
Finding Frequent Subgraphs in Longitudinal

Social Network Data Using a Weighted Graph

Mining Approach

Chuntao Jiang, Frans Coenen, and Michele Zito

Department of Computer Science,
University of Liverpool, Ashton Building,
Ashton Street, L69 3BX Liverpool, UK.

{c.jiang,coenen,zito}@liverpool.ac.uk

Abstract. The mining of social networks entails a high degree of com-
putational complexity. This complexity is exacerbate when considering
longitudinal social network data. To address this complexity issue three
weighting schemes are proposed in this paper. The fundamental idea is
to reduce the complexity by considering only the most significant nodes
and links. The proposed weighting schemes have been incorporated into
the weighted variations and extensions of the well established gSpan fre-
quent subgraph mining algorithm. The focus of the work is the cattle
movement network found in Great Britain. A complete evaluation of the
proposed approaches is presented using this network. In addition, the
utility of the discovered patterns is illustrated by constructing a sequen-
tial data set to which a sequential mining algorithm can be applied to
capturing the changes in “behavior” represented by a network.

Keywords: Frequent subgraph mining, Weighted graph mining, Social
network mining, Longitudinal data

1 Introduction

Social Network Mining (SNM) [1] is a sub-field of research within the context of
Knowledge Discovery in Data (KDD). A social network comprises a set of nodes
that represent entities and links that represent some form of communication be-
tween such entities. The entire network is not necessarily connected and usually
includes some super-nodes to which many other nodes are connected. Popular
examples of social networks include social networking sites such as FaceBook1

and Flickr2. However, there are many other forms of social networks such as in-
formation sharing networks and co-authoring networks. Many of these networks,
such as co-authoring networks, are derived from tabular data. In the case of
co-authoring networks [2] these can be derived from web applications such as

1 http://www.facebook.com
2 http://www.flickr.com

2 Chuntao Jiang, Frans Coenen, Michele Zito

DBLP3 and CiteSeer4 . The focus of the work described in this paper is the Cat-
tle Tracking System (CTS) database, in operation in Great Britain, from which
a cattle movement network can be extracted. However, the techniques described
are generally applicable.

SNM is directed at the identification of patterns within social networks net-
works. The nature of the patterns can take many forms, a common type of SNM
is the identification of clusters of frequently “corresponding” nodes. SNM is usu-
ally applied in a static context, i.e. a “snap shot” of the network is taken to
which SNM is then applied. In this paper we are interested in applying SNM
techniques to sequences of such snap shots where each snap shot is time stamped
in someway. We refer to these sequences as longitudinal social networks, in that
the sequences may be compared to longitudinal data collections such as those
found in medical applications [3]. More specifically we are interested in finding
frequently occurring subgraphs in longitudinal social network data.

Social network data is often substantial, usually comprising many nodes and
links. Consequently, longitudinal social network data tends to be even more sub-
stantial, typically an order of magnitude relative to the number of time stamps
to be considered. Standard frequent subgraph mining algorithms, such as gSpan
[4], are thus unable to process such large longitudinal networks in a realistic
manner. In recognition that some links (and/or nodes) may be considered to be
more important than others, in this paper weighted longitudinal social network
mining is proposed. Weightings can be applied in a number of manners, three
weighting schemes are proposed and evaluated in this paper.

The rest of this paper is structured as follows. Some previous work and a
problem definition are presented in Sects 2 and 3 respectively. Three proposed
weighting schemes to achieve longitudinal SNM are presented in Sect 4. The
suggested weighting schemes are evaluated and compared in Sect 5. Some con-
clusions and main findings are presented in Sect 6.

2 Previous Work

Examples of research work on applying frequent subgraphs to analyzing social
networks include: community pattern mining [5], targeted advertising [6], and
structural prediction [7]. Frequent subgraph mining [8, 9, 4] entails two signifi-
cant overheads: candidate set generation and (sub)graph isomorphism checking.
However, these overheads are exacerbated when the size of the graph data is sub-
stantial and the support threshold is low. Weighted frequent subgraph mining
[10] advocates the use of weighted support counts to identify weighted frequent
subgraphs. Hence, the “computational burden” of subgraph mining can be con-
siderably alleviated by generating a set of weighted frequent subgraphs.

3 http://www.informatik.uni-trier.de/ ley/db/
4 http://citeseerx.ist.psu.edu/

Finding Frequent Subgraphs in Longitudinal Social Network Data 3

3 Problem Definition

This section provides the necessary longitudinal social network representation
and mining definitions

Definition 1. A longitudinal social network is comprised of a sequence of graphs
NG = {G1, G2, · · · , GT }, where Gt is a graph corresponding to the social network

representation at time period of t ∈ [1, T]. Let V =
⋃T

t=1 Vt denote the whole set
of entities for the network. Each entity v ∈ V is uniquely labeled, and each v can
appear only once at each time-step.

Definition 2. For any arbitrary subgraph g = (V ′, E′) such that V ′ ⊆ V , the
support set of g is defined as δ(g) = {t|g ⊆ Gt}, e.g., the set of time-steps for
which g is a subgraph of Gt. The support of g with respect to NG, sup(g), is
defined to be the cardinality of the support set, |δ(g)|.

Definition 3. A subgraph g is frequent with respect to NG if |δ(g)| ≥ τ × T ,
where 0 < τ ≤ 1 is a minimum support threshold. The frequent subgraph mining
problem is thus to find all frequent subgraphs in NG.

4 Weighted Frequent Subgraph Mining

Most research work in frequent subgraph mining [8, 9, 4], assumes each discovered
frequent subgraph is equally important. Because of this, a lot of redundant and
repetitive frequent patterns exist in the resultant set. In addition, if the size of
the graphs is substantial and the minimum support is low, a typical frequent
subgraph mining task will not terminate within a reasonable period of time due
to the exponential computation incurred by subgraph isomorphism testing. If
we put emphasis on differentiating each discovered frequent subgraph by their
importance as defined by the user, or as derived from the application domain,
a reduced computational complexity can be achieved without compromising the
effectiveness of the discovery process.

Therefore, the graphs in NG are assumed to have weights associated with
their nodes or links. Let W (g) be a weighting function that assigns a weight to
each discovered subgraph g. The weighted support of g with respect to NG, is
then defined as wsup(g) = W (g)× |δ(g)|.

When a weighting function is integrated into the process of mining weighted
frequent subgraphs, the well-known anti-monotone property5, which is often used
to prune the search space of the patterns, is not satisfied anymore. There are
two general solutions to this dilemma: (i) design a weighting function that keeps
the property; (ii) utilize some heuristics to reduce the computation incurred by
not maintaining the property.

In the context of weighted frequent subgraph mining, the weighting function
associated with a subgraph pattern g can be defined in various manners. Three

5 If a graph is infrequent, then all its supergraphs are infrequent.

4 Chuntao Jiang, Frans Coenen, Michele Zito

example approaches are proposed in this paper: (i) Average Mutual Informa-
tion Based Weighting (AMW), (ii) Affinity Weighting (AW), and (iii) Utility
Based Weighting (UBW). The first two approaches satisfy the anti-monotone
property while the last one adopts an alternative pruning heuristic. The last two
approaches employ two parameters to control the mining result while the first
one uses one parameter only. Each approach is discussed in further detail in the
following three sub-sections.

4.1 Average Mutual Information Based Weighting (AMW)

In the AMW approach, the weight for a subgraph g is calculated by dividing the
sum of the average weights in graphs that contain g with the sum of the average
weights across the entire data set T . Thus:

Definition 4. Given a node weighted graph g with node weights {w1, w2, · · · , wk},

the average weight associated with g is defined as Wavg(g) =
∑k

i=1
wi

k
.

Where wi can be user defined or calculated by some weighting methods. In
this paper, a weighting method to generate the node weight, is introduced as
follows:

Definition 5. Given a subgraph g = {e1, e2, · · · , ek}, for each link ei with two
connecting nodes va and vb, their corresponding support values are sup(ei),
sup(va), and sup(vb). The mutual information between two nodes, PMI(ei), is

then defined as PMI(ei) = log
(

sup(ei)
sup(va)×sup(vb)

)

. PMI(ei) = 0, when sup(va) =

0 or sup(vb) = 0.

Definition 6. Given a subgraph g, with V (g) = {v1, v2, · · · , vm} and E(g) =
{e1, e2, · · · , ek}, the weight for node vi, wi is defined as:

wi =

∑k
i=1 PMI(ei)

deg(vi)− 1
. (1)

Where deg(vi) denotes the number of links incident to vi, if deg(vi) = 1 or
0, wi = 0.

Definition 7. Given a set of graphs NG = {G1, G2, · · · , GT }, the total weight

of this set of graphs is defined as Wsum(NG) =
∑T

i=1 Wavg(Gi).

Definition 8. Given an arbitrary subgraph g with its support set δ(g), the weight-
ing function of g with respect to NG, WNG

(g), is defined as:

W (g) =

∑

Gi∈δ(g) Wavg(Gi)

Wsum(NG)
. (2)

Definition 9. A subgraph g is weighted frequent with respect to GN , if |δ(g)| ×
W (g) ≥ τ × T , where 0 < τ ≤ 1 is a minimum support threshold.

Finding Frequent Subgraphs in Longitudinal Social Network Data 5

From the above it can be easily inferred that the function W (g), as defined by
(2), satisfies the anti-monotone property. Therefore, if a k-subgraph candidate is
not frequent, then any of its (k+1)-supergraph candidates can be safely pruned
from this branch in the search space lattice during the k+1 candidate generation
process. It should be noted, however, that the approach will tend to bias large
transaction graphs over smaller transaction graphs, thus is best applied to graph
sets where the individual graphs are of a similar size.

4.2 Affinity Weighting (AW)

The AW approach is founded on two elements to restrict the growth of the search
space: (i) a graph distance measure, and (ii) a weighting ratio. For a subgraph
g to be frequent both elements must be greater than specified user thresholds.
The graph distance measure is calculated using an appropriately defined support
weighting function, W (g). This is defined as follows. Let g be a candidate pattern
for a database NG = {G1, G2, · · · , GT }. In the context of AW we define:

W (g) =
1

|V (g)|

∑

Gi∈δ(g)

|V (Gi)| − |V (g)|

|V (Gi)|
. (3)

Where V (Gi) is the set of nodes in transaction graph Gi and V (g) is the set
of nodes in the subgraph g. Observe that WT (g) satisfies:

W (g) =
|δ(g)|

|V (g)|
−

∑

Gi∈δ(g)

1

|V (Gi)|
. (4)

It should be noted that adding nodes to g can only reduce the value of
the above expression because the support(|δ(g)|) cannot be increased; the sum
contains as many terms as |δ(g)| and each of these cannot be larger than 1/|V (g)|.
Thus W (g) as defined above, insures that the weighted support of g is non-
increasing (i.e. anti-monotone) in |V (g)|.

The graph distance measure is directed at the number of nodes contained in a
graph, the weighting ratio concerned with the link weights. The weighting ratio
of an link-weighted graph g is a function c(g) returning a value between zero
and one which is decreasing in the number of links of g. Given an link weighted
subgraph g with link weights W = {w1, w2, · · · , wk} the weighting ratio function,
c(g), is defined as follows:

c(g) =
MINwi∈W {wi}

MAXwj∈W {wj}
. (5)

Definition 10. An link-weighted graph g is a weighted frequent (i.e. weighted
affinity) pattern within a data set NG = {G1, G2, · · · , GT }, with respect to a
support threshold τ > 0 and weighting ratio threshold γ ∈ [0, 1], if the following
two conditions (C1 and C2) are satisfied:

(C1) wsup(g) ≥ τ × T, and (C2) c(g) ≥ γ .

6 Chuntao Jiang, Frans Coenen, Michele Zito

Definition 10 leads to an alternative pruning strategy which, may be used as
part of any frequent subgraph mining algorithms. During the candidate selection
phase, the mining will keep track of the weighted support and weighting ratio of
all candidates and discard all those candidates that do not satisfy at least one
of (C1) and (C2).

4.3 Utility Based Weighting (UBW)

The previous two approaches both satisfy the anti-monotone property. In this
section an alternative weighting scheme which does not feature the property is
proposed, instead an alternative mechanism for limiting growth is adopted. The
UBW scheme is influenced by ideas suggested in [11]. As in the case of the AW
scheme, the UBW scheme is founded on two elements: (i) weighted support and
(ii) the share (SH) of a subgraph. Thus:

Definition 11. Given a subgraph g with links E(g) = {e1, e2, · · · , ek}. For each
ei ∈ E(g), two nodes connecting ei are v1 and v2. Their associated support sets
are given as δ(v1) and δ(v2). The Jaccard similarity coefficient between the two
nodes is defined as jC(ei) = |δ(v1)∩δ(v2)|/|δ(v1)∪δ(v2)|. The weighting function
of g, W (g), is then defined as

W (g) =
1

∑

ei∈E(g) jC(ei)
. (6)

From the above it is clear that W (g) satisfies the anti-monotone property.

Definition 12. Given an link weighted graph set NG = (G1, . . . , GT) with link
weights {w1, w2, · · · , wk} for each transaction graph Gt and a subgraph g. Let
g ⊆ Gt, the weight of g denoted as W (g,Gt), is the sum of the weights of
the links which occurred in Gt. That is, W (g,Gt) =

∑

ei∈g,g⊆Gt
wi. The total

weight of NG, denoted as TW (NG), represents the sum of link weights in NG,
where TW (NG) =

∑

Gt∈NG

∑

ei∈Gt
wi. The total weight of δ(g), is defined as

TW (δ(g)) =
∑

Gt∈δ(g)

∑

ei∈Gt
wi.

Definition 13. The graph weight of g with respect to NG, denoted as GW (g),
is the sum of the weight of the g in each transaction graph Gt ∈ δ(g). That is,
GW (g) =

∑

Gt∈δ(g) W (g,Gt).

Definition 14. The share of a subgraph g, denoted as SH(g), is the ratio of the
graph weight of g with respect to NG to the total weight of NG. Thus:

SH(g) =
GW (g)

TW (NG)
. (7)

Given a share threshold λ, a subgraph g is SH-frequent if SH(g) ≥ λ; otherwise,
g is SH-infrequent.

Theorem 1. Given a NG = (G1, . . . , GT), a subgraph g, and a threshold λ, if
TW (δ(g)) < λ× TW (NG), all supergraphs of g are SH-infrequent.

Finding Frequent Subgraphs in Longitudinal Social Network Data 7

Proof. Let h be an arbitrary supergraph of g. Clearly, GW (h) ≤ TW (δ(h)) ≤
TW (δ(g)). If TW (δ(g)) < λ × TW (NG) holds, GW (h) < λ × TW (NG). That
is, SH(h) = GW (h)/TW (NG) < λ. Therefore, h is SH-infrequent. ⊓⊔

By Theorem 1, if TW (δ(g)) < λ× TW (NG), all supergraphs of g and g are
SH-infrequent and can be pruned; otherwise, g is a candidate subgraph.

Definition 15. An link-weighted graph g is a weighted frequent pattern for a
graph set NG = (G1, . . . , GT) with respect to a support threshold τ > 0 and
share threshold λ ∈ (0, 1] if the following two conditions are satisfied.

(D1) wsup(g) ≥ τ × T, and (D2) SH(g) ≥ λ .

5 Evaluation

To evaluate the proposed weighting schemes experiments were conducted using a
projection of the Cattle Tracking System (CTS) database in operation in Great
Britain (GB). The proposed weighting schemes were incorporated into weighted
variations and extensions of the well established gSpan frequent subgraph min-
ing algorithm [4]. For comparison purposes we also derived variation of gSpan,
extGspan; that did not feature weightings, but could handle directed graphs,
self-cycles and multiple links. Results from the experiments are presented in the
following sub-sections.

Table 1. The statistics of graph data generated by the projection of the CTS database

Derbyshire Lancashire GB

graphs 53 53 53
Max # links 179 394 30107
Average # links 137 297 23055
Max # nodes 227 396 23660
Average # nodes 172 318 18749

5.1 The Cattle Tracking System Database

The Cattle Tracking System (CTS) database in operation in Great Britain (GB),
which forms the focus of the research described in this paper, is maintained by
the Department for Environment, Food and Rural Affairs (DEFRA) as part of
the Rapid Analysis and Detection of Animal-related Risks (RADAR) initiative6.
The CTS database records all cattle movements in GB, each record describes
the movement of a single animal, identified by a unique ID number, between
two holding locations (e.g. agriculture holdings, markets, etc). Social network

6 http://www.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/radar

8 Chuntao Jiang, Frans Coenen, Michele Zito

can be extracted from this database such that each node represents a geograph-
ical location and the links the number of animals moved between locations. By
considering the time stamps associated with movements, temporal sequences of
networks can be extracted (i.e. longitudinal social networks).

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20

ru
nn

in
g

tim
e

(o
n

lo
g-

sc
al

e)

minimum support (%)

(c) Lancashire - execution

extGspan
AMW-gSpan

AW-gSpan
UBW-gSpan

 100

 1000

 10000

 100000

 1e+006

 4 6 8 10 12 14 16 18 20

pa

tte
rn

s
(o

n
lo

g-
sc

al
e)

minimum support (%)

(d) Lancashire - output

extGspan
AMW-gSpan

AW-gSpan
UBW-gSpan

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20

ru
nn

in
g

tim
e

(o
n

lo
g-

sc
al

e)

minimum support (%)

(a) Derbyshire - execution

extGspan
AMW-gSpan

AW-gSpan
UBW-gSpan

 100

 1000

 10000

 100000

 1e+006

 4 6 8 10 12 14 16 18 20

pa

tte
rn

s
(o

n
lo

g-
sc

al
e)

minimum support (%)

(b) Derbyshire - output

extGspan
AMW-gSpan

AW-gSpan
UBW-gSpan

Fig. 1. Performance comparison of weighting schemes vs. extGspan on two graph sets

For the experimental analysis three distinct longitudinal social network data
sets were extracted from the CTS database using data from 1 January 2005
to 31 December 2005. The first two data sets, Derbyshire7 and Lancashire8.
The third data set represented GB in its entirety. The data divided into 7-day
“episodes” (there is a 6-day movement restriction that applies to agriculture
holdings in GB), giving longitudinal sequences of 52 episodes. The links were
annotated with a weight, indicating the number of animals that were moved,
and a label, indicating the type of movement (e.g. farmToFarm, farmToMarket,
etc). Some statistics for each of the data sets is presented in Table 1. Note that
the GB database is significantly larger than the Lancashire data set, which in
turn was larger than the Derbyshire data set. Note that all the graphs featured
“self-cycles” and “multiple links”.

5.2 Comparison between Weighted and Non-Weighted Approaches

In this sub-section the proposed weighting schemes (AMW-gSpan, AW-gSpan,
and UBW-gSpan) are compared with the extended gSpan algorithm in terms of
efficiency (runtime and the number of frequent subgraphs generated). For AW-
gSpan, γ = 0.6 was chosen as the weighgting ratio threshold, and λ = 8% was

7 Derbyshire is a county in the East Midlands of England
8 Lancashire is a county in the North West of England

Finding Frequent Subgraphs in Longitudinal Social Network Data 9

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 2 4 6 8 10 12 14 16 18 20

pa

tte
rn

s

minimum support (%)

(a) GB - output

AMW-gSpan
AW-gSpan

UBW-gSpan

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 4 6 8 10 12 14 16 18 20

ru
nn

in
g

tim
e

(s
ec

on
ds

)

minimum support (%)

(b) GB - execution

AMW-gSpan
AW-gSpan

UBW-gSpan

Fig. 2. Performance comparison of using three weighting schemes on the GB data set

used as the share threshold for UBW-gSpan. The justification for these γ and λ
values is given in Sect 5.3 below.

Figure 1 shows the performance of the weighting schemes and extGspan on
the Derbyshire and Lancashire data sets. It can be clearly seen from the figure
that all four algorithms display a similar behavior when the support value is be-
tween 12% to 20%, however the number of patterns generated by the extGspan
algorithm increases abruptly when the support value is decreased to below 12%.
In the figure, it can be observed that: (i) significantly more frequent subgraphs
are found using UBW algorithm than using any of the others, indicating that
UBW algorithm can not show its advantage against the non-weighted extGspan
for a smaller data set, (ii) Two weighting schemes: AW and AMW algorithms
achieves better performance than extGspan and UBW algorithms. The reason
for the better performance of AMW and AW schemes is that the pruning tech-
nique adopted by UBW scheme is not sufficiently effective in reducing the search
space when compared to the anti-monotone method used by the AMW and AW
schemes.

Experiments (not shown) using extGspan and the GB data set failed to
produce any results (because of memory errors) unless the support threshold
was set to 30% or above, a threshold at which only one node size subgraphs
are discovered. Thus it was not possible to conduct any meaningful comparison
between the weighted frequent subgraph mining algorithms and a non-weighted
approach using the GB data set.

5.3 Comparison of Weighting Schemes

In this sub-section the three proposed weighting schemes are compared with one
another using the large GB data set. As above, γ was initially set to 0.6 and λ
to 8% for use with AW-gSpan and UBW-gSpan algorithms. Figure 2 shows the
performance of the weighting schemes on the GB data set. In Fig. 2 (a), each
curve depicts the number of patterns generated against the minimum support
value used. From the figure it can be seen that UBW-gSpan produces the least
number of patterns while AW-gSpan produces the most. Figure 2 (b) indicates
the “run time” for the approaches using the same sequence of support threshold
values. From the figure it can be seen that UBW-gSpan is the most “expensive”,
indicating that the cost of finding a minimum number of patterns is higher

10 Chuntao Jiang, Frans Coenen, Michele Zito

compared to the other two mechanisms. AMW-gSpan is the most economical. It
is interesting to note in Fig. 2 (b) that as the support threshold is reduced the
effect on run-time is much smaller for AMW-gSpan than the other two weighting
schemes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 4 5 6 7 8 9 10 11 12

ru
nn

in
g

tim
e

(s
ec

on
ds

)

minimum support(%)

(a) AW-gSpan - runtime

gamma=0.2
gamma=0.3
gamma=0.4
gamma=0.5
gamma=0.6

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 4 5 6 7 8 9 10 11 12

ru
nn

in
g

tim
e

(s
ec

on
ds

)

minimum support(%)

(b) UBW-gSpan - runtime

lambda=4%
lambda=6%
lambda=8%

lambda=10%

 60000
 70000
 80000
 90000

 100000
 110000
 120000
 130000
 140000
 150000
 160000

 4 5 6 7 8 9 10 11 12

pa

tte
rn

s

minimum support(%)

(c) AW-gSpan - # patterns

gamma=0.2
gamma=0.3
gamma=0.4
gamma=0.5
gamma=0.6

 45000

 50000

 55000

 60000

 65000

 70000

 4 5 6 7 8 9 10 11 12

pa

tte
rn

s

minimum support(%)

(d) UBW-gSpan - # patterns

lambda=4%
lambda=6%
lambda=8%

lambda=10%

Fig. 3. Analysis of the performance of AW-gSpan and UBW-gSpan mining algorithms

Figure 3 displays the effect on performance of different values for the weight-
ing ratio threshold (γ) used in conjunction with AW-gSpan, and the share thresh-
old (λ) used with UBW-gSpan, for a range of support threshold values from 4%
to 12%. From Fig. 3 (a) and (c) it can be seen that the run time increased as
the γ value is decreased, while a marginal increase in the number of patterns is
witnessed. With respect to Fig. 3 (b) and (d) it can be seen that the run time
increases as the λ value is decreased, while a small corresponding increase in
the number of identified patterns is witnessed. However, increasing the λ value
beyond 8% seems to have very little effect on the number of patterns. Overall it
was found that a γ value of 0.6 and a λ value of 0.8% was the most appropriate.

5.4 Subgraph Pattern Analysis

To demonstrate that the the utility of the subgraphs that have been discovered
this sub-section briefly discusses an application of the approach. The frequent
subgraphs identified by the above mining algorithms can be further used to
construct a sequential database where each item of the sequence is a frequent
subgraph. Formally, each sequential transaction is extracted using the following
identity (8).

St,t+ts = {fi|fi ∈ (FS(Gt) ∪ FS(Gt+ts)− FS(Gt) ∩ FS(Gt+ts))} . (8)

where St,t+ts represents the sequence of frequent subgraphs in a ts time period,
fi represents a frequent subgraph and FS(Gt) represents all frequent subgraphs
of the graph Gt, where Gt represents the graph at a time instance t.

Finding Frequent Subgraphs in Longitudinal Social Network Data 11

266330003

266329912

266331928

266331928

266329912

266330029
266330003

266329912

266330029

266331928
266330003

266329912

266330029

g1 g2 g3 g4

Fig. 4. An example of the sequential patterns extracted using AMW-gSpan algorithm

Using the AMW-gSpan algorithm as an example; the output when applied
to the GB data set, with a support of 10%, was utilized to create a sequen-
tial data collection with a time-step value of 1. A sequential mining algorithm,
PrefixSpan [12], was then applied to this database with a support threshold of
60%. One example of the maximal-size sequential patterns is displayed in Fig.
4. The patterns in the figure indicate these four subgraphs occurred together
on 32 occasions out of 52 in the order showed in the figure. In the figure, each
node denotes the location of the agriculture holding, and the number next to
the node denotes the unique identification number. It can be seen that g1, g3,
and g4 are all subgraphs of g2. All the movements are pointed to the location
“266329912”, and g1 always occurs before g2, while g3 and g4 always occur after
g2. If a smaller support threshold of 30% was used, a longer sequence consisting
of 9 patterns were extracted as illustrated in Fig. 5. Figure 5 features additional
movements to those given in Fig. 4, and includes new locations. In the figure,
the movement was still centered on the location “266329912”, however two new
locations “266329843”, and “266309364” were added into the sequence, and each
pattern in the figure contains either one of them or both.

266329912

266330003

266331928

266329843
266329843

266329912

266330003

266309364

266329912

266330029

266330003
266329843

26632991226633029

266329843

266330003

266331928
266329912

266329843

266309364

266330029

266329912

266331928

266309364

266329912
266331928

266329843

266329912

266309364

266329843

266330003

266329912

266330029

266309364

g1 g2
g3

g4

g5g6g7g8g9

Fig. 5. Another example of a longer sequential pattern extracted using AMW-gSpan

6 Conclusions

A weighted approach to longitudinal social network mining is described. The
approach allows large longitudinal networks, such as the GB network used to

12 Chuntao Jiang, Frans Coenen, Michele Zito

illustrate this paper, to be mined where this was not possible using more con-
ventional approaches. Three weighting mechanisms were proposed to reduce the
overall computational complexity. Reported experiments comparing the opera-
tion of the weighting schemes with each other and a non-weighted version of
gSpan demonstrated that many fewer patterns are derived. The reported ex-
periments also indicated that UBW-gSpan finds the least number of patterns
while requiring the largest amount of run-time. AMW-gSpan provided the best
compromise, a limited number of patterns found in reasonable time (especially
at low support threshold values). To illustrate that the utility of the subgraphs
that were discovered; further analysis was conducted to capturing changes in
“behavior” within the network structures.

References

1. Wasserman, S., Faust, K.: Social Network Analysis, Method and Applications. Cam-
bridge University Press, New York (1994)

2. Barabsi, A.L., Jeong, H., Nda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution
of the Social Network of Scientific Collaborations. Physica A: Statistical Mechanics

and Its Applications 311, 590–614 (2002)
3. Somaraki, V., Broadbent, D., Coenen, F., Harding, S.: Finding Temporal Patterns

in Noisy Longitudinal Data: A Study in Diabetic Retinopathy. In: Proceedings of

the 10th Industrial Conference on Data Mining, pp.418–431. Berlin (2010)
4. Yan, X., Han, J.: gSpan:Graph-based Substructure Pattern Mining. In:Proceedings

of 2002 International Conference on Data Mining (2002)
5. Mukherjee, M., Holder, L.B.: Graph-based Data Mining on Social Networks.

In:Proceedings of the ACM KDD Workshop on Link Analysis and Group Detection

(2004)
6. Yang, W., Dia, J., Cheng, H., Lin, H.: Mining Social Networks for Targeted Ad-

vertising. In:Proceedings of the 39th Annual Hawaii International Conference on

System Science (2006)
7. Lahiri, M., Berger-Wolf, T.Y.: Structure Prediction in Temporal Networks using

Frequent Subgraphs. In:Proceedings of the 2007 IEEE Symposium on Computa-

tional Intelligence and Data Mining, pp. 35–42. Hawaii (2007)
8. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based Algorithm for Mining Fre-

quent Substructures from Graph Data. In:Proceedings of the 4th European Confer-

ence on Principles and Practice of Knowledge Discovery in Databases (2000)
9. Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In:Proceedings of IEEE

International Conference on Data Mining (2001)
10. Jiang, C., Coenen, F., Zito, M.: Frequent Subgraph Mining on Edge Weighted

Graphs. In:Proceedings of the 12th International Conference on Data Warehousing

and Knowledge Discovery (2010)
11. Carter, C.L., Hamilton, H.J., Cercone, N.: Share based Measures for Itemsets.

In:1st European Conference on the Principles of Data Mining and Knowledge Dis-

covery., vol.1263, pp.14–24. Springer-Verlag, London (1997)
12. Pei, J., Han, J., Asl, M.B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: PrefixS-

pan: Mining Sequential Patterns Efficiently by Prefix-Projected Patterns Growth.
In:Proceedings of the 17th International Conference on Data Engineering (2001)

