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Abstract. This paper presents a procedure for the classification of spe-
cific 3-D features in Magnetic Resonance Imaging (MRI) brain scan vol-
umes. The main contributions of the paper are: (i) a proposed Bound-
ing Box segmentation technique to extract the 3-D features of interest
from MRI volumes, (ii) an oct-tree technique to represent the extracted
sub-volumes and (iii) a frequent sub-graph mining based feature space
mechanism to support classification. The proposed process was evaluated
using 210 3-D MRI brain scans of which 105 were from “healthy” people
and 105 from epilepsy patients. The features of interest were the left and
right ventricles. Both the process and the evaluation are fully described.
The results indicate that the proposed process can be effectively used to
classify 3-D MRI brain scan features.

Keywords: Image mining, 3-D Magnetic Resonance Imaging (MRI),
Image segmentation, Oct-tree representation, Image classification.

1 Introduction

Image mining involves a number of challenges of which the most significant re-
lates to the representation of the image data in a format that allows the effective
application of data mining techniques. The nature of the image representation
will affect both the efficiency and effectiveness of the data mining. We can divide
the domain of image mining into whole image mining and Region Of Interest
(ROI) mining where the distinction is that the second is directed as some spe-
cific sub-image present across an image collection. In this paper we consider ROI
image mining, more specifically we consider 3-D ROI image mining, thus Vol-
ume Of Interest (VOI) image mining. We propose a Bounding Box technique to
identify specific VOIs within am image collection and an oct-tree formalism with
which to represent the identified VOIs. The oct-tree representation in turn can
then be processed using a frequent sub-graph mining process which can then be
used to generate a feature space that is compatible with the application of data
mining (classification) techniques.
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To act as a focus for the work we consider 3-D Magnetic Resonance Imaging
(MRI) data of the human brain. Note that a 3-D MRI scan comprises a sequence
of 2-D “slices”. The VOIs in this case are the lateral (left and right) ventricles.
The ventricles are fluid-filled open spaces at the centre of the brain; there are
four ventricles in a human brain, but in this paper we only consider the lateral
ventricles. An example of a 3-D MRI brain scan is shown in Figure 1 where
the lateral ventricles are the dark areas at the centre of the brain. The dataset
used to evaluate the proposed process was composed of 210 MRI brain scans of
which 105 were from “healthy brains” and the remaining 105 were from epilepsy
patients. The application goal of the research is to classify MRI brain scans as
either epilepsy or non-epilepsy according to the nature of the ventricles (the
nature of the lateral ventricles are considered to be indicators of the presence of
conditions such as epilepsy). The proposed process is as follow. First we apply
our Bounding Box technique to isolate the ventricles. We then represent each
ventricle using an oct-tree formalism. A graph mining technique is then used to
identify frequently occurring sub-oct-trees. The identified sub-oct-trees are then
used to define a feature space from which a feature vector representation can be
produced (one vector per image) to which established data mining techniques
can be applied.

The rest of the paper is organised as follows. Section 2 introduces some
previous work. In Section 3 the classification process is described in detail. The
experimental set-up whereby the process was evaluated, and the results obtained,
are presented in Sections 4 and 5 respectively. Finally, the paper is concluded in
Section 6 with a summary of the main findings.

(a) (b) (c)

Fig. 1: Example of a 3-D brain MRI scan: (a) Sagittal (SAG) plane; (b) Trans-
verse (TRA) plane; (c) Coronal (COR) plane

2 Previous Works

Some of the published work on the segmentation of brain images has common
aspects with the work described in this paper. For example in [6, 7] a Modified
Spectral Segmentation algorithm, founded on a multiscale graph decomposition,
was proposed to segment the corpus callosum (another feature present in MRI
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brain scans). Experimentation was conducted using 76 MRI data sets; the results
indicated that their algorithm could detected the corpus callosum more accu-
rately than when using existing segmentation techniques. However, the work
described in [7] was directed at 2-D data (specifically, the midsagittal slice of
a MRI volume). The work described in [14] is of particular interest with re-
spect to the work described in this paper because they also used an oct-tree
conceptualisation from which a feature vector representation was extracted us-
ing frequent sib-graph mining. The work described in [14] was also directed at
brain ventricles however in the context of Alzheimer’s disease. In the context
of data capture a technique was presented in [14] to segment both the lateral
ventricles and the third ventricles using an oct-tree decomposition, different to
that presented in this paper, coupled with a dynamic thresholding technique.
This segmentation technique automatically found the most suitable threshold
value for each brain image. It was argued that this tended to produce a more
accurate result. However, the work described in [14] was focussed on classifica-
tion accuracy (no evaluation was conducted concerning the segmentation). It is
also worth nothing that the process of dynamic thresholding is time consuming.
Some other reported work on MRI brain scan segmentation can be found in [17]
where a “hand-segmentation” approach was proposed to extract brain ventricles
from 3-D MRIs. The approach was implemented using active shape models [3]
and level set methods [15]. However, as in the case of [14], no evaluation of the
segmentation was included in [15].

Some of the published work on image classification using graph based rep-
resentations also has common aspects with the work presented in this paper.
For instance, in [6] a quad-tree technique was used to represent the corpus cal-
losum. The work also used a frequent sub-graph mining technique to discover
frequently occurring sub-graphs in the quad-trees using the well-known Gspan
algorithm [18] and the Average Total Weighing (ATW) scheme proposed in [13].
Experiments were conducted to classify MRI brain scans as epilepsy or non-
epilepsy (the same application domain as considered in this paper), musicians
or non-musicians, and left-handedness or right handedness. With respect to the
epilepsy data set a best classification accuracy of 86.32% was obtained; however,
as noted above, the technique was only applied in the 2-D context. In the case
of [14] (see above) their oct-tree representation technique was used to represent
ventricles. The work also used a frequent sub-graph mining algorithm to identify
frequently occurring sub-octrees which were then translated into a vector space
representation (in a similar manner to that described in this paper). Experiment
were conducted to classify individual brain scans with respect to Alzheimer’s dis-
ease (a dataset of 166 images was used) and with respect to level of education
(dataset of 178 images). A best accuracy of 74.2% was obtained for the former
and a best accuracy of 77.2% for the latter. To the best knowledge of the authors,
there has been a very little work on the application of image mining techniques
in the context of ventricles other than that reported in [14] although the latter
was directed at the classification of Alzheimer’s disease.
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3 The Classification Process

Our proposed classification process is illustrated in Figure 2. With reference to
the figure a segmentation process is first applied so as to extract the VOI (the
lateral ventricles). Secondly an image decomposition process is used to generate
oct-trees (one per ventricle). Next frequently occurring sub-graphs are identified
and used to define a feature space from which feature vectors are then generated
(one per ventricle) using a feature selection mechanism. Any one of a number of
classifier generators can then be applied to the feature vector represented data.
Each sub-process (indicated by a rectangular box in Figure 2) is described in
more detail on the following sub-sections.

Fig. 2: The Proposed Classification Process

3.1 Segmentation

The identification of VOIs in image data is an important step in image analysis
of all kinds. The accuracy with which the nature of a VOI is captured directly
affects the effectiveness of any subsequent analysis. The key point of image rep-
resentation, in the context of data mining, is to remove those elements which
will not contribute to the effectiveness of any subsequent analysis, while retain-
ing those that will. In the context of the 3-D MRIs of the human brain used as
a focus for the work described in this paper some image preprocessing was first
conducted, namely: (i) slice capture and registration, (ii) contrast enhancement.

As indicated in Figure 1, 3-D brain scan MRIs are recorded in three planes:
(i) Sagittal (left to right), (ii) Coronal (front to back) and (iii) Transverse (top
to bottom). There are a number of software tools which can be used to view and
extract slices from 3-D MRI data files. For the work described in this paper the
MRICro1 software system was used. After capturing a collection of image slices,
using MRICro, a registration process was applied so that all slices conformed
to the same reference framework. Note that the process only requires one set of
slices (to evaluate the overall process slices from the Sagittal plane were used).

1 http://www.mccauslandcenter.sc.edu/mricro/.
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For contrast enhancement a thresholding technique [2] was used. This tech-
nique is more effective when an object’s colours are obviously different to their
background colours. However, the technique can still be used in the case where
the object and background colours are not noticeably clear. For example, in Fig-
ure 3 it can be seen that the ventricles are represented by the dark areas towards
the middle of the image, surrounded by brain tissue which appears as grey (or
white) matter. Generally, the contrast between the ventricle and other parts of
the brain is easily noticeable, but in some slices (such as SAG slice number 160
shown in Figure 3(c)) it is difficult to identify the boundary of the ventricle
because there are grey shades within the ventricle area. In this case, the thresh-
olding technique will enhance the contrast so as to aid the identification of the
ventricles. During thresholding, each pixel’s brightness is compared to a prede-
fined threshold. If the pixel is considered to be part of the VOI the pixel colour
is set to some predefined distinguishing colour, otherwise it will be identified as
background and set to an alternative predefined colour. The key success of the
thresholding process is the selection of the threshold value. In the work described
here the image processing suite of functions available in Matlab2 was used. Us-
ing the Matlab suite the threshold value can be automatically assigned by the
software or manually set by a human user. With respect to the work described
here the selected threshold value was manually set to 0.30. This was selected
after the effect of a range of threshold values ({0.28, 0.29, 0.31, 0.32, . . . }) had
been manually observed with respect to a reasonable number of different cases
by a domain expert. As a result, if a pixel was darker than 0.30 (of interest)
it was set to black, otherwise (not of interest) it was set to white. The brain
MRI slices shown in Figure 3 are again shown in Figure 4 after the thresholding
technique has been applied.

(a) SAG slice no. 100 (b) SAG slice no. 130 (c) SAG slice no. 160

Fig. 3: Example of brain image slices in the SAG plane

Once the contrast enhancement was complete the VOIs (the verticals) could
be segmented. To this end the Bounding Box technique was developed by the
authors. This comprised three steps: (i) define a bounding box that is expected to
encompass the ventricles of interest with respect to all relevant slices in the given

2 http://www.mathworks.co.uk/products/matlab/
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MRI volume, (ii) for each slice collect the black pixels (voxels) and (iii) apply
appropriate noise removal. The required bounding box is rectangular in shape
and defined by the coordinates of its corners. To ensure that the bounding box
is likely to encompasses all the ventricle voxels of interest it needs to be defined
in such a manner that it is considerably larger than the expected ventricle area
(so that nothing is missed). All black pixels are collected from each slice that is
located within the bounding box. Because the bounding box is defined so that a
considerably larger area than the expected ventricle area is covered some black
pixels located outside the ventricle area (noise pixels) will also be collected. These
are therefore removed in the final step using a simple noise reduction technique
whereby the black pixels that are not connected to the largest group of connected
pixels are simply removed. In other words the largest group of pixels is assumed
to be the ventricles.

(a) SAG slice no. 100 (b) SAG slice no. 130 (c) SAG slice no. 160

Fig. 4: Example of brain image slices from Figure 3 after applying thresholding
(threshold value = 0.30)

To evaluate the proposed Bounding Box segmentation technique experiments
were conducted using 85 MRI brain scans. By applying the proposed technique
using two sampling directions, two sets of volumes were obtained: (i) in the
Sagittal plane and (ii) in the Transverse plane. From the experiments it was
found that the volumes obtained were close to those obtained manually. Of
course the manually estimated volumes do not provide a “gold standard”, and
may themselves be flawed due to human error. However they did provide a
benchmark. The closest performing technique to the manual technique was found
to be when using the Sagittal plane. The results are presented in Figure 5, where
the volumes estimated from each technique (mm3) are plotted according the MRI
scan identification numbers sorted according to their associated ventricle size.

The difference in volume (mm3) between the manual and the proposed tech-
niques against the average is plotted in Figure 6. The mean difference (bias
estimate) and the 95% range of agreement (calculated as the mean difference
between +2SD and -2SD) is represented by the continuous horizontal lines. From
the figure it can be seen that the mean difference between the manually esti-
mated volumes and the volumes collected by the Bounding Box technique when
used in the Sagittal plane is the smallest (1.10 mm3) with a standard devia-
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tion of 1.53 mm3. Note that the difference in volume between the manual and
the Bounding Box technique increases as the overall volume of the ventricle
increases. Although the proposed techniques produced good results there were
some limitations. Firstly, the bounding box had to be initially manually defined
thus requiring some resource in order to ensure that the bounding box was not
too small. Secondly the technique requires application of a noise removal process
which had the effect of increasing the overall runtime of the algorithm. On the
positive side the idea behind the technique was simple, easy to implement, and
effective. Note that the dataset used in this experiments (comprising 85 MRI
brain scans) was a subset of the dataset used in the experiments to evaluate the
entire classification process. This was because manual identification of VOIs is
a time consuming process hence the authors were only able to manually process
85 MRI brain volumes.

Fig. 5: Comparisons between manually estimated volumes and volumes collected
using the proposed automated techniques
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Fig. 6: Levels of agreement in volume estimation between the manual and auto-
mated techniques

3.2 Image Decomposition

The objective of image decomposition is to represent an image in some hierarchi-
cal format. There are many types of image decomposition, common mechanisms
use data structures such as oct-trees, quad-trees and scale space representations
[5]. With respect to the work described in this paper, the oct-tree representation
was adopted. An oct-tree is a tree data structure which can be used to repre-
sent 3-D images that have been recursively subdividing it into eight equal sized
octants [12]. Each node in the tree holds image data related to its octant. With
respect to the work described in this paper a binary encoding was used. If an
octant was part of a ventricle (coloured black) the node was set to 1, otherwise
it was set to 0. If an octant did not comprise a homogenous colour it was de-
composed further. The process continued until a user defined “maximum depth”
was reached. Note that the lateral ventricles consist of two ventricles (left and
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right), thus two oct-trees were generated with respect to each image which (for
convenience) are joined at the root nodes.

3.3 Feature Extraction, Selection, and Classification

In the final stage of the process the oct-tree represented images are processed
further to form a feature vector representation to which standard classification
techniques can be applied. This is an idea first proposed in [6, 7] in the context
of 2-D MRI brain scans and subsequently used by a number of other researchers
such as [9] in the context of 2-D retina images and [14] with respect to 3-D MRI
scans. The first element in this part of the process was thus to apply Frequent
sub-graph Mining (FSM) to the oct-tree data. A number of FSM algorithms have
been proposed, such as: (i) Gspan [18], (ii) AGM [11], and (iii) FFSM [10]. The
Gspan algorithm was used with respect to the work described here. The output
of FSM is a set frequently occurring sub-graphs together with their occurrence
counts. Typically a large number of sub-graphs are generated many of which
are redundant (do not serve to discriminate between classes). Feature selection
techniques are typically used to reduce the overall number of identified frequent
sub-graphs. With respect to the work presented in this paper the feature selec-
tion mechanisms available within the Waikato Environment Knowledge Analysis
(WEKA) data mining workbench [8] were used.

4 Experimentation

This section described the experimental set up used to evaluate the proposed
process described above (the results obtained are presented in Section 5 be-
low). The experimentation was conducted using three classification methods: (i)
Naive Bayes [1], (ii) Support Vector Machine (SVM) [4], and (iii) Decision Trees
(C4.5) [16]. All of them are provided within WEKA [8]. With respect to the
Gspan algorithm four different minimum support thresholds were used to define
frequent sub-graphs ({20%, 30%, 40%, 50%}). As a result, four sets of feature
vectors were generated and used as inputs for each classifier. Results were pro-
duced using Ten-fold Cross Validation (TCV). Recall from the introduction to
this paper that the image set used for evaluation purposes comprised 210 MRIs
obtained from the Magnetic Resonance and Image Analysis Research Centre at
the University of Liverpool. Each scan consisted of 256 two dimensional (2-D)
parallel image slices in each plane. The “resolution” of each image slice was 256
x 256 pixels with colour defined using an 8-bit gray scale (thus 256 colours). This
was the same data set as used by El Sayed et al. as reported in [7], however El
Sayed et al. investigated the potential of the corpus callosum as an indicator of
epilepsy (as opposed of the ventricles) and only considered 2-D representations.

5 The Classification Results

The classification results obtained are shown in Table 1. The metrics used to
evaluate performance of the classification methods are accuracy (Accu.), sensi-
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tivity (Sens.) and Specificity (Spec.). The T values in the first column are the
Gspan minimum support thresholds. From Table 1 it can be seen that the best
classification accuracy was from the SVM classifier coupled with T = 30%, while
the worst was obtained using Naive Bayes coupled with T = 50%. The relation
between classification accuracy and support threshold for each classifier is shown
in the graph presented in Figure 7. From the graph it is obvious that the best
classifier for this dataset is SVM, and the best support threshold is T = 30%.
The classification accuracy with respect to all the classifiers considered tended to
decrease as the support threshold increased. It was conjectured that this was be-
cause significant sub-graphs were not discovered using Gspan when high support
thresholds were adopted.

Table 1: Classification results obtained using Naive Bayes, Support Vector Ma-
chine (SVM), and Decision Trees

Naive Bayes SVM Decision Trees
T(%) Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

20 64.34 67.25 66.80 68.53 70.40 68.23 67.83 70.58 68.67

30 68.53 70.40 69.23 72.34 75.67 70.45 70.45 74.28 73.20

40 65.13 68.57 70.34 70.45 72.34 69.23 65.87 70.47 65.40

50 61.56 65.40 64.15 62.28 66.96 60.67 62.80 67.05 64.15

6 Conclusions

In this paper an approach to 3-D MRI brain scan feature classification has been
proposed. The main contributions were the Bounding Box segmentation tech-
nique, the oct-tree representation technique and the use of FSM to identify
features. In the reported experimental study the Bounding Box technique when
applied in the Sagittal plane produced the best segmentation outcomes. In the
context of the overall proposed classification process (using the oct-tree repre-
sentation and FSM) promising outcomes were produced. The results reported in
[7] were better than those reported here, however the work in [7] was directed
at a 2-D representation of the corpus callosum which may be a better indicator
of epilepsy. Likewise, despite using a similar technique, the results reported in
[14] were slightly better than those reported in this paper. However, the work
in [14] considered not only the lateral but also the “third” ventricle. Moreover,
the datasets in [14] (Alzheimer’s disease and level of education) were different to
those used in this paper. The lateral and third ventricles may be better indicators
of Alzheimer’s disease and level of education than epilepsy.

The next stage of our research will focus on alternative methods of repre-
senting 3-D MRI brain scan features so that machine learning techniques can be
applied. The intention is also to consider the use of dynamic thresholding tech-
niques, as used in [14], to determine whether this helps improve the effectiveness
of the segmentation process. Regarding the classification process some weighting
technique (such as that proposed in [13]) could be applied to the FSM process
in order to improve its operation.
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Fig. 7: Relation between classification accuracy and support threshold for each
classifier
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