}.

Consequently, given an nDrite-laboratory resource pairing, the nDrite functionality
can be mapped onto the resource functionality. Additionally, note that an nDrite action
δi for an nDrite may also include additional software only actions. A software only ac-
tion is an operation performed internally to the nDrite itself with no engagement with
its paired laboratory resource (for example “return the nDrite identification number”).
The set of software only actions are S = {s1, s2, . . . , sn}. Therefore nDrite actions
map onto zero, one or many laboratory resource actions and zero, one or many soft-
ware only actions4. To find the set of laboratory resource and/or software only actions
that occur when an nDrite action is called, we use the partial nDrite exposure function
exp: Aep × Dc 7→ 2Ac ∪ 2S . Given Li ∈ Tk then ∀δk where Tk /∈pos(δk), the
following holds: exp((Li, Dj), δk) = ∅. That is, zero laboratory resource and software
only actions occur when an nDrite action δk is attempted to be invoked on an nDrite
that cannot perform it. Should an nDrite Dj want to perform an action ac ∈ Ac on

4 Note that the number of exposed nDrite actions can therefore be greater than the number of
instrument actions.

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 7

its paired laboratory resource Li, then it calls the function Perform(ac, Li). Should
an nDrite Dj want to perform an action ac ∈ S on itself, then it calls the function
Perform(ac,Dj). In both cases a Boolean is returned to indicate whether the action
was successful (true) or not (false). We do not describe in detail what occurs in the
Perform function due to the bespoke interface with the laboratory resource.

To summarise, nDrites can expose all possible actions that a laboratory resource can
provide, as well as expose more software only actions. Additionally, nDrites can lower
the computational burden for associated agents by exposing sequences of software and
laboratory resource actions (workflows). In this manner, nDrites enhance the capabili-
ties of the laboratory resources that they are attached to. Of course, for agents to trigger
nDrites to perform functions, the agents must know what nDrite actions each nDrite
provides. We assume this discovery capability is provided by a yellow pages agent (see
[4]), which sits in the LR-MAS (not shown in Figure 2).

nDrites as Sensors For agents to work correctly with nDrites (and therefore the labo-
ratory resources they are connected to), nDrites need to not only be actuators but also
sensors. Therefore nDrites map laboratory resource actions into objects that can be un-
derstood in our LR-MAS. Previously we mentioned that nDrites, in their actuator role,
receive nDrite action objects, which are required for nDrites to perform actions. Con-
currently nDrites act as sensors and produce nDrite sensor objects. The set of nDrite
sensor objects are Os = {os1, os2, . . . , osn}. Each object has a class type, where the
set of object class types are defined as Ot = {ot1, ot2, . . . , otn} (note that this is the
same definition as object types for nDrite action objects). The type of each sensor ob-
ject is found by the following function type : Os 7→ Ot. The set of sensor objects that
an nDrite maps a set of laboratory resource actions onto, is found using the function
Sen: 2Ac × N 7→ 2Os, where the natural number represents the current time point.

Every nDrite Dj collects the nDrite sensor objects it generates in an associated
nDrite sensor database (SDBj)5 that grows monotonically over time (timepoint t = 1
occurs when the nDrite is turned on). Depending on the end users needs, nDrite sensor
databases can be local to the nDrite itself, sit on a laboratory server, or be in the cloud.
The sensor database is defined as:
Definition 1: nDrite Sensor database. : The database SDBj for an agent enabling
pair (Li, Dj) holds a set of nDrite objects Osi (where Osi ⊆ Os), that have been
generated by Dj because Li has performed the actions LAc (where LAc ⊆ Ac).

SDBt
i =

{
∅ iff t = 0,
SDBt−1

i ∪ Sen(LAc, t) iff t > 0 and Sen(LAc, t) 6= ∅,

For nDrites to be sensors for agents, an agent needs to be able to access the objects
in the nDrites database. Therefore, included in the software only actions of each nDrite
are the following database access functions:

– GetObjectsByOccurancesi(2Ag×2Ot×N) 7→ 2Os. Returns the most recent
n objects of the given object types that occurred in the SDBi where n ∈ N.

5 Additionally there exists an nDrite action database for an nDrite Dj , denoted ADBj , which
holds nDrite action objects.

8 nDrites: Enabling Laboratory Resource Multi-Agent Systems

– SubscribeToObjectsi(2Ag×2Ot×N). Causes ag ∈ Ag to subscribe to receiv-
ing automatic updates concerning sensor objects, saved by nDriteDi in its database
SDBi, which are of the desired object types, until the given timepoint n ∈ N.

– UnSubscribeFromObjectsi(2Ag×2Ot×N). Causes ag ∈ Ag to unsubscribe
to receiving automatic updates concerning sensor objects, saved by nDrite Di in
its database SDBi, which have the desired object types, until the given time point
n ∈ N. If n = 0, then the agent is completely unsubscribed.

Additional functions required for the nDrites to operate successfully as agent sensors
are as follows:

– GetSubscribersi(2
Ot) 7→ 2Ag . Receives a set of object types and returns the

set of agents that have subscribed to these object types.
– GetNextAction(L×N) 7→ Ac. Receives a single laboratory resource and a time

limit n ∈ N, and returns the next laboratory action that occurs before the timelimit.
If the laboratory resource performs no recognised action within the time limit then
null is returned.

– Connected(2Ac×2Ac) 7→ {true, false}. Returns whether the first set of labora-
tory resource actions are connected to the second set of laboratory resource actions
(true) or not (false). The two sets are connected if: (i) they form a series that can
be converted into an nDrite sensor object; or (ii) they form a series that, when fur-
ther nDrite sensor objects are added, can be converted into an nDrite sensor object.
Also, true is returned if the first set of laboratory resource actions are the empty
set. False is returned if the second set of laboratory resource actions are the empty
set or if both sets are empty.

– nDriteAdvertisingObjectsi(2
Ot) → {true, false}. Returns whether Di

is advertising that it can update the agents on the given set of object types (true)
or not (false). Again, it is assumed that this advertisement is performed using a
yellow pages agent.

– CollectSensorObjectsi(N) → 2Os. Returns the objects from the database
SDBi that have occurred since the time point n ∈ N.

4 LR-MAS Communication

So far we have shown that nDrites have the available functionality to be agent actuators
and sensors. Note that the nDrite concept isn’t simply allowing an agent to perform
an action and then observe the result. nDrites allow agents to subscribe to nDrite ob-
jects, which may be generated from real world actions (e.g. a user turns an instrument
off), or from other agents (e.g. another agent requests the instrument to analyse some
samples). Different agents maybe interested in different actions, and so a complicated
LR-MAS occurs. As nDrites are separate software entities to agents, there needs to be
a communication mechanism available for the agents to utilise the actuator and sensor
capabilities of the nDrites. In 4.1, we detail the message syntax between nDrites and
agents. Note that the associated message syntax for agent to agent communication is
considered to be out of the scope of this paper, however this can clearly be achieved us-
ing a FIPA compliant agent communication language. Sub-sections 4.2 and 4.3 show:

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 9

(i) how nDrites, in their role of agent actuators, handle incoming messages; and (ii) how
nDrites, in their role as agent sensors, produce messages that get sent to agents. Finally,
Sub-section 4.4 gives a brief definition for LR-MAS agents.

4.1 nDrite Message Syntax

The LR-MAS given in Figure 2 features a set of communicating entities (agent-nDrite
pairs). Messages are sent between these entities, from the set of possible messages,
denoted by M = {m1,m2, . . . ,mn}. Each message contains meta deta (denoted by
MD), a set of nDrite actions and nDrite action objects pairs6 (NAP , where a single
pair is indicated by the tuple 〈δi, oak〉), and a set of nDrite sensor objects (NSO). We
assume that the meta data must include two functions Sender and Receiver that
returns an entity in either the set of nDrites Den or the set of agents Ag.

Definition 2: An nDrite system message is a tuple denoted mi = 〈MD,NAP,NSO〉
where the following holds:

1. Receiver(MD) ∈ Ag ∪Den
2. Sender(MD) ∈ Ag ∪Den
3. If Receiver(MD) ∈ Ag then Sender(MD) ∈ Den
4. If Receiver(MD) ∈ Den then Sender(MD) ∈ Ag
5. If NAP 6= ∅ then ∀〈δi, oak〉 ∈ NAP the following holds:

(a) δi ∈ Dc; (b) oak ∈ Oa; (c) oak ∈ req(δi)
6. NSO ⊆ Os

Thus an nDrite system message must have a designated receiver and sender (conditions
1 and 2). One out of the sender and receiver one must be an agent, while the other must
be an nDrite (conditions 3 and 4). For each nDrite action object pair (NAP), the nDrite
action called for must be valid (condition 5(a)), the paired nDrite action object must
be valid (condition 5(b)) and the paired nDrite action object must be required by the
nDrite action they are paired with (condition 5(c)). Finally, the nDrite sensor objects
NSO that are provided must be part of the sensor object set Os (condition 6).

4.2 Sending messages to nDrites

In the agent actuator context, the nDrites will have to deal with many incoming
messages from agents. In Algorithm 1, we present our general nDrite procedure for
dealing with an incoming message. The algorithm starts with the message being un-
packed (line 5). Then two sets are initialised, one for the set of nDrite actions that
complete successfully (line 6) and another for the nDrite actions that do not complete
successfully (line 7). As nDrites are providing wrappers for laboratory resources (in-
struments, LIMS, etc), an nDrite action can fail through no fault of the nDrite software.
For example, a laboratory instrument message could be blocked, or the server that hosts
a LIMS could fail. Therefore each nDrite records which actions have succeed and which
have failed (so as to help the error recovery process for the agents within our LR-MAS).

6 nDrite action object pairs are the objects that are saved in the nDrite action database.

10 nDrites: Enabling Laboratory Resource Multi-Agent Systems

Algorithm 1: The nDriteReceive algorithm that handles an incoming mes-
sage for the nDrite Dj that is paired with the laboratory resource Li.

1: function nDriteReceive(mi)
2: Input: 〈mi〉; where mi is the received message.
3:
4: begin;
5: mi = 〈MDi, NAPi, ∅〉; // Unpack the message. No sensor objects from agents
6: succ = ∅; // Set of successful actions
7: fail = ∅; // Set of failed actions
8: p = 0; // Integer count variable for nDrite actions
9: t = 0; // Current timestamp that automatically updates

10: complete = false; // Boolean that notes whether the last action completed or not
11: osj ⊂ Os; // nDrite sensor object defined
12:
13: if Receiver(MDi) 6= Dj then
14: return null; // If this nDrite is not the intended recipient then quit
15: end if
16: while p < |NAP | do
17: 〈δ, oak〉p ∈ NAP ;
18: if δ ∈ DenAct(Dj) and (oak = req(δ)) then
19: q = 0; // Integer count variable for individual actions
20: ADBt

j = ADBt−1
j ∪ 〈δ, oak〉p;

21: while q < |exp((Li, Dj), δ)| do
22: acq ∈ exp((Li, Dj), δ);
23: if acq ∈ S then
24: complete =Perform(acq, Dj); // I.e. acq is a software only action
25: else
26: complete =Perform(acq, Li); // I.e. acq is a laboratory resource action
27: end if
28: if complete = true then
29: 〈δi, error information〉 ∈ fail;
30: else
31: 〈δ, success information〉 ∈ succ;
32: end if
33: q ++;
34: end while
35: else
36: 〈δi, error information〉 ∈ fail;
37: end if
38: p++;
39: end while
40: fail, succ ∈ osj ; // Add the success and fail information to an nDrite sensor object
41: mj = 〈MDj , ∅, {osj}〉; // Add sensor object to return message
42: Receiver(MDj) = Sender(MDi);
43: Sender(MDj) = Receiver(MDi);
44: Send mj ;
45: end;

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 11

The first thing an nDrite should check when a message is received, is whether it
was the intended receiver (line 13 in Algorithm 1). If it was not the intended receiver
the message is ignored (line 14), otherwise the message is processed (line 16 onwards).
When processing the message, the nDrite takes one nDrite Action-object Pair (〈δ, oak〉)
at a time (line 17). If this nDrite can perform the required nDrite action δ, and the
required nDrite action object has been received (line 18), then δ is processed. When-
ever an nDrite action object pair is to be processed, this is saved into the nDrite action
database (line 20), so that a record of the system history is available. The nDrite pro-
cesses δ by converting it into a sequence of laboratory resource and software actions
via the exp function (line 20). If the next action acq is a software action, then it is
performed on the nDrite (line 24), otherwise it is performed on the laboratory resource
(line 26). The boolean complete stores details on whether acp completed successfully.
If any of the actions from the exp function are unsuccessful, then the original nDrite
action δ (and information on the error) are added to the list of nDrite actions that failed
(line 29), otherwise the original nDrite action δ is added to the list of nDrite actions that
succeeded (line 31). This process continues until all the nDrite actions in the NAP set
have been dealt with (line 16)7. Finally, the nDrite builds and sends a message mj to
inform the agent of what actions succeeded and what failed (lines 40 to 44).

4.3 Sending Messages to Agents

In the context of nDrites operating as sensors for agents, Algorithm 2 presents the
general nDrite sensor algorithm. The algorithm takes as input the laboratory resource
Li that is pared with the nDriteDj . Therefore the agent-enabling pair is set as (Li, Dj).
The algorithm begins by launching a database monitoring thread (line 9), the purpose
of which is to monitor this nDrite’s sensor database and send updates to the subscrib-
ing agents once sensor objects of the correct type appear in the database (this thread is
described in more detail later). The main function then processes sequences of labora-
tory resource actions (describing a workflow) until termination (line 10). The Φ variable
holds the current laboratory resource action series (workflow) that is being recorded8.
This action series is initially set to empty (line 8).

When processing an action series (workflow) the first laboratory resource action is
added to the current laboratory action series, as the Connected function always re-
turns true when the current series is empty (line 12 and 13). Next the nDrite checks
whether it advertises that it can update agents on the nDrite sensor objects that would
appear from the conversion of the current action series (line 23). If so, these converted
objects are added to the nDrite’s sensor database (line 24), as monitored through the
nDriteMonitorDB function. Next the nDrites waits until timelimit for the next

7 Note that if the instrument is currently busy, then the perform function will return false and
the agent will be alerted through the error information stored in fail.

8 A laboratory resource action sequence (workflow) can be processed by the nDrite as a col-
lection; for example a sample analysis by a laboratory instrument. Single instrument actions
can be: move to the next sample; send this sample for analysis; record sample results; move to
next sample; etc. Some of this information maybe useful to some agents who want real time
updates but other agents maybe “happy” to just have information on a collection of actions.

12 nDrites: Enabling Laboratory Resource Multi-Agent Systems

Algorithm 2: The nDriteMonitor algorithm allows the nDrite Dj to mon-
itor the laboratory resource Li and convert any laboratory resource actions into
LR-MAS understandable nDrite sensor objects. Once converted, the nDrite will
update any agents that have subscribed to these nDrite sensor object types.

1: function nDriteMonitor(Li)
2: Input: 〈Li〉; where Li is the Laboratory resource to monitor.
3:
4: begin;
5: p = 0; // Integer count variable for nDrite action
6: t = 0; // Current timestamp that automatically updates
7: timelimit // A predefined integer to wait for the next lab resource action
8: Φ = ∅; // Laboratory action series initialised
9: start nDriteMonitorDB() in new thread

10: while nDrite not terminated do
11: αp = GetNextAction(Li, timelimit)
12: if Connected(Φ, {αp}) then
13: Φp = αp; // Action is added to action series
14: p++;
15: else if αp 6= null then
16: Φ = ∅; // This action series has ended
17: Φ0 = αp; // A new action series is initialised with the last action
18: p = 1;
19: else
20: Φ = ∅; // This action series has ended
21: p = 0;
22: end if
23: if nDriteAdvertisingObjects(type(Sen(Φ, t))) then
24: SDBt

j = SDBt−1
j ∪ Sen(Φ, t);

25: end if
26: end while
27: end;
28:
29: function nDriteMonitorDB()
30: begin;
31: Integer s = 0; // Last timestamp checked
32: while nDrite not terminated do
33: Γ = CollectObjects(s);
34: s = current time;
35: for each osi ∈ Γ do
36: for each agj ∈ Subscribers(type(osi)) do
37: mk = 〈MD, ∅, {osi}〉;
38: Sender(MD) = Dj ; Receiver(MD) = agj ;
39: send mk;
40: end for
41: end for
42: end while
43: end;

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 13

laboratory resource action in the series occurs (line 11). If it does not occur before
timelimit then the laboratory resource action will be set to null (the current workflow
has been completed), so Connected will return false (line 12) and the actionSe-
quence will be broken (line 20 and 21). Conversely if another laboratory action is found
within the time limit (line 11), then if Connected returns true, the new action αp is
added to the sequence Φ and the process continues (lines 13 and 14). If Connected
returns false, then αp is not added to the current sequence, which completes (line 16),
and instead, αp becomes the first action of a new sequence (lines 17 and 18).

The nDriteMonitorDB thread continues to run until the nDrite terminates. The
first part of the continuous loop collects nDrite sensor objects into Γ , which have oc-
curred in this nDrite’s database since the last time it checked (line 33). The last check
time is then updated (line 34). For every nDrite sensor object osi found (line 35), and for
each agent agj that subscribes to updates concerning the objects of the type type(osi)
(line 36), a message is sent to each agent agj to inform it of the update (lines 37 to 39).

4.4 Definition of LR-MAS Agents

As discussed, there are extensive possibilities for LR-MAS agents, so we make no as-
sumptions regrading their structure. At a highlevel, LR-MAS agents are defined as:
Definition 3: An nDrite enabled LR-MAS agent is an autonomous software compo-
nent that:

– Takes as input messages of the form 〈MD,NAP,NSO〉
– Sends messages of the form 〈MD,NAP,NSO〉

How agents interpret nDrite sensor objects, and why they would build nDrite action
objects is entirely up to them. Individual agents can perform a variety of tasks limited
only by the nDrite actions implemented. The current classes of agent focused on for
production are: (i) Discovery Agents, (ii) System Configuration Agents, (iii) Analytical
Monitoring Agents and (iii) Instrument Monitoring Agents. We now provide two real
world examples of nDrite usage (the two App agents in Figure 2). As Figure 2 shows,
these two agents can be present in the same LR-MAS and connect to the same nDrites.

5 The Analytical Monitoring Case Study (Case Study 1)

Our first case study is focused on the “AutoDil agent” currently in operation (Figure 2).
AutoDil uses two nDrites: (i) an Inductively Coupled Plasma Mass Spectrometer (ICP-
MS) nDrite, denoted Dicp, and (ii) an autosampler nDrite9, denoted Das. The purpose
of the AutoDil agent is to ensure any samples from the autosampler found to be “over-
range” by the ICP-MS instrument are rediluted and sent for reanalysis. An ICP-MS
analyses many samples, one after the other. A collection of samples is know as a run.
When a run has been completed many laboratory resource actions have been performed,
which are converted by the ICP-MS nDrite Dicp (through Dicp’s nDriteMonitor
function), into a run results nDrite sensor object osrx of the type otrr.

9 An autosampler automatically feeds a liquid sample into an ICP-MS.

14 nDrites: Enabling Laboratory Resource Multi-Agent Systems

For the AutoDil agent agad to do its job, it must subscribe to nDrite sensor ob-
jects of the type otrr from the ICP-MS instrument nDrite Dicp. Note that Dicp will
have advertised that it can update agents with respect to objects of the type otrr, thus
nDriteAdvertisingObjects({otrr}) = true. When agad receives an nDrite
sensor object osry of type otrr, then it should analyse osry to see if any samples in
the results run need redilution. Whenever agad finds samples that require redilution, it:

1. Builds an nDrite action object oax that includes information on the dilution amounts
for each sample and calls the AddDilutions nDrite action in Das by construct-
ing the messagemp = 〈MD, 〈 AddDilutions, oax 〉, ∅〉, where Receiver(mp)
= Das and Sender(mp) = Agad.

2. Builds an nDrite action object oay that includes information on which samples to
be reanalysed and calls the SetupRun nDrite action in Dicp by constructing the
message mp = 〈MD, 〈 SetupRun, oaj 〉, ∅〉, where Receiver(mp) Dicp and
Sender(mp) = Agad.

After performing both (1) and (2), the agad waits for new objects from the ICP-MS
nDrite, which may including information on samples that required further dilution.

The nDrites will deal with messages (1) and (2) through their nDriteReceive
function. The nDrite Das will convert the nDrite action AddDilutions through the
exp function, to actions that its paired autosampler can understand. The purpose of
these converted actions will be to tell the autosampler which samples require what level
of dilution. The nDrite Dicp will convert the nDrite action SetupRun, again through
the exp function, to actions that its paired ICP-MS instrument can understand. The
purpose of these actions will be to tell the ICP-MS instrument what samples it should
load from the autosampler (and therefore what data it will be collecting). The nDrites
will then report to agad what actions were successful. If all were successful then the
autoDil agent knows that it should soon expect another run results nDrite sensor object
osrz of type otrr, which will hold information on the diluted samples.

6 The Instrument Failure Prediction Case Study (Case Study 2)

The second case study is an instrument failure prediction scenario where a dedicated
agent (see Figure 2) is used to predict instrument failure using a data stream classi-
fier trained for this purpose (as proposed in [3]). This agent is currently under devel-
opment. Instrument failure within analytic laboratories can lead to costly delays and
compromise complex scientific workflows [23]. Many such failures can be predicted by
learning a failure prediction model using some form of data stream mining, which is
concerned with the effective, real time, capture of useful information from data flows
[11–13]. A common application of data stream mining is the analysis of instrument
(sensor) data with respect to some target objective [5, 6]. There is little work on using
data stream mining to predict the failure of the instruments (sensors) themselves other
than [3] which describes a mechanism whereby data stream mining can be applied to
learn a classifier with which to predict instrument failure. In our LR-MAS, an instru-
ment failure prediction app agent implements the mechanism of [3] by communicating
with other agents that are connected to nDrites (referred to as Dendrites in [3]).

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 15

7 Conclusions

We have described a mechanism to realise the benefits of MAS in the context of an-
alytical laboratories where laboratory resources are not readily compatible with the
technical requirements of MAS. Our solution is the concept of nDrites, “smart agent
enablers”, that at one end feature bespoke laboratory resource connectivity while at the
other end feature a generic interface usable by agents of all kinds. The vision is that of a
Laboratory Resource MAS (LR-MAS). The operation of nDrites was fully described in
the context of: laboratory resources, nDrites as agent actuators, nDrites as sensors, the
communication mechanisms and the associated agents. The utility of nDrites was illus-
trated in two case studies: (i) an analytical monitoring case study for an “AutoDil agent”
currently in operation; and (ii) a instrument failure prediction case study, featuring mon-
itoring agents, that is currently under development. We believe that the proposed nDrite
concept will enable the interconnected scientific laboratories of the future.

Acknowledgements

This work was conducted as part of the “Dendrites: Enabling Instrumentation Connec-
tivity” Innovate UK funded knowledge transfer partnership project (KTP009603).

References

1. Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D. L., McDermott, D., McIl-
raith, S. A., Narayanan, S., Paolucci, M., Payne, T. R. and Sycara, K. DAML-S: Web Service
Description for the Semantic Web. Proc. of ISWC, 2002.

2. Ashri, R., Payne, T. R., Luck, M., Surridge, M., Sierra, C., Aguilar, J. A. R. and Noriega, P.
Using Electronic Institutions to secure Grid environments. 10th International Workshop on
Cooperative Information Agents. p461-475, 2006.

3. Atkinson, K., Coenen, F., Goddard, P., Payne, T and Riley, L. Data Stream Mining with Lim-
ited Validation Opportunity: Towards Instrument Failure Prediction. 17th Int’l Conference
on Big Data Analytics and Knowledge Discovery, Springer LNCS, p283-295, 2015.

4. Bellifemine, F. L., Caire, G. and Greenwood, D. Developing Multi-Agent Systems with JADE
(Wiley Series in Agent Technology) John Wiley & Sons, 2007.

5. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J. and Chase, J.S. Correlating Instrumentation
Data to System States: A Building Block for Automated Diagnosis and Control. Proc 6th
Symposium on Operating Systems Design and Implementation, p231-244, 2004.

6. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., and Kipersztok, O. Real Time Data
Mining-Based Intrusion Detection. Information Fusion, 9(3), p344-354., 2008.

7. Decker, K., Sycara, K. and Williamson, M. Middle-agents for the Internet. 15th International
Joint Conference on Artificial Intelligence (IJCAI’97), p578-583, 1997.

8. De Roure, D., Jennings, N.R. and Shadbolt, N. The Semantic Grid: A Future e-Science In-
frastructure. Grid Computing-Making the Global Infrastructure a Reality, p437-470, 2003.

9. Foster, I., Jennings, N. R. and Kesselman, C. Brain meets Brawn: why Grid and Agents need
each other. In Proc of. AAMAS, p8-15, 2004.

10. Frey, J.G., De Roure, D., schraefel, M.C., Mills, H., Fu, H., Peppe, S., Hughes, G., Smith,
G. and Payne, T. R. Context Slicing the Chemical Aether. 1st International Workshop on
Hypermedia and the Semantic Web, Nottingham, UK, 2003.

16 nDrites: Enabling Laboratory Resource Multi-Agent Systems

11. Gaber, M. M., Zaslavsky, A. and Krishnaswamy S. Mining Data Streams: A Review. ACM
SIGMOD Record, 34(2), p18 - 26, 2005.

12. Gaber, M. M., Gama, J., Krishnaswamy, S., Gomes, J.B. and Stahl, F. Data Stream Mining in
Ubiquitous Environments: State-of-the-Art and Current Directions. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery; 4(2), p116-138, 2014.

13. Gama, J (2010). Knowledge Discovery from Data Streams. Chapman and Hall.
14. Gil, Y. From data to knowledge to discoveries: Artificial intelligence and scientific work-

flows. Scientific Programming 17(3): p231-246, 2009.
15. Hamdaqa, M. and Tahvildari, L. Cloud Computing Uncovered: a Research Landscape. Ad-

vances in Computers 86: p41-85, 2012.
16. Jacyno, M., Bullock, S., Geard, N., Payne T. R., and Luck, M. Self-Organising Agent Com-

munities for Autonomic Resource Management. Adaptive Behaviour Journal. 21 (1), p3-28,
2013.

17. Lawley, R., Luck, M., Decker, K., Payne, T. R. and Moreau, L. Automated Negotiation Be-
tween Publishers and Consumers of Grid Notifications. Parallel Processing Letters, 13 (4).
p537-548, 2003.

18. Merelli, E., Armano, G., Cannata, N., Corradini, F., d’Inverno, M., Doms, A., Lord, P., Mar-
tin, A., Milanesi, L., Moller, S., Schroeder, M., Luck, M. Agents in Bioinformatics, Compu-
tational and Systems Biology. Briefings in Bioinformatics, 8(1), p45-59, 2007.

19. Oinn T., Greenwood M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., Stevens,
R., Wipat, A., and Wroe, C. Taverna: Lessons in Creating a Workflow Environment for the
Life Sciences. Concurrency and Computation: Practice and Experience, 18(10), p1067-1100,
2006.

20. Payne, T. R. Web Services from an Agent Perspective. IEEE Intelligent Systems, 23(2), 2008.
21. Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K. Semantic Matching of Web Services

Capabilities. Proceedings of the 1st International Semantic Web Conference (ISWC), 2002
22. Schraefel, M. C., Hughes, G., Mills, H., Smith, G., Payne, T. and Frey, J. Breaking the Book:

Translating the Chemistry Lab Book into a Pervasive Computing Lab Environment. SIGCHI
Conference on Human Factors in Computing Systems, April 24-29, Vienna, Austria, 2004.

23. Stein, S., Payne, T.R. and Jennings, N.R. Flexible QoS-Based Service Selection and Provi-
sioning in Large-Scale Grids. UK e-Science All Hands Meeting, HPC Grids of Continental
Scope, 2008.

24. Stein, S., Payne, T. R. and Jennings, N. R. Flexible Selection of Heterogeneous and Unre-
liable Services in Large-Scale Grids. Philosophical Transactions of the Royal Society A:
Mathematical, Physical & Engineering Sciences, 367 (1897). p2483-2494, 2009.

25. Stein, S., Payne, T. R. and Jennings, N. R. Robust Execution of Service Workflows using
Redundancy and Advance Reservations. IEEE Trans. Services Computing. 4(2), 2011.

26. Sycara, K., Widoff, S., Klusch, M. and Lu, J. LARKS: Dynamic Matchmaking Among Het-
erogeneous Software Agents in Cyberspace. AAMAS, 5(2), 173-203, 2002.

27. Szomszor, M., Payne, T. R. and Moreau, L. Automated Syntactic Medation for Web Service
Integration. In: IEEE International Conference on Web Services, Chicago, USA, 2006.

28. Wassink, I., Rauwerda, H., Vet, P., Breit, T., and Nijholt, A. E-BioFlow: Different Perspec-
tives on Scientific Workflows. Bioinformatics Research and Development: Second Interna-
tional Conference, Vienna, Austria, July 7-9, 2008.

29. Wens, D., Michel, F. Agent Environments for Multi-agent Systems - A Research Roadmap.
Agent Environments for Multi-Agent Systems IV: 4th International Workshop, E4MAS 2014
- 10 Years Later, p3-21, 2014.

