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Abstract

Methods for the classification of volumetric three-
dimensional (3D) volumes (images) play an important role
in the context of medical applications. In this paper, a ded-
icated tree based 3D representation is proposed that serves
to directly capture 3D image features in such a way that
classification techniques can be applied. More specifically
an Overlapping Hierarchical Decomposition (OHD) tech-
nique is presented to generate a tree representation of a
given 3D volume. The OHD method recursively decom-
poses a given 3D volume into sub-volumes forming a tree.
Once the tree has been generated, a frequent sub-graph
mining algorithm is applied to mine the tree representation
so as to generate sub-graphs. These sub-graphs are then
used to define a feature space from which feature vectors
representing 3D images (one per 3D volume) can be ex-
tracted and fed into a classifier generator. To demonstrate
the applicability of the proposed method a 3D Optical Co-
herence Tomography (OCT) retinal image screening appli-
cation is considered directed at the identification of Age-
related Macular Degeneration (AMD). The results show a
promising performance with a best Area Under the receiver
operating Curve (AUC) value of 98.7%.

1 Introduction

Image mining is concerned with the application of data
mining techniques to image data, it can be thought of as
a form of “deep” image analysis. One important type of
image mining is image classification, the automated cat-
egorisation of images using a classifier generated from a
pre-labelled training set. Image classification algorithms
typically rely on some forms of image feature extraction;
the features are then stored in a manner that is compatible
with the application of a classifier generator of some kind

[13, 14]. The most significant challenge with respect to the
design of feature extraction algorithms for 3D volumetric
image mining is how they can best identify the most signif-
icant features so that volumetric 3D data of interest can be
appropriately classified. Most of the current 3D approaches
have focused on extending 2D based methods, typically sta-
tistical based methods founded on concepts such as Local
Binary Patterns (LBPs) [19].

There are a number of application domains where 3D im-
ages are regularly used. One important domain is the med-
ical domain. This paper considers the detection of a retinal
disease, Age-related Macular Degeneration (AMD), from
3D volumes produced using Optical Coherence Tomogra-
phy (OCT). Analogue to ultrasound, OCT is a relatively
new imaging technique that can show the cross-sectional
view of the retina at a high level of resolution and speed.
AMD is a condition, typically contracted in old age, which
leads to irreversible vision loss at its advanced stage [2, 8].
There has been little reported work concerning the develop-
ment of 3D OCT retinal image classifiers.

In this paper we propose a tree representation aimed at
effectively capturing 3D feature information. More specifi-
cally we proposed a new Overlapping Hierarchical Decom-
position (OHD) to construct Non-trees (trees where each
node, except the leaf nodes, typically have nine branches)
and demonstrate that this representation serves to succinctly
and accurately capture the salient features within volumet-
ric data collections in such a way that effective classifies
can be constructed. The proposed technique iteratively di-
vides a given 3D image into a hierarchy of sub-volumes that
can be stored in a Non-tree structure where each node in the
tree represents a specific sub-volume. The decomposition
is controlled using a critical function supported by a pre-
defined maximum level of decomposition.

The main contribution of the work presented in this paper
is the proposed OHD representation coupled with the use of
frequent sub-graph mining to produce effective AMD clas-



sifiers for OCT image data. It is envisaged that by taking
the overlapping areas into consideration the likelihood of
missing important information (features) is reduced.

The rest of this paper is organised as follows. A brief
overview of the related literature concerning classification,
feature extraction methods and OCT image analysis is pre-
sented in Section 2. The AMD screening application do-
main which provides the motivation for the work described
in this paper is presented in Section 3. The proposed algo-
rithm is then detailed in Section 4. The evaluation of the
proposed approach is reported in Section 5 where the per-
formance of the approach is compared with other related
methods. Finally, this paper is concluded in Section 6 with
a summary and a review of the main findings.

2 Background and related work

In this section we overview the related work relevant to
this paper. This section commences with consideration of
some existing statistical techniques used to represent (and
classify) image data. Next tree representations are consid-
ered with respect to the proposed overlapping Non-tree rep-
resentation. The section is concluded with a brief overview
of frequent sub graph mining algorithms and a short review
of some related existing work on retina image analysis.

Examples of two well established statistical approaches
are: (i) Local Phase Quantization (LPQ) and (ii) the Lo-
cal Binary Patterns (LBP). The concept of LPQ is based
on the local Fourier transform at low frequency where by a
histogram of the quantized Fourier transform on each sub-
volume is computed [15]. LBPs have been widely used in
2D representations to compute the relationship between a
pixel and its immediate neighbours. The same idea can
be applied to 3D, however, the generation of 3D rotation
invariant LBPs is computationally expensive. Zhao and
Pietikainen [19] used Three Orthogonal Planes LBP (LBP-
TOP) so only voxels located in the XY , XZ and Y Z planes
were considered.

In general, image hierarchical decomposition can be de-
fined as a way of dividing an image into sub-regions so
that the identified sub-regions are in some sense similar. A
parent-child relation is said to exist between a region and
its immediate sub-regions [1]. Hierarchical decomposition
has been used in many contexts such as image segmentation
[11] and image clustering [3]. The work described in [7]
is applied to 2D retinal images whereas a similar approach
is applied to 2-D MRI “slices” in [5]. Neither [5] nor [7]
have addressed the boundary problem associated with tree
decomposition based representations.

To analyse our Non-tree representation (one per OCT
image) we propose to identify frequently occurring subtrees
and then use these as the input to a classification system.
This approach is inspired in part by the work of [5] and [7].

To identify the desired frequent sub-graphs Frequent Sub-
Graph (FSG) mining techniques can be used. FSG min-
ing is a separate topic within the domain of data mining.
One of the most well-known FSG mining algorithms is the
gSpan algorithm which uses depth-first search to identify
FSGs [18].

As already noted the focus for the work described in this
paper is AMD screening. Most of the current macular dis-
ease diagnosis tools are founded on 2D retinal image anal-
ysis techniques because, up until recently, this was the only
type of image commonly available. Two instances using
OCT images can be found in [6] and [12]. In [6] a texture
based method is employed using a Spatial Gray-Level De-
pendence Matrix (SGLDM) and the Discrete Fourier Trans-
form (DFT) for capturing salient OCT image data. The tra-
ditional statistical approach is used to extract various met-
rics from the SGLDM such as energy, entropy, correlation,
local homogeneity and inertia. A Bayesian classifier is used
to categorise images according to these metrics. In [12] a
method for automatic detection of retinal diseases, includ-
ing AMD, is presented using a Multi-Scale Spatial Pyra-
mid (MSSP) representation. Histograms of LBPs generated
from each sub-block of the MSSP are then produced. Di-
mensionality reduction is achieved using Principal Compo-
nent Analysis (PCA). All the selected LBPs are then con-
catenated together to build a single feature vector descrip-
tion (one per image). The Radial Basis Function (RBF) ker-
nel based Support Vector Machine (SVM) classifier is then
used for categorising these feature vectors.

3 Application Domain

The motivation and focus for the work described in this
paper, as already noted, is OCT image analysis to support
AMD screening. There are some distinct photographic fea-
tures of AMD that can be found in OCT images such as:
(i) disturbance of the Retinal Pigment Epithelium (RPE)
layer underneath the neuro-retina due to the presence of
drusen, pigment epithelium detachment, geographic atro-
phy or membrane, (ii) disruption of layered neuro-retinal
tissue, (iii) presence of intra- and sub-retinal fluid and (iv)
retinal thickening. Figure 1 shows two sequences of slices
of two OCT volumes. Figure 1(a) shows slices of a nor-
mal OCT volume and Figure 1(b) slices of an OCT vol-
ume that features AMD. From these figures it can be seen
that there are notable distinctions between the normal and
the AMD volumes. The normal volume features smooth
and connected layers. However, the AMD volume features
thickening of the RPE layer, intra-retinal fluid, pigment ep-
ithelium detachment and some unusual texture patterns.



(a) A set of 3D OCT slices for a normal eye

(b) A set of 3D OCT slices for an AMD eye

Figure 1: Examples of 3D OCT volumes illustrating the dif-
ference between normal and AMD retina volumes. A nor-
mal retina volume has smooth and connective layers while
an AMD retina volume has disrupted layers and other ab-
normal patterns from the normal.

4 Proposed Approach

Hierarchical decomposition based approaches have a
number of attractive aspects: (i) regions with similar fea-
tures are grouped, (ii) the decomposition can be represented
as a tree that maintains the relationships between volumes
and sub-volumes and (iii) it can be combined with statisti-
cal feature representations. In the proposed approach, the
3D image is decomposed down to some maximal level or
when homogeneous regions are arrived at. The latter is de-
termined using what is known as a critical function. The
proposed decomposition also features an overlap region (to
address the boundary problem). The outcome of the decom-
position is a tree (a graph). The resulting tree represented
images are then processed so that a feature vector represen-

tation is obtained which can be input to a classifier genera-
tor. The rest of this section is organised as follows. The tree
decomposition mechanism is discussed in Sub-section 4.1,
and the feature extraction and classification mechanism in
Sub-section 4.2.

4.1 Tree Generation

The aim of the proposed decomposition is to divide a
given volume into homogeneous sub-volumes so that re-
gions that feature a common structure are grouped together.
The decomposition also features an overlap region. Most of
the hierarchical decomposition based methods, such as that
described in [7], do not consider overlapping regions.

The generated tree is defined in a form of a 4-tuple
T = (N,E, nl, el), where N represents the set of nodes,
E ⊆ N × N the set of tree edges, f(N) : X → nl is
the set of node labels, and f(N,E) : X :→ el is the set
of edge labels, which is typically a mapping between the
nodes and the edges. In the tree, every new generated node
is connected to an existing parent node with an edge hav-
ing a label that indicates the relationship between the parent
node and the child node. The decomposition commences
by dividing the initial volume into eight sub-volumes plus
an overlap volume. The OCT volumes of interest are “flat”,
in the sense that the X and Y axes are longer than the Z
axis. Thus the following levels of decomposition comprise a
quad-decomposition. This process continues until the cho-
sen maximum level of decomposition is reached or homo-
geneous volumes are arrived at (when the critical function
is satisfied). On completion each node in the tree will de-
scribe a sub-volume in terms of its intensity values (except
the root node which describes the entire volume).

(a) Root (b) Level1 (c)
Non-tree

Figure 2: 3D volume decomposition with overlap sub-
volume

4.1.1 Critical Function

As noted above the objective of a critical function is to
determine whether homogeneous sub-volumes have been
reached. In this paper the similarity between the parent and
child intensity values are used. We represent these in the
form of histograms. The Longest Common Subsequence



(LCS) time series analysis technique [17] is used to estab-
lish the similarity between histograms. The advantage of-
fered by the LCS mechanism, compared to other time series
mechanisms, is that it reduces the complexity of the prob-
lem by using an upper and lower Minimum Bounding En-
velope (MBE) so as to estimate the similarities within the
MBE. For every sub-volume, the child histogram is com-
pared with its parent histogram. For every histogram the
normalisation function, s, presented in equation 1, where h
is the given histogram, is applied. The LCS method is then
used to measure the similarity between a parent volume and
each of its child volumes. If the maximum LCS distance is
less than a threshold the decomposition will terminate.

s(h) = (h−mean(h))/std(h) (1)

4.1.2 Node Labels

It is desirable to use node and edge labels to distinguish be-
tween trees. It is important that the nodes and edges in the
generated trees are allocated sufficiently descriptive labels
so that good features (features that significantly contribute
to the accurate classification of volumes) can be extracted.
In [7] the Average Intensity Values (AIVs), the mean of the
intensity values of an image region, were used to label the
nodes. However, it is conjectured here that such mean val-
ues for sub-volumes do not provide a sufficient description
of content. Instead, in this paper, the Kurtosis of each sub-
volume is used as the node label. Kurtosis measures the
“peakedness” of a distribution (an intensity histogram in
our case), in other words Kurtosis describes the shape of a
distribution [9]. The following equations demonstrate how
Kurtosis is calculated (Equations 2 to 4).

P = h/size(h), m =
∑

P ∗ h (2)

In Equation 2, h is the histogram vector of the sub-volumes.

v =
∑

(P ∗ (h−m)2), t = P ∗ (h−m)4 (3)

s =
√
v, Kurtosis = s−4 ∗

∑
t (4)

4.1.3 Edge Labels

In the proposed tree based representation for 3D images
(volumes) edge labels are defined in terms of the “similar-
ity distance” between the corresponding parent and child
node. In this paper the Kullback-Leibler Divergence (KLD)
[10] is used to indicate the difference between the parent
and child nodes. The following equations (Equations 5 to
8) demonstrate how the KLD function is used to generate
edge labels.

np =
p∑
p
, nc =

n∑
n

(5)

In Equation 5, p is the histogram for the parent node and n
is the histogram for the child node.

KL1 =
∑

(np ∗ (log2(np)− log2(nc))) (6)

KL2 =
∑

(nc ∗ (log2(nc)− log2(np))) (7)

KLD = (KL1 +KL2)/2 (8)

4.2 Feature Extraction and Classification

After the Non-trees have been generated, one tree per
image, the next stage is to generate the feature vector rep-
resentation so that the salient features of the tree collection
are preserved. In this case the salient features of interest
are frequently occurring sub-trees, sub-trees that represent
common structures that occur across the data set as whole.
The extraction of the desired distinctive sub-tree patterns
is one of the most significant aspects of the proposed ap-
proach.

One way of identifying frequently occurring sub-trees in
our collection of trees (forest) is to apply some frequent sub-
graph mining technique (a tree is a type of graph). With re-
spect to the work described in this paper the well-known
gSpan [18] algorithm was employed although alternative
frequent sub-graph mining algorithms could equally well
have been employed. The sub-graphs are then used to de-
fine a feature space where each identified sub-graph rep-
resents a dimension within that space and each dimension
can have the values 0 or 1 (exists or does not exist). Each
Non-tree of a 3D image can then be defined in terms of this
feature space so that each tree generated by the 3D image is
represented as a feature vector. More specifically:

Definition Given two graphs (trees) G′ = (N ′, E′, nl′, el′)
and G = (N,E, nl, el), G′ is a subgraph of G (G′ ⊆ G) if
N ′ ⊆ N , E′ ⊆ E, nl′ ⊆ nl and el′ ⊆ el.

The extracted set of feature vectors (one per 3D image)
can then be used as input to a supervised learning algorithm
provided that we have a known class label for each vector, in
other words we need to have a training set. In the case of the
AMD application considered in this paper a labelled set of
OCT 3D images was used for evaluation purposes (see Sec-
tion 5 below for detail). The objective of the classification
is then to map sequences of features (frequent sub-trees) to
specific labels.

To conduct the desired classification, gboost [16] was
adopted to classify the generated graphs. Gboost uses a Lin-
ear Programming (LP) classifier designed by Demiriz et al.
[4]. LP is used to find the optimal frequent subgraphs ex-
tracted by Gspan [18].



5 Evaluation

To assess the performance of the proposed overlapping
non-tree representation and the associated frequent sub-
tree feature space formalism in comparison to alternative
approaches and methods, a data set comprising 140 3D
OCT volumes was used, 68 “normal” and the remainder
wet-AMD. The size of each volume was approximately
(1024×496 pixels×19 slices) representing a 6×6×2 mm
retinal volume. The dataset was split 50/50 (half for train-
ing and half for testing). Two levels of maximum decom-
position, 4 and 5, were used in the experiments. The Area
Under the receiver operator characteristic Curve (AUC), ac-
curacy, sensitivity and specificity were used to measure the
performance (see Equations 9, 10).

Two sets of experiments were conducted. The first set
was directed at analysing the proposed non-tree representa-
tion with respect to: (i) a more standard oct-tree representa-
tion, (ii) the 2D methods described in [12] and [6] (namely
the MSSP method described in [12] and the texture method
described in [6]) using the OCT slice passing through the
centre of the fovea (the fovea is located at the centre of the
retina), and (iii) 3D methods LPQ and LBP-TOP presented
in [15] and [19] respectively. The second set of experiments
was directed at investigating the time complexity of the pro-
posed approach (using both the LCS and AIV critical func-
tions) in comparison with the other approaches considered
in the first set of experiments.

The results obtained with respect to the first set of ex-
periments are presented in Table 1. From the table it can
be seen that the 3D decomposition based methods outper-
form the 2D methods described in [6] and [12], thus pro-
viding clear evidence that using 3D data provides for more
effective classification than when using 2D data (at least in
the context of the retina screening application considered in
this evaluation). If we compare the proposed critical func-
tion LCS with the AIV critical function used [7], the LCS
function seems to provide better performance. There is also
some evidence that a level of decomposition of 5 produces
better results than a level of 4, probably because a greater
degree of detail is captured using the higher level of decom-
position. Finally, with respect to the overlapping principle,
better results tend to be obtained using the non-tree (oct-tree
with overlap) than the oct-tree on its own.

The results obtained with respect to the second set of ex-
periments are presented in Table 2. The table lists both Av-
erage Feature Extraction Time (AFET) and Average Clas-
sification Time (ACT) as well as the Total Execution Time
(TET). AFET is the time required to decompose the im-
age and generate feature vectors. ACT is the time required
to conduct the desired classification. From the table it can
be seen that there is a trade-off between performance and
time complexity. The proposed overlapping methods re-

Table 1: Comparison of proposed non-tree approach with
respect to the oct-tree, MSSP and texture approaches in
terms of (i) critical function, (ii) level of decomposition (L),
(iii) Accuracy (Acc), (iv) Sensitivity (Sen), (v) Specificity
(Spec) and (vi) Area Under the Curve of the receiver op-
erating characteristic (AUC) computed using a confusion
matrix.

Method L Acc Sen Spec AUC

oct-tree LCS 4 84.2 82.1 87.1 92.8
5 87.1 86.5 87.9 94.2

non-tree LCS 4 85.7 84.2 87.5 95.7
5 94.2 92.1 96.0 98.7

oct-tree AIV [7] 4 71.4 73.5 69.4 81.0
5 81.4 84.8 78.4 89.9

non-tree AIV 4 77.1 85.7 71.4 86.1
5 87.1 86.5 87.9 96.4

Texture [6] - 90.0 88.6 91.4 90.0
MSSP [12] - 81.4 74.4 92.6 81.8
LPQ [15] - 91.4 91.2 91.7 91.4
LBP-TOP [19] - 82.8 92.3 77.3 82.5

quire more processing time than the other methods, espe-
cially when the size of the graph (the level of decomposi-
tion) is increased.

Acc =
TP + TN

TP + TN + FP + FN
(9)

Sen =
TP

TP + FN
, Spec =

TN

TN + FP
. (10)

6 Discussion and Conclusions

A comparison between the usage of two critical func-
tions, LCS and AIV, for measuring the homogeneity of the
sub-volume was conducted in the experiments. From the
reported evaluation it was observed that the best recorded
accuracy was obtained using the proposed overlapped de-
composition (regardless of whether the LCS or AIV critical
function was adopted). In addition, the results, as shown in
Table 1, indicate that using the LCS function provides bet-
ter results than using the AIV function. The reported results
also demonstrated that the proposed 3D method performed
better than the 2D methods described in [6] and [12] and
the 3D methods described in [15] and [19] with respect to
our dataset. It was argued that this was because the features
obtained using the proposed non-tree representation were
more descriptive and took into account the boundary issue.

In conclusion, a mechanism, founded on the use of non-
trees, for classifying 3D retinal OCT volumes has been de-



Table 2: Running time (seconds) of the programs for Av-
erage Feature Extraction Time (AFET), Average Classifica-
tion Time (ACT) and Total Execution Time (TET).

Method Level AFET ACT TET

oct-tree LCS 4 5.6 8.6 14.2
5 5.8 4.8 10.6

non-tree LCS 4 9.1 45.0 54.1
5 9.7 53.1 62.8

oct-tree AIV [7] 4 0.8 0.4 1.3
5 0.8 0.5 1.4

non-tree AIV 4 6.4 0.3 6.7
5 7.3 1.0 8.3

Texture [6] - 4.3 0.2 4.5
MSSP [12] - 2.1 0.7 2.8
LPQ [15] - 5.9 0.04 5.9
LBP-TOP [19] - 52.7 0.1 52.8

scribed. More specifically an overlapping volume decom-
position, coupled with a graph based feature identification
method, was presented. A number of possible future di-
rections for the work, using the same experimental set up,
are envisioned. It would be interesting to assess the effects
of applying different mechanisms for decomposing the vol-
umetric data such as wavelet or curvelet transforms. It is
also conjectured that the use of different frequent sub-graph
mining techniques might result in the extraction of more de-
scriptive features (sub-graphs) and/or lead to improvements
in the time-complexity. For example stochastic methods
might be used for mining graphs in order to improve the
time complexity.

References

[1] G. Borgefors, G. Ramella, and G. Sanniti Di Baja. Hi-
erarchical decomposition of multiscale skeletons. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
23(11):1296–1312, November 2001.

[2] F. Coscas, G. Coscas, E. Souied, S. Tick, and G. Soubrane.
Optical coherence tomography identification of occult
choroidal neovascularization in age-related macular degen-
eration. American Journal of Ophthalmology, 144(4):592 –
599, 2007.

[3] D. Curtis, V. Kubushyn, E. A. Yfantis, and M. Rogers. A
hierarchical feature decomposition clustering algorithm for
unsupervised classification of document image types. In
Proceedings of the Sixth International Conference on Ma-
chine Learning and Applications, pages 423–428, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[4] A. Demiriz, K. Bennett, and J. Shawe-Taylor. Linear pro-
gramming boosting via column generation. Machine Learn-
ing, 46(1):225–254, 2001.

[5] A. El Sayed, F. Coenen, C. Jiang, M. Garcia-Finana, and
V. Sluming. Corpus callosum MR image classification.
Knowledge Based Systems, 23(4):330–336, 2010.

[6] K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Bar-
ton. Texture analysis of optical coherence tomography im-
ages: feasibility for tissue classification. Journal of Biomed-
ical Optics, 8(3):570–575, 2003.

[7] M. H. A. Hijazi, C. Jiang, F. Coenen, and Y. Zheng. Image
classification for age-related macular degeneration screen-
ing using hierarchical image decompositions and graph min-
ing. In Machine Learning and Knowledge Discovery in
Databases, volume 6912 of Lecture Notes in Computer Sci-
ence, pages 65–80. Springer Berlin Heidelberg, 2011.

[8] R. D. Jager, W. F. Mieler, and J. W. Miller. Age-related
macular degeneration. New England Journal of Medicine,
358(24):2606–2617, 2008.

[9] R. Jindal, S. Jindal, and N. Kaur. Analyses of higher order
metrics for spiht based image compression. International
Journal of Computer Applications, 1(20):56–59, February
2010. Published By Foundation of Computer Science.

[10] D. H. Johnson and S. Sinanovic. Symmetrizing the kullback-
leibler distance. IEEE Transactions on Information Theory,
March 2001.

[11] S. Katz and A. Tal. Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts. ACM Transactions on Graph,
22(3):954–961, July 2003.

[12] Y.-Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J. Schuman,
and J. M. Rehg. Automated macular pathology diagnosis
in retinal OCT images using multi-scale spatial pyramid and
local binary patterns in texture and shape encoding. Medical
Image Analysis, 15(5):748–759, 2011.

[13] D. Lu and Q. Weng. A survey of image classifica-
tion methods and techniques for improving classification
performance. International Journal of Remote Sensing,
28(5):823–870, January 2007.

[14] R. F. Murray. Classification images: A review. Journal of
Vision, 11(5), 2011.

[15] J. Paivarinta, E. Rahtu, and J. Heikkila. Volume local phase
quantization for blur-insensitive dynamic texture classifica-
tion. In Proceedings of the 17th Scandinavian conference on
Image analysis, pages 360–369, Berlin, Heidelberg, 2011.
Springer-Verlag.

[16] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda.
gboost: a mathematical programming approach to graph
classification and regression. Machine Learning, 75(1):69–
89, April 2009.

[17] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with sup-
port for multiple distance measures. In Proceedings of the
Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 216–225, New
York, NY, USA, 2003.

[18] X. Yan and J. Han. gspan: Graph-based substructure pat-
tern mining. In Proceedings of the 2002 IEEE International
Conference on Data Mining, pages 721–724, Washington,
DC, USA, 2002. IEEE Computer Society.

[19] G. Zhao and M. Pietikainen. Dynamic texture recognition
using local binary patterns with an application to facial ex-
pressions. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 29(6):915–928, June 2007.


