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Abstract

Three-Dimensional (3D) (volumetric) diagnostic imaging techniques are indis-
pensable with respect to the diagnosis and management of many medical condi-
tions. However there is a lack of automated diagnosis techniques to facilitate such
3D image analysis (although some support tools do exist). This paper proposes a
novel framework for volumetric medical image classification founded on homo-
geneous decomposition and dictionary learning. In the proposed framework each
image (volume) is recursively decomposed until homogeneous regions are arrived
at. Each region is represented using a Histogram of Oriented Gradients (HOG)
which is transformed into a set of feature vectors. The Gaussian Mixture Model
(GMM) is then used to generate a “dictionary” and the Improved Fisher Kernel
(IFK) approach is used to encode feature vectors so as to generate a single feature
vector for each volume, which can then be fed into a classifier generator. The
principal advantage offered by the framework is that it does not require the de-
tection (segmentation) of specific objects within the input data. The nature of the
framework is fully described. A wide range of experiments were conducted with
which to analyse the operation of the proposed framework and these are also re-
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ported fully in the paper. Although the proposed approach is generally applicable
to 3D volumetric images, the focus for the work is 3D retinal Optical Coherence
Tomography (OCT) images in the context of the diagnosis of Age-related Macu-
lar Degeneration (AMD). The results indicate that excellent diagnostic predictions
can be produced using the proposed framework.

Keywords: Feature Selection, Image Classification, Dictionary Learning,
Homogeneous Decomposition, Optical Coherence Tomography (OCT),
Age-related Macular Degeneration (AMD)

1. Introduction

Medical imaging is one of the most important breakthroughs in the manage-
ment of various conditions. Such images are extensively used in day-to-day clini-
cal practice to support the diagnosis, management and prognosis of medical con-
ditions. The images of interest have tended to be two-dimensional (2D); but 3D
or volumetric images, such as those produced using Computed Tomography (CT),
Magnetic Resonance Imaging (MRI) and Optical Coherence tomography (OCT)
are becoming increasingly prevalent. However, there has been no correspond-
ing increase in the availability of software tools to support the analysis of large
amounts of medical volumetric data. Further, what tools are available frequently
incorporate some form of object segmentation, a resource intensive process that
is often error prone. To address this issue this paper presents a software frame-
work designed to provide end-to-end support for 3D (volumetric) medical image
diagnosis, founded on the idea of image classification, that obviates the need for
segmentation. Image classification is concerned with the generation and appli-
cation of predictors/classifiers to allocate class labels to images. The process of
building classifiers is generally well understood. The challenge is in converting
the input data into a form appropriate for classifier generation.

The proposed framework is founded on the idea of homogeneous image de-
composition and dictionary learning influenced partially by the work described
in (Albarrak et al., 2014) although this only considered dictionary learning with
respect to image decomposition; the work presented in this paper is directed at the
advantages that can be gained by coupling homogeneous decomposition with dic-
tionary learning. A central issue with respect to homogeneous hierarchical spatial
decomposition is the termination condition. The most straightforward approach
is to specify a maximum level of decomposition. An alternative approach is to
terminate the decomposition whenever homogeneous regions are arrived at. The
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benefit of the second approach is that it avoids needless decomposition. The sec-
ond approach is therefore adopted with respect to the proposed framework. The
challenge is how to determine whether a region is homogeneous or not. This is
done using what is known as a critical function. The work described in this paper
includes consideration of a number of proposed critical functions for use with re-
spect to the presented framework. The operation of these functions is compared
with respect to a number of existing functions in terms of classification effective-
ness.

Once the hierarchically decomposed is complete, using the proposed frame-
work, each region is represented using a feature vector. Feature vectors can be
generated in various ways; in this paper the use of HOG (Lazebnik et al., 2006;
Yang et al., 2009) is advocated (with some refinement to allow applicability to 3D
data volumes). Thus each image is represented in terms of a set of feature vec-
tors and the entire input set as a Bag-of-Features (BoF) (Csurka et al., 2004). For
the image classifier generation/application process one feature vector per image is
required. To achieve this a dictionary learning based approach was incorporated
into to the proposed framework.

Using dictionary learning a discriminative subset of features, referred to as
the “dictionary”, is identified from a collection of features; and then used as a
guide for generating a feature vector for each image. Dictionary learning has been
successfully applied elsewhere (Yang et al., 2009; Perronnin et al., 2010; Wang
et al., 2010; Zhou et al., 2010) and can be conducted in a number of manners, but
with respect to the work presented in this paper the IFK (Perronnin et al., 2010)
method is suggested. IFK relies on a GMM to generate the desired “dictionary”.
The dictionary is then used to encode the feature vectors for each image so as to
form a single feature vector for each image to be fed into a traditional classifier
generator. The application of the dictionary learning concept, to the volumetric
image classification problem, is a central theme of the investigation presented in
this paper.

Although the proposed framework has general applicability in the context of
3D data, it was specifically designed for application to collections of 3D retinal
OCT images with the objective of detecting the presence (or absence) of Age-
related Macular Degeneration (AMD). AMD is the most common global cause
of blindness with respect to people aged 50 years and over. It affects the cen-
tre of the retina, the “macula”, resulting in central vision loss. Traditionally, 2D
colour fundus images have been used to detect AMD, and a number of mecha-
nisms for automating this process have been proposed (Hijazi et al., 2011; Zheng
et al., 2012). More recently OCT has become widely used for the management of
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AMD. Analogous to ultrasound, OCT is a non-invasive imaging technique based
on the principle of interference of low coherence light (Huang et al., 1991). OCT
can produce cross-sectional images of biological tissues at a high level of reso-
lution and speed. Given the transparent nature of the eye, OCT has become an
indispensable tool with which to manage retinal diseases. Figure 1 shows two 3D
OCT volumes. Figure 1(a) shows a 3D OCT image of a normal retina where the
retina has smooth contours and a regular arrangement of individual retinal layers.
Figure 1(b) shows a 3D OCT retinal image with AMD, showing the abnormal
change in the retina associated with AMD where fluid and disruption of the retina
tissue is evident. Current technical advances enable the generation of a volumetric
scan of the retina in seconds, this means that it is relatively straightforward to pro-
duce retinal OCT volumes. However, the large quantity of volumetric retina data
produced makes it difficult for clinicians to process the data in a timely manner.
As noted above, the availability of automated analysis tools has not kept pace with
corresponding hardware development.

This paper makes a number of contributions. Firstly the proposed framework
obviates the need for resource intensive segmentation. Secondly, the work demon-
strates that by adopting the proposed framework it is possible to improve the per-
formance of 3D image classification in the context of AMD screening and diagno-
sis. Thirdly the paper demonstrates that classification advantages can be gained by
adopting hierarchical spatial decomposition based representation methods. More
specifically it is argued that by decomposing images into homogeneous regions
it is possible to produce effective solutions to the 3D retinal image classification
problem. Various ways of extracting homogeneous regions are considered in the
paper; the proposed 3D HOG feature vector generation mechanism, for represent-
ing individual regions, is of note. Fourthly the paper establishes that IFK based
dictionary learning can be effectively employed, in the context of AMD diagnosis,
to limit the feature space.

Given the above the main technical and practical contributions, and the novelty
of the work, presented in this paper can be summarised as follows:

1. The coupling of homogeneous decomposition with Dictionary Learning for
forming feature vectors.

2. A novel and robust approach to 3D retinal image classification using a so-
phisticated framework for generating classifiers applicable to 3D volumetric
data.

3. A mixed oct- and quad-tree decomposition mechanism specifically designed
for retinal OCT data volumes.
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(a) A 3D OCT of a normal retina

(b) A 3D OCT of an AMD retina

Figure 1: Examples of two 3D OCT images showing the difference between: (a) a “normal” and
(b) an AMD retina.
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4. A number of histogram based critical functions to support decomposition.

5. A 3D variation of the HOG representation (commonly applied in the con-
text of 2D data) for use with respect to the 3D regions identified during a
decomposition.

6. A dictionary learning mechanism applicable to the 3D regions resulting
from a homogeneous decomposition.

7. A novel approach to the screening of eye conditions, such as AMD, that can
provide real time diagnosis at point of care (point of data acquisition).

In the context of the above the motivations for adapting a hierarchical decompo-
sition based approach to 3D OCT image representation are as follows:

• The decomposing of a space into subspaces helps to identify the most sig-
nificant localised patterns in the context of the subspace; whereas otherwise,
by considering the space in its entirety, localised patterns may be missed.
Note that in the context of OCT images the patterns we are interested in
generally tend to be in those parts of the image (sub-images) that feature
disease.

• Hierarchical decomposition allows for a more “complete” analysis in that
the analysis can be directed at different levels of decomposition.

• There is evidence to suggest that image representation methods that rely on
localised features tend to produce better performance than those that use
global features.

• Spatial relationships between regions can be maintained. Regions that share
the same parent remain identifiable (and may be indicative of disease).

The rest of this paper is structured as follows. Section 2 provides a review of
related research. The proposed framework is then detailed in Section 3. Section 4
reports on experiments conducted to evaluate the proposed framework. The paper
is concluded in Section 5 with a summary of the main findings. Note that in the
remainder of this paper when we refer to image data we mean volumetric (3D)
image data, and when we refer to regions we mean sub-volumes of a 3D image
(volume).
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2. Related Work

In this section, we review some of the related work concerning: (i) retinal
OCT image classification, (ii) methods for decomposing image data, (iii) image
representation and (iv) dictionary learning methods.

2.1. Retinal OCT Classification
Most of the current retinal disease diagnosis tools are designed for applica-

tion to 2D images. Two examples directed at OCT images, but considering only
a single “slice”, can be found in Gossage et al. (2003) and Liu et al. (2011). In
Gossage et al. (2003) a texture based method was proposed using a Spatial Grey-
Level Dependence Matrix (SGLDM) and the Discrete Fourier Transform (DFT).
A set of statistical functions was applied to the SGLDM such as energy, entropy,
correlation, local homogeneity and inertia to form a feature vector. A Bayesian
classifier was used to classify images. In Liu et al. (2011) a method for detecting
retinal diseases, including AMD, was presented using a Multi-Scale Spatial Pyra-
mid (MSSP) representation. Histograms of Local Binary Patterns (LBPs) were
generated from each sub-block of the MSSP. Dimensionality reduction was then
applied to the collection of LBPs using Principal Component Analysis (PCA). All
the selected LBPs were then concatenated together to build a single feature vec-
tor (one per image). A Support Vector Machine (SVM) classifier was then used
for categorising these feature vectors. For both the above two approaches only a
single OCT slice across the centre of the retina was chosen for the analysis. This
reduces the overall computational cost, but can lead to inaccurate results because
of information outside of the selected slice being missed (Albarrak et al., 2012,
2013). It is therefore suggested in this paper that volumetric image mining, using
the proposed framework, is more desirable.

The study reported in Quellec et al. (2010) proposed a method for 3D OCT
retinal image classification. Here the retinal layers were segmented using a multi-
scale 3D graph algorithm. A set of sub-volumes were generated, one sub-volume
per layer. A set of statistical features was then generated for each sub-volume.
These features included: intensity distribution, run length and features generated
using co-occurrence matrices and wavelets. The generated features were used as
input to a K-Nearest Neighbour (KNN) classifier. The principal disadvantage of
the method is that it relies on the quality of the layer segmentation.

2.2. Image Decomposition Methods
Image decomposition can be conducted in a variety of ways, the simplest is

to use a fixed grid (Marszałek et al., 2007; Lazebnik et al., 2006; Yang et al.,
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2009) to demarcate a set of equal sized square (2D), or cube (3D), regions. From
the literature we can identify two popular forms of grid based decomposition: (i)
fixed-sized “window” and (ii) hierarchical. In the first, a predefined rectangular
shaped window is used to extract regions from an image (Yang et al., 2009). A
problem in some cases is that the edges of the given image may not be covered
if the window size is not directly compatible with the image size (although typ-
ically we are not interested in things that occur at the edges of images). In the
context of hierarchical tree-based decomposition one popular method is the Spa-
tial Pyramid (SP) approach (Lazebnik et al., 2006, 2009). Here, at each level of
the decomposition, each region is iteratively divided into four sub-regions (2D) to
form a quad-tree. In the 3D case an oct-tree will be formed (Sundar et al., 2007).
It is argued that hierarchical spatial decomposition provides for a robust repre-
sentation because the selected representation method is applied to regions rather
than the entire image. In addition issues associated with occlusion are likely to
be reduced because of the way images are divided into regions (Tuytelaars and
Mikolajczyk, 2008). Image decomposition has been used in various application
domains: such as volume rendering (Frisken et al., 2000; Schneider and Wester-
mann, 2003), animation (Chen et al., 2003), segmentation (Lin and Davis, 2010;
Voisin et al., 2013) and geographic information systems (Bruzzone and Carlin,
2006). Image decomposition is central to the proposed framework.

2.3. Image Representation
Little work on image representation has been directed at 3D images. One

example can be found in Zhao and Pietikainen (2007) who proposed the use of
Three Orthogonal Plane LBPs (LBP-TOP) to represent 3D images. The LBP-
TOP representation uses LBPs only with respect to neighbouring voxels located
in the XY , XZ and Y Z planes. An advantage of the LBP-TOP representation
is that it avoids the rotational invariant problem (Zhao and Pietikainen, 2007).
The Local Phase Quantisation (LPQ) 3D image representation was proposed in
Paivarinta et al. (2011). LPQ uses low frequency local Fourier transforms whereby
a histogram of the quantised Fourier transform can be generated (Ojansivu and
Heikkilä, 2008). In this paper a variation of the HOG representation, adjusted so
as to be compatible in the context of 3D data, is proposed.

2.4. Region-based Representations
The approach advocated in this paper for representing regions, identified as the

result of an adopted decomposition process, is to represent each region in terms of
a feature vector so that the entire image is represented by a set of feature vectors.
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Once the sets of feature vectors have been identified, describing the entire input
data set, a global set of features can be collected together to form a BoF vector
(Csurka et al., 2004). However, for the purpose of classification a single feature
vector per image is desirable. An issue is that different images may end up with
different length feature vectors if the images have different numbers of regions as
a result of a homogeneous decomposition. The proposed dictionary learning strat-
egy avoids this issue. Example methods used to generated dictionaries include: (i)
Vector Quantization (VQ) (Lazebnik et al., 2006), (ii) Sparse Coding (SC) (Yang
et al., 2009), (iii) Locality-constrained Linear Coding (LLC) (Wang et al., 2010),
(iv) IFK encoding (Perronnin et al., 2010) and (v) Super Vector encoding (SV)
(Zhou et al., 2010). In Huang et al. (2014) an evaluation is presented on the rel-
ative performance of these different coding methods; it was found that the IFK
method outperformed the others. Hence this method was adopted with respect to
the framework presented in this paper.

3. The Volumetric Data Classification Framework

From the foregoing, in this paper we present a framework for conducting volu-
metric data classification using homogeneous decomposition and dictionary learn-
ing directed at 3D retinal image diagnosis. Figure 2 presents a block diagram
describing the framework. The input is set of image volumes, more specifically
retinal OCT image volumes. A four stage process is then followed prior to classi-
fier generation/application. The four stages are: (i) image decomposition, (ii) de-
composition representation, (iii) dictionary learning and (iv) single feature vector
generation. For each stage there are a number of techniques that can be adopted.
For the image decomposition the central issues are the nature of the decomposi-
tion and the nature of the critical function to be adopted, this is discussed further
in Subsection 3.1. Once we have our decomposition each decomposition can be
represented according to the individual identified regions using a set of feature
vectors (one per region). The proposed feature vector extraction methods are dis-
cussed in further detail in Subsection 3.2. To reduce the number of identified
features dictionary learning is used, this is detailed in Subsection 3.3. The final
stage is single feature vector generation, one per image. This is also described
in Subsection 3.3. For completeness the classifier generation process is briefly
presented in Subsection 3.4.
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Figure 2: Block diagram outlining the stages in the proposed volumetric data classification frame-
work.
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3.1. Image Decomposition
Stage one of the proposed framework is image decomposition. A mixed oct-

and quad-tree decomposition is proposed, specially designed for use with OCT
volumes because of their “oblong” nature whereby the number of pixels (or the
number of A scans in a B scan) in one of the dimensions is significantly longer
than the other two (see Figure 1). From example, the OCT volumes used in
this work typically measure 1024× 496× 20 pixels. Thus after the initial oct-
decomposition each volume will measure 512× 248× 10. If we carried on with
the oct-decomposition the volumes would quickly become too thin to be use-
ful, hence the oct-decomposition was stopped after the first iteration and quad-
decomposition was adopted instead. However, given some other kind of volume
there is no reason why the oct-decomposition cannot be continued, the proposed
framework will operate equally well. The decomposition algorithm is presented
in Subsection 3.1.1 below. The algorithm will operate with any one of a number
of critical functions, the nature of such critical functions is therefore considered
in Subsection 3.1.2.

3.1.1. Decomposition
As noted above, in order to be appropriate to the nature of OCT images a

mixed oct- and quad-tree decomposition is proposed. On the first iteration of the
decomposition the volume is divided into eight sub-volumes; on all of the fol-
lowing iterations each identified subregion is then further divided into only four
sub-volumes. As the decomposition progresses the identified regions are stored in
a tree data structure T . Algorithm 1 describes the decomposition process. Note
that this is a recursive process. The inputs to the algorithm are an input data vol-
ume V and a maximum level of decomposition maxLevel. The output is the tree
data structure T holding the decomposition. We indicate the child i of a node in
the tree using the notation node.i. The root of the tree is root. The algorithm com-
mences by dividing the input volume V int eight sub-volumes {s.1,s.2, . . . ,s.8}
(line 8). Following this, for each identified sub-volume the decompose procedure
is called (line 11). The decompose procedure first tests if the maxLevel has been
reached and whether the current sub-volume is homogeneous or not (by applying
a critical function). If so the current volume is not decomposed any further. Other-
wise it is divided into four sub-volumes {s.1,s.2, . . . ,s.4} (line 18) and the process
repeated for each of these sub-volumes with another call to the decompose pro-
cedure. Eventually, either the maxLevel or homogeneous sub-volumes are arrived
at, the recursion then “unwinds”.
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Algorithm 1 Pseudocode for the proposed decomposition methods.
1: Intput:
2: V = The input volume
3: maxLevel = The maximum level,forth decomposition
4: Output:
5: T = Tree data structure holding the final decomposition

6: level← 1
7: root = Pointer to root of tree T
8: s.1 . . .s.8← volume V decomposed into eight sub-regions
9: for i = 1 to i = 8 do

10: root.nodei← detail of si
11: decompose(level +1,root.nodei)
12: end for
13: exit with T

14: procedure decompose(level,node)
15: if level ≥ maxLevel or Homogeneous(node) then
16: return
17: end if
18: s.1 . . .s.4← volume at node decomposed into four sub-regions
19: for i = 1 to i = 4 do
20: node.nodei = detail of si
21: decompose(level +1,node.nodei)
22: end for
23: end procedure
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3.1.2. Critical Functions for Regional Homogeneity
The decomposition algorithm (Algorithm 1) will operate with respect to a

number of critical functions. Recall that a critical function is a mechanism for
identifying whether a particular region is homogeneous or not. The point is that
they can be used to control the decomposition so that unnecessary decomposition
resulting in additional unrequired volumes is not undertaken. As noted above,
determining regional homogeneity is an important issue in the context of image
decomposition as it defines when the decomposition should be stopped. For the
proposed framework five alternate critical functions were considered: (i) Average
Intensity Values (AIV) (Hijazi et al., 2011), (ii) Kendall’s Coefficient Concor-
dance (KCC) (Zang et al., 2004), (iii) Euclidean Distance (ED), (iv) Kullback-
Leibler divergence (KLD) (Johnson and Sinanovic, 2001) and (v) Longest Com-
mon Subsequence (LCS) (Vlachos et al., 2003). Note that the last three functions
are histogram based.

Using AIV the average intensity values for the region to be decomposed and
its potential child regions are first computed. Then a homogeneity value ω is
calculated using Equation 1, where s is the total number of child regions, AIVp
indicates the parent AIV and AIVi the AIV for child region i, i = [1,s]. If ω is
greater than a specified threshold t then the decomposition is valid and the child
regions are added to the collection of regions in the level and the decomposition
continues.

ω =
1
s

s

∑
i=1
|AIVp−AIVi| (1)

The KCC function (Zang et al., 2004) operates as follows. For each voxel,
a point series is derived comprised of the intensity values of the voxel’s nearest
neighbours. Then the KCC function is applied with respect to each generated
point series and a value, indicative of the homogeneity (similarity) of the point
series, calculated. KCC is calculated using Equation 2.

KCC =
∑

n
i=1(R

2
i −nR̄2)

1/12K2(n3−n)
, (2)

where: (i) Ri is the sum of the point series for the ith voxel, (ii) R̄ is the mean
of each point series (R̄ = (n+1)K

2 ), (iii) K is the size of the point series (num-
ber of selected neighbours for each voxel) and (iv) n is the number of voxels in
a given region. The resulting KCC value will range from 0 to 1, where 1 indi-
cates that the sub-volume is a completely homogeneous region and 0 an entirely
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un-homogeneous region. If KCC is less than a specified threshold t then the de-
composition is valid and the child regions are added to the collection of regions in
the level and the decomposition continued.

Histogram based methods are generally considered to be more robust than
when single values are used as in the case of AIV and KCC. Using the histogram
based methods histograms of intensity values for the region under consideration
for decomposition and its potential child regions are first computed. A homo-
geneity value for each parent-child pair is then computed based on the “distance”
(difference) between these histograms. With respect to the work presented in this
paper three alternate distance measures are considered: (i) ED, (ii) KLD (Johnson
and Sinanovic, 2001) and (iii) LCS (Vlachos et al., 2003). Euclidean distance is
the most obvious measure and is calculated as per Equations 3 where hp is the
histogram of the parent and hci is the histogram of the ith child (region), both
with length hl. With respect to the experiments reported later in this paper hl was
set to 256 bins. If the ed distance value, with respect to one child, is greater than
a specified threshold t then the decomposition is valid and the child regions are
added to the collection of regions and the decomposition continues.

ed(hci,hp) =

√√√√ hl

∑
j=1

(hci j −hp j)2 (3)

KLD is calculated using Equations 4, 5 and 6, where: (i) hp is the parent
histogram, (ii) hci is the child histogram for child node i and (iii) nc is the number
of child nodes (4 or 8 in our case). If the calculated KLD value is greater than a
pre-specified threshold t then the decomposition is valid and the child regions are
added to the collection of regions in the level and the decomposition continued.

KLD = (KL1+KL2)/2 (4)

KL1 =
nc

∑
i=1

hp∗ )log(hp)− log(hci)) (5)

KL2 =
nc

∑
i=1

hci ∗ (log(hci)− log(hp)) (6)

LCS is a time series matching method which may be used to compare the
similarity between two point series. LCS computes the similarities between two
series using the concept of a Minimum Bounding Envelope (MBE) defined by
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two parameters δ and ε (Vlachos et al., 2003). The LCS value is computed using
Equation 7; note that Equation 7 is recursive. With reference to the equation the
LCS value is 0 if either hp or hci are empty. If the difference between the last
value in hp and the last value in hc is less than ε , and the difference in overall size
(number of points) of hp and hc is less than or equal to δ , in other words the two
point series lie within the boundary of the MBE, we call Equation 7 again but with
the last element of hp and hci removed (the LCS result is added to 1). Otherwise,
if either (or both) of the point series are not entirely contained within the MBE we
recalculate two LCS values and choose the maximum; one with hp shortened by
one, and one with hci shortened by one. The final difference value Dδ ,ε(hp,hci) is
then calculated using Equation 8 where hs is the size of the two given histograms
for the parent node hp and the child node hci. If the calculated Dδ ,ε(hp,hci)
value is less than some threshold t, then the parent region is considered to be
homogeneous and so it is not decomposed further. The advantage offered by
the LCS mechanism, compared to the other point series comparison mechanisms
considered here, is that the complexity of the problem is reduced through the use
of the MBE concept.

LCSδ ,ε(hp,hci) =


0 i f hp or hci is empty

1+LCSδ ,ε(hp|hp|−1,hci|hci|−1) i f | hp|hp|−hci|hci|
|< ε

| |hp|− |hci| |≤ δ

max{LCSδ ,ε(hp|hp|−1,hci),LCSδ ,ε(hp,hci|hci|−1)} otherwise
(7)

Dδ ,ε(hp,hci) = 1−
LCSδ ,ε(hp,hci)

hs
(8)

For the experiments the threshold value t used with the critical functions, as
presented above, was set to 0.5. This value was selected because experiments
conducted indicated that this produced the best classification outcomes. Figure 3
provides a comparison of the operation of each of the above five critical functions.
The figure was generated by applying each critical function to decompose a given
data volume down to a maximum level of five (the root is level one). From the
figure it can be seen, from the general shape of the trees, that there are clear dif-
ferences in the operation of these critical functions. For example at the third level
it can be seen that the regions are decomposed further for some critical functions
and not for others.
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(a) AIV (b) KCC (c) ED

(d) KLD (e) LCS

Figure 3: Illustration of the decomposition outcomes using the five different critical functions
considered and a given image volume of interest (maximum level of decomposition = 5).

3.2. Region-based Representation
A number of alternative mechanisms for representing regions, generated as

described above, can be adopted. In this paper, we propose the use of a HOG
representation based on work presented in (Dalal and Triggs, 2005) where the
HOG concept was used in the context of 2D data. In order to generate a HOG, the
region gradients are first computed followed by the angles between the gradients.
These angles are accumulated in histograms bins (Dalal and Triggs, 2005). The x-
axis of the histogram represents the angles and the y-axis the sum of the gradient
magnitudes. For a region, I, the gradient of each voxel, ∇I(x,y,z) is given as
follows:

∇I(x,y,z) =
∂ I
∂x

i+
∂ I
∂y

j+
∂ I
∂ z

k (9)

where ∂ I
∂x , ∂ I

∂y , and ∂ I
∂ z are partial derivatives along the x, y and z directions respec-

tively. These partial derivatives are usually estimated by finite difference schemes
such as the Forward difference scheme. Each gradient magnitude |∇I(x,y,z)| is
computed using Equation 10. Following this the orientation “angles” θ(x,y,z)
in each location of the region are extracted using Equation 11 (Scovanner et al.,
2007; Lowe, 1999). The values for these angles range from between 0 and 2π . In
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order to fix the number of bins in each histogram for each region, the range of pos-
sible angles was discretized to 8, the angles were thus quantized using a= angle×
2 ∗ π/8. For each quantized angle a between 0 and 8, h = cos(θ(x,y,z)− a)α ,
where a is the selected angle and α is a constant set to 9 (Sivic and Zisser-
man, 2003), thus forming an orientation histogram for each quantized angle a,
hist(a) = hist(a)+(h.∗magnitude).

|∇I(x,y,z)|=

√(
∂ I
∂x

)2

+

(
∂ I
∂y

)2

+

(
∂ I
∂ z

)2

(10)

θ(x,y,z) = atan2

∂ I
∂ z

,

√(
∂ I
∂x

)2

+

(
∂ I
∂y

)2
 (11)

An entire image volume can thus be represented by a collection of histograms
corresponding to the number of sub-volumes (regions) identified during the de-
composition which in turn depends on the maxLevel value and the homogeneity
of the regions (defined in terms of some critical function). Histogram data can be
encapsulated in terms of feature vectors. Given a collection of data volumes the
entire data space can be represented in terms of a set of feature vectors, one feature
vector per each identified region. Collectively the set of features used describes a
BoF.

3.3. Dictionary Learning and Feature Vector Generation
From the foregoing, each volume is represented by a collection of feature

vectors (drawn from a global BoF). So as to be compatible with classifier gen-
eration each volume (image) needs to be represented by a single feature vector.
We would also like to reduce the overall size of the BoF so that we are left with
a highly discriminative set of features. In the context of the proposed framework
the proposed mechanism for achieving both objectives is to use: (i) a dictionary
learning mechanism to “learn” a set of highly discriminative set of features and
(ii) a coding mechanisms whereby the learnt dictionary is applied to curate single
feature vectors (one per image). The dictionary learning was founded on a GMM
to model the distribution of the feature vectors describing a collection of images
(volumes). For the coding the IFK encoding mechanism was adopted (introduced
in Subsetion 2.4 above).

The dictionary learning process is as follows. Let X = {x1, . . . ,xN} be the set
of feature vectors describing the decomposed regions over a collection of images.
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The distribution of the feature vectors within X is estimated using GMM, a mix-
ture of K multivariate Gaussian distributions where K is the number of desired
elements in the dictionary. For a given vector x ∈ X the conditional probability
p(x|Λ) is calculated as follows:

p(x|Λ) =
K

∑
k=1

wkg(x|µk,Σk) (12)

g(x|µk,Σk) =
1√

(2π)D detΣk
exp
[
−1

2
(x−µk)

T
Σ
−1
k (x−µk)

]
(13)

Λ = {wk,µk,Σk,k = 1, . . . ,K} where wk, µk and Σk are the prior probability, mean
and covariance matrix of the Gaussian gk. D is the number of dimensions of the
feature vector describing a sub-volume. In general, the parameter Λ is unknown at
the beginning of the process and has to be learnt by maximizing the log-likelihood
of the set of feature vectors X . This is usually conducted using the Expectation
Maximization (EM) algorithm, interested readers are referred to the original paper
for further details (Dempster et al., 1977). At the end of the process the dictionary
comprises a set of K clusters each defined by wk, µk and Σk parameters.

Once the dictionary has been learnt the IFK single feature vector encoding
can be commenced. The reasons for using IFK with respect to the work described
in this paper are: (i) that (as noted earlier in this paper in Subsetion 2.4) it has
been shown to perform well with respect to other image classification applications
(Huang et al., 2014), and (ii) the anticipated relatively small size of dictionary
required to represent all the possible features. More specifically, IFK uses the
gradients of the mean GN

µ,i and covariance GN
Σ,i of Gaussian i for feature vectors

i = 1 . . .K as shown in Equations 14 and 15.

GN
µ,i =

1
N
√

wi

N

∑
n=1

γn(i)
(

xn−µi

Σi

)
(14)

GN
Σ,i =

1
N
√

2wi

N

∑
n=1

γn(i)
[
(xn−µi)

2

Σi
2 −1

]
(15)

γn(i) =
wiµi(xn)

∑
K
j=1 w jµ j(xn)

(16)

Here N is the number of regions of an image. A single feature vector (one per
image/volume) is formed by concatenating the two gradients (GN

µ,i and GN
Σ,i). Note

that all the generated single feature vectors, for each image, are of size 2∗K ∗D.
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3.4. Classifier Generation
From the foregoing, a single feature vector FV (I) is formed to describe each

image I. For training purposes each feature vector FV (I) was combined with a
class label cI ∈C = {c1,c2, . . .}. In the context of AMD screening, the focus for
the work presented in this paper, C = {+1,−1} was used, where +1 indicates a
retina with AMD and −1 a normal retina (for Diabetic Retinopathy screening an
alternative class set might be used). The class labels were allocated by medical
experts. The feature vector representation is compatible with a great many widely
available classifier generators. With respect to the evaluation presented in the fol-
lowing section an SVM classifier was used, obtained from the Library for Support
Vector Machines (LIBSVM) package (Chang and Lin, 2011)1. Once a classifier
is trained it can be used to classify new unseen images. SVM classification was
adopted because of its widely reported good performance, but other classification
models could equally well be adopted.

4. Experiments and Results

In this section we present an evaluation of the proposed volumetric image
classification framework. For the purpose of the evaluation a retinal OCT volume
data set was used comprised of 140 3D OCT volumes, 68 “normal” (control)
volumes and 72 AMD volumes. All the images were acquired using a Spectralis
OCT camera2. The size of each volume was approximately 1024× 496 pixels
×19 slices representing a 6×6×2 mm retinal volume.

The evaluation was conducted by applying the generated classifiers, built us-
ing the proposed framework, to the test data and comparing the predicted labels
with the known labels. Ten-fold Cross Validation (TCV) was used throughout,
whereby the image dataset is randomly divided into ten sub-sets (each with ap-
proximately the same number of images for each class) and the process run ten
times, each time with a different 1

10 th of the data as the test set. Note that the use
of TCV mitigates against any tendency for overfitting. The Area Under the re-
ceiver operator characteristic Curve (AUC) was recorded on each occasion. AUC
was used as the evaluation measure because it takes into account the class priors
(whereas measures such as accuracy do not). The overall objective was to identify

1In the context of LIBSVM the polynomial kernel was used with a coefficient of one and a
complexity constant of one.

2Manufactured by Heidelberg Engineering, Heidelberg, Germany.
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the most appropriate techniques for use in the context of the proposed volumet-
ric classification framework. More specifically the objectives of the classification
effectiveness testing were to determine:

• In the context of 3D image decomposition, whether there is any distinction
between using a critical function and not using a critical function; and, as-
suming there is some benefit to using a critical function, the most appropri-
ate critical function to adopt in terms of the five critical functions considered
(AIV, KCC, ED, LCS, KLD).

• The most appropriate value for the maxLevel parameter to be used with
respect to the decomposition. A range of values was considered, {3,4,5,6},
intuitively selected so that the generated decomposed volumes would be
neither too large or too small to be useful.

• The most appropriate dictionary size K to be used (again a range of values
was considered {32,64,128,256,512}).

The obtained results are presented in Subsection 4.1 below. These are then
discussed in the context of the above listed objectives in the following three sub-
sections, Subsections 4.2 to 4.4. Computation time is considered in Subsection
4.5. To determine whether, with respect to each objective, the results were indeed
statistically significant, the ANalysis Of Variance (ANOVA) test and the Tukey
Honestly Significant Difference (HSD) Post-Hoc Test were employed to evaluate
the pairwise difference between groups of techniques (Demšar, 2006).

4.1. Evaluation Results
Table 1 presents the average AUC evaluation results obtained with respect to

the conducted TCV. It is noteworthy that a best average AUC value of 1.00 is
recorded. The column marked NCF (No Critical Function) gives the AUC results
when no critical function was used (only a maximum level of decomposition).
Recall that the parameter K specifies the dictionary size.

4.2. Use of Critical Function Versus No Critical Function
From the results presented in Table 1 it is clear that better results are obtained

when a critical function is used than when a critical function is not used. Aver-
age AUC values of 1.00 were recorded with respect to the ED and LCS critical
functions. The best overall performing approach was that using the LCS critical
function, while ED also produced good results. Thus it can be concluded that the
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Table 1: AUC evaluation results for different configurations of the proposed volumetric image
classification framework, where L = maxLevel and the ± value is the standard deviation.

K L NCF AIV KCC ED LCS KLD

32

3 0.93±0.06 0.97±0.00 0.93±0.05 0.96±0.03 0.96±0.02 0.93±0.05
4 0.97±0.00 0.95±0.00 0.99±0.03 0.99±0.01 0.98±0.02 0.89±0.05
5 0.94±0.02 0.98±0.00 0.96±0.03 0.99±0.00 0.97±0.02 0.98±0.02
6 0.91±0.03 0.98±0.00 0.91±0.02 0.99±0.02 0.99±0.00 0.88±0.00

64

3 0.94±0.04 0.94±0.02 0.88±0.00 0.95±0.03 0.98±0.03 0.91±0.06
4 0.90±0.03 0.94±0.02 0.96±0.00 1.00±0.00 0.98±0.00 0.90±0.03
5 0.95±0.00 0.99±0.02 0.98±0.02 1.00±0.00 0.99±0.00 0.95±0.00
6 0.93±0.05 0.98±0.02 0.91±0.00 0.98±0.00 0.98±0.00 0.95±0.02

128

3 0.93±0.05 0.91±0.07 0.94±0.03 0.96±0.03 0.99±0.00 0.93±0.08
4 0.88±0.02 0.95±0.00 0.99±0.00 0.98±0.00 0.99±0.00 0.90±0.03
5 0.88±0.02 0.98±0.02 0.97±0.00 0.99±0.00 0.98±0.00 0.94±0.00
6 0.93±0.02 0.98±0.02 0.88±0.00 0.97±0.00 0.98±0.00 0.97±0.00

256

3 0.91±0.07 0.99±0.02 0.93±0.05 0.96±0.00 0.96±0.00 0.92±0.05
4 0.91±0.02 0.98±0.00 0.97±0.02 0.98±0.00 0.98±0.00 0.94±0.00
5 0.92±0.02 0.99±0.00 0.99±0.00 1.00±0.00 0.96±0.00 0.96±0.02
6 0.86±0.03 0.99±0.00 0.90±0.00 0.99±0.00 0.99±0.00 0.98±0.02

512

3 0.91±0.05 0.93±0.00 0.95±0.04 0.93±0.03 0.95±0.03 0.94±0.02
4 0.86±0.03 0.96±0.00 0.99±0.00 0.97±0.00 1.00±0.00 0.89±0.02
5 0.94±0.02 0.99±0.00 0.97±0.03 0.98±0.00 0.99±0.00 0.97±0.00
6 0.92±0.00 0.99±0.00 0.88±0.02 0.99±0.00 0.97±0.00 0.99±0.02
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similarity matching techniques used with respect to the LCS and ED critical func-
tions are more effective than those used with respect to the other critical functions
considered.

A box plot representing the results from an associated Tukey test applied using
the AUC values presented in Table 1 is given in Figure 4. The figure should be
interpreted as follows. Along the x-axis are listed the “groupings” of techniques
under consideration, in this case the groups are critical functions. The y-axis
represents the recorded AUC classification results. The red line in each box rep-
resents the median AUC value while the top and bottom of the box represents
the 75% and 25% quartiles with respect to each group. The notch in each box
represents the 95% confidence intervals of the measured median AUC value. The
whiskers mark the highest/lowest AUC values with respect to each group that are
within 1.5 times the interquartile range of the box edges. The red plus signs rep-
resent the outliers beyond the data range. In particular, when the notches of two
methods do not overlap, the median AUCs can be considered to be significantly
different at a 0.05 significance level.

With respect to Figure 4, the ANOVA p-value for comparing the results in
the context of the critical functions (and NCF) was 2.5805e−53, which is much
less than 0.01 indicating that there is indeed a substantial statistical difference
in the results obtained. From the box plot it can also be seen that the AUC re-
sults obtained with NCF were statistically different from the results where critical
functions were used. The figure confirms that the best critical function was LCS,
which has associated with it the narrowest AUC confidence interval and a me-
dian of 0.9744; but it can also be noted that, although the LCS result was slightly
better, the results using AIV, ED, KCC and LCS were not statistically different.
Whatever the case, it was concluded that LCS was the most appropriate critical
function to be used in the context of the proposed framework.

4.3. Best Maximum Level Parameter (L)
From Table 1 it can also be seen that the use of larger values of L produced a

better classification performance. In terms of statistical significance the recorded
AUC results, with respect to the nature of the value of L, were statistically different
with an ANOVA p-value of 2.7988e−10 (< 0.01). A box plot presenting the
results from the associated Tukey test is presented in Figures 5. Along the x-axis,
in this case, is listed the “groupings” of techniques according to value for L. The
y-axis, as before, records the AUC values. From Figure 5 it can be seen that the
results obtained using L = 3 were statistically different from the other L values
considered. The figure also indicates that L = 5 produced the best overall AUC
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Figure 4: Box plot illustrating the difference in operation between critical functions (and no critical
function).

results in that it provided the shortest range with the narrowest confidence interval.
It is suggested that L = 5 produced good results because it decomposed the image
down to a larger number of regions than when lower values of L were used, thus
producing a more discriminative set of features. Thus L = 5 was adopted as the
most appropriate value for L with respect to the proposed framework.

4.4. Best Dictionary Size
With respect to the most appropriate dictionary size K, a range of values for

K was experimented with ({32,64,128,256}). Again, with reference to Table 1,
it can be seen that good results were produced regardless of the K value used.
However, the calculated ANOVA p-value was 0.0325 (< 0.05) indicating some
statistical difference as confirmed by the box plot given in Figure 6. The box plot,
presenting the results from the associated Tukey test, has the groupings using
different dictionary sizes along the x-axis while the y-axis represents AUC values
(as before). From the plot it can be seen that, although the results obtained using
different dictionary sizes were similar, a slight improvement featured when K =
32 (an AUC median of 0.9537). The similarity between the results using the
different dictionary sizes is probably due to the use of IFK which encodes the
feature vectors regardless of the dictionary size K used for the GMM.
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Figure 5: Box plot illustrating the difference in operation using different values for the maximum
decomposition level L.

Figure 6: Box plot illustrating the difference in operation when using different dictionary sizes K.
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4.5. Computation Time
Table 2 shows the average required run time (over ten runs) for the proposed

framework to complete (using K = 32 because previous experiments, reported
above, had indicated that this tended to produce best results). The table shows
the Average Decomposition Time (ADT), summed Average Feature Vector Gen-
eration Time and Classification Time (AFVGCT), and average Total Execution
Time (TET). ADT is the average time required to decompose an image into a set
of regions. AFVGCT is the average time required to generate feature vectors for
each image plus the time to generate and test the associated classifier. From the
table it can be seen that usage of AIV and KCC critical functions tended to be the
most efficient (best recorded average time was TET = 1.75 seconds using AIV
and L = 3), while usage of the LCS critical function required more time than the
rest of the critical functions considered (TET = 31.89 seconds when L = 6).

5. Discussion and Conclusions

In this paper we have proposed a framework for classifying volumetric OCT
retinal image data using hierarchical decomposition and dictionary leaning. The
concept of a critical function is used and a maxLevel parameter (L) to control
the decomposition. The usage of five different critical functions was considered.
Experiments were conducted using a range of values for L. In addition, for the
dictionary learning, a value K was used to define the size of the dictionary, thus
experiments were also conducted using a number of alternate values for K. The
proposed framework was applied to a retinal OCT image collection in the context
of the diagnosis (screening) of AMD. The results indicated that the best recorded
AUC results (1.00) was obtained using the ED and LCS critical function. Further
analysis indicated that the LCS critical function tended to produce the best overall
performance. The most appropriate value for L was found to be 5, and the most
appropriate value for K was found to be 32.

In the context of AMD detection the experiments demonstrated an excellent
performance (best recorded AUC of 1.00). It is thus argued that the proposed
framework can be usefully employed for AMD screening purposes (it may also
have a role as a training platform). It is also argued that the proposed framework
has more general applicability. The same process can be used for the screening
of other eye related conditions such as diabetic maculopathy, diabetic retinopathy
and glaucoma, also all common causes of vision loss. With respect to diabetic
retinopathy many countries have established screening programmes for patients
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Table 2: Run time results (seconds) in terms of Average Decomposition Time (ADT), Average
Feature Vector Generation Time and ClassificationTime (AFVGCT) and Total Execution Time
(TET).

CF L ADT AFVGCT TET

NCF

3 0.55 12.52 13.07
4 0.61 15.73 16.34
5 0.69 26.26 26.95
6 1.02 27.14 28.16

AIV

3 1.32 0.43 1.75
4 1.35 1.67 3.02
5 2.14 6.44 8.58
6 3.78 16.72 20.5

KCC

3 1.61 0.87 2.48
4 1.67 2.44 4.11
5 1.67 4.78 6.45
6 1.78 13.56 15.34

KLD

3 8.60 0.76 9.36
4 8.75 2.72 11.47
5 8.81 4.52 13.33
6 9.33 15.95 24.92

ED

3 2.56 0.83 3.39
4 2.57 2.05 4.62
5 2.69 4.12 6.81
6 2.80 17.41 20.21

LCS

3 15.63 0.78 16.41
4 15.82 2.79 18.61
5 16.05 3.80 19.85
6 17.29 14.6 31.89
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with diabetes. Whatever the case the proposed framework can be usefully em-
ployed to provide point of care diagnosis, thus providing patient and resource
benefits.

The strengths of the proposed framework may be summarised as follows: (i) it
avoids the use of segmentation-based methods, such as that advocated in Quellec
et al. (2010), which are time consuming and often unreliable; (ii) the mixed oct-
and quad-tree decomposition process which is well suited to OCT image data;
(iii) the applicability to 3D OCT images data, in contrast to the work presented by
Gossage et al. (2003) and Liu et al. (2011), which was applied to 2D images; and
(iv) the excellent resulting classification performance (AUC values of 1.00).

Although the work presented demonstrates clear potential the presented eval-
uation has some limitations. Firstly only a relatively small dataset was used due
to the absence of readily available OCT benchmark data for the evaluation. Sec-
ondly, due to hardware limitations, the maxLevel parameter was limited to a maxi-
mum value of 6, it may thus be the case that the level of decomposition whereby an
optimal classification performance is achieved may not always have been reached
(although AUC results of 1.00 were recorded). Thirdly, although the results were
encouraging, the parameters for the SVM classifier were not optimized, nor were
experiments with alternative classifier generators conducted. Future work will
thus be directed at more comprehensive large-scale experimentation. However,
from our experience to date, our expectation is that the performance will be simi-
lar if not better to that reported in this paper. It might also be interesting to investi-
gate the outcomes when much larger values of K are used, for example K = 1024,
however our experiments to date have indicated that the computational resource
and run time required make such experiments impractical. For the multiclass
classification problem, there are many methods that could be applied if the binary
classification performed well, such as one-vs-rest or one-vs-one. These methods
make use of repeated applications of a binary classification model. Alternatively
a multi-class classifier can be adopted.

In conclusion a novel framework, founded on homogeneous decomposition
and dictionary learning, for 3D image (volumetric) classification has been pre-
sented. The framework was evaluated using a 3D retinal OCT image set for the
diagnosis of AMD, and some excellent results were produced. Given that the
proposed framework is generic in nature it is anticipated that it will be equally ap-
plicable to other ophthalmological 3D retinal image classification problems and
more general 3D classification problems.
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Ojansivu, V., Heikkilä, J., 2008. Blur insensitive texture classification using lo-
cal phase quantization, in: Proceedings of the 3rd International Conference on
Image and Signal Processing, pp. 236–243.
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2010. Three-dimensional analysis of retinal layer texture: identification of
fluid-filled regions in sd-oct of the macula. Medical Imaging, IEEE Trans-
actions on 29, 1321–1330.

Schneider, J., Westermann, R., 2003. Compression domain volume rendering, in:
IEEE Visualization, pp. 293–300.

Scovanner, P., Ali, S., Shah, M., 2007. A 3-dimensional SIFT descriptor and
its application to action recognition, in: Proceedings of the 15th international
conference on Multimedia, pp. 357–360.

Sivic, J., Zisserman, A., 2003. Video google: a text retrieval approach to object
matching in videos, in: Proceedings of the Ninth IEEE International Confer-
ence on Computer Vision, pp. 1470–1477.

30



Sundar, H., Sampath, R.S., Adavani, S.S., Davatzikos, C., Biros, G., 2007. Low-
constant parallel algorithms for finite element simulations using linear octrees,
in: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,, pp.
1–12.

Tuytelaars, T., Mikolajczyk, K., 2008. Local invariant feature detectors: A survey.
Found. Trends. Comput. Graph. Vis. 3, 177–280.

Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E., 2003. Indexing
multi-dimensional time-series with support for multiple distance measures, in:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 216–225.

Voisin, A., Krylov, V., Moser, G., Serpico, S., Zerubia, J., 2013. Classification
of very high resolution sar images of urban areas using copulas and texture
in a hierarchical Markov random field model. IEEE Geoscience and Remote
Sensing Letters 10, 96–100.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y., 2010. Locality-constrained
linear coding for image classification, in: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3360–3367.

Yang, J., Yu, K., Gong, Y., Huang, T., 2009. Linear spatial pyramid matching
using sparse coding for image classification, in: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1794–1801.

Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L., 2004. Regional homogeneity approach
to FMRI data analysis. NeuroImage 22, 394–400.

Zhao, G., Pietikainen, M., 2007. Dynamic texture recognition using local binary
patterns with an application to facial expressions. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29, 915–928.

Zheng, Y., Hijazi, M.H.A., Coenen, F., 2012. Automated “ disease/no disease”
grading of age-related macular degeneration by an image mining approach. In-
vestigative Ophthalmology & Visual Science 53, 8310–8318.

Zhou, X., Yu, K., Zhang, T., Huang, T.S., 2010. Image classification using super-
vector coding of local image descriptors, in: Computer Vision. Springer. Lec-
ture Notes in Computer Science, pp. 141–154.

31


