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Abstract Age-related Macular Degeneration (AMD) is the most common cause of
blindness in old-age. Early identification of AMD can allow for mitigation (but not
cure). One of the fist symptoms of AMD is the presence of fatty deposits, called
drusen, on the retina. The presence of drusen may be identified through inspec-
tion of retina images. Given the aging global population, the prevalence of AMD
is increasing. Many health authorities therefore run screening programmes. The au-
tomation, or at least partial automation, of retina image screening is therefore seen as
beneficial. This paper describes a Case Based Reasoning (CBR) approach to retina
image classification to provide support for AMD screening programmes. In the pro-
posed approach images are represented in the form of spatial-histograms that store
both colour and spatial image information. Each retina image is represented using a
series of histograms each encapsulated as a time series curve. The Case Base (CB)
is populated with a labelled set of such curves. New cases are classified by finding
the most similar case (curve) in the CB. Similarity checking is achieved using the
Dynamic Time warping (DTW).
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1 Introduction

Age-related Macular Degeneration (AMD) is the leading cause of blindness in peo-
ple over 50 years of age. It is caused by damage to the macula, a small area on
the human retina that is responsible for seeing fine detail and colour [20]. Although
there is no cure for AMD, the condition can be mitigated against in the event of early
detection. One of the first symptoms of AMD is the presence of fatty deposits, called
drusen, on the retina. These can be detected by inspection of retina images routinely
collected within screening programmes. This image inspection is conducted manu-
ally by trained clinicians. This paper describes an image classification mechanism
to (at least partially) automate the identification of drusen in retina images.

The main challenge of the retina image AMD classification problem is that it
is often difficult to distinguish drusen from background noise. The need for appro-
priate image representations, to facilitate the application of data mining, has been
identified as a generic challenge within the context of medical image classification
[9, 19]. In the context of AMD screening “standard” object segmentation techniques
were deemed to be unsuitable as the shape and size of drusen varies significantly
from image to image and tends to “blur” into the background. A spatial-histogram
[18, 26] based approach was therefore adopted, a technique that features the ability
to maintain spatial information between groups of pixels [3]. A region based ap-
proach is advocated in this paper where by the images are subdivided into “areas”
and histograms are generated for each. The histograms were conceptualised as time
series where the X-axis represents the histogram “bin” number, and the Y-axis the
size of the bins (number of pixels contained in each).

To facilitate the desired classification a Case Based Reasoning (CBR) approach
was adopted [21] , where-by a collection of labelled cases were stored in a reposi-
tory. A new case to be classified (labelled) is compared with the cases contained in
this repository and the label associated with the most similar case selected. Given
that the histograms can be conceptualised as time series, a Dynamic Time Warping
(DTW) technique [1, 25] was adopted to determine the similarity between “curves”.
The principal contributions of the work described are:

• A novel approach to AMD screening.
• A mechanism (that also has wider application) for classifying retina images for

AMD without specifically identifying drusen.
• The use of regions in the representation to enhance the classification accuracy.
• An approach to CBR case similarity checking using a time series analysis tech-

nique.

The rest of this paper is organised as follows. Section 2 describes the applica-
tion domain and Section 3 some relevant previous work. The screening process is
described in Section 4. Section 5 and 6 provide further detail of how the retinal im-
ages are pre-processed and then transformed into the spatial-histogram (time series)
representation. The specific classification technique used is described in Section 8,
followed by an evaluation of the proposed approach in Section 9. Some conclusions
are presented in Section 10.
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2 Age-related Macular Degeneration

The work described in this paper is focused on the classification of retinal images,
in particular the identification of age-related macular degeneration (AMD). Figure
1 illustrates a typical cross sectional view of the eye. The eye consists of the cornea,
iris, pupil, lens, vetreous humour and the retina. As shown in Figure 1, centred at the
fovea, the macula is a small area at the centre of the retina. It contains the densest
photoreceptors and provides “central vision” and “colour vision”. Central vision is
essential for humans to see fine detail as required by daily tasks such as reading
and writing. Sometimes the delicate cells of the macula become damaged and stop
functioning properly. There are various conditions for this to occur amongst which
AMD is the leading cause of irreversible vision loss in people aged 50 or over [20].

Fig. 1 Cross sectional view
of the eye National Insti-
tutes of Health (NIH), Na-
tional Eye Institute (NEI), US
(http://www.nei.nih.gov/).

Early diagnosis of AMD is achieved by the identification of drusen [20, 8],
yellowish-white sub-retinal fatty deposits, by screening patient retinal images. The
severity of AMD can be categorised into three classes: early, intermediate, and ad-
vanced. AMD can be either non-neovascular or neovascular [8]. Early AMD is
characterised by the existence of several small (63µ m in diameter) or a few medium
(63 to 124µ m) sized drusen or retinal pigmentary abnormalities. The presence of
at least one large (124µ m) and numerous medium sized drusen, or geographic at-
rophy, that does not extend to the centre of the macula, characterises intermediate
AMD. Advanced non-neovascular (dry) AMD exists once the drusen has reached
the center of the macula. Choroidal neovascularisation characterizes advanced neo-
vascular (wet) AMD. The drusen itself is often categorised as hard and soft drusen.
Hard drusen have a well defined border, while soft drusen have boundaries that often
blend into the retinal background. Figure 2(a) shows an example of normal retinal
image with the macula circled. A retina image that features drusen is given in Fig-
ure 2(b) (drusen indicated by a white arrow). The classification of AMD images
by means of drusen identification is thus not a straightforward process. Most of the
previous works have focused on automatic drusen segmentation [4, 13, 22, 23, 29]
as opposed to AMD classification. The work proposed here however approaches the
AMD screening problem without the need for identification of the physical exis-
tence of drusen and aims to classify images as either “AMD” or “non-AMD”.
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(a) (b)

Fig. 2 Illustration of fundus images in grayscale: (a) Normal and (b) AMD.

3 Previous Work

The earliest work reported in the literature concerning drusen detection is that of
Sbeh et al. [30] who used mathematical morphology to identify brightest points to
detect drusen. More recent work [4] used a wavelet analysis technique to extract
drusen patterns, and multi-level classification (based on various criteria) for drusen
categorisation. Other works on the identification of drusen in retina images has fo-
cuses on segmentation coupled with image enhancement approaches [22, 23, 29].
Rapantzikos et al. [29] adopted a multilevel histogram equalisation to enhance the
image contrast followed by drusen segmentation, in which two types of threshold,
global and local, were applied to retinal images. Köse et al. [22, 23] proposed two
approaches involving inverse drusen segmentation within the macular area. A region
growing technique was used to identify “healthy” pixels by applying a threshold on
the colour intensity levels [22]. Once this was done, the inverse of the segmented im-
age was used to generate the segmentation of the drusen. A similar inverse segmen-
tation approach, supported by statistical information, was adopted in [23]; where
healthy Characteristic Images (CIs) were compared to new Sample Images (SIs)
and a predetermined threshold is applied to classify SI. In [13] another approach,
based on a non-parametric technique for anomaly detection, was described that uses
a Support Vector Data Description (SVDD) to segment anomalous pixels.

There has been very little reported work on the application of image mining tech-
niques for AMD screening. The existing work (see above) has been mostly focuses
on the segmentation/identification of drusen. Of the reported work that the authors’
are aware of, only two reports [4, 13] extend drusen detection and segmentation to
distinguish retinal images with and without AMD features. However, all the previ-
ous work is focused on the detection of drusen using segmentation, a challenging
task given the inconsistent visual appearance of drusen and other lesions. The clar-
ity, colour, luminosity and texture of images are affected by several factors during
the image acquisition process, such as involuntary eye movement and the media
opacity of the subject.

The distinction between the work described here and previous approaches is
that we make no attempt to locate and isolate (segment) drusen within retinal im-
ages. Instead, we extend the uses of individual colour channel histograms [16] to a
spatial-histogram based approach that obviates the need for accurate segmentation
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of drusen. Spatial-histograms extend the concept of simple colour histograms by
including spatial pixel information [3, 33, 35] and have been shown to perform well
in region-based tracking [3], object detection [35] and image retrieval [33].

Space limitations preclude a overview of CBR. However CBR is a well estab-
lished AI technique with an associated, well established, body of literature. Recom-
mended reference works include [24] and [21]. For a review of the application of
CBR in medical domains interested readers are referred to [17] or [2].

4 The AMD Screening Process

An overview of the proposed retinal image classification, to identify AMD, is pre-
sented in this section. The approach can be viewed as consisting of two stages, (i)
Case Base (CB) generation and (ii) image classification. A block diagram outlining
the process is given in Figure 3 (the directed arcs indicate process flow). In the figure
the two stages are deliminated by dashed boxes. The case base generation process
commences at the top left of the figure, while the classification process at the bottom
left.

CB generation comprises three sub-stages: (i) image preprocessing, (ii) his-
togram generation and (iii) feature selection. CB generation commences with a
training set of pre-labelled images which are preprocessed as follows:

1. Image Enhancement: Normalisation and enhancement of the image contrast.
Colour normalisation is applied first, followed by illumination normalisation and
then contrast enhancement to increase the “visibility” of the main retinal anatomy
(blood vessels, etc.).

2. Object Segmentation: Identification of the main retinal structures.
3. Noise Reduction: Removal of blood vessel pixels from the retina images.

The image pre-processing is described in further detail in Section 5.
The next step is to generate the spatial-histograms. In order to make the represen-

tation more tractable, colour quantisation was applied to the preprocessed images to
reduce the overall dimensionality (number of colours). To generate the histograms
the quantised colour retinal images were first partitioned into nine regions and then
spatial-histograms were extracted for each region. The idea here is that the presence
of drusen is often regionalised and consequently we may be more interested in some
regions than others. Section 6 gives more detail of the technique used to generate
the spatial-histograms.

During feature selection the spatial-histograms (regions) that feature the best dis-
criminatory power (in the context of AMD classification) are identified. The regions
are ranked according to their discriminatory power and the top T selected. This pro-
cess also ensured that the size (number of pixels) of each region/histogram does not
bias the resulting classification. The feature selection was conducted using a class
separability measure which was applied to the collection of histograms represent-
ing each retina image and the most appropriate histograms selected. The selected
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spatial-histograms were then combined and stored in the form of time series curves
(one per image). The feature selection process is discussed in further detail in Sec-
tion 7.

The image classification task is detailed in Section 8.
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Fig. 3 Block diagram of the proposed retinal images screening system

5 Image Pre-processing

This section describes the image pre-processing steps required to represent images
into meaningful forms for image mining. The image pre-processing consists of two
steps: (i) image enhancement and (ii) segmentation of anatomic structures to iden-
tify retinal blood vessels.

5.1 Image Enhancement

The quality of the retinal images is often severely affected by factors such as: colour
variance and non-uniform illumination [11, 27], which are difficult to control. In the
context of AMD screening this will lead to difficulties in the detection of drusen,
and hamper the associated identification and localisation of retinal common struc-
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tures such as retinal blood vessels. Thus, colour and illumination normalisation, and
contrast enhancement are important.

Due to the colour variation between different retinal images, colour normalisa-
tion must be performed prior to image enhancement. To normalise the colours fea-
tured in retinal images a histogram specification approach was applied [14]. First,
a reference image that represents the best colour distribution and contrast is se-
lected by a trained clinician. Then, the Red-Green-Blue (RGB) colour histograms
of the reference image are generated. Finally, the RGB histograms of other images
are extracted and each of these histograms is tuned to match the reference image
histograms.

Once the colour is normalised, illumination normalisation is applied so as to re-
duce the luminosity variations on the image. An approach, to estimate the luminosity
and contrast variability of the retinal image based on the image background colour,
proposed by Foracchia et al. [11] was adopted. This approach estimates the original
image, Ī, as follows:

Ī (x,y) =
I (x,y)− L̄(x,y)

C̄ (x,y)
, (1)

where I is the observed image, and L̄ and C̄ are the estimations of luminosity and
contrast, calculated in the neighbourhood N of each pixel. One drawback of this
approach is that drusen that are larger than the window size N, used for the estima-
tion, are smoothed in the normalisation process. However, the authors found that
this disadvantage could be limited by setting the C̄ value to 1 there by excluding
the contrast estimation. Contrast normalisation was then conducted using Contrast
Limited Adaptive Histogram Equalisation (CLAHE) as described in [36].

5.2 Objects Segmentation

The presence of retinal anatomies, such as blood vessels and the optic disc, some-
times hampers the detection of drusen. The authors’ own experiments have indicated
that the removal of blood vessel pixels from retina images can improve classifica-
tion accuracy [16]. This has also been observed more generally by other researchers
in the field ([23, 28, 29]).

To segment the retinal blood vessels 2-D Gabor wavelet filters [31] were applied.
A pixel is classified as vessel or non-vessel by means of a Bayesian classifier with
a class-conditional probability density function, generated using the Gaussian mix-
ture model. As a result a “retinal vessels” binary representation is generated for
each image which is then applied as a “mask” to the enhanced retinal images and
consequently the blood vessels pixel values replaced with a “null” value.

The optic disc was however left untouched as experiments conducted by the au-
thors, reported in [16], indicated that removal of the optic disc only results in in-
creased accuracy with respect to a minority of retina images and decreases accuracy
with respect to the majority.
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6 Spatial Histogram Generation

Colour histograms have been widely used as a simple way of representing images
for object identification and retrieval [5, 32]. The main advantage is their robustness
against object changes in terms of shape and position within images. The main dis-
advantage is the loss of spatial information between pixels and colours, thus images
with similar histograms may have very different appearances [33, 35]. In some im-
ages, the colour distribution of pixels at different sections of an image may be an
essential feature that should be included in the image representation. In the context
of AMD classification there are a significant number of cases where the AMD im-
ages have almost similar colour histograms to the normal ones. The fact that drusen
pixel colours are very similar to the colours of pixels adjacent to the retinal blood
vessels boundaries (as well the optic disc), may thus lead to classification errors. A
spatial-histogram [18, 26] representation was therefore adopted.

The spatial information of an image can be generated by preserving the objects
texture and shape using templates [35], as well as by partitioning the image into
regions based on the chosen colour values and keep the regions location for each
of the chosen colours [18]. The utilisation of texture and shape to extract spatial
information is hampered by the nature of the AMD featured images where no com-
mon textures and shapes exist, other than the main retinal structures. Therefore, a
method to generate colour distribution for each region [33] has been applied in the
work described here as it is conjectured that the similar regions of two different
classes of retinal images will have different colour distribution. The generation of
spatial-histogram consisted of several steps. First, the number of colours was re-
duced to make the computational cost more feasible. The minimum variance quan-
tisation technique [34], with dithering [10] (implementation using Matlab1 function
rgb2ind), was used to reduce the image colours to C colours. A careful selection of
C value is essential as it will affect the quality of the generated histograms, as shown
in Section 9. The colour quantisation was applied on the global colour space, instead
of local, in order to standardise the colour mapping. Thus, all images referenced a
similar colour map.

Once the colour quantisation was complete each image was partitioned into N
similar sized regions, R= {r1,r2, ...,rN}, and a spatial-histogram generated for each.
The set of spatial histograms for a given image m is defined as:

hm = {shm
1 ,shm

2 , ...,shm
N} (2)

where shm
n is the spatial-histogram generated for region n, (1 ≤ n ≤ N) in image m

with size of C bins. The histogram value for colour c in histogram shm
n is then given

by:

shm
n (c) = α (3)

1 http://www.mathworks.com
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where α is the c-th bin count in region n of image m, and (0 ≤ c < C). The size
of each image spatial-histograms, hm, for an image m is equivalent to C×N; the
number of colours, C, multiplied by the number of regions, N. The complete set of
histograms representing an image set is then defined as H = {h1,h2, ...,hM}, where
M is the number of images.

7 Feature Selection

Feature selection is a process to reduce the number of features contained in a feature
space by removing irrelevant or redundant features[6, 7, 12]. By selecting only those
features that have a strong discriminatory power between classes, the computational
cost of classification can be considerably reduced while at the same time maximising
classification accuracy [6]. Common feature selection techniques[7, 12] include the
χ2 measure, mutual information, Odds Ratio and Principal Component Analysis.

With respect to the AMD screening process described here a class separability
method [6] that estimates the affectiveness of a features ability to distinguish be-
tween classes using the Kullback-Leibler (KL) distance measure was adopted. This
was a two stage process. First an average signature, γn, histogram was generated for
each region with respect to each class as follows:

γ
a
n =

1
p

p

∑
j=1

sh j
n (4)

where n is the region identifier, a is a class label and p is the number of training set
images labelled as class a. The class separability, distn, is then calculated by:

distn =
d

∑
a=1

d

∑
b=1

δn(a,b) (5)

where d is the number of classes and δn(a,b) is the KL distance between histograms
of γn corresponding to classes a and b described as:

δn(a,b) =
c

∑
i=1

pn(γ
a
n (i))log

(
pn(γ

a
n (i))

pn(γb
n (i))

)
(6)

where c is the number of bins or colours in the histograms, and pn(γ
a
n (i)) is the

probability that the n-th feature takes a value in the i-th bin of the signature spatial-
histogram γn given a class a. The probability, pn was calculated by dividing each
bin count of γn by the total number of elements in γn.

The features are then sorted in descending order of distn; the top T features with
the highest distn provide the best separation between classes and are therefore se-
lected. However, the selection of value of T is domain dependent and for the work
described here, T = 5 consistently produced the best result as shown in Section 9.
The other regions were omitted from further processing. Thus, the size of hm has



Hijazi et al.

been reduced to only C×T . These histograms then make up the CB for the CBR
process.

8 Retinal Image Classification using CBR and DTW

Given a new set of images produced during an AMD screening process these may
be classified using the CB developed as described in the foregoing subsections. As
noted above the histograms in the CB may be viewed as time series. Similarity
checking may therefore be conducted using time series analysis techniques. For the
AMD screening a Dynamic Time Warping (DTW) technique [1, 25] was adopted.
DTW is a time series analysis technique that measures the distance between two
time series through the generation of a warping path between these sequences.
Given two time series, T = {t1, t2, ..., tm} and T̄ = {t̄1, t̄2, ..., t̄n}, a matrix of size
m×n will be formed. The distance between ti and t̄ j, d(ti, t̄ j), where 0≤ i < m and
0≤ j < n for all i and j is computed using the Euclidean distance similarity measure
(other similarity measure methods can also be applied). The minimal warping path
is computed by summing up the minimal d for each matrix grid points thus giving a
distance between T and T̄ . More details of the DTW approach with respect to retinal
image classification can be found in [15].

9 Evaluation

To evaluate the AMD screening process a collection of 144 retinal images, acquired
as part of the ARIA2 project, were used. The collection was manually pre-labelled,
included 86 AMD images and 58 non-AMD images. The experiments described in
this section evaluate the performance of the proposed approach. Three metrics are
used for evaluation purposes: Specificity, Sensitivity and Accuracy. All experiments
were conducted using Tenfold Cross Validation (TCV) whereby the dataset was ran-
domly divided into equal sized “tenths”; and on each TCV iteration, one tenth was
used as the test set while the remiander was used as the training set. The objectives
of the experiments may be summarised as follows and is described in the following
subsections:

1. Number of Bins Parameter: To determine the minimum number of bins for the
histograms, with respect to colour quantisation, such that classification accuracy
would not be adversely affected.

2. T Parameter Identification: To determine the most appropriate setting for the
T parameter, the threshold that determines the number of regions to be included
in the final representation during feature selection.

2 http://www.eyecharity.com/aria online



Retinal Image Classification for the Screening of Age-related Macular Degeneration

9.1 Number of Bins Parameter

The first set of experiments was designed to determine the number of output bins for
colour image quantisation. The aim was to determine the least number of bins while
maintaining classification accuracy. Experiments using 32, 64, 128, and 256 bins
were conducted (but without the region concept). Table 1 shows the classification
results obtained. The results clearly indicate that the overall classification accuracy
is relative to the number of bins up to 128. This was expected as low numbers
of colour bins will tend to group different coloured pixels in to the same bin, and
consequently reduce the discriminative power of the colour representation.

Table 1 Classification results for a range of colour quantisation output bins

Bins Specificity (%) Sensitivity (%) Accuracy (%)

32 53 74 66
64 69 67 68
128 55 81 71
256 52 84 71

9.2 T Parameter Identification

The results presented in the foregoing were generated by setting the number of re-
gions parameter to one. The experiment described in this sub-section consider the
effect of using regions, as opposed to the entire image, and how many regions should
be considered. For this purpose, the retinal images were partitioned into 3 × 3 = 9
regions. The number of regions however could be tailored depending on the prob-
lem domain. Spatial-histograms were then generated as described in Section 6. Bin
parameter values of 32, 64 and 128 were used; the 256 output bin was omitted from
further analysis as it did not give any significant improved performance over the
128 bin threshold and also because it would introduce a significant computational
overhead. The retinal image classification was performed using the top-T regions
that had the highest discriminatory capability.

Table 2 Classification results for AMD classification using 32 colour output bins with various T
values

T SH-dimension Specificity (%) Sensitivity (%) Accuracy (%)

1 32 71 72 72
2 64 71 65 67
3 96 68 75 72
4 128 68 75 72
5 160 74 79 77
6 192 71 72 72
7 224 69 74 72
8 256 66 74 71
9 288 71 76 74
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Table 3 Classification results for AMD classification using 64 colour output bins with various T
values

T SH-dimension Specificity (%) Sensitivity (%) Accuracy (%)

1 64 59 70 65
2 128 66 68 67
3 192 64 71 68
4 256 69 68 69
5 320 70 74 73
6 384 69 73 71
7 448 68 70 69
8 512 69 67 68
9 576 69 76 74

Table 4 Classification results for AMD classification using 128 colour output bins with various T
values

T SH-dimension Specificity (%) Sensitivity (%) Accuracy (%)

1 128 61 69 65
2 256 61 75 69
3 384 59 81 72
4 512 65 80 74
5 640 67 80 75
6 768 64 78 72

Comparisons with various T values are reported in Tables 2, 3 and 4 shows that
the average classification results obtained using 32, 64 and 128 sized bins respec-
tively compared to a range of T parameter values. The SH dimension column indi-
cates the total number of bins (dimensions) in the spatial-histogram representation
(calculated by multiplying the Bin parameter by the T parameter). Inspection of the
results indicates that there is a tendency for best results to be produced when T = 5,
although the evidence is not conclusive. In Table 2 (32 bins) the best results were
obtained when T = 5, with an overall accuracy of 77%. Similar results are shown
in Table 4 (128 bins) with the best overall accuracy of 75% when T = 5. The re-
sults in Table 3 however performed best with T = 9 with overall accuracy of 74%,
although a setting of T = 5 also produced good results. The best specificity of 74%
was recorded with T = 1 and 32 colour bins, and the best sensitivity of 81% with
T = 3 and 128 colour bins. One interesting observation is that specificity tends to
increase as the number of colour bins decreases. This may be because a low number
of colour bins gives lower colour variation.

Overall the results demonstrate that by using only some portion of the images
a comparative or better classification result is generated than when using the entire
image. The results in Table 4 contains only six T values (1 to 6) as the machine
memory required for the classification process increases quadratically with the size
of the colour bins. Thus, the authors have decided to stop the process at T = 6 be-
cause of: (i) the computational complexity when comparing two spatial-histograms
of T = 6 with 128 colour output bins is©(n2), the time complexity is more than two
orders of magnitude compared to the best results recorded in the experiment (T = 5
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and 32 colour output bins), and (ii) as indicated by Table 2 and 3 performance will
most probably decrease as the size of the spatial-histograms increases.

10 Conclusion

An approach of retinal image classification for AMD screening has been described.
The images were represented in the form of spatial-histograms that stored the colour
information of the images, while maintaining the spatial information of each colour
value. A feature selection strategy, to identify regions in an image that have strong
discriminative power to separate classes, was applied to remove irrelevant features,
as well as reducing the overall computational cost. The experiments described show
both promising and interesting results. Best performance was achieved with a low
number of colour bins (32) and a T parameter (number of regions) of 5.
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