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Abstract. Multi-Agent Clustering (MAC) requires a mechanism for
identifying the most appropriate cluster configuration. This paper re-
ports on experiments conducted with respect to a number of validation
metrics to identify the most effective metric with respect to this context.
This paper also describes a process whereby such metrics can be used to
determine the optimum parameters typically required by clustering al-
gorithms, and a process for incorporating this into a MAC framework to
generate best cluster configurations with minimum input from end users.

Keywords: Cluster Validity Metrics, Multi-Agent Clustering.

1 Introduction

Clustering is a core data mining task. It is the process whereby a set of objects,
defined in terms of a global set of features, are categorised into a set of groups
(clusters) according to some similarity measure or measures. Most clustering
algorithms require user-supplied parameters, such as the desired number of clus-
ters or a minimum cluster size. Identification of the most appropriate parameters
to produce a “best” cluster configuration is difficult and is normally achieved
through a “trial and error” process conducted by the user. The identification of
the most appropriate parameters is further hampered by difficulties in defining
what we mean by a cluster configuration that “best” fits the underlying data.

The need to be able to automatically identify best parameters with respect to
a notion of a “best” cluster configuration is of particular relevance in the context
of Multi Agent Clustering (MAC) as suggested in [6, 7]. The view of clustering
presented in [6] is that of a “anarchic” collection of agents: some equipped with
algorithms to conduct clustering operations or to validate the output from clus-
tering algorithms, some holding data, and others performing house keeping and
management tasks. The aim of this Multi-Agent System (MAS), although not
fully realised, is to produce MAC solutions to clustering problems that require
minimal input from the user and output a most appropriate cluster configura-
tion. This objective is currently hampered by the lack of a clear understanding
of what is meant by a best cluster configuration, and how this might be mea-
sured. Further, assuming we can define a best cluster configuration, how can
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appropriate parameters be derived so that the desired best configuration can be
realised?

In this paper a “best” cluster configuration, in the context of MAC, is defined
in terms of some validity metric that must be optimised. The desired configura-
tion is generated using a sequence of parameter values (the nature of which is
dependent on the clustering algorithm adopted) to produce a collection of clus-
ter configurations from which the most appropriate can be selected according
to the adopted validity metric. Much depends on the accuracy of this metric.
In this paper three such metrics are considered: the Silhouette coefficient, the
Davies-Bouldin (DB) index and WGAD-BGD (this last derived by the authors).

The rest of the report is organised as follows: Section 2 surveys some relevant
previous work. An overview of the metrics used to identify “best” cluster config-
urations, is given in Section 3. Section 4 describes the generation propose. Some
evaluation and comparison is then presented in Section 5. Some conclusions are
presented in Section 6.

2 Previous Work

This section provides a review of a number of established metrics used to eval-
ualte clustering results, and current work on MAC within the context of the
cluster configuration validity issue identified above. Different clustering algo-
rithms provide different clustering results depending on the characteristics of
the input data set and the input parameters used to define the nature of the
desired clusters.

Cluster validity techniques are used to evaluate and assess the result of clus-
tering algorithms, and may be used to select the best cluster configuration that
best fits the underlying data. The available techniques can be typically clas-
sified into: (i) external criteria and (ii) internal criteria [10]. External criteria
techniques use prelabelled datasets with “known” cluster configurations and
measure how well clustering techniques perform with respect to these known
clusters. Internal criteria techniques are used to evaluate the “goodness” of a
cluster configuration without any priory knowledge of the nature of the clusters.
This technique uses only the quantities and features inherent in the data set.
Techniques based on external criteria require a pre-labelled training data set.
Techniques based on internal criteria tend to be founded on statistical meth-
ods, A major drawback of which is that this often incurs high computational
complexity.

A survey of well established cluster validity techniques, with respect to the
above, can be found in [10]. Well known techniques include: Dunn indexing [9],
Davies-Bouldin indexing[8], BR-index [20], SD [12], S Dbw [11], the Silhouette
coefficient [21], and SSB and SSE [23]. Reviews of a number of these techniques
are presented in [16] and [20]. They can be categorised as measuring either: (i)
the degree of intra-cluser cohesion, or (ii) the degree of inter-cluster separation;
or (iii) both cohesion and separation (i.e. hybrid methods). Four of these tech-
niques (Davies-Bouldin, Silhouette and SSB and SSE) are used in the study
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described in this paper and are considered in further detail in Section 3. The
four techniques were selected as they represent a mixture of approaches; SSB
is used to measure inter-cluster separation and SSE is used to measure intra-
cluster cohesion, while the Davies-Bouldin index and the Silhouette coefficient
represent hybrid methods.

An essential feature of MAC is that the agents should determine the most
appropriate number of clusters for a given data set, and the associated parame-
ters required for cluster generation, without end user intervention. As far as the
authors are aware there has been no reported work on this element of MAC.
There are a number of proposed tools that present alternatives to end-users
for selection. The presentation is usually in some graphical format, hence these
tools may be labelled as “visual” cluster validation tools. One such tool is CVAP
(Cluster Validity Analysis Platform) [24]. CVAP operates by applying a number
of clustering algorithms, with a sequence of parameters, to a given data set. Each
result is assessed using a “validity” index which is plotted on a graph which may
then be inspected and a selection made. Another such tool is described in [17].

There has been some previous work on multi-agent clustering. The earliest
reported systems are PADMA [13] and PAPYRUS [4]. The aim of these systems
was to achieve the integration of knowledge discovered from different sites with
a minimum amount of network communication and a maximum amount of local
computation. PADMA is used to generate hierarchical clusters in the context of
document categorisation. PADMA agents are employed for local data accessing
and analysis. A facilitator (or coordinator) agent is responsible for interaction
between the mining agents. All local clusters are collected at the central site
to generate the global clusters. PADMA is therefore based on a centralised ar-
chitecture, whereas PAPYRUS adopts a Peer-To-Peer model where both data
and results can be moved between agents according to given MAS strategies.
Another MAC based on the Peer-To-Peer model is proposed in [22] where a dis-
tributed density-based clustering algorithm, called KDEC [15], is used. Density
estimation samples are transmitted, instead of data values, outside the site of
origin in order to preserve data privacy. Reed et al. [19] proposed a MAS for dis-
tributed clustering for text documents which assigns new, incoming documents
to clusters. The objective here was to improve the accuracy and the relevancy of
information retrieval processes. Kiselev et al. [14] proposed a MAC dealing with
data streams in distributed and dynamic environments whereby input data sets
and decision criteria can be changed at runtime. Clustering results are available
at anytime and are continuously revised to achieve the global clustering. (There
are also some reported agent based systems for supervised learning, such as that
reported in [3, 5, 1] from which some parallels may be drawn with respect to
MAC.) What the above reported systems have in common, unlike the generic
vision espoused in this paper, is that they are founded on a specific clustering
algorithm that feature preset parameters.
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3 Quality Measures

In this section four of the quality measures introduced in the previous section
(Davies-Bouldin, Silhouette, SSB and SSE) are considered in further detail. Re-
call that to determine the effectiveness of a cluster configuration we can adopt
three approaches: (i) we can measure the cohesion of the objects within clusters,
(ii) the separation between clusters, or (iii) a combination of the two. Cohesion
can be measured using the Sum Squared Error (SSE) measure and separation
the Sum of Squares Between groups (SSB) measure. While the Davies-Bouldin
index and the Silhouette coefficient combine the two. The basic notation used
through out the discussion is given in Table 1. For the work described in this pa-
per the maximum number of clusters, maxPts, is calculated as the square root
of the number of objects (records), N , thus maxPts = d

√
Ne. The intuition

here is that the maximum number of clusters that the records in a data set can
be categorised into is proportional to N (the number of records). The minimum
number of clusters (minPts) is typically set to 2.

Table 1: Basic notation

notation Description

K The number of clusters
N The number of objects (records) in a data set
{C1, ..., CK} Set of K clusters
D = d(xi, xj) Matrix of “distance” among objects
x1, ..., xN Set of objects to be clustered
minPts The minimum number of possible objects in a cluster
maxPts The maximum number of possible objects in a cluster
|Ci| The number of objects in a cluster i (i.e. the size of a cluster)

SSE [23] is the sum of the squared intra-cluster distance of each cluster
centroid, ci, to each point (object) xj in that cluster. More formaly the total
SSE of a given cluster configuration is defined as:

Total SSE =

i=K∑
i=1

j=|Ci|∑
j=1

dist(xj , ci)
2 . (1)

The lower the total SSE value the greater the intra-cluster cohesion associated
with the given cluster configuration.

SSB [23], in turn, is the sum of the squared distance of each cluster cen-
troid (ci) to the overall centroid of the cluster configuration (c) multiplied (in
each case) by the size of the cluster. Formaly the total SSB of a given cluster
configuration is defined as:

Total SSB =

i=K∑
i=1

|Ci|(dist(ci, c))2 . (2)
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The higher the total SSB value of a cluster configuration the greater the degree
of separation. Note that the cluster centriod is used to represent all the points
in a cluster, sometimes referred to in the literature as the cluster prototype, so
as to reduce the overall computational complexity of the calculation (otherwise
distance from every point to every other point would have to be calculated).

Using the above the calculated SSE and SSB values tend to be large numbers
because of the squared operation. Therefore, in the context of the work described
here, the authors use variations of SSE and SSB metrics. We refer to these metrics
as the total Within Group Average Distance (WGAD) [18] and the total Between
Group Distance (BGD). WGAD and BGD are derermined as follows:

Total WGAD =

i=K∑
i=1

∑j=|Ci|
j=1 dist(xj , ci)

|Ci|
. (3)

Total BGD =

i=K∑
i=1

dist(ci, c) . (4)

Experiments conducted by the authors (not reported here) suggested that
both separation and cohesion are significant and thus we find the difference
between a pair of WGAD and BGD values to express the overall validity of
a given cluster configuration. We refer to this measure as the WGAD-BGD
measure. To obtain a best cluster configuration we must minimise the WGAD-
BGD measure.

The Overall Silhouette Coefficient (OverallSil) of a cluster configuration is
measure of both the cohesiveness and separation of the configuration [21]. It is
determined by first calculating the silhouette (Sil) of each individual point xj

within the configuration as follows:

Sil(xj) =
b(xj)− a(xj)

max(a(xj), b(xj))
. (5)

where a(xj) is the average intra-cluster distance of the point xj to all other points
within its cluster, and b(xj) is the minimum of the average inter-cluster distances
of xj to all points in each other cluster (see Figure 1 for further clarification).
The overall silhouette coefficient (OverallSil) is then calculated as follows:

OverallSil =

∑i=K
i=1

∑j=|Ci|
j=1

sil(xj)

|Ci|

K
. (6)

The resulting overall silhouette coefficient is then a real number between −1.0
and 1.0. If the silhouette coefficient is close to −1, it means the cluster is unde-
sirable because the average distance to points in the cluster, is greater than the
minimum average distance to points in the other cluster(s). The overall silhou-
ette coefficient can be used to measure the goodness of a cluster configuration.
The larger the coefficient the better the cluster configuration.

The Davies-Bouldin (DB) validity index is the sum of the maximum ratios
of the intra-cluster distances to the inter-cluster distances for each cluster i:
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DB =
1

K

i=K∑
i=1

Ri . (7)

Where Ri is the maximum of the ratios between cluster i and each other cluster
j (where 1 ≤ j ≤ K and j 6= i). The lower the DB value the better the associated
cluster configuration. The individual ratio of the intra-cluster distances to the
inter-cluster distances for cluster i with respect to cluster j is given by:

Rij =
Si − Sj

dij
. (8)

where dij is a distance between the centroid of cluster i and the centroid of
cluster j, and Si (Sj) is the average distance between the points within cluster
i (j):

Si =
1

|Ci|

n=|Ci|∑
n=1

d(xn, ci) . (9)

where ci is the centroid of cluster i, and x is a point (object) within the cluster
i. The derivation of DB is illustrated in Figure 2.
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Fig. 1: Derivation of the Overall
Silhouette Coefficient (OverallSil)

 

Fig. 2: Derivation of the Davies-Bouldin
(DB) validity index

4 Parameter Identification for Clustering Algorithms

Most clustering algorithms require user-supplied parameters. For example: K-
means requires the number of classes, K, as a parameter; and KNN requires a
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threshold (t) to identify the “nearest neighbour”. To obtain a best cluster config-
uration in terms of the metrics described above the most appropriate parameters
are required. To act as a focus for this part of the research reported in this pa-
per the well known K-means and KNN algorithms were adopted, although other
clustering algorithms could equally well have been adopted.

The most obvious mechanism for indentifying appropriate parameters is to
adopt some kind of generate and test loop whereby a cluster configuration is
“generated” using a particular parameter value which is then “tested” (evalu-
ated) using a validity metric (such as those discussed in the foregoing section)
as a result of which the parameter value is adjusted. However, this did not prove
successful. Figure 3 shows the validity measures obtained using the silhouette
coefficient (Sil. Coef.) and the Davies-Bouldin index (DB) and with a range of
t values using the KNN clustering algorithm when applied to the Iris data set
taken from the UCI data repository [2] (similar results were obtained using other
data sets). From the figure it can be seen that there are local maxima and minima
which means that a generate and test procedure is unlikely to prove successful.
Figure 4 shows the WGAD-BGD measures obtained using the KNN algorithm
and the Iris data set. Recall that, we wish to minimise this measure. From the
figure it can be seen that a range of “best” t values are produced. Thus a gen-
erate and test process would not find the most appropriate parameters. Instead,
the process advocated here is to generate a sequence of cluster configurations for
a range of parameter values.

Fig. 3: Validity values using Sil.Coef. and
DB index for KNN algorithm
using the Iris data set.

Fig. 4: Validity values using WGAD-BGD
for KNN algorithm using the Iris
data set.

Thus, for K-means, to identify the most appropriate number of clusters the
algorithm is run multiple times with a sequence of values for K ranging from 2 to
d
√
Ne, where N is the number of records in the given data set. The “goodness”

of each generated cluster configuration was tested using the identified validity
metrics. The generation algorithm is presented in Table 2.
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In the case of KNN the algorithm is run multiple times with a range of
different values for the nearest neighbour threshold (t). Note that any t value
that does not generate a number of clusters of between 2 and d

√
Ne is ignored.

The algorithm is presented in Table 3.
The process was incorporated into a MAC framework founded on earlier

work by the authors and reported in [6, 7]. An issue with K-means is that the
initial points (records/objects) used to define the initial centroids of the clusters
are randomly selected. Experiments indicated that the selection of start points
can greatly influence the operation of K-means, to the extent that different best
values of K can be produced depending on where in the data set the algorithm
starts. Therefore use of K-means to identify a “proper” number of clusters does
not represent a consistent approach. However, the KNN parameter selection
process can be used to indirectly determine the most appropriate value for K to
be used in the K-means approach.

5 Experimental Evaluation

In Section 3 a number of metrics for identifying a best cluster configuration
were identified. These in turn were incorporated into the parameter identific-
taion mechanism identified in the foregoing section. The evaluation of the pro-
posed approach is presented in this section. The evaluation was conducted using
ten data sets taken from the UCI repository [2]. Table 4 gives some statistical
information concerning these data sets. Note that the data sets display a variety
of features.

Table 2: Algorithm to identify the most appropriat number of clusters using
K-means.

Algorithm: KmeansIdentifiesK

Input: x1, ..., xN

Output: K, the overall validity value

1. For K = 2 to K = d
√
Ne do

2. Do K-means clustering
3. Evaluate the clustering result (a set of clusters) by using a chosen metric
4. Keep K and the overall cluster validity
5. Select K which provide the good cluster configuration

Table 5 shows a comparison of the operation of the above process using:
K-means; and the identified cluster validity techniques, namely silhouette co-
efficient (Sil. Coef.), Davies-Bouldin index (DB index), and the combination
between WGAD and BGD (WGAD-BGD); when applied to the data sets listed
in Table 4. The comparison is conducted by considering the number of clusters
(K) associated with the best cluster configuration and the known value for K.
Table 6 presents a similar comparison using the KNN algorithm.
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Table 3: Algorithm to identify the most apppropriate number of clusters using KNN.

Algorithm KNNIdentifiesK

Input: x1, ..., xN

Output: t, K, the overall validity value

1. Calculate distance between objects in a data set
2. Ascending order all of objects in the data set
3. Choose one point in which its position is at the middle
4. Choose distance between the object from step 3 and other objects in the data set
5. Set t = distance
6. Ascending order distances and select distinct distances
7. For each t do
8. Do KNN clustering
9. If the result generated from step (8) is different from the last result
10. Evaluate a clustering result.
11. Keep t, K and the overall validity value
12. Select t providing the “best” cluster configuration

In both Table 5 and Table 6 the values in bold indicate where the identified
number of clusters (K) exactly matches the “known” value of K. (In Table 5 it
can also be argued that the K value of 8 produced using the DB index metric
is significantly close to the “required” value of 7.)

The results are summarised in Table 7 (again values in bold indicate best
results). From Table 7 it can be observed that the DB-index does not perform
well, particularly when used in conjunction with K-means. In this latter case
the use of DB-index over specified the number of clusters that define a best
cluster configuration, in all cases. Both the Silhouette Coefficient and WGAD-
RGD produced better results, with the best result generated using Silhouette in
conjunction with KNN. Further experiments using K-means demonstrated that
the results obtained were very inconsistent in that they were very dependent
on the nature of the selected start locations (centroids). In this respect KNN
produced more consistent results. It is also worth nothing that using some data
sets (Heart, Pima Indians and Breast Cancer) consistent results were obtained,
with respect to other data sets (Iris, Zoo, Ecoli, Yeast and Car) poorer results
were obtained. Inspection of the nature of these data sets (Table 4) indicats that
the proposed technique operates best where data sets feature a small number of
clusters (classes).

Table 4: Statistical information for the datasets used in the evaluation.

No. Data Set Num Num Num Attribute
Records (N) Attr Classes Description

1 Iris 150 4 3 4 Numeric
2 Zoo 101 16 7 15 Boolean, 1 Numeric
3 Wine 178 13 3 13 Numeric
4 Heart 270 13 2 6 Real, 1 Ordered, 3 Binary, 3 Nominal
5 Ecoli 336 7 8 7 Real
6 Blood Transfusion 748 4 2 4 Integer
7 Pima Indians 768 8 2 8 Numeric
8 Yeast 1484 8 10 8 Numeric
9 Red wine quality 1599 11 6 11 Numeric
10 Breast Cancer 569 21 2 21 Real
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Table 5: Results using K-means to generate a best set of clusters

No. Data Set Known K Sil. K DB K WGAD-
K Coef. Index BGD

1 Iris 3 2 0.68 4 0.31 2 3.93
2 Zoo 7 4 0.47 8 0.68 2 3.66
3 Wine 3 2 0.66 12 0.21 2 583.02
4 Heart 2 2 0.38 12 0.67 2 81.75
5 Ecoli 8 4 0.43 12 0.67 2 0.57
6 Blood Transfusion 2 2 0.70 15 0.20 2 3044.25
7 Pima Indians 2 2 0.57 3 0.51 2 223.53
8 Yeast 10 3 0.27 26 0.78 2 0.29
9 Red Wine 6 2 0.60 34 0.87 2 3.00

10 Breast cancer 2 2 0.70 20 0.29 2 1331.33

6 Conclusions

In this paper a set of experiments directed at identifying the most appropriate
metrics to determine the validity of a cluster configulation have been reported.
Three validity metrics were considered, the silhouette coeficient, the DB index
and WGAD-BGD. The last being a combination of the SSB and SSE metrics.
Experiments were conducted using K-means and KNN, and a collection of data
sets taken from the UCI repository. The context of the work described was Multi-
Agent Clustering (MAC) directed at generating a cluster configuration that best
fits the input data using a variety of clustering mechanisms. This in turn required
a mechanism for identifying best cluster configurations. The main findings of the
work are as follows: (i) the overall best cluster configuration validation technique
is the Silhouette coefficient, (ii) KNN is a much more reliable technique to find
the best value for K than K-means (but can be used to discover the K value
required by K-means), and (iii) a generate and test process does not necessarily
achieve the desired result.

Table 6: Results using KNN to generate a best set of clusters

No. Data Set Known t K Sil. t K DB t K WGAD-
K Coef. Index BGD

1 Iris 3 1.49 2 0.69 1.49 2 0.38 1.49 2 3.97
2 Zoo 7 2.83 2 0.40 2.65 4 0.71 2.83 2 3.94
3 Wine 3 195.07 3 0.61 75.78 14 0.33 206.37 2 810.82
4 Heart 2 81.63 2 0.76 81.63 2 0.16 81.63 2 316.67
5 Ecoli 8 0.53 2 0.39 0.28 10 0.39 0.53 2 0.79
6 Blood Transfusion 2 2000.02 2 0,83 250.27 18 0.12 2000.02 2 7404.08
7 Pima Indians 2 193.36 2 0.79 193.36 2 0.23 193.36 2 682.60
8 Yeast 10 0.60 2 0.74 0.26 21 0.31 0.60 2 0.74
9 Red Wine 6 1.42 3 0.17 1.42 3 2.21 1.42 3 8.47

10 Breast cancer 2 992.39 2 0.80 992.39 2 0.13 992.39 2 3888.91



Best Clustering Configuration Metrics: Towards Multiagent Based Clustering 11

Table 7: Summary of results

KNN K-Means

No. Data Set K K K K K K K
UCI Sil. DB WGAD- Sil. DB WGAD-

Coef. index BGD Coef. index BGD

1 Iris Plants 3 2 2 2 2 4 2
2 Zoo 7 2 4 2 4 8 2
3 Red Wine 3 3 14 2 2 12 2
4 Heart 2 2 2 2 2 12 2
5 Ecoli 8 2 10 2 4 12 2
6 Blood Transfusion 2 2 18 2 2 15 2
7 Pima Indians 2 2 2 2 2 3 2
8 Yeast 10 2 21 2 3 26 2
9 Car 6 3 3 3 2 34 2
10 Breast Cancer 2 2 2 2 2 20 2

Totals 5 3 4 4 0 4

These findings are currently being incorporated into a MAS framework [6,
7]. The techniques investigated sofar, and reported here, do not serve to find the
best results in all cases and further investigation is therefore required, however
the authors are greatly encouraged by the result reported in this paper.
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