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Deep feed-forward networks, with high complexity, backpropagate
the gradient of the loss function from final layers to earlier layers.
As a consequence, the “gradient” may descend rapidly toward
zero. This is known as the vanishing gradient phenomenon that pre-
vents earlier layers from benefiting from further training. One of the
most efficient techniques to solve this problem is using skip connec-
tion (shortcut) schemes that enable the gradient to be directly back-
propagated to earlier layers. This paper investigates whether skip
connections significantly affect the performance of deep neural net-
works of low complexity or whether their inclusion has little or no
effect. The analysis was conducted using four Convolutional Neural
Networks (CNNs) to predict four different multiscale basis func-
tions for the mixed Generalized Multiscale Finite Element
Method (GMsFEM). These models were applied to 249,375
samples. Three skip connection schemes were added to the base
structure: Scheme 1 from the first convolutional block to the last,
Scheme 2 from the middle to the last block, and Scheme 3 from
the middle to the last and the second-to-last blocks. The results
demonstrate that the third scheme is most effective, as it increases
the coefficient of determination (R?) value by 0.0224—0.044 and
decreases the Mean Squared Error (MSE) value by 0.0027-

0.0058 compared to the base structure. Hence, it is concluded
that enriching the last convolutional blocks with the information
hidden in neighboring blocks is more effective than enriching
using earlier convolutional blocks near the input layer.

Keywords: deep neural network, backpropagation, vanishing
gradient phenomenon, skip connection, GMsFEM, heterogeneous
porous media

1 Introduction

Deep feed-forward networks are typically generated using some
form of gradient-based training, such as backpropagation, whereby
the gradient of the loss function (cost function) is calculated using
the values assigned to weights and biases. The loss function mea-
sures how well the network is operating by considering the similar-
ity between real and predicted outputs. There are various parameter
optimizers that can be adopted to arrive at the minimum loss
value. Multi-layer perceptron neural networks typically include a
feed-forward pathway in which different layers are arranged, and
parameters are initialized, as well as a backward pathway which
progressively modifies parameters, thus gradually improving a
model’s performance.

Deep neural networks contain several hidden layers as opposed to
shallow networks, which have only one hidden layer. A significant
advantage of deep networks with high complexity is that they can
represent complex functions and learning features at various
levels of abstraction. However, the disadvantage is the vanishing
gradient phenomenon which may occur during the training
process. As the network backpropagates the error gradient from
the final layers to layers closer to the input layer, the gradient can
descend rapidly to zero. This issue causes those parameters associ-
ated with layers near the input layer not to change as much as they
should. In the worst case, the updating of these layers may cease to
happen. This in turn is likely to have an adverse effect on the oper-
ation of the network.

The Convolutional Neural Network (CNN) has, over recent
years, become one of the most trusted Deep Learning (DL)
models with respect to many application domains, particularly
applications involving image data [1,2]. A classic CNN model is
typically composed of alternate convolutional and pooling layers,
followed by one or more Fully Connected (FC) layers (dense
layers) at the end. In some circumstances, it is possible to replace
an FC layer with a global average pooling layer. The convolutional
and pooling layers perform feature extraction, while the FC layers
map the extracted features into an output layer [3,4].

The concept of using a skip connection (a shortcut) in a neural
network was first proposed by He et al. as a way of mitigating
the vanishing gradient problem in deep CNN models [5]. The
shortcut enables the cost function gradient to be directly backpro-
pagated to layers close to the input layer. In traditional CNN
architectures, and the layers come one after another. Using the
skip connection idea, a shortcut is added to the main path in
the network.

Despite much recent research directed at adopting skip connec-
tions in highly complex deep networks [6—10], there is a lack of crit-
ical analysis of the nature and causes of the vanishing gradient
problem, and the comparative advantages gained when using skip
connections in neural networks of low complexity. Additionally,
although classification and regression algorithms are both catego-
rized as supervised learning algorithms, reported work on the utili-
zation of skip connections has mostly been directed at classification;
there is much less reported work directed at regression. The major
contribution of this paper is to demonstrate the impact on the error
performance of a low-complexity CNN when skip connections are
added into the network. There are two important motivations for
doing so. First, the gradient in such networks might descend so
rapidly to zero, possibly causing early convergence. Second, it
might be the case that attempting to improve the performance of
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a CNN by simply adding more convolution blocks into the network
has zero effect because of the vanishing gradient problem. The work
presented is illustrated using a high-dimensional regression problem
taken from the domain of subsurface fluid flow modeling. This
problem can be modeled in a variety of ways; the method used in
this paper is founded on the mixed Generalized Multiscale Finite
Element Method (GMsFEM) [11]. The disadvantage of this
method is that it requires the solution of large numbers of Partial
Differential Equations (PDEs) to produce a set of “basis functions.”
However, it is possible to predict each basis function and avoid their
time-consuming calculation using DL, for example, a CNN. We
consider four such CNNs coupled with three different kinds of iden-
tity skip connections.

The paper continues by providing a detailed overview of the
mixed GMSFEM case study. Then, the seven steps involved in
developing the models are presented. The statistical results with
regard to the coefficient of determination (R? and Mean Squared
Error (MSE) are given in the following. A discussion of the
sources of prediction error along with some suggested solutions is
given in the final section.

2 Case Study

The application focus for our work is modeling fluid flow in the
earth’s subsurface. This is of interest to both engineers and scientists
with respect to, for example, the seepage of waste water through
soil, the flow of oil and gas to wells, and land subsidence as a con-
sequence of groundwater extraction. Despite taking serious steps
toward renewable energy, the oil/gas industry still provides a high
proportion of the world’s energy. The main goal is to predict the
performance of reservoirs at any future point in time and to optimize
the petroleum fluid recovery under different operating conditions.
In oil/gas heterogeneous porous media, formation-related properties
can have multiple scales. More specifically, there may be numerous
fractures with different lengths, whose width is much smaller than
the domain size. The permeability, defined as the ability of a rock
to permit fluids to pass through it, in fractures is generally much
higher than that of the matrix. This is why the effect of fractures
must be considered when modeling flow processes. In the mesh
generation stage of numerical modeling, adequately fine grids are
used to resolve small-scale fractures. By doing so, the discrete for-
mulation of such problems produces a large system of equations,
and consequently, the number of unknown parameters increases.
The computation of the solution therefore becomes expensive. Mul-
tiscale techniques can be used to decrease the degrees-of-freedom
and solve subsurface flow problems on coarse grids. These
methods can considerably decrease resolution times without a sig-
nificant loss of precision.

Local mass conservation is of great importance for subsurface
flow problems. The mixed multiscale finite element method is
one of the most used mass conservative multiscale techniques. A
mixed GMsFEM has recently been presented to solve Darcy’s
flow (a linear relationship between pressure gradient and velocity)
of a single-phase fluid in two-dimensional fractured porous media
[11]. This new method approximates the pressure in the multiscale
finite element space between the coarse-grid space and fine-grid
space; several multiscale basis functions are obtained in a single
coarse-grid element, and the velocity is directly approximated in
the fine-grid space.

The following flow problem in the mixed formulation is
considered:

kK'u+Vp=0 in Q

1
Veou=fin Q 1
with nonhomogeneous boundary conditions:
u-n=g on 0Q 2)

where k is permeability, u is the Darcy velocity, p is the pressure, fis
the source term, g is the given normal component of the Darcy
velocity on the boundary, Q is the computational domain, and n
is the outward unit norm vector on the boundary.

To illustrate the general solution framework of the mixed
GMSFEM, 7 is considered a confirming partition of  into finite
elements with coarse block size H, and 7" is the fine-grid partition
with mesh size 4. By defining V= H(div, Q) and W=L*Q), the
mixed finite element spaces will be

V= {vh € Vivp(t) = (bix1 + ay, dixo + ¢1),

a;, by, ¢;, die Rt e rh}

Wy, = {wy, € W: wy, is a constant on each element in Th}

Supposing {'¥;} is the set of multiscale base functions for the
coarse element, the multiscale space for the pressure p is defined
as the linear span of all local basis functions, which can be
denoted as

Wy = (¥} in o7

The mixed GMSsFEM is directed at finding (g, py) € (Vy,, Wr)
such that

jk_luH Vg — jdiv(vH)pH =0 Vv € V,?
(3)
jdiV(uH)WH = jﬁ/VH VYwy €Wy

where uy . n= gy on 0Q for each coarse edge on the boundary and
gn 1s the average of function g on the corresponding coarse edge.

To systematically approximate the pressure p, the following
approach is adopted to construct the multiscale space Wy. A snap-
shot space is defined by solving a series of local cell problems on
every coarse-grid element with Dirichlet’s boundary condition. In
Dirichlet’s condition, a value is first assigned to the pressure.
Then, the snapshot space is further decreased to find the dominant
modes, where a local eigenvalue problem (one for each coarse
element) needs to be solved. The linear span of these modes is
termed the offline space.

The number of PDEs that need to be solved to construct multi-
scale basis functions is equal to the number of local cell problems
plus the number of local eigenvalue problems. The local cell
problem defined in the coarse grid is the same as the original
problem except that the source function is omitted. A delta function
is assigned to the boundary of the coarse grid as a boundary condi-
tion. The delta function is defined as follows: a value of 1 is given
for a fine-grid edge and a value of O for all other grid edges. Con-
sequently, the number of local cell problems that need to be
solved equals the number of fine-grid edges contained in the coarse-
grid boundary (for the work presented here this is 12). In this
research, the computational domain was set to be Q =0, 1% A
30x 30 uniform mesh was selected for the fine-grid system and a
10x10 uniform mesh was used for the coarse-grid system
(Fig. 1). Given 100 coarse elements, there are 1300 PDEs: 1200
(100 x 12) local cell problems, and 100 (100 x 1) local eigenvalue
problems. For each randomly generated permeability field (as the
only input), there were five basis functions, identified as Bases 1,
2,3, 4, and 5. The first was a piecewise constant, containing only
—1 and +1. Because these two values were the same for the finite
element method, there was no need to train this basis. Bases 2, 3,
4, and 5 were in a range of (—1, +1). To produce these basis func-
tions, many PDEs (here 1300) must first be solved; this presents
considerable overhead. For this reason, it makes sense to replace
PDE solvers with data-driven methods, given their outstanding
capabilities and general acceptance in recent decades. The mixed
GMSFEM can be accelerated by the constructed data-driven-based
models.
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Fig. 1 A permeability field of a fractured porous medium with
K., of 4 millidarcy and K; of 2000 millidarcy. The fine grid
squares in blue refer to the matrix and those in yellow to the frac-
ture. The red grid indicates the coarse grid. Each coarse grid
square contains nine fine grids. The number of fractures is 15.

3 Model Development

Figure 2 illustrates the steps involved for CNN model generation.
The “Spyder” module provided with the “Anaconda Distribution”
of pyTHON 3.5 was used. A seven-step process was adopted as
follows:

Step 1: Load “Keras” with “TensorFlow” as the backend,
“Numpy,” “Pandas,” “Sklearn,” and “Glob” libraries.

Step 2: Organize and input the data sets. A range of values for the
permeability of the matrix (K,,) was chosen from 1 to 5 millidarcy
incrementing in steps of 1; and for the permeability of the fracture
(Ky) from 500 to 2000 millidarcy incrementing in steps of 250. The
number of fractures was set to 1, 2, 3, ..., 23, 24, and 25 (25 cases).
The format of permeability fields was initially in a 900 x 1 vector,
which transformed to a 100x9 two-dimensional tensor. Here,
100 indicates the number of coarse grids, and 9 refers to the
number of fine grids in each coarse grid (Fig. 1), meaning that
each row is affiliated with a coarse grid. This replacement enables
the use of two-dimensional convolutional kernels while developing

Step 1: Loading ‘Keras’ with ‘TensorFlow’ as a backend, ‘Numpy’, ‘Pandas’,
‘Sklearn’ and ‘Glob’ libraries.

Step 2: Reading the pre-selected samples for the training (245,000), validation
(1750), and testing (2625) data subsets.
Step 3: Removing duplicates, including 6,653, 8, and 13 samples from the
training, validation, and testing data subsets, respectively.

Step 4: Scaling the input to a range of (-1, +1); the output (i.e., basis functions 2,
3, 4,and 5) were originallyin a range of (-1, +1).

Step 5: Designing an architecture and compiling it with ‘MSE’ as the loss
function and ‘Adam’ as the optimizer. In this regard, a broad range of cases
containing convolutional, pooling, FC, batch normalization, and dropout layers
with some techniques, such as regularization to prevent the over-fitting issue,
were tested separately for each multiscale basis function to construct the base
models (i.e., classical CNN models). Afterwards, the skip connections were
added to the base models.

Step 6: Training the model developed in the previous step using the training
subset associated with the validation samples. The batch size was set to 32.

Step 7: Evaluating the model’s performance by calculating two prediction
accuracy parameters, R2 and MSE.

Fig. 2 Steps involved in developing a CNN model

the model. On the other hand, basis functions remained in the form
of a 900x 1 vector due to adding FC layers at the end of the
network.

For each of the 875 (5 x7 x25=2875) cases, the “MATLAB” code
was run as many as 280 times over the training data, two times
for validation, and three times for testing. Accordingly, 249,375
samples were produced with 245,000 examples for training, 1750
for validation, and 2625 for testing.

Step 3: Remove duplicates. Since the permeability fields were
randomly generated, duplicates could have been included. These
were removed to avoid giving samples an advantage or bias when
running the algorithm. In this regard, 6653 training, 8 validation,
and 13 testing samples were excluded. This decreased the training,
validation and testing samples to 238,347, 1742, and 2612,
respectively.

Step 4: Scale the permeability field (as the only input) to a range
of (=1, +1).

Step 5: Design an optimal architecture and then add the skip con-
nection. To develop an optimal base model for each multiscale basis
function, we started with a low number of epochs to ensure the
model was still improving based on the obtained MSE values for
the training and validation subsets. Thereafter, the number of
epochs was increased up to 100. The above five steps were per-
formed separately for each basis function. The various cases con-
taining convolutional, pooling, FC, batch normalization,
regularization, and dropout layers were tested separately for each
basis function. The same optimal architecture was coincidentally
obtained for all Bases 2, 3, 4, and 5 (Fig. 3 (base)). The architecture
has five convolutional layers and two FC layers, without any
pooling layer. The number of kernels in each convolutional layer
(referred to as CONV1 to CONVS) is 5, 10, 15, 20, and 25, respec-
tively. CONV1, CONV2, CONV3, CONV4, and CONVS5 have the
sizes 98 x 7,96 x 5,94 x 3,92 x 1,92 x 1, respectively. A batch nor-
malization layer can be added after each convolutional layer without
changing its size. Neural networks use higher learning rates and
converge faster by normalization of the input layer. This normaliza-
tion maintains the output average at a value close to zero and the
standard deviation close to one. Each FC layer contains 2000
neurons. For a given neuron or kernel, the inputs are multiplied
by the weights and summed together. Then, a bias term is added.
By doing so, only a linear transformation is performed on the
inputs using the weights and biases. Although this operation
makes the neural network simpler, it is less powerful and unable
to learn complex patterns in a data set. This is where the activation
function is beneficial. Mathematically, this can be represented as
shown in Eq. (4) where w; represents the weight value, z; is the
input value, b is the bias, f is the activation function, and y is the
output. The models use the “Rectified Linear Unit (ReLU)” activa-
tion function for the convolutional layers, “sigmoid” for the FC
layers, and “linear” for the output

y =f<2 (wiz) + b) “)
i=1

It is useful to compare the optimal base architecture with well-
known structurally similar CNN architectures, such as AlexNet
[12] and VGGNet (also known as VGG16) [13] to provide a
better insight. Like common CNN models, when going deeper
through the structure of the developed models, the number of
feature maps increases and their size decreases. However, the
number of feature maps (the filters number) defined here is signifi-
cantly less than that of common CNN models. Another difference is
that there is no pooling layer in our developed models, given that
the input dimension is 100 x 9. Unlike AlexNet and VGGNet, no
dropout layer is used in the FC layers. Considering the fact that
AlexNet and VGGNet are very complex, with many convolutional
layers and filters, we can call the presented architecture here a “deep
neural network of low complexity.”
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Fig. 3 Structure of the three skip connection schemes added to the base architecture

To address the central objective of this paper, comparisons were  identity type of shortcut is used. The second scheme is designed
conducted using three different shortcut schemes as shown in Fig. 3. to discover how much a shortcut from the middle layer to the
In Scheme 1, a single shortcut is added from the output of the first  final layer can affect the performance of a model. Here, the input
convolution process to the last convolutional block. The input and  and output of this section with the shortcut have a dimension of
output of this part have the same dimension of 98*7 because an  94*3. The third scheme is mainly considered to gain knowledge
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case, for (a) the training dataset, (b) the validation dataset, (c) the testing dataset, and (d) the

total dataset

of the effect of involving the raw input features along with
Scheme 2. In all three cases, the main path and the shortcut meet
each other before applying the activation function. The structure
of the FC layers remains unchanged for all three architectures.

Step 6: Train the network. Training a CNN model refers to
finding weights and biases of the kernels in the convolutional
layers as well as of the neurons (nodes) in the FC layers to minimize
the difference between the outputs of the model and known values
as much as possible.

Step 7: Evaluate the trained network’s performance.

4 Results

The performance of the developed models is evaluated using two
prediction error metrics: R?* and MSE. Figure 4 presents four bar
charts giving the R results of the developed models for the training,
validation, and testing subsets, and the entire dataset, respectively.
Figure 4(a) demonstrates that all three skip connection schemes
produce an improved performance over the base case for all multi-
scale basis functions with respect to the training dataset. For
example, Schemel increases it from 0.9054 to 0.926 for Basis 4.
Both Schemes 2 and 3 perform marginally better than Scheme 1.
From Figs. 4(b) and 4(c), it is shown that Scheme 1 has an
adverse effect on the validation and testing subsets. For example,
with respect to Basis 5, the R? value decreases from 0.7569 and
0.7625, to 0.746 and 0.7495 for validation and testing, respectively.
Except for Basis 4, Scheme 2 demonstrates an improved perfor-
mance over the other base models. Scheme 3 is beneficial in all

cases, especially for Bases 4 and 5. The trend that can be observed
in Figs. 4(a)—4(d) is the same because a major part of the data gen-
erated was designed as the training data.

Figure 5 presents four bar charts giving the MSE results obtained.
The intuition here was that the MSE results would reflect the R*
results (Fig. 4). From Fig. 5(a), it can be seen that for the training
subset, all three skip connection schemes serve to decrease the
MSE of the base models. Additionally, Schemes 2 and 3 produce
a better performance than Scheme 1. From Figs. 5(b) and 5(c), it
is shown that the MSE fractionally increases for the validation
and testing subsets when using Scheme 1. For instance, it increases
from 0.0158 to 0.0165 for Basis 5 in the case of the validation
dataset. According to Figs. 5(b) and 5(c), Scheme 2 does not favor-
ably influence Basis 4. Figure 5(d) demonstrates that the “total
data” MSE values follow the same trend as in Fig. 5(a), again
because the training data dominates the total dataset.

In addition to the graphical comparisons presented in Figs. 4
and 5, the R? and MSE values are listed in full in Table 1. For
each subset and multiscale basis function, the best result is high-
lighted in pink.

The results obtained for Scheme 1 imply that transferring feature
maps of earlier convolutional layers to final ones has only a mar-
ginal positive effect with respect to the training dataset. In other
words, the corresponding skip connection makes the predictive
model concentrate on capturing the underlying trend of the training
(seen) subset. Flowing information from the middle convolutional
layer to the last layer (Scheme 2) works for Bases 2, 3, and 5 regard-
ing all three subsets. This means that the feature maps of the middle
convolution process contain important information. Adding two
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Fig. 5 MSE performance comparison using skip connection Schemes 1, 2, and 3, and the base
case, for (a) the training dataset, (b) the validation dataset, (c) the testing dataset, and (d) the total
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skip connections (Scheme 3) favorably affects all the basis func-
tions with respect to the training, validation, and testing datasets.
By comparing the architecture and results produced using
Schemes 2 and 3, the positive role of transferring raw feature
maps is understandable. Therefore, enriching the last convolutional

blocks with information hidden in the neighboring layers is more
efficient than enriching them using earlier convolutional blocks
near the input layer.

Multiscale basis functions are defined in a single coarse grid
element. In order to better understand what they are, the pattern

Table 1 The R? and MSE values obtained for skip connection Schemes 1, 2, and 3, and the base case

R? MSE

Basis 2 Basis 3 Basis 4 _ Basis 2 Basis 3 Basis 4 _
Training Base 0.8945 0.9017 0.9054 0.8341 0.0257 0.0207 0.0141 0.0108
Scheme 1 0.9135 0.921 0.926 0.844 0.0226 0.0171 0.011 0.0101
Scheme 2 0.9178 0.9259 0.9358 0.8786 0.0194 0.0152 0.0096 0.0079
Scheme 3 0.9172 0.9248 0.9316 0.8783 0.0199 0.0158 0.0102 0.0081
Validation Base 0.8076 0.7911 0.8751 0.7569 0.0468 0.044 0.0186 0.0158
Scheme 1 0.8063 0.789 0.8711 0.746 0.047 0.0445 0.0192 0.0165
Scheme 2 0.8115 0.7973 0.8721 0.7942 0.0454 0.0427 0.019 0.0134
Scheme 3 0.8121 0.7985 0.8854 0.7945 0.045 0.0424 0.017 0.0131
Testing Base 0.8083 0.6445 0.8762 0.7625 0.0466 0.0743 0.0184 0.0154
Scheme 1 0.8074 0.6429 0.8726 0.7495 0.0469 0.0745 0.019 0.0163
Scheme 2 0.8138 0.6496 0.874 0.7981 0.0451 0.0732 0.0188 0.0131
Scheme 3 0.8146 0.6503 0.887 0.7987 0.0447 0.073 0.0168 0.0129
Total Base 0.8929 0.8981 0.9049 0.8328 0.0261 0.0214 0.0142 0.0109
Scheme 1 09116 09171 0.925 0.8423 0.023 0.0179 0.0111 0.0102

Scheme 2 0.9159 0.922 0.9347 0.8771 0.0199 0.016 0.0098 0.008
Scheme 3 0.9153 0.9209 0.9308 0.8768 0.0203 0.0166 0.0103 0.0082
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Fig. 6 A comparison between the actual and reconstructed patterns for a fractured case

available in a fractured case with coarse block no. 24 (as a represen-
tative sample) is tracked in Fig. 6. The figure demonstrates an excel-
lent match between actual and reconstructed patterns for this coarse
element.

Figure 7 offers an example of the pressure and velocity distribu-
tions for a representative permeability field. According to this
figure, there is a very close match between the actual distributions
and the ones obtained by the developed models in this study.

5 Discussion

Four classical CNN models, with five convolutional and two FC
layers, were separately developed to predict four different multi-
scale basis functions in a mixed GMsFEM. It is generally accepted
that adjusting the architecture can obtain better DL accuracy. This
is why three skip connection schemes were added to the base
structures in this paper. The results are generally promising,

especially for Scheme 3. However, the accuracy of the models
over the testing data set is not as high as we would like. There
are both irreducible and reducible prediction errors. The irreduc-
ible error is caused by noise in the problem itself and its data.
This error cannot be removed. The case study presented here is
a high-dimensional problem with 249,375 samples, mapping an
input of 100¥9 to an output of 900*1. Adding the skip connections
increases the complexity of the base structure, making it more
challenging to train the network. There are as many as
10,414,170 trainable and 150 non-trainable parameters for the
base structure, without shortcuts. By adding Scheme 1, the
number of trainable and non-trainable parameters increases to
12,670,510 and decreases to 110, respectively. For the second
scheme, there are 14,272,340 trainable and 130 non-trainable
parameters. For Scheme 3, the number of trainable and non-
trainable parameters changes to 14,270,975 and 120, respectively.
Several solutions are suggested to reduce the prediction error
parameters: generating more data, increasing the number of
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Fig. 7 A comparison between the actual pressure and velocity and the ones obtained by the developed models for a represen-
tative permeability field

pressure

epochs, and combining the currently developed low-complexity Funding Data

models into an ensemble system. Furthermore, applying skip con-

nections to other case studies on low-complexity deep neural net- e This work is partially supported by Key Program Special Fund

works could reinforce the finding that skip connections improve in XJTLU (KSF-E-50, KSF-E-21), XJTLU Postgraduate

the model performance. Research Scholarship (PGRS1912009), and XJTLU Research
Development Funding (RDF-19-01-15).
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