
Classification Inductive Rule Learning with
Negated Features

Stephanie Chua, Frans Coenen, and Grant Malcolm

Department of Computer Science,
University of Liverpool, Ashton Building,
Ashton Street, L69 3BX Liverpool, UK.

{s.chua,coenen,grant}@liverpool.ac.uk

Abstract. This paper reports on an investigation to compare a number
of strategies to include negated features within the process of Inductive
Rule Learning (IRL). The emphasis is on generating the negation of
features while rules are being “learnt”; rather than including (or deriving)
the negation of all features as part of the input. Eight different strategies
are considered based on the manipulation of three feature sub-spaces.
Comparisons are also made with Associative Rule Learning (ARL) in
the context of multi-class text classification. The results indicate that
the option to include negated features within the IRL process produces
more effective classifiers.

Key words: Rule Learning, Negation, Multi-class Text Classification

1 Introduction

The generation of rule-based classifiers is a popular data mining method which is
applicable to many data formats. Its popularity is largely due to its transparency,
the ease with which classifications can be explained, and its relative simplicity
(compared to other types of classifiers such as support vector machines or neural
networks).

Rules in rule-based classifiers are typically represented in the form X ⇒ k,
where X is some subset of the global set of features (A) present in the input
data, and k is a class label. For example, we might have a rule a∧ b ⇒ k (where
a and b are two features taken from A). The rule is interpreted as, “if a and b
exist in a record, then classify the record as belonging to class k”. Examples of
rule-based classifiers include Associative Rule Learning (ARL) systems such as
Classification based on Multiple class-Association Rules (CMAR) [12], Classifi-
cation based on Predictive Association Rules (CPAR) [17], or Total From Partial
Classification (TFPC) [5] and Inductive Rule Learning (IRL) systems such as
First Order Inductive Learner (FOIL) [13] and Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) [6].

Many rule-based classifiers such as CPAR, CMAR, TFPC and FOIL do not
provide the option to include rules with negated features of the form: a∧b∧¬c ⇒
k. Note that such a rule would be interpreted as, “if a and b exist in a record and



2 Stephanie Chua, Frans Coenen, Grant Malcolm

c does not, then classify the record as belonging to class k”. There are only a few
examples of rule-based classifier generation systems which generate rules with
negation. One such system is the Olex system [14]. However, this system uses
a very restrictive rule template (one positive feature and zero or more negative
features) for rule generation and that significantly restricts the nature of the
rules that can be generated.

Of course, negation can be included explicitly in the input data by including
a negated feature for every feature that exists (for example, a and ¬a). It is
also possible to generate negated versions for all features automatically as part
of the classifier generation process. For some applications, this is a realistic op-
tion. However, for many applications, this is not realistic because it doubles the
number of features to be considered. One example is in the field of text clas-
sification where documents are encoded using the bag-of-words representation.
Using this representation, the feature set comprises several thousand words and
thus, doubling the number of features would introduce an additional computa-
tional overhead (the computational complexity of rule-based classifier generators
increases exponentially with the number of features).

The approach advocated in this paper is to include negated features within
the rule generation process without explicitly encoding such negations in the
input or generating all possible negations. In this case, there are two issues to be
addressed: (i) the process of identifying features whose negation and inclusion
in a rule under consideration during the rule generation process can benefit the
final result (the accuracy of the classifier), and (ii) the rule refinement strategies
to dictate whether a positive feature or a negative feature should be included in
a rule. In this paper, a number of strategies are proposed and evaluated for ad-
dressing both these issues. The focus of this work is on multi-class text classifica-
tion using the bag-of-words representation. However, the reported investigation
is equally applicable to other forms of classification.

The rest of this paper is organized as follows. Section 2 describes some previ-
ous reported work concerning rule learning with and without negation. Section
3 discusses the adopted rule-based text classification model, followed by the pro-
posed inductive rule learning algorithm in Section 4. The experimental setup
is presented in Section 5. The results and an analysis of the experiments are
discussed in Section 6. Section 7 concludes this paper with a brief discussion of
future work.

2 Previous Work

Many machine learning methods for text classification have been proposed. In-
ductive Rule Learning (IRL) methods tend to be based on the covering algo-
rithm. In the covering algorithm, rules are learned one at a time based on the
training examples given. The examples “covered” by a rule are then removed
and the process is repeated until a stopping condition is met. Examples of IRL
systems based on the covering algorithm include: (i) Incremental Reduced Error
Pruning (IREP) [7], (ii) Repeated Incremental Pruning to Produce Error Re-



Classification Inductive Rule Learning with Negated Features 3

duction (RIPPER) [6] and (iii) Swap-1 [16, 3]. An example of the use of negation
in IRL can be found in the Olex system [14] which uses positive and negative
features to generate rules using a template of one positive feature and none or
more negative feature(s). However, the use of this template is very restrictive in
that no two positive features can co-occur together in a rule.

ARL algorithms are based on the concept of Association Rule Mining (ARM)
as first proposed by [1]. ARM operates by generating the set of relationships
between features that exist in a given data set. These relations are expressed as
probabilistic rules, called Association Rules (ARs). ARs are of the form X ⇒ Y
(where X and Y are disjoint subsets of the the global set of features A). ARs
are interpreted as “if X exists in a record then it is likely that Y will also
exist”. The set of classifcation rules that exist in a data set are a subset of the
set of ARs. A number of ARL systems were identified in Section 1. Negation
has been used in previous work in ARL. For example, Antonie and Zäıane [2]
proposed an algorithm that discovers negative ARs (one example being, “if X
exists in a record, then it is likely that Y will NOT exist”. Baralis and Garza [4]
constructed an associative classifier that used rules with negated words. They
reported that the use of negated words improved the quality of their classifiers.
A criticism of the ARL approach is that a great many rules are generated,
typically many more than in the case of IRL systems such as the approach
proposed in this paper. However, to evaluate the IRL approach proposed in
this paper, comparisons are made with the ARL technique using the TFPC
algorithm [5] because we are interested in interpretable rules as a classifier and
also because our experiments here focus on multi-class classification instead of
binary classification. Therefore, we will not compare with the support vector
machine (SVM) [9] method (reported to be one of the best method for text
classification).

3 Rule-based Text Classification Model

A general model for a rule-based text classification consists of a number of pro-
cesses (Figure 1). These processes include preprocessing, text representation and
rule learning. To evaluate the generated classifier, the input data (document
base) is usually split into a training set and a test set. The first step is to pre-
process the data. There are many sub-processes that may be applied at this
stage, such as stop word removal, stemming and feature selection. After pre-
processing has been completed, the documents in their preprocessed form are
translated into some appropriate representation suitable for the application of
text classification algorithms. A popular method for text representation is the
bag-of-words representation. In this representation, a document is represented in
an N -dimensional vector space, where N is the number of features. The value of
each feature in the vector space can take either a Boolean value to indicate the
presence or absence of a word in a document or a numeric value to indicate its
frequency in a document. Note that when using the bag-of-words representation,
information regarding the order and position of the words is lost.



4 Stephanie Chua, Frans Coenen, Grant Malcolm

Training  
Set

Inductive  
Rule  

Learning

Text  
Representation  
of  Training  Set

Preprocessing

Test  Set Classifier

Class  X

Class  Z

Text  
Representation  
of  Test  Set

Preprocessing
Class  Y

Fig. 1. Rule-based text classification model

Once the appropriate representation has been generated, the IRL process can
be applied. During this process, the desired set of classifcation rules are learned,
resulting in a classifier which may be applied to “unseen” data.

4 Inductive Rule Learning with Negation

The algorithm for our inductive rule learner is presented in Table 1. Our induc-
tive rule learner is founded on the sequential covering algorithm. For a given class
k, rules are learned sequentially one at a time based on training examples using
the LearnOneRule method (Table 2). The examples “covered” by a rule learnt
are then removed and the process is repeated until some stopping condition is
met. Stopping conditions are: (i) when there are no more uncovered documents
or (ii) when there are no more unused features in the feature set. Each rule gen-
erated is the ruleset so far. Post-processing is done on the final ruleset using the
PostProcess method to remove rules with a rule accuracy, defined in our case
using the Laplace estimation accuracy, lower than a user pre-defined threshold.

Rules are generated using the specialization approach, whereby a rule is
made more specific by adding features to its condition. In the LearnOneRule

method, rule learning starts with an empty condition and a class c in the
conclusion. The top most unused feature from the Feature set is added to
the empty rule and the rule is checked using the CheckRule method (Table 3).
In the CheckRule method, the rule “coverage” is checked, i.e. the number of
positive and negative documents that it covers. If a rule covers negative docu-
ment(s) and it can be further refined, then the RefineRule method is called.
There are a number of different strategies for refining rules presented in this
paper. These strategies for refinement are what make our IRL system different
from previously proposed systems. While previous methods used pruning (e.g.[7,
6]) to improve their rule quality, our approach uses refinement strategies that are
applied whilst the rule is being generated. Rules with and without negation are



Classification Inductive Rule Learning with Negated Features 5

Table 1. Algorithm for inductive rule learner (adapted from [8])

Algorithm: Learn a set of IF-THEN rules for classification.

Input:

D, a dataset of class-labelled documents;
Feature set, the set of features for class c;

Output: A set of IF-THEN rules.

Method:

Rule set = { }; //initial set of rules learned is empty

for each class c do

repeat

Rule = LearnOneRule(Feature set, D, c);
remove documents covered by Rule from D;
Rule set = Rule set + Rule; //add new rule to ruleset

until stopping condition;
endfor

PostProcess(Rule set);
return Rule set;

Table 2. Algorithm for LearnOneRule method

Algorithm: LearnOneRule.

Input:

D, a dataset of class-labelled documents;
Feature set, the set of features for class c;
c, class label;

Output: Rule

Method:

Create a new empty rule, Rule
Set Rule condition to c
Add top most unused feature from Feature set
Rule = CheckRule(Rule, D)
return Rule



6 Stephanie Chua, Frans Coenen, Grant Malcolm

generated based on the usage of search space division, as described in Section
4.1.

The model was implemented with a view to multi-class classification, i.e. the
generation of a rule-based classifier designed to classify unseen cases into one
of N classes. Other classifiers include binary classifiers, which assign an unseen
case as belonging to a class or not and classifiers that can assign more than
one class to an unseen case. A sequence of binary classifiers is usually used to
achieve multi-class classification in most previous work. In binary classification,
the classifier has only rules from one class and these rules are used to classify
documents as belonging to the particular class or not. In contrast, in multi-class
classification, the classifier consists of rules from all the classes in the dataset. In
order to determine which rule is to fire when classifying a document, the rules
have to be ordered. The higher order rules will be fired before lower ones. In our
experiments (see Section 5), the rules were first ordered according to descending
rule length (the number of features in the rule condition) so that more specific
rules would be fired first; and then, if the rules were of the same length, then
the descending rule weight (the number of documents the rule covered in the
learning phase) will be used for ordering. This meant that more specific rules
with higher coverage would rank higher than less specific and lower coverage
rules.

Table 3. Algorithm for CheckRule method

Algorithm: CheckRule

Input:

D, a dataset of class-labelled documents;
Rule, the rule to check;

Output: Rule

Method:

Check rule coverage

If Rule covers negative document(s)
If Rule can be further refined

Rule = RefineRule(Rule)
return Rule

4.1 Rule Refinement

During the proposed IRL process, the construction of each rule commences with
an initial “start” rule comprising a single positive feature in its condition and an



Classification Inductive Rule Learning with Negated Features 7

associated class in the conclusion. This single positive feature is selected from
the top most unused feature in the feature set, ranked in descending order of
the chi-square value of the features. If the rule so far covers both positive and
negative documents, then the rule has to be refined in order to learn a rule that
can separate the positive and negative documents. If the rule covers only positive
documents, then it is added to the ruleset and the process continues with the
generation of the next rule. During the refinement process, an appropriate feature
is selected from the search space to add to the rule. The search space contains
features from both the positive and negative documents that are covered by the
rule. The search space can thus be divided into three sub-spaces that contain
different kinds of feature:

– Unique postive (UP) features which are only found in positive documents.

– Unique negative (UN) features which are only found in negative docu-
ments.

– Overlap (Ov) features which are found in both positive and negative doc-
uments.

Such a division allows for effective and efficient identification of both positive
features and features that can advantageously be negated. It should be noted
that the UP, UN and Ov sub-spaces may be empty, as the existence of these
features is dependent upon the content of the documents covered by a rule.
When refining a rule, a feature from either the UP, UN and Ov feature sub-
spaces can be selected to be added to the rule so far. If a rule is refined with
a UP or Ov feature; then a new rule so far, with no negation, is generated. If
a rule is refined with a UN feature, then the rule so far will include a negated
feature. The Ov feature is added as a positive feature despite appearing in both
positive and negative documents because negating an Ov feature in a rule will
generate a rule that rejects positive documents.

Eight different rule refinement strategies were devised with respect to the
three identified sub-spaces. These strategies are presented in Table 4. Note that
strategies UP, Ov and BestPosRule generate rules without any negated features
and have been included for comparison purposes. Strategies UN and UN-UP-Ov
will always generate rules with negation provided the UN sub-space is not empty.
Note that the UN strategy will result in rules comprising a positive feature and
one or more negative features; thus a generating rules with a template identical
to the Olex system [14] described in Section 2. Strategy UP-UN-Ov will generate
rules without negation provided UP is not empty. The BestStrategy strategy will
choose the best rule from the rules generated using the UP, UN, Ov, UP-UN-
Ov and UN-UP-Ov strategies and thus may generate rules with negation. The
BestRule strategy may also generate rules with negation, provided that when
adding a UN feature, a better rule is generated than when adding a UP or Ov
feature.



8 Stephanie Chua, Frans Coenen, Grant Malcolm

Table 4. Rule refinement strategies

Strategy Sub-space used Description
UP UP Add a UP feature to refine a rule

UN UN Add a UN feature to refine a rule

Ov Ov Add an Ov feature to refine a rule

UP-UN-Ov Either a UP, UN or
Ov feature in every
round of refinement

If UP is not empty, add a UP feature to refine a
rule; Else If UN is not empty, add a UN feature
to refine a rule; Else If Ov is not empty, add
an Ov feature to refine a rule.

UN-UP-Ov Either a UP, UN or
Ov feature in every
round of refinement

If UN is not empty, add a UN feature to refine
a rule; Else If UP is not empty, add a UP fea-
ture to refine a rule; Else If Ov is not empty,
add an Ov feature to refine a rule.

BestStrategy All sub-spaces Choose the best rule from the five rules gen-
erated by each UP, UN, Ov, UP-UN-Ov and
UN-UP-Ov.

BestPosRule UP and Ov in every
round of refinement

Generate two versions of rule; one refined with
a UP feature and the other refined with an
Ov feature. Choose the best between the two
versions.

BestRule UP, UN and Ov in
every round of refine-
ment

Generate three versions of rule; one refined
with a UP feature, one refined with a UN fea-
ture and the other refined with an Ov feature.
Choose the best between the three versions.

5 Experimental Setup

The data sets used were the 20 Newsgroups data set [10] and the Reuters-21578
data set [11]. The 20 Newsgroups data set consists of 20 classes and 19,997
documents, while the Reuters-21578 data set consists of 135 classes and 21,578
documents. In our preparation of the data sets, we adopted the approach of
Wang [15]. In his work, he split the 20 Newsgroups data set into two non-
overlapping data sets (20NG-A and 20NG-B), each containing 10 classes. Each
class contained 1,000 documents with the exception of one class in 20NG-B that
had 997 documents. In the Reuters-21578 data set, the top ten most populous
classes were first selected and multi-labelled and empty documents (documents
that did not include any text) were removed, leaving a data set with eight classes
and 6,643 documents, hereafter referred to as Reuters8.

The rule-based text classification model described in Section 3 was applied
to all the data sets. Preprocessing included stop words removal and feature



Classification Inductive Rule Learning with Negated Features 9

selection. Chi-square was used in a local feature selection environment with a
reduction factor of 0.9 (only 10% of the features from each class were used). The
proposed rule refinement strategies were applied during the rule learning stage.
Rules with a Laplace estimation accuracy lower than the threshold of 50% were
removed from the ruleset. The performance of our inductive rule learner, with
each of the different proposed rule refinement strategies, was compared with the
TFPC associative rule learner of Coenen and Leng [5]. The evaluation metric
used is the average accuracy produced using ten fold cross validation.

6 Results and Analysis

The experiments conducted compared our inductive rule learner, and its different
rule refinement strategies, with an associative rule learner in a multi-class classi-
fication setting. Hereafter, our inductive rule learner is denoted as RL appended
with the identifier of the different rule refinement strategies, and the associative
rule learner is denoted as ARL. Table 5, 6 and 7 show the average accuracy
obtained using ten fold cross validation, the average number of rules generated,
the average number of rules with negation generated and the percentage of rules
with negation, for the 20NG-A, 20NG-B and Reuters8 data sets respectively. In
each case, the highest accuracy is highlighted in bold.

Table 5. Results using the 20NG-A dataset

Method Avg accuracy Avg # rules
generated

Avg # rules
with negation
generated

Avg % of rules
with negation

RL + UP 78.3 218.0 0.0 0.0
RL + UN 73.3 132.0 46.0 34.8
RL + Ov 77.1 194.2 0.0 0.0
RL + UP-UN-Ov 78.3 218.0 0.0 0.0
RL + UN-UP-Ov 77.8 218.9 76.1 34.8
RL + BestStrategy 77.7 199.9 37.8 18.9
RL + BestPosRule 78.5 218.9 0.0 0.0
RL + BestRule 79.8 194.4 48.6 25.0
ARL 76.0 1582.9 0.0 0.0

With respect to classification accuracy, inspection of the results indicated
that the best performing method in all cases was the RL + BestRule strategy.
RL + UN performed worst in the 20NG-A dataset, RL + Ov performed worst
in the 20NG-B dataset, while ARL and RL + UN performed equally worst in
the Reuters8 dataset.

With respect to the overall number of rules generated in each case, ARL
produced many more rules than any of the RL strategies. This is because ARL
approaches, such as TFPC produce many frequent item sets (patterns) from
which classification rules are generated. The number of rules generated by ARL



10 Stephanie Chua, Frans Coenen, Grant Malcolm

Table 6. Results using the 20NG-B dataset

Method Avg accuracy Avg # rules
generated

Avg # rules
with negation
generated

Avg % of rules
with negation

RL + UP 79.3 216.8 0.0 0.0
RL + UN 79.9 110.3 47.2 42.8
RL + Ov 78.7 196.4 0.0 0.0
RL + UP-UN-Ov 79.3 216.8 0.0 0.0
RL + UN-UP-Ov 79.8 209.6 81.0 38.6
RL + BestStrategy 79.5 161.1 45.2 28.1
RL + BestPosRule 79.0 217.5 0.0 0.0
RL + BestRule 81.2 169.9 53.0 31.2
ARL 79.2 1546.1 0.0 0.0

Table 7. Results using the Reuters8 dataset

Method Avg accuracy Avg # rules
generated

Avg # rules
with negation
generated

Avg % of rules
with negation

RL + UP 85.0 133.0 0.0 0.0
RL + UN 75.2 25.6 25.6 100.0
RL + Ov 78.0 105.9 0.0 0.0
RL + UP-UN-Ov 85.0 132.9 0.0 0.0
RL + UN-UP-Ov 89.1 121.6 108.6 89.3
RL + BestStrategy 89.0 99.5 58.9 59.2
RL + BestPosRule 85.1 129.1 0.0 0.0
RL + BestRule 90.3 97.3 66.9 68.8
ARL 75.2 3235.6 0.0 0.0

systems is a criticism frequently directed at this approach. With respect to the
eight strategies, there is no significant variation with respect to the number
of rules generated although the Reuters8 data set seems to require fewer rules
than the 20NG-A and 20NG-B data sets. Recall that RL + UP, RL + Ov and
RL + BestPosRule cannot generate rules with negative features. In addition,
inspection of the results shows that RL + UP-UN-OV also does not generate
rules with negative features, suggesting that the UP sub-space was never empty
with respect to all three data sets and thus, produces the same classification
results as the RL + UP strategy. The relatively poorer performance of the RL
+ UN method is attributed to the structure of the rules generated, in that rules
with negation generated by this strategy take the structure of “one positive
feature and one or more negative feature” (i.e. identical to the Olex system [14]).
The disadvantage of this rule structure is that having only one positive feature
in its rule condition (despite having one or more negative features) makes the
rule overly general in that the single positive feature is prone to misclassifying
documents which the negative features cannot overturn. Also, it is worth noting
that RL + UN generates fewer rules than any of the other strategies. This is again



Classification Inductive Rule Learning with Negated Features 11

attributed to the rule structure in that a single positive feature can generally
cover a large portion of documents, and thus, less rules are being learnt. In direct
comparison of RL + BestPosRule and RL + BestRule, where the latter is an
extension of the former by allowing the inclusion of UN feature in refinement, RL
+ BestRule outperformed RL + BestPosRule in all three datasets. This strongly
suggests that the use of negated features can produce more effective classifiers.

If we look at the number of negative rules generated in the case of strategies
that permit negative features, a significant proportion are rules that include
negated features. The proportion is higher with respect to the Reuters8 data
set than for the 20NG-A and 20NG-B data sets. Overall, the results indicate
that the strategies that include negated features in classification rules generated
using IRL give a higher accuracy than strategies that do not include negated
features.

7 Conclusion and Future Work

In this paper, we have presented an evaluation of a number of strategies to in-
clude negated features in IRL systems. These different rule refinement strategies
enabled the generation of rules with and without negation. The approach was
applied to text classification using the bag-of-words representation. The reported
comparison between the different rule refinement strategies demonstrated that
RL + BestRule produced the best results in all cases. In general, rule refinement
strategies that involved negated features performed well indicating the advantage
that can be gained in the context of text classifcation. In addition, a comparison
was also made with an Associative Rule Learner (ARL); the proposed variations
of the IRL method outperformed ARL in nearly all cases. Moreover, all of the
IRL strategies used were able to produce more compact (smaller) classifiers with
less rules. In conclusion, the results reported in this paper demonstrate that rules
with negation are more effective for the multi-class classification task than rules
that rely on positive features only.

Our future work will further extend the current work by using phrases instead
of just single keywords in the text classification task. Phrases contain semantic
information which, as noted above, are lost in the bag-of-words representation.
For example, “Bank of England” and “river bank” are two phrases with entirely
different semantic content. We are motivated by the potential benefit of using
this semantic information in phrases to provide an added advantage to the text
classification task. More specifically, we will also look into the use of negated
phrases within the context of the work described in this paper.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 207-216 (1993)



12 Stephanie Chua, Frans Coenen, Grant Malcolm

2. Antonie, M-L., Zäıane, O. R.: An associative classifier based on positive and nega-
tive rules. In: Proceedings of the 9th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, pp. 64-69 (2004)

3. Apté, C., Damerau, F. J., Weiss, S. M.: Automated learning of decision rules for
text categorization. In: ACM Transactions on Information Systems 12, 233-251
(1994)

4. Baralis, E., Garza, P.: Associative text categorization exploiting negated words. In:
Proceedings of the ACM Symposium on Applied Computing, pp.530-535 (2006)

5. Coenen, F., Leng, P.: The Effect of Threshold Values on Association Rule Based
Classification Accuracy. In: Journal of Data and Knowledge Engineering. Vol. 60,
Num. 2 (February 2007), pp345-360 (2007).

6. Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International
Conference on Machine Learning (ICML), pp. 115-123, Morgan Kaufmann (1995)

7. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Proceedings of
the 11th International Conference on Machine Learning (ICML), Morgan Kauf-
mann (1994)

8. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2006)

9. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Proceedings of the 10th European Conference on Ma-
chine Learning (ECML), pp. 137-142 (1998)

10. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the 12th
International Conference on Machine Learning, pp. 331-339 (1995)

11. Lewis, D. D.: Reuters-21578 text categorization test collection, Distribution 1.0,
README file (v 1.3). Available at http://www.daviddlewis.com/resources/
testcollections/reuters21578/readme.txt (2004)

12. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient Classification based on Mul-
tiple class-Association Rules. In: Proceedings of the IEEE International Conference
on Data Mining, pp. 369-376 (2001)

13. Quinlan, J. R., Cameron-Jones, R. M.: FOIL: A midterm report. In: Proceedings of
the European Conference on Machine Learning (ECML), pp. 3-20, Springer-Verlag
(1993)

14. Rullo, P., Cumbo, C., Policicchio, V. L.: Learning rules with negation for text cat-
egorization. In: Proceedings of the 22nd ACM Symposium on Applied Computing,
pp. 409-416. ACM (2007)

15. Wang, Y. J.: Language-independent pre-processing of large documentbases for text
classifcation. PhD thesis (2007)

16. Weiss, S. M., Indurkhya, N.: Optimized rule induction. In: IEEE Expert: Intelligent
Systems and Their Applications 8, 61-69 (1993)

17. Yin, X., Han, J.: CPAR: Classification based on Predictive Association Rules. In:
Proceedings of the SIAM International Conference on Data Mining, pp. 331-335
(2003)


