
OBTAINING BEST PARAMETER VALUES FOR ACCURATE
CLASSIFICATION

Frans Coenen and Paul Leng
Department of Computer Science, The University of Liverpool, Liverpool, L69 3BX�

frans,phl � @csc.liv.ac.uk

Abstract

A method of classification that has attracted recent in-
terest is to apply an Association Rule Mining algorithm to
obtain classification rules from a training set of previously-
classified data. The rules thus generated will be influenced
by the choice of parameters employed by the algorithm, es-
pecially the support and confidence threshold values. In this
paper we examine the effect that this choice has on the pre-
dictive accuracy of classifiers obtained by some methods
for Classification Association Rule Mining. We show that
the accuracy can almost always be improved by a suitable
choice of threshold values, and we describe a method for
finding the best values. We present results that demonstrate
this approach can obtain higher accuracy without the need
for further coverage analysis of the training data. Key-
words: Classification, Association Rule Mining

1 INTRODUCTION

Systems for classification attempt to categorise records
in a data set by applying a set of Classification Rules of
the general form ����� , where � , the antecedent, is the
union of some set of values of attributes of the records in-
volved, and the consequent, � , is the label of a class to
which records can be assigned. Classification rules are typ-
ically derived from examination of a training set of records
that have been previously annotated with appropriate class
labels. Techniques for obtaining rules include methods that
use decision trees [12], Bayesian networks [11], and Sup-
port Vector Machines [5]. A method that has attracted re-
cent attention is to make use of Association Rule Mining
(ARM) techniques. In general, an Association Rule defines
a relationship between disjoint subsets of the overall set of
attributes represented by the dataset. For the purpose of ob-
taining Classification Rules, however, we define binary at-
tributes that represent class-labels, and search only for rules
whose consequent is one of these. Examples of the use of

ARM algorithms to generate classification rules (i.e. Classi-
fication Association Rule Mining or CARM) include PRM
and CPAR [14], CMAR [8] and CBA [9].

In general, CARM algorithms begin by generating all
rules that satisfy at least two user-defined threshold condi-
tions. The support of a rule describes the number of in-
stances in the training data for which the rule is found to
apply. The confidence of the rule is the ratio of its support
to the total number of instances of the rule’s antecedent: i.e.
it describes the proportion of these instances that were cor-
rectly classified by the rule. Minimum threshold values for
support and confidence eliminate from consideration can-
didate rules that either describe too few cases or offer too
low classification accuracy. Frequently, however, it will not
be possible to obtain a complete classification using only
a small number of high-confidence rules. Most methods,
therefore, generate a relatively large number of rules which
are pruned and ordered using other techniques, applying
various other threshold values to determine rule selection.
Typically, coverage analysis is employed, in which cases in
the training data are examined to identify from the candidate
rules a covering set that will classify all cases correctly.

Although it is clear that the accuracy of classification
may be influenced significantly by the choice of appropriate
values for whatever thresholds are used, most work in ap-
plying and evaluating methods of classification makes use
of threshold values that are chosen arbitrarily. In previous
work [3] we described an algorithm, TFPC, that obtains
classification rules from an efficient CARM process with-
out coverage analysis, and we showed that provided support
and confidence values are well-chosen, the method can of-
fer as good or better accuracy than comparable methods. In
this paper we examine the effect of varying the support and
confidence thresholds on the accuracy of both TFPC and
other algorithms. We show that classification accuracy can
be significantly improved, in most cases, by an appropriate
choice of thresholds. We describe a hill climbing algorithm
which aims to find the “best” thresholds from examination
of the training data. We show that this procedure can lead

to higher classification accuracy at lower cost than methods
of coverage analysis.

In section 2 we summarise previous work on CARM. In
section 3 we describe some experiments that demonstrate
the effect of varying the support and confidence thresholds
on the accuracy obtained from three CARM algorithms:
TFPC, CBA, and CMAR. In section 4 we describe the
hill-climbing algorithm, and in section 5 we present results
of experiments applying the hill-climbing procedure to the
three algorithms. We show the effect on classification accu-
racy that can be obtained by a best choice of thresholds, and
discuss how the approach can be applied in practice. Our
conclusions are presented in section 6.

2 BACKGROUND

Algorithms for generating Classification Rules can be
broadly categorised into two groups. Two stage algorithms
first produce a set of candidate CRs, by a CARM process or
otherwise, and in a separate second stage these are pruned
and ordered for use in the classifier. Examples of this ap-
proach include CMAR [8], CBA [9] and REP as used for
example in [10]. Integrated algorithms, conversely, pro-
duce a classifier in a single processing step, i.e. generation
and pruning is “closely coupled”. Examples include rule in-
duction systems such as FOIL [13], PRM and CPAR [14].
Finally, IREP [6] and RIPPER [4] are one-stage pruning
algorithms which may, in general, be applied also as the
second stage of a two-stage method.

Most CARM algorithms are of the first type, exempli-
fied by CBA ([9]), which was one of the first to make use
of a general ARM algorithm for the first stage. CBA uses a
version of the best-known ARM algorithm, Apriori [1], us-
ing user supplied support and confidence thresholds, to gen-
erate CARS which are then prioritised, using confidence,
support, and rule-length (in that order) to determine the or-
der of precedence. The ordered set of rules is then pruned
(stage 2) by coverage analysis of the training data. In this
process, each record in the training set is examined to find
the first rule (the one with the highest precedence) that cor-
rectly classifies the record (the � �������) and the first rule that
wrongly classifies the record (the � �������). If the � ���	�
� has
higher precedence than the � ������� , the rule is included in
the classifier. Otherwise, rules with lower precedence must
be considered. CBA illustrates a general performance draw-
back of two-stage algorithms; the cost of the pruning stage
is a product of the size of the data set and the number of
candidate rules, both of which may in some cases be large.
It is clear, also, that the choice of support and confidence
thresholds can strongly influence the operation of CBA.

The CMAR algorithm ([8]) has a similar general struc-
ture to CBA, and uses the same CR prioritisation approach

as that employed in CBA. CMAR differs in the method used
in stage 1 to generate candidate rules, which makes use of
the FP-tree data structure coupled with the FP-growth algo-
rithm [7]; this makes it more computationally efficient than
CBA. Like CBA, CMAR tends to generate a large number
of candidate rules, which are pruned by removing all rules
with a �
� value below a user defined threshold or where a
more general rule with higher precedence exists. Finally, a
database coverage procedure is used to produce the final set
of rules. This stage is similar to that of CBA, but whereas
CBA finds only one rule to cover each case, CMAR uses a
coverage threshold paramater to generate a larger number
of rules. When classifying an “unseen” data record, CMAR
groups rules that satisfy the record according to their class
and determines the combined effect of the rules in each
group using a Weighted � Squared (WCS) measure.

The cost of coverage analysis, especially when dealing
with large data sets with many attributes and multiple cases,
motivated us to consider whether it is possible to generate
an acceptably accurate set of Classification Rules directly
from an ARM process, without further coverage analysis.
In [3] we described an algorithm, TFPC, of this kind. The
heuristic applied by TFPC is that once a general rule is
found that satisfies the required thresholds of support and
confidence, no more specific rules (rules with the same con-
sequent, whose antecedent is a superset) will be considered.
This provides a very efficient method for generating a rel-
atively compact set of CRs. Giving precedence to more
general rules also reduces the risk of overfitting. Because
no coverage analysis is carried out, however, the choice of
appropriate support and confidence thresholds is critical in
determining the final rule set. In the next section we exam-
ine the effect of varying these thresholds on both TFPC and
other algorithms.

3 The effect of varying threshold values

To examine the effect that may result from different
choices of threshold values, we carried out a series of ex-
periments using test data from the UCI Machine Learn-
ing Repository. The data sets chosen were discretized us-
ing the LUCS-KDD DN software 1. In the discussion
and illustrations that follow, we identify each data set with
a label that describes its key characteristics, in the form
in which we have discretized it. For example, the label
glass.D48.N214.C7 refers to the “glass” data set, which in-
cludes 214 records in 7 classes, with attributes which for our
experiments have been discretised into 48 binary categories.

Using this data, we investigated the classification accu-
racy that can be achieved using the TFPC algorithm, and

1Available at ��������������������� �! !��� "�#%$�� &���� ')(+*-,/.�&102 ���354646��798�,/���
&1.�:��<;>=
?@7�AB35464CAD46E��<"�')�F >AD(/G1G 46EH� ����I�"

also from CMAR and CBA, across the full range of val-
ues for the support and confidence thresholds. For each
pair (support, confidence) of threshold values we obtained
a classification accuracy from a division of the full data set
into a 90% training set and 10% test set. All the implemen-
tations were written in Java 1.4 by the authors. The results
for a selection of the data sets considered are illustrated in
Figures 1 and 2 in the form of 3-D plots. For each plot the
X and Y axes represent support and confidence threshold
values from 100% to 0%, and the Z axis the corresponding
percentage classification accuracy obtained.

In these figures,the first illustration in each row is the
plot for the TFPC algorithm. These results demonstrate a
range of different characteristics of the various data sets. In
some cases, for example flare, the best accuracy is obtained
for a very broad range of threshold values. These repre-
sent “easy” cases to classify: those in which all the nec-
essary rules have high support and confidence in the train-
ing data. In other cases, conversely, such as led7, and le-
tRecog the accuracy obtained is very sensitive to the choice
of thresholds. Generally, the best accuracy is obtained us-
ing a low support threshold, but there are cases where this is
not so. Usually, these arise when the training set is small so
that rules with low support may represent very few cases:
see, for example iris and wine. The choice of confidence
threshold, however, is often more critical. Our experiments
include cases (e.g. ticTacToe) where a high confidence
threshold is required. These represent cases where TFPC
can perform badly if a low confidence threshold is chosen,
because a rule that meets this threshold may mean that a
better high-confidence rule is never found. In other cases,
however, a low confidence threshold is required, because
otherwise too few candidate rules are identified: letRecog
is an example. Usually these are data sets for which classi-
fication accuracy is low, and only low-confidence rules can
be found.

The plots for CMAR (second illustration in each row)
have a broadly similar pattern. The illustrations show, how-
ever, the way in which the coverage analysis smooths out
some of the influence of the choice of threshold. led7, iris
and wine, all cases that for TFPC are sensitive to the thresh-
olds of support and/or confidence, are good examples of
this. In these cases, provided sufficiently low thresholds
are chosen, then CMAR will find all the necessary can-
didate rules, and the coverage analysis reliably selects the
best ones. This smoothing effect is not perfect, however;
note that for iris, CMAR still has a suboptimal result if a
very low support threshold is chosen, and the examples of
ticTacToe and ionosphere illustrate cases where a choice
of a low confidence threshold will lead to poor rules being
selected. Conversely, in cases such as letRecog, where few
if any high-confidence rules can be found, a low confidence
threshold is again needed to find candidate rules.

The illustrations for CBA also, in many cases, demon-

strate the “smoothing” effect obtained as a result of apply-
ing coverage analysis to select rules from the initial candi-
dates. This is especially to be seen in some of the larger
data sets: letRecog and ticTacToe illustrate cases where
CBA’s accuracy is more stable than that of CMAR. In other
cases, however, usually involving small data sets, CBA may
be even more sensitive than TFPC to the choice of thresh-
olds. The example of ionosphere is especially interesting:
here a poor choice of thresholds (even values that appear
reasonable) may lead to a dramatically worse result. This
is partly because, unlike CMAR, CBA’s coverage analysis
may sometimes retain a rule that applies only to a single
case. This makes the method liable to include spurious
rules, especially if the data set is small enough for these
to reach the required thresholds.

4 Finding best threshold values

It is clear from the experiments discussed above that
the accuracy and performance of rule-generation algorithms
may be very sensitive to the choice of threshold values used.
The coverage analysis used by methods such as CMAR and
CBA sometimes reduces this sensitivity, but does not elim-
inate it. It is apparent that the accuracy of the classifiers
obtained using any of these methods may be improved by
a careful selection of these thresholds. In this section we
describe a procedure for identifying the “best” threshold
values, i.e, those that lead to the highest classification ac-
curacy, from a particular training set. The method applies
a “hill-climbing” strategy, seeking to maximise accuracy
while varying the thresholds concerned. We will describe
this in relation to thresholds of support and confidence, al-
though the method can be applied in general to other kinds
of threshold also.

The hill climbing technique makes use of a 3-D playing
area measuring ���������������	����� , as visualised in the illustra-
tions discussed above. The axes represent percentage values
for (1) support thresholds, (2) confidence thresholds and (3)
accuracies. The procedure commences with initial support
and confidence threshold values, describing a current loca-
tion (� �) in the base plane of the playing area. Using these
values, the chosen rule-generation algorithm is applied to
the training data, and the resulting classifier applied to the
test data, with appropriate cross-validation, to obtain a clas-
sification accuracy for � � .

The hill-climbing procedure then attempts to move
round the playing area with the aim of improving the accu-
racy value. To do this it continuously generates data for a
set of eight test locations. The test locations are defined by
applying two values,
�� (change in support threshold) and

�� (change in confidence threshold), as positive and nega-
tive increments of the support and confidence threshold val-

TFPC CMAR CBA

(a)

(b)

(c)

(d)
Figure 1 3-D Plots I: (a) flare.D39.N1389.C9, (b) mushroom.D90.N8124.C2 (c) ionosphere.D157.N351.C2 and (d)

iris.D19.N150.C3

TFPC CMAR CBA

(a)

(b)

(c)

(d)
Figure 2 3-D Plots III: (a) led7.D24.N3200.C10, (b) letRecog.D106.N20000.C26, (c) ticTacToe.D29.N958.C2 and (d)

wine.D68.N178.C3

ues associated with � � . The current and test locations form
a � ��� location grid with � � at the center (figure 3). The test
locations are labeled: � , � � , � , � � , � , � � , � , �>� and � , with
the obvious interpretations.

The rule-generation algorithm is applied to each of the
test locations which is inside the playing area and for which
no accuracy value has previously been calculated. A clas-
sification accuracy is thus obtained for each location. If
this stage identifies a point with a superior accuracy to the
current � � , the procedure continues with � � as this point.
Between candidate points of equal accuracy, the algorithm
uses a weighting procedure to select a “best” point from
which to continue. If the current � � has the best accuracy,
then the threshold increments are reduced and a further it-
eration of test locations takes place. The process concludes
when either: (i) a best accuracy is obtained or (ii) a lower
limit on the threshold-increments is reached at which point
the current pair of threshold values which leads to a “best”
classification accuracy for the chosen training and test data
are selected. This will not necessarily be a true best value,
depending on the choice of the initial � � and other parame-
ters, but will at worst be a local optimum. The hill climbing
process is summarised in Table 1.

Figure 3: 8 point location grid within hill climbing playing
area on plane of support and confidence axes

5 RESULTS

Table 2 summarises the results of applying the hill-
climbing procedure described above to datasets from the
UCI repository, for the algorithms TFPC, CMAR and CBA.
For each algorithm, the first two columns in the table show
the average accuracy obtained from applying the algorithm
to (90%, 10%) divisions of the dataset with ten-fold cross-
validation. The first of the two columns shows the result
for a support threshold of 1% and a confidence threshold of

50% (the values usually chosen in analysis of classification
algorithms), and the second after applying the hill-climbing
procedure to identify the “best” threshold values. Note that,
with respect to the experiments
�� and
 � were set to ��� �
and 	�� � respectively, and
��
�
�� and
��
�
 � to ��� � and ��� �
as these parameters were found to give the most effective
operational results. In each case the support and confidence
threshold values that produced the best accuracy are also
tabulated.

Algorithm: 8-Point Hill Climbing
input A Training and Test data set � , and

a Rule Generation Algorithm
��� �

output A list of rules
�

� � �������
��������� � � ����� �"! �
� � � �#�$�����
����� � � � �&%'��(� � � �

��)�*�
��������� � � �+�+� �"! �,�
� � !��
 � ���

 �-�$�����
����� � � � �&%'��(� � � � �
� � !��
 � ���

��
�
�����
������

 �
 � �+�+� �"! �,�
� � !��
 � ���

��
�
 �-��
��
���

 �
 � � �&%'��(� � � � �
� � !��
 � ���
Ruleset � Apply

�.� � to � using � � � � and � � � �
Evaluate ruleset to obtain accuracy � � � � �1� �'! � �0/
Start loop

Apply
�� ,
 � to � � � � , � � � � to get test points 1
Apply

��� � to get accuracy for all 1 not
previously evaluated2 � � �3� �4����� � � �5�
�76 2 � �8��� �1� �'! � �4/9���:1

If
2 �

is unique then
If
2 �,; � � Then
����
��&< � ,
 �-�
 �.<)�

Else � � � 2 �
Else If majority of 1 have best accuracy Then

� � � 2 �
, = !�� �?>

Else If � � � � �1� �'! � �4/ ; 2 � � � ��� � ! � �0/ Then

��@�
��A< � ,
 �B�
 ��< �

Else � � � 2 �
End If Else
If
 �DCE
��
�
 � and
��FCG
��
�
H� break

End loop� � ���	�
� �JI � � �K! �+� � (���� � � �
��� � �
Table 1 Hill-climbing algorithm

Table 2 confirms the picture suggested by the illustra-
tions in Figures 1 and 2 (although note the correspondence
is not always exact, as cross-validation was not used in ob-
taining the graphical representations). In almost all cases,
an improved accuracy can be obtained from a pair of thresh-
olds different from the default (1%, 50%) choice. As would
be expected, the greatest gain from the hill-climbing pro-
cedure is in the case of TFPC, but a better accuracy is also
obtained for CMAR in 21 of the 25 sets, and for CBA in
20. In a number of cases the improvement is substantial.

It is apparent that CBA, especially, can give very poor re-
sults with the default threshold values. In the cases of iono-
sphere and wine, the illustrations reveal the reason to be
that a 1% support threshold leads, for these small data sets,
to the selection of spurious rules. This is also the case for
zoo and hepatitis, and for mushroom, where even a much
larger data set includes misleading instances if a small sup-
port threshold is chosen. In the latter case the hill-climbing
procedure has been ineffective in climbing out of the deep
trough shown in the illustration for CBA. Notice that here
the coverage analysis used in CMAR is much more success-
ful in identifying the best rules, although TFPC also does
relatively well.

As we observed from the illustrations, and as results
reported in [8] also show, CMAR is generally less sensi-
tive to the choice of thresholds. Both CMAR and CBA,
however, give very poor results when, as in the cases of
chess and letrecog, the chosen confidence threshold is too
high, and CMAR performs relatively poorly for led7 for
the same reason. The extreme case is chess, where both
CMAR and CBA (and TFPC) find no rules at the 50% con-
fidence threshold. Notice, also, that for the largest data sets
(those with more than 5000 cases) a support threshold lower
than 1% almost always produces better results, although the
additional candidate rules generated at this level will make
coverage analysis more expensive.

In general, the results show that coverage analysis, es-
pecially in CMAR, is usually (although not always) effec-
tive in minimising any adverse effect from a poor choice of

thresholds. Although TFPC with the default threshold val-
ues produces reasonably high accuracy in most cases, the
lack of coverage analysis generally leads to somewhat lower
accuracy than one or both of the other methods. Interest-
ingly, however, the results when the hill-climbing procedure
is applied to TFPC show that high accuracy can be obtained
without coverage analysis if a good choice of thresholds is
made. In 18 of the 25 cases, the accuracy of TFPC after
hill-climbing is as good or better than that of CMAR with
the default thresholds, and in only one case (wine) is it sub-
stantially worse, the hill-climbing in this case failing to find
the peak of the rather irregular terrain shown in the illus-
tration. Conversely, the result for penDig demonstrates a
case in which the hill-climbing procedure of TFPC works
better than the coverage analysis of CMAR in identifying
important low-support, high-confidence rules. The results
also improve on CBA in 14 cases, often by a large margin.
Overall this suggests that a good choice of thresholds can
eliminate the need for coverage analysis procedures.

The significance of this is that coverage analysis is rela-
tively expensive, especially if the data set and/or the number
of candidate rules is large, as is likely to be the case if a low
support threshold is chosen. The final four columns of Table
2 give a comparison of the total execution times to construct
a classifier with ten-fold cross validation, using TFPC, with
or without the hill-climbing procedure, and for CMAR and
CBA (for the 1%, 50% thresholds). These figures were ob-
tained using our Java implementations on a single Celeron
1.2 Ghz CPU with 512 MBytes of RAM.

TFPC CMAR CBA Execution Time
Data set Def. “best” Def. “best” Def. “best”

val. HC t’hold val. HC t’hold val. HC t’hold TFPC TFPC CMAR CPAR
S C S C S C HC

adult.D97.N48842.C2 80.8 81.0 0.2 50.1 80.1 80.9 0.7 50.0 84.2 84.6 0.1 48.4 2.9 20.0 78.0 230.0
anneal.D73.N898.C6 88.3 90.1 0.4 49.1 90.7 91.8 0.4 50.0 94.7 96.5 0.8 46.8 0.5 2.7 2.3 5.8
auto.D137.N205.C7 70.6 75.1 2.0 52.4 79.5 80.0 1.2 50.0 45.5 77.5 2.7 50.8 3.3 61.7 703.9 536.3
breast.D20.N699.C2 90.0 90.0 1.0 50.0 91.2 91.2 1.0 50.0 94.1 94.1 1.0 50.0 0.3 0.3 0.4 0.6
chess.D58.N28056.C18 0.0 38.0 0.1 25.2 0.0 34.6 0.1 11.0 0.0 39.8 0.1 24.0 2.1 46.7 2.0 2.0
cylBds.D124.N540.C2 68.3 74.4 1.2 49.8 75.7 77.8 1.3 49.9 75.7 78.0 1.9 50.0 4.0 163.9 206.9 923.6
flare.D39.N1389.C9 84.3 84.3 1.0 50.0 84.3 84.3 1.0 50.0 84.2 84.2 1.0 50.0 0.4 0.5 1.0 2.4
glass.D48.N214.C7 64.5 76.2 2.6 45.6 75.0 75.0 1.0 50.0 68.3 70.7 3.0 51.6 0.4 1.1 0.8 0.8
heart.D52.N303.C5 51.4 56.0 4.2 52.4 54.4 54.8 1.6 50.0 57.3 60.0 4.2 49.2 0.6 2.7 0.9 1.4
hepatitis.D56.N155.C2 81.2 83.8 1.6 51.6 81.0 82.8 2.9 50.0 57.8 83.8 7.1 48.4 0.6 2.4 2.4 10.0
horseCol.D85.D368.C2 79.1 79.9 1.2 50.2 81.1 81.9 2.9 50.0 79.2 83.9 5.5 49.2 0.5 2.1 10.5 66.5
ion’sph.D157.N351.C2 85.2 92.9 9.8 50.0 90.6 91.5 2.6 50.0 31.6 89.5 10.0 49.2 2.3 16.3 3066.8 2361.1
iris.D19.N150.C3 95.3 95.3 1.0 50.0 93.3 94.7 2.3 50.0 94.0 94.0 1.0 50.0 0.3 0.4 0.3 0.3
led7.D24.N3200.C10 57.3 62.7 2.2 49.4 62.2 67.4 1.3 40.4 66.6 68.0 1.0 46.0 0.4 1.4 0.6 0.7
letRc.D106.N20K.C26 26.4 47.6 0.1 32.3 25.5 45.5 0.1 31.8 28.6 58.9 0.1 13.7 3.7 196.2 17.2 20.5
mush’m.D90.N8124.C2 99.0 99.7 1.8 69.2 100.0 100.0 1.0 50.0 46.7 46.7 1.0 50.0 1.4 30.6 269.0 366.2
nurs’ry.D32.N12960.C5 77.8 89.9 1.0 73.2 88.3 90.1 0.8 62.6 90.1 91.2 1.5 50.0 1.3 21.3 5.8 6.9
pgBlks.D46.N5473.C5 90.0 90.0 1.0 50.0 90.0 90.3 0.2 50.0 90.9 91.0 1.6 50.0 0.3 0.7 0.8 2.2
penD.D89.N10992.C10 81.7 88.5 0.1 62.3 83.5 85.2 0.8 50.0 87.4 91.4 0.1 50.9 3.7 227.8 39.3 43.6
pima.D38.N768.C2 74.4 74.9 2.3 50.0 74.4 74.5 1.6 50.0 75.0 75.7 2.8 50.0 0.3 0.4 0.4 0.7
soyLrg.D118.N683.C19 89.1 91.4 1.1 49.1 90.8 91.8 0.8 51.6 91.0 92.9 0.6 52.2 9.8 644.3 405.6 273.8
ticTacToe.D29.N958.C2 67.1 96.5 1.5 74.2 93.5 94.4 1.6 50.0 100.0 100.0 1.0 50.0 0.4 4.5 1.0 1.6
wavef’m.D101.N5K.C3 66.7 76.6 3.2 64.3 76.2 77.2 0.6 50.0 77.6 78.2 2.6 50.0 3.7 210.8 167.3 93.4
wine.D68.N178.C3 72.1 81.9 4.5 51.2 93.1 94.3 2.3 50.0 53.2 65.5 4.8 50.0 0.3 1.0 7.3 11.7
zoo.D42.N101.C7 93.0 94.0 1.0 49.2 94.0 95.0 1.6 50.0 40.4 93.1 7.4 50.0 0.5 2.5 3.1 3.2

Table 2. Accuracy and performance results (Default values: confidence = 50%, support = 1%)

As would be expected, the execution times for TFPC
(with default threshold values) are almost always far lower
than for either of the other two methods. Less obviously,
performing hill-climbing with TFPC is in many cases faster
than coverage analysis with CMAR or CBA. In 13 of the
25 cases, this was the fastest procedure to obtain classifica-
tion rules, and it is only markedly worse in cases such as
chess and letRecog, where the other methods have failed
to identify the rules necessary for good classification accu-
racy. These results suggest that TFPC with hill-climbing is
an effective way of generating an accurate classifier which
is often less costly than other methods.

6 CONCLUSIONS

In this paper we have shown that the choice of appro-
priate values for the support and confidence thresholds can
have a significant effect on the accuracy of classifiers ob-
tained by CARM algorithms. The coverage analysis per-
formed by methods such as CMAR and CBA reduces this
effect, but does not eliminate it. CMAR appears to be less
sensitive than CBA to the choice of threshold values, but for
both methods better accuracy can almost always be obtained
by a good choice. We have also shown that, if threshold val-
ues are selected well, it is possible to obtain good classifica-
tion rules using a simple and fast algorithm, TFPC, without
the need for coverage analysis. We describe a procedure for
finding these threshold values that will lead to good classifi-
cation accuracy. Our results demonstrate that this approach
can lead to improved classification accuracy, at a cost that
is comparable to or lower than that of coverage analysis.

References

[1] Agrawal, R. and Srikant, R. (1994). Fast algorithms
for mining association rules. Proc. 20th VLDB Con-
ference, Morgan Kaufman, pp487-499.

[2] Coenen, F., Leng, P., Goulbourne, G. (2004). Tree
Structures for Mining Association Rules Journal of Data
Mining and Knowledge Discovery, Vol 8(1), pp.25-51

[3] Coenen, F.,Leng, P. and Zhang, L (2005). Threshold
Tuning for Improved Classification Association Rule
Mining Proc PAKDD 2005: LNCS 3518, Springer,
pp216-225

[4] Cohen, W.W. (1995). Fast Effective Rule Induction
Proc. of the 12th Int. Conf. on Machine Learning, p115-
123.

[5] Christianin, N. and Shawe-Taylor. J. (2000). An Intro-
duction to Support Vector Machines and Other Kernel-
Based Learning Methods. Cambridge University Press.

[6] Fürnkranz, J. and Widme, F. (1994) Incremental re-
duced error pruning. Proc. 11th Int. Conf. on Machine
Learning, Morgan Kaufmann, pp70-77.

[7] Han., J., Pei, J. and Yin, Y. (2000). Mining Frequent
Patterns without Candidate generation Proc ACM Sig-
mod conf, Dallas, pp1-12.

[8] Li W., Han, J. and Pei, J. (2001). CMAR: Accurate
and Efficient Classification Based on Multiple Class-
Association Rules. Proc ICDM 2001, pp369-376.

[9] Liu, B. Hsu, W. and Ma, Y (1998). Integrating Clas-
sification and Association Rule Mining. Proceedings
KDD-98, New York, 27-31 August. AAAI. pp80-86.

[10] Pagallo, G. and Haussler, D. (1990) Boolean feature
discovery in Empirical data. Machine Learning, Vol 5,
No 1. pp71-99

[11] Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, San Mateo.

[12] Quinlan, J.R. (1986). Induction of decision trees. Ma-
chine Learning, No 1, pp81-106.

[13] Quinlan, J. R. and Cameron-Jones, R. M. (1993).
FOIL: A Midterm Report. Proc. ECML, Vienna, Aus-
tria, pp3-20.

[14] Yin, X. and Han, J. (2003). CPAR: Classification
based on Predictive Association Rules. Proc. SIAM Int.
Conf. on Data Mining (SDM’03), San Francisco, CA,
pp. 331-335.

