
The Knowledge Bazaar

Brian Craker1 and Frans Coenen2

1 Becoms Ltd, 69 Little Woodcote, Carshalton, Surrey SM5 4DD
Email: b.craker@knowledgebazaar.org

2 Department of Computer Science, The University of Liverpool,
Liverpool, L69 3BX. Email: frans@csc.liv.ac.uk

Abstract
The concept of the Knowledge Bazaar as a paradigm for the development of
Expert Systems, whereby knowledge bases are created dynamically using
knowledge supplied by self appointed Internet communities is proposed. The
idea espouses the creation of individual Knowledge Bazaars, operating in
specific domains, but all operating through a generic Knowledge Bazaar XML
Web application. Issues addressed include the provision of the service, XML
rule representations and rule integrity. The concept is illustrated with a
demonstration gardening Knowledge Bazaar that is currently operational.
Keywords: Knowledge Bazaar, WWW Rule Based Systems, XML.

1. Introduction

In this paper we describe an application of expert system technology founded on
the idea of, what we have called, the knowledge bazaar (as opposed to a more
traditional cathedral approach). The terms bazaar and cathedral (popularised in
Raymond 99) are used here to distinguish between the traditional centralised
approach to software development and an alternative, de-centralised, approach
facilitated by the Internet. Use of the Internet to permit access to Expert System
technology is not new, there are many examples. However, these all operate in a
limited and very different manner to the Knowledge Bazaar concept as proposed
here, in that they only allow users to pose queries. There are a number of reasons
for the current limitations on the use of Expert Systems across the Internet, which
are mostly concerned with security and (to a lesser extent) transmission speed.

The philosophical underpinning behind the knowledge bazaar is the observation
that knowledge can be accumulated, not from a limited number of experts or expert
sources, but dynamically from Internet users as they solve problems and offer
advice. Consequently expert systems developed using the bazaar approach will be
able to evolve. The knowledge contained in such expert systems might then be
considered to be akin to the shared knowledge found in a (market) bazaar ---
another reason for the use of the term.

It is suggested in this paper that the Knowledge Bazaar concept is an efficient,
effective and immensely powerful way of harnessing the combined knowledge of

global communities of Internet users to develop and maintain expert systems. To
illustrate the idea the authors have developed a generic Knowledge Bazaar XML
Web Service. This generic Knowledge Bazaar facilitates communication and
interaction with particular Knowledge Bazaars which, like traditional Expert
Systems, operate in a specific domain (e.g. law, medicine, etc.). The Knowledge
Bazaar communication model is illustrated in Figure 1. Note that, in the current
demonstration system both the generic Knowledge bazaar and all specific
Knowledge Bazaars are hosted on a single server. A gardening Knowledge Bazaar1
has also been developed to illustrate both the principle and the operation of the
Knowledge Bazaar concept.

The generic Knowledge Bazaar provides the interface to allow Ba zaar users to
submit queries to specific Bazaars, which are either:

Answered immediately if the answer is available in the system’s knowledge base,
or (If the answer is not available) posted to await an answer from members of a self
appointed, on-line, community with respect to the domain.

In the second case, when an answer is provided, the Bazaar will update its
knowledge base and post the answer to the user who originally posted the query. In
this manner the knowledge (expertise) contained in individual Knowledge Bazaars
will evolve with time.

In the remainder of this paper the background to the Knowledge bazaar concept is
presented in further detail in Section 2. Design considerations are discussed
extensively in Section 3 which includes much consideration of the available
technology. In sub-sections 3.1, 3.2, 3.3 and 3.4 special consideration is given to:
service-client communication, implementation of the Knowledge bazaar web
service, the adopted XML rule representation, and rule integrity. The operation of
the generic Knowledge Bazaar is considered in further detail in Section 4, and that
of the demonstration gardening Knowledge Bazaar in section 5. The overall
approach is evaluated in Section 6, and some final conclusions drawn in Section 7.

2. Background

The terms bazaar and cathedral in the context of software development were first
popularised by Raymond. Raymond describes the cathedral approach as the
traditional "monolithic, highly planned, top-down style" of software development;
while the Bazaar approach, by contrast, involves a "chaotic, evolutionary, market-
driven model" (Raymond 99). The Bazaar approach is evident in the open-source
software movement e.g. the development of the Linux Operating System.
Advocates of the Bazaar approach argue that it is more cost effective and produces
a higher quality product than traditional "cathedral" type developments. Critics (for
example Bezroukov 99) suggest that things are much more complex, i.e. it is
quality rather than quantity that is important. However, Bezroukov does

1 Available at www.knowledgebazaar.org

acknowledge that by removing geographic boundaries the Internet increases the
quality of the pool of expertise. The Knowledge Bazaar is thus the application of
Raymond’s ideas on Bazaar development to knowledge gathering for Expert
Systems.

Expert Systems have had a presence on the WWW for many years. Grove
discusses a number of these (Grove 2000) --- one example is Acquired
Intelligences’ “Whale Watcher”2. As noted in the introduction, what most of these
systems have in common is that the interaction is limited to querying. In the case of
Whale Watcher the user is simply taken down a decision tree structure using a
sequence of queries. Most of the current Expert Systems accessible over the
internet tend to be very small scale (Adams 2001). It is suggested here that the
Knowledge Bazaar approach will serve to significantly improve on the current
Expert System presence on the WWW.

Many of the current WWW Expert Systems are written using the JESS (Java
Expert System shell) rule engine which is designed to easily integrate with Java
applications, which in turn makes JESS well suited to integrating Expert Systems
with Internet applications. The XML markup language has also facilitated the
provision of Expert System style WWW services. For example agent based
systems that: extract rules from HTML pages (Shan 2003), or exchange rules
between knowledge bases (Sedbrook 1998). Unsurprisingly XML has also been
used to represent rules; in this respect it is argued that XML offers advantages of
“interoperability, editability and searchability” (Friedman-Hill 2003).

There is also a significant amount of current research directed at the generic
representations of knowledge on the WWW. Given the above the Knowledge
Bazaar concept has been implemented as a XML WWW service using JESS as the
expert system shell.

3. Design Considerations

The operation of any specific Knowledge Bazaar is facilitated through a Generic
Knowledge Bazaar XML WWW Service. This allows remote users to interact with
a domain specific Knowledge Bazaar (see Figure 1). Currently the Knowledge
Bazaar system is implemented as a basic XHTML Internet site, with all interaction
facilitated using forms (thus avoiding the need for natural language processing).

The XML WWW service is based on SOAP (Simple Object Access Protocol) with
J2EE used to handle server side client support. The programming language used to
implement the generic web service is, of course, independent of that used for
individual Knowledge Bazaars, however since JESS was used as the Expert
System shell it made sense to use Java for the WWW service.

2 Available at http://www.aiinc.ca/demos/whale.shtml

The Interface to the web service is defined using the Web Service Definition
Language (WSDL). WSDL is one of the essential building blocks for Web
Services (Schmelzer et al. 2002). It is an official World Wide Web Consortium
(W3C) standard which defines an XML grammar for Web Service definition. It
describes both the operations of a Web Service and the format of the messages that
are sent and received by it. A client uses the WSDL document to determine how to
invoke the Web Service. WSDL provides a hierarchical definition. At the top level,
the service is broken down into a number of port definitions. Each port represents
the availability of a particular binding at a particular web address or endpoint. A
binding corresponds to the implementation of a port using a specific protocol.
Although SOAP was used to implement the Knowledge Bazaar service, the WSDL
structure also allow for other protocols e.g. CORBA.

It is also worth noting here that the WSDL document could be published in a
UDDI registry to allow for automatic service discovery. For the demonstration
system described here this was deemed unnecessary. The WSDL document does
however form the basis for the development of both the service and client parts of
the prototype.

Figure 1: The Knowledge Bazaar communications model

3.1. Service-client communications

As noted above the WSDL document describes the interface in terms of XML. In
the context of the Knowledge Bazaar concept the WSDL document declares that
the communication between service and client should use the Simple Object
Access Protocol (SOAP). This Remote Procedure Call (RPC) protocol is also an
XML text based representation – each message consists of an XML document.
This contains Envelope, Header and Body elements based upon the information
described in the WSDL. The use of open text based protocols has many advantages
for Web Services. For example they allow interoperability irrespective of whether

different technologies are used at either end, and they allow easy passage through
firewalls.

For both client and server it was necessary to handle the transmission protocol for
the SOAP messages and convert the contents from the XML message structures to
Java type representations. It was also necessary to ensure that messages were
converted into function calls and any “fault messages” were converted into
exceptions. There are a number of possible approaches by which this may be
achieved, with different vendors producing different SOAP interfacing packages.
For example the Web Service Development Pack (WSDP) package provided by
Sun, includes the SOAP with Attachments API for Java (SAAJ) that provides the
“javax.xml.soap” Java package that in turn allows SOAP messages to be
constructed directly.

An alternative to SAAI, and arguably a better choice for simple applications such
as the Knowledge Bazaar concept, is to use an implementation of the Java API for
XML-based Remote Procedure Calls (or JAX-RPC). The JAX-RPC API hides the
complexity of the underlying calls to SOAP. There is no need to generate or parse
SOAP messages and the JAX-RPC runtime system handles the translation between
SOAP messages and API calls. JAX-RPC is a common standard, but there are
diffe rent implementations available such as: Glue, Axis and the Sun WSDP
implementation. There are also different ways to create a JAX-RPC application,
but all involve using the WSDL file to generate files which perform the necessary
translations between XML and Java.

For the service endpoint, the process involves running the WSCompile tool that
forms part of an JAX-RPC implementation, during the software development
phase (via the J2EE Application Server GUI or the command line). This tool
processes the WSDL file and generates the interface and related Java classes
associated with the complex types used in the interface. Skeleton interface
implementation classes are also generated for each port endpoint. The developer
then needs to flesh out the skeleton files with the functionality that the service
should implement. When the Web Service is deployed additional JAX-RPC files
are generated for the runtime environment.

For the client side of the interface, the link between the WSDL file and code
generation is not so clear. Since the WSDL file is under the control of the Service
provider, it may not be possible to use it directly. It is also necessary to
acknowledge that the file could change without notice. Using a tool to generate
static stubs would place an over-reliance on implementation specific classes. To
address these concerns different methods for producing Web Service Clients have
been developed. Generated files are obviously needed at run-time, however the
point in time at which the interfaces to the Java code are generated can change.

For simple applications where the service and client are produced by the same
organisation and the WSDL file is relatively static, the recommended solution is
for the tool to generate static stubs offline and use these to access the service. The
two alternative approaches are to use a Dynamic Proxy or a Dynamic Invocation
Interface (DII). For Dynamic Proxy, the client makes the RPC call through a class

that is created at runtime. The client code does not rely on an implementation-
specific class but the WSCompile tool is still required. For DII, there is no need to
use an offline tool. All necessary files are generated at runtime directly from the
WSDL file, rather than at the service endpoint. A client can therefore make a call
even if the signature of the remote procedure is unknown at compilation time. For
the demonstration gardening Knowledge bazaar it was decided to use the more
powerful DII dynamic approach.

The chosen J2EE platform proved to be far from robust (e.g. incorrect generation
of interface files if the name of an operation starts with an uppercase letter in the
WSDL file --- although this should be perfectly acceptable). The level of support
for XML schema types (e.g. string length restrictions) was also very limited,
leading to the need to simplify the interface. “Workaround” solutions were found
and implemented. However, with hindsight, the authors suggest that an alternative
JAX-RPC implementations from a different organisations might have been better.

3.2. The Knowledge Bazaar XML Web Service Implementation

From the above the generic Knowledge Bazaar service was implemented using the
JAX-RPC files generated from the WSDL. The additional functionality required
for the service was provided by a combination of Java software and calls to an
executing instance of the JESS Expert System Shell. The initialisation of JESS is
performed using a batch file which creates structures, queries and local subroutines
using the JESS language.

The Knowledge bazaar service is in effect half implemented in Java and half in
JESS. JESS provides a very flexible interface. It is possible for the developer to
choose where best to implement any routine – either internally within JESS or
externally in Java using low level calls to JESS. Implementation within JESS is
slightly less efficient, since subroutine calls need to be parsed. JESS is
implemented in Java so it is more efficient if the JESS Java API is called directly
from Java wherever possible. One advantage of using JESS code is however that it
is “thread-safe”. The allocation of user IDs is therefore best performed within JESS
functions so that there is no chance that two users will be assigned the same value.

3.3. XML Rule Representation

Previous work has established that representing knowledge rules using XML has
advantages in terms of ‘interoperability, editability and searchability’ (Friedman-
Hill 2003); against the disadvantage of larger storage requirement. A number of
projects are currently attempting to define standard, XML based, domain
independent rule languages - for example the RuleML project (Wagner et al.
2004). It is clear that there are significant interoperability advantages from the
development of an industrial standard in this area. These projects however are very
general and still at an early stage of progress. Whatever the case only a small
subset of such a standard would be applicable to a knowledge bazaar application.

With respect to the work described here a very simple XML structure, sufficient to
implement the Knowledge Bazaar concept, was developed. Of course, if one of the
current XML rule languages does develop into an industry standard, it will be easy
to later transform rules generated within a Knowledge Bazaar into a RuleML (or
another) structure using the XSLT XML conversion language. With respect to the
Knowledge Bazaar system a very simple binary structure, which would allow
simple object-operation-property tuples (propositions) to be expressed, was
considered to be a sufficient representation. The syntax is presented in Table 1.

<Kbrule>
 <Object> … </Object>
 <Operation> … </Operation>
 <Property> … </Property>
</Kbrule>

Table 1: Knowledge Bazaar XML Rule Structure

Thus to express the fact that a Cox is a variety of apple, the following XML would
be used:

<Kbrule>
 <Object>Cox</Object>
 <Operation>is_a_variety_of</Operation>
 <Property>Apple</Property>
</Kbrule>

(See Section 5 for further detail concerning the above example rule.)

The XML structure given in Table 1 allowed Knowledge Bazaars to effectively
represent most simple facts. However, to take a greater advantage of the reasoning
power of Expert Systems, it was felt necessary to also be able to express
relationships between facts. Using the above structure this can be achieved by
allowing the object and property elements to represent facts rather than nodes. The
operation element can then be used to express the relationship between two facts.
The gardening Knowledge Bazaar demonstrator therefore includes two special
operations: IMPLIES and NOT IMPLIES. When the generic knowledge bazaar
receives rule data with these operation values it will treat the object and property
values as encoded facts rather than atoms and insert appropriate rules in to the
Expert System.

The above also allowed the authors to keep the interface, between client and
server, simple. It is anticipated that, with respect to potential future Knowledge
Bazaar applications, a more complex grammar may very well be required to allow
more complex rules to be expressed.

3.4. Rule Integrity

An important feature of the system is that it ensures both security and integrity of
the knowledge contained in individual bazaars. If a user inadvertently, mistakenly
or maliciously enters false information this is removed quickly. At the same time
the system ensures that trusted information is harder to remove, and guards against
inadvertent or malicious removal.

It is acknowledge that, no matter how well accepted information is now, it can
become redundant through the passage of time. For some knowledge domains, e.g.
IT support, the rate of obsolescence can be high. For the gardening Knowledge
Bazaar demonstrator, most information is expected to remain constant; although
factors such as new discoveries, plant breeding advances, global warming etc. may
at some point mean that even here previously correct information might need to be
replaced. Since the authors wished to fully adhere to the Bazaar principles for all
aspects of the system, it was decided to use feedback from peer review, to guide
the automatic integrity maintenance mechanism built into the system. To this end,
users of the Knowledge Bazaars are encouraged to provide feedback as to whether
previously supplied advice had proved accurate or false via a form driven interface.
It is equally important that good as well as negative feedback is supplied. Currently
only (trusted) registered users are permitted to contribute knowledge to the bazaar
(though everyone can post queries). Associated with every user is a quality metric
which is maintained by the system (not unlike the mechanism operated with e-
bay). In addition there is a quality metric associated with every piece of knowledge
contained within the system. The initial quality associated with the knowledge is
based upon the current quality value of the user who supplies the information.

As users report feedback (or supply knowledge which conflicts or agrees), these
quality values are adjusted. Negative feedback causes the quality of a rule to
diminish, whereas positive feedback causes it to increase. If the quality of a rule
diminishes below a threshold then it will be removed from the system and the
quality of the original contributor reduced. Conversely, users that contribute
information that is reported as correct by other users (not themselves) have their
quality values increased. This process is illustrated shown in the Figure 2.

To date it has been found that the above simple mechanism ensures that errors can
be corrected, but that when knowledge has proved useful to many people, it
becomes harder to remove - so reducing the possibility of abuse. Information
supplied by users who have contributed lots of useful information in the past is, at
least initially, harder to remove than that supplied by new users or poorly
performing contributors.

4. Generic Knowledge Bazaar Operation

The generic, knowledge domain independent, knowledge bazaar offers facilities
for users to contribute knowledge either on their own initiative (unsolicited) or in

response to requests from other users (solicited). Users can also request advice or
provide feedback as to the validity of content. The generic Knowledge Bazaar
services these requests through communication with the appropriate domain
specific Knowledge Bazaar (as illustrated in Figure 1).

Figure 2: Knowledge Bazaar Rule Integrity Mechanism

In the case of the Generic Bazaar Service, three ports were identified as useful for
the service:

• A User Data port (to handle user registration and logon verification).
• A Knowledge Bazaar port (to handle the Knowledge Bazaar processing for

normal users).
• A Supervisory port (to allow the client operator to access performance data

and to perform maintenance operations).

(Note that a client could choose to handle user registration locally or may have no
need for the supervisory functionality. However the port separation ensures that the
core bazaar functionality is isolated and clearly identified.)

The generic knowledge bazaar interface has been designed using industry standard
Web Service technologies which ensure the development of a client is relatively
straightforward. WSDL is used to unambiguously describe the service interface.
The service would be published using a publicly accessible UDDI directory
service. An interested party would be directed from this directory service to the
location of the WSDL file. This file would then be processed by the tools to
generate the language specific (e.g. Java) interface as described in section 3.1. The
generic service provides the basic knowledge handling functionality. A client
developer then just needs to develop the presentation of the functionality to suit the
specific application. The client development task does not require any knowledge
of expert systems. It just requires standard web site development skills.

5. Demonstration Gardening Knowledge Bazaar
Operation

For the demonstration gardening Knowledge Bazaar users interact with the client
application using a form-driven WWW interface. Users contribute to the system
either on their own initiative or in response to requests from other users. If
someone provides an answer to a request then the interested party is informed and
the expert system updated. If the same question is asked again, the answer will be
obtained directly from the expert system. The expert system thus continually
expands its knowledge base - without needing to use the services of a traditional
expert.

Individual Knowledge Bazaar clients use a form driven interface that will restrict
the possible entries for operations and properties (corresponding to the rule
representation described in section 3.1). The object field will allow unrestricted
text entry. These restrictions avoid natural language processing complications.
With respect to the gardening knowledge bazaar Table 2 shows the values that are
permitted:

For queries, the user will be asked to supply an Object and an Operation and the
associated Property will be sought.

For knowledge contribution, a simple interface allows users to enter facts in the
form of object-operation-property tuples. It is anticipated that in the future a more
complex interface will allow a user to specify two complete facts (as object,
operation, property tuples) and state if one fact implies, or does not imply, the
other fact.

For Knowledge Bazaar applications, it might be that some form of Fat Client Peer
to Peer architecture could offer some advantages. If instead of storing all

knowledge centrally it was distributed across many machines then it might be
possible to mitigate the storage costs and processing delays that could arise for
large knowledge bases. However, in the interest of ease of access and simplicity of
design, the authors opted for a thin client application as the mo st appropriate
choice.

The demonstration gardening Knowledge Bazaar is currently available at
http://www.knowledgebazaar.org, interested readers are invited to interact with the
system to obtain a better appreciation of its operation.

Operation Property
Is a variety of No restriction
Flowers in Summer, spring, winter,
Has longevity Annual, perennial, biannual
Has fragrance Low, medium, high
Has sun requirement Low, medium, high, easy
Has temperature requirement Low, medium, high, easy
Has frost tolerance Low, medium, high
Has water requirement Low, medium, high
Has soil ph requirement Acid, alkaline, easy

Table 2: Gardening Knowledge Bazaar Rule Restrictions

6. Evaluation

At time of writing (May 2005) the gardening Knowledge bazaar demonstrator had
been in full operation for several months only. Feedback from a survey conducted
by the company, where some fifty participants were asked to interact with the
demonstrator, indicates that the bas ic Knowledge Bazaar concept has been well
received. The majority of respondents gave a very positive reaction to the
knowledge bazaar concept. Over half (i.e. more than 25 of the respondents) agreed
that they would use such a system as a source of information with only 3%
disagreeing (the rest were undecided). Even more people (65%) said they would be
prepared to contribute their knowledge to such a system with only 6% disagreeing.
The basic Knowledge Bazaar concept is further supported by the observation that
online communities have proliferated over the last few years, indicating that
Internet users are happy to provide answers to problems/questions (for example
using “message boards”).

With respect to rule integrity half of the respondents believed that Peer review
would be sufficient to ensure the quality of the knowledge base. The reaction to the
form driven interface designed to support Knowledge Bazaar applications was also
interesting in that most respondents regarded a Natural Language Processing
(NLP) interface as a low-priority enhancement rather than a necessity.

The authors always considered the threat of abuse to be the greatest challenge to
the Knowledge Bazaar concept in that the soliciting of knowledge would allow
users to post objectionable content as queries. The Survey participants were asked
for their views on the best way to tackle this. Most (47%) thought that some kind
of filter mechanism should be introduced despite the time and cost implications.
Peer review was however thought to be sufficient by a large minority (35%). The
option of requiring personal details for membership was less popular (18%),
reflecting the objections that many people also have to registering with “message
board” Internet sites.

The positive results obtained from the survey were further supported by the
authors’ intuition that experts systems developed using the Knowledge Bazaar
approach more accurately reflect the way in which knowledge is applied. The
authors believe that the traditional approach to building Expert Systems, which
assumes knowledge can be detached from its social context, is flawed. Even during
the “golden age” of Expert Systems, Bobrow was already advocating the need for
“Community knowledge bases that integrate expertise from many different
sources” (Bobrow 1986). This view is supported by Wenger (1998) who argues
that knowledge, and the process of learning, involves much more than information
gathering or technology. Wenger suggests a number of components to learning that
are embraced by communities of practice . Wenger’s ideas about communities of
practice with respect to knowledge elicitation strongly support the Knowledge
Bazaar concept as proposed here.

7. Conclusions

In this paper the idea of the Knowledge Bazaar approach to building expert
systems has been introduced. The term “Knowledge Bazaar” has been proposed to
describe the concept of a body of knowledge that evolves dynamically using the
contributions, supplied across the Internet, of self-selected individuals. To illustrate
the concept a gardening Knowledge Bazaar demonstrator has been developed
which has been well received. The feedback indicates that the concept has great
potential for harnessing the knowledge available across the Internet so as to build
genuinely useful knowledge based systems and applications.

References

1. Adams, J (2001). The feasibility of distributed web based expert systems. Proc.

IEEE Systems, Man, and Cybernetics Conference.
2. Bezroukov, N. (1999). A Second Look at the Cathedral and the Bazaar. First

Monday Journal, Vol 4, num 12 (Available from
http://firstmonday.org/issues/issue4_12/bezroukov/index.html).

3. Bobrow et al (1986). Expert Systems: Peril and Promise. Communications of
the ACM. Vol 29, Num 9.

4. Friedman-Hill, E (2003). JESS in Action – Rule-Based Systems in Java.
Manning Publications.

5. Grove, R. (2000). Internet Based Expert Systems. Expert Systems, Vol. 17
No.3.

6. Raymond, E. (1999). The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O'Reilly.

7. Schmelzer, R., Vandersypen, T., Bloomberg, J., Siddalingaiah, M., Hunting,
S., Qualls, M., Darby, C., Houlding, D. and Kennedy, D. (2002). XML and
Web Services Unleashed. SAMS Publishing.

8. Sedbrook, T (2001). Integrating e-business XML business forms and rule-
based agent technologies. Expert Systems, Vol.18, No.5.

9. Shan, F et al (2003). A programmable agent for knowledge discovery on the
Web. Expert Systems, Vol. 20, No. 2.

10. Wagner, G., Antoniou, G., Tabet, S. and Boley, H. (2004). The Abstract
Syntax of RuleML - Towards a General Web Rule Language Framework. Proc.
Web Intelligence 2004: 628-631

11. Wenger, E. (1998). Communities of Practice – Learning, Meaning and
Identity. Cambridge University Press.

